## Line Sensing

Reed Relays


## CHARACTERISTICS

- Line Sense Relay
- Breakdown voltage coil-contact up to 4.25
kVDC / 3.0 kVRMS
- Approved according to EN60950
- Low profile version only 5.8 mm high
- UL approval


## DESCRIPTION

The DIL-CL series is used for line sensing in many modems, fax machines, private branch exchanges (PBX) and other telecommunication devices. It is superior to semiconductor solutions regarding flashover and impulse strength. The DIL-CL series is approved according to EN60950.

## DIMENSIONS

## All dimensions in mm [inches]

Without magnetic shield


With magnetic shield


## ORDER INFORMATION

| Series | Contact <br> Form | Switch <br> Model | Coil <br> Resistance <br> (in $\Omega$ ) | Pin Out |
| :---: | :---: | :---: | :---: | :---: |
| DIL-CL - | 1A | $\mathbf{8 1 -}$ | XX - | XXX |
| Options |  |  | $9,10,15,4 / 4^{*}$ | $13 \mathrm{M}, 15 \mathrm{M}$, <br> $18 \mathrm{M}, 513 \mathrm{M}^{* *}$ |
| * Available with Pin-out M18 only. <br> $* *$ Available only with 10 \& 15 $\Omega$ coil resistance. |  |  |  |  |

## Part Number Example

DIL - CL-1A81-9-13M

9 is the coil resistance in $\Omega$
13 M is the pin out

## PIN OUT

View from top of component 2.54 mm [0.10"] pitch grid





## COIL DATA

| Contact Form | Switch Model | Pin Out | Coil Resistance |  |  | Pull-in Current | Drop-out Current | Inductance at 1 kHz and 1 Coil (*at both Coils) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Data at $20{ }^{\circ} \mathrm{C}{ }^{\text {t }}$ |  |  | $\Omega$ |  |  |  | mA | mH |  |  |
|  |  |  | Nom. | Typ. | Max. | Max. | Min. | Min. | Typ. | Max. |

Height 5.8 mm

| $\mathbf{1 A}$ | $\mathbf{8 1}$ | 513 M | 9 | 10 | 11 | 15 | 5 | 1.6 | 2.0 | 2.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 15 | 17 | 15 | 5 | 2.88 | 3.6 | 4.32 |  |  |  |

Hgiht 10.6 mm

| 1 A | 81 | 15 M | 8 | 9 | 10 | 15 | 5 | 2.56 | 3.2 | 3.92 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 13 M | 14 | 15 | 17 | 15 | 5 | 3.52 | 4.4 | 5.28 |
|  |  | $18 \mathrm{M}^{\text {T }}$ | 3.6 | 4 | 4.4 | 15 | 5 | $\begin{gathered} 0.64 \\ 2.56^{\star} \end{gathered}$ | $\begin{aligned} & 0.8 \\ & 3.2^{*} \end{aligned}$ | $\begin{aligned} & 0.96 \\ & 3.84^{*} \end{aligned}$ |

[^0]
## RELAY DATA

| All Data at $\mathbf{2 0}^{\circ} \mathrm{C}$ | Switch Model --> Contact Form --> | Switch 81 Form A |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Contact Ratings | Conditions | Min. | Typ. | Max. | Units |
| Switching Power * | Any DC combination of $V$ \& A not exceed their individual max.'s. |  |  | 5 | W |
| Switching Voltage | DC or peak AC |  |  | 90 | V |
| Switching Current | DC or peak AC |  |  | 0.5 | A |
| Carry Current | DC or peak AC |  |  | 1.0 | A |
| Static Contact Resistance | w/ 0.5 V \& 50 mA |  |  | 200 | $\mathrm{m} \Omega$ |
| Dynamic Contact Resistance | $\mathrm{w} / 0.5 \mathrm{~V} \& 50 \mathrm{~mA}$, 1.5 ms after closure |  |  | 200 | $\mathrm{m} \Omega$ |
| Insulation Resistance (100 Volts applied) | Across Contacts Contact to coil | $\begin{aligned} & 10^{9} \\ & 10^{10} \end{aligned}$ |  |  | $\Omega$ |
| Breakdown Voltage | Across Contacts Contact to coil | $\begin{gathered} 100 \\ 4.25 \\ 3.0 \end{gathered}$ |  |  | $\begin{gathered} \text { VDC } \\ \text { kVDC } \\ \text { kVRMS } \end{gathered}$ |
| Operate Time incl. Bounce | Measured w/ 100 \% overdrive |  |  | 0.5 | ms |
| Release Time | Measured w/ no coil suppression |  |  | 0.1 | ms |
| Capacitance | Across Contacts Contact to coil |  | $\begin{aligned} & 0.2 \\ & 4.0 \end{aligned}$ |  | pF |
| Life Expectancies |  |  |  |  |  |
| Switching 5V \& 10 mA | DC $<10 \mathrm{pF}$ stray cap. |  | 100 |  | $10^{6}$ Cycles |
| For other load requirements, see | life test section on P. 152. |  |  |  |  |
| Environmental Data |  |  |  |  |  |
| Shock Resistance | $1 / 2$ Sine wave duration for 11 ms |  |  | 30 | g |
| Vibration Resistance | From $10-2000$ Hz |  |  | 10 | g |
| Ambient Temperature | max. $10^{\circ} \mathrm{C} /$ minute allowable | -20 |  | 70 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | max. $10^{\circ} \mathrm{C} /$ minute allowable | -25 |  | 85 | ${ }^{\circ} \mathrm{C}$ |
| Soldering Temperature | 5 sec . dwell |  |  | 260 | ${ }^{\circ} \mathrm{C}$ |


[^0]:    ${ }^{\text {t }}$ The pull-in, drop-out and coil resistance will change at the rate of $0.4 \%$ per ${ }^{\circ} \mathrm{C}$.
    ${ }^{\text {"t }}$ Values presented are for coils in series aiding.

