

FL SWITCH 2000

User manual
Order No. -

User manual

FL SWITCH 2000

Designation: UM EN FL SWITCH 2000
Revision: 01
Order No.: —

This user manual is valid for:

Designation	Order No.	Designation	Order No.
FL SWITCH 2005	2702323	FL SWITCH 2206-2FX SM	2702331
FL SWITCH 2008	2702324	FL SWITCH 2206-2FX ST	2702332
FL SWITCH 2105	2702665	FL SWITCH 2206-2FX SM ST	2702333
FL SWITCH 2108	2702666	FL SWITCH 2204-2TC-2SFX	2702334
FL SWITCH 2205	2702326	FL SWITCH 2206-2SFX	2702969
FL SWITCH 2208	2702327	FL SWITCH 2308	2702652
FL SWITCH 2207-FX	2702328	FL SWITCH 2304-2GC-2SFP	2702653
FL SWITCH 2207-FX SM	2702329	FL SWITCH 2306-2SFP	2702970
FL SWITCH 2206-2FX	2702330		

Please observe the following notes

User group of this manual

The use of products described in this manual is oriented exclusively to:

- Qualified electricians or persons instructed by them, who are familiar with applicable standards and other regulations regarding electrical engineering and, in particular, the relevant safety concepts.
- Qualified application programmers and software engineers, who are familiar with the safety concepts of automation technology and applicable standards.

Explanation of symbols used and signal words

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety measures that follow this symbol to avoid possible injury or death.

There are three different categories of personal injury that are indicated with a signal word.

DANGER This indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING This indicates a hazardous situation which, if not avoided, could result in death or serious injury.
CAUTION This indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

This symbol together with the signal word NOTE and the accompanying text alert the reader to a situation which may cause damage or malfunction to the device, hardware/software, or surrounding property.

This symbol and the accompanying text provide the reader with additional information or refer to detailed sources of information.

How to contact us

Up-to-date information on Phoenix Contact products and our Terms and Conditions can be found on the Internet at:
phoenixcontact.com
Make sure you always use the latest documentation.
It can be downloaded at:
phoenixcontact.net/products

Subsidiaries

Published by

If there are any problems that cannot be solved using the documentation, please contact your Phoenix Contact subsidiary.
Subsidiary contact information is available at phoenixcontact.com.
PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstraße 8
32825 Blomberg GERMANY

Should you have any suggestions or recommendations for improvement of the contents and layout of our manuals, please send your comments to:
tecdoc@phoenixcontact.com

General terms and conditions of use for technical documentation

Phoenix Contact reserves the right to alter, correct, and/or improve the technical documentation and the products described in the technical documentation at its own discretion and without giving prior notice, insofar as this is reasonable for the user. The same applies to any technical changes that serve the purpose of technical progress.

The receipt of technical documentation (in particular user documentation) does not constitute any further duty on the part of Phoenix Contact to furnish information on modifications to products and/or technical documentation. You are responsible to verify the suitability and intended use of the products in your specific application, in particular with regard to observing the applicable standards and regulations. All information made available in the technical data is supplied without any accompanying guarantee, whether expressly mentioned, implied or tacitly assumed.

In general, the provisions of the current standard Terms and Conditions of Phoenix Contact apply exclusively, in particular as concerns any warranty liability.
This manual, including all illustrations contained herein, is copyright protected. Any changes to the contents or the publication of extracts of this document is prohibited.

Phoenix Contact reserves the right to register its own intellectual property rights for the product identifications of Phoenix Contact products that are used here. Registration of such intellectual property rights by third parties is prohibited.

Other product identifications may be afforded legal protection, even where they may not be indicated as such.

Caution: Installation only by qualified personnel

Installation, startup and maintenance of the product may only be performed by qualified specialist staff who have been authorized for this by the system operator. An electrician is a person who, because of their training, experience and instruction, and knowledge of relevant standards, can assess any required operations and recognize any possible dangers.

Specialist staff must read and understand this documentation and comply with instructions.
Observe the national regulations in force for the operation, functional testing, repairs and maintenance of electronic devices.

Table of contents

1 Factoryline SWITCH 2000 range 7
1.1 Properties and versions 7
1.1.1 Dimensions of the FL SWITCH 2000 8
1.1.2 Elements of the devices 9
1.1.3 Description of the combo ports 9
1.1.4 Status and diagnostic indicators 10
2 Mounting and installation 11
2.1 Mounting and removing the devices 11
2.2 Installing the devices 12
2.2.1 Connecting the supply voltage 12
2.2.2 Grounding? 14
2.2.3 Assignment of the RJ45 Ethernet connectors 14
2.2.4 Use of SFP slots (principle) 14
2.2.5 Using the SD card 16
3 Startup and function 17
3.1 Delivery state/factory settings 17
3.2 Using Smart mode 17
3.2.1 Calling Smart mode 17
Factoryline SWITCH 2000 range3.2.2Selecting the desired setting 18
3.2.3 Possible operating modes in Smart mode 18
3.2.4 Exiting Smart mode 18
3.2.5 Operating with a default IP address 18
3.2.6 Operating in Unmanaged mode 19
3.3 Assigning IP parameters via BootP 19
3.3.1 Assigning the IP address using FL NETWORK MANAGER Basic 19
3.3.2 Assigning the IP address using IPAssign.exe 21
4 Frame switching 25
4.1 Store and forward 25
4.2 Multi-address function 25
4.2.1 Learning addresses 25
4.2.2 Prioritization 26
5 Configuration and diagnostics in web-based management 27
5.1 Requirements for the use of WBM 27
5.2 Functions/information in WBM. 28
5.2.1 Information area of WBM 29
5.2.2 Configuration area of WBM 33
5.2.3 Diagnostics area of WBM 52
6 Configuration and diagnostics via Command Line Interface (CLI) 57
6.1 Using the Command Line Interface (CLI) 57
6.2 Access to the CLI 57
6.3 Basic principles for using CLI commands 58
6.4 Command syntax 59
6.5 Using the CLI Help 59
6.6 Auto-completion of commands 60
6.7 Using the CLI Network Scripting UI. 61
7 Simple Network Management Protocol (SNMP) 63
7.1 General function 63
8 Link Layer Discovery Protocol (LLDP) 65
8.1 Basics 65
9 Multicast filtering 69
9.1 Multicast Configuration 69
10 Virtual Local Area Network (VLAN) 71
11 Technical data and ordering data 75
11.1 Technical data for devices in the 2000 version 75
11.2 Technical data for devices in the 2100 version 76
11.3 Technical data for devices in the 2200 version 78
11.4 Technical data for devices in the 2300 version 81
11.5 Ordering data 85
A Appendix for document lists. 89
A 1 List of figures 89
B 2 List of tables 93
C 3 Index 95

1 Factoryline SWITCH 2000 range

1.1 Properties and versions

The Managed Switches in the 2000 version are Ethernet Switches which are suitable for industrial use. They are available in the following versions:

- With five 10/100 Mbps RJ45 ports (FL SWITCH 2005)
- With eight $10 / 100$ Mbps RJ45 ports (FL SWITCH 2008)

The Managed Switches in the 2100 version are Gigabit Ethernet Switches which are suitable for industrial use. They are available in the following versions:

- With five $10 / 100 / 1000$ Mbps RJ45 ports (FL SWITCH 2105)
- With eight 10/100/1000 Mbps RJ45 ports (FL SWITCH 2108)

The Managed Switches in the 2200 version are Ethernet Switches which are suitable for industrial use. They are available in the following versions:

- With five 10/100 Mbps RJ45 ports (FL SWITCH 2205)
- With eight $10 / 100$ Mbps RJ45 ports (FL SWITCH 2208)
- With seven 10/100 Mbps RJ45 ports and one FO port in SC format for multimode (FL SWITCH 2207-FX)
- With seven 10/100 Mbps RJ45 ports and one FO port in SC format for single mode (FL SWITCH 2207-FX-SM)
- With six 10/100 Mbps RJ45 ports and two FO ports in SC format for multimode (FL SWITCH 2206-2FX)
- With six 10/100 Mbps RJ45 ports and two FO ports in SC format for single mode (FL SWITCH 2206-2FX SM)
- With six 10/100 Mbps RJ45 ports and two FO ports in ST format for multimode (FL SWITCH 2206-2FX ST)
- With six 10/100 Mbps RJ45 ports and two FO ports in ST format for single mode (FL SWITCH 2206-2FX SM ST)
- With four 10/100 Mbps RJ45 ports, two Fast Ethernet combo ports, and two SFX ports (FL SWITCH 2204-2TC-2SFX)
- With six 10/100 Mbps RJ45 ports and two SFX ports (FL SWITCH 2206-2SFX)

The Managed Switches in the 2300 version are Gigabit Ethernet Switches which are suitable for industrial use. They are available in the following versions:

- With eight 10/100/1000 Mbps RJ45 ports (FL SWITCH 2308)
- With four 10/100/1000 Mbps RJ45 ports, two Gigabit combo ports, and two SFP ports (FL SWITCH 2304-2GC-2SFP)
- With six 10/100/1000 Mbps RJ45 ports and two SFP ports (FL SWITCH 2306-2SFP)

1.1.1 Dimensions of the FL SWITCH 2000

Figure 1-1 Dimensions of the FL SWITCH 2000

1.1.2 Elements of the devices

Figure 1-2 Elements of the devices

Table 1-1

Number	Meaning
1	Connection for the supply voltage
2	RJ45 ports
3	Mode switch
4	Diagnostic and status indicators
5	Slot for optional SD card

1.1.3 Description of the combo ports

Combo ports enable a high degree of flexibility when setting up networks. They consist of a corresponding RJ45 port (e.g., X3.1) and a corresponding SFP port (e.g., X3.2). Only one port of the pair can be used at a time. Each combo port can therefore be used as a copper or fiberglass port. Inserting an SFP module disables the corresponding RJ45 port. If a combo port is used as a fiberglass port, the Link LED of the corresponding RJ45 port lights up orange when there is an active connection.
The following FL SWITCH 2000 versions have combo ports:

- FL SWITCH 2204-2TC-2SFX (2 Fast-Ethernet combo ports for 100 Mbps SFP modules, ports 3 and 7)
- FL SWITCH 2304-2GC-2SFP (2 Gigabit combo ports for 100 Mbps and 1000 Mbps SFP modules, ports 3 and 7)

1.1.4 Status and diagnostic indicators

- Please note that the meaning of the LEDs differs in Smart mode (see "Using Smart mode" on page 17).

Des.	Color	Status	Meaning
US1	Green	On	Supply voltage 1 within the tolerance range
		Off	Supply voltage 1 too low
US2 (for 2200/2300 version only)	Green	On	Supply voltage 2 within the tolerance range
		Off	Supply voltage 2 too low
```FAIL (for 2200/2300 ver- sion only)```	Red	On	Digital alarm output floated, i.e., an error is present
		Off	Digital alarm output connected to ground potential (ground), i.e., an error is not present
LNK/ACT   (at port top)	Green	On	Link active
		Flashing	Data transmission
		Off	Link not active
SPD(at port bottom)	Green/ orange	On	Green: 100 Mbps   Orange (for 2100/2300 version only): 1000 Mbps
		Off	10 Mbps if Link LED is active

## 2 Mounting and installation

### 2.1 Mounting and removing the devices

Mount the device on a clean DIN rail according to DIN EN 50022 (e.g., NS 35 ... from Phoenix Contact). To avoid contact resistance, only use clean, corrosion-free DIN rails. End brackets (E/NS 35 N, Order No. 0800886) can be mounted to the right and left of the device to stop the modules from slipping on the DIN rail.

## Mounting:

- Place the module onto the DIN rail from above (A1). The upper holding keyway of the module must be hooked onto the top edge of the DIN rail. Push the module from the front towards the mounting surface (A2).


Figure 2-1 Snapping the device onto the DIN rail

- Once the module has been snapped on properly, check that it is fixed securely on the DIN rail.


## Removal:

- Pull down the positive latch using a suitable tool (e.g., screwdriver). The positive latch remains snapped out. Then swivel the bottom of the device away from the DIN rail slightly (B1). Next, lift the device upwards away from the DIN rail (B2).


## B



Figure 2-2 Removing the device

### 2.2 Installing the devices

### 2.2.1 Connecting the supply voltage

The device is operated using a 24 V DC voltage, which is applied via COMBICON. For devices in the 2200/2300 version, the voltage can also be supplied redundantly (see Figure 2-4).

Operation with one power supply

## US

## GND



Figure 2-3 Operating the device with one power supply (example)

Redundant operation with two power supplies

## US1 US2 <br> GND GND



Figure 2-4 Redundant operation with two power supplies (example)

Please note that load distribution does not take place. The power supply unit with the higher voltage will supply the device on its own.

### 2.2.1.1 Connecting a relay to the digital alarm output

The digital alarm output is an open drain output. In normal mode, the output is connected to ground potential. If an error/alarm is present, the output is floated.


Figure 2-5 Connecting a relay to the digital alarm output
$\because \quad$ Please note that the relay must be suitable for the operating voltage. Use the RIF-0-RPT-
1 24DC/21 (Order No. 2903370), for example.

### 2.2.2 Grounding $\stackrel{\perp}{=}$

Grounding protects people and machines against hazardous voltages. To avoid these dangers, as far as possible, correct grounding, taking the local conditions into account, is vital.

All Factoryline devices must be grounded so that any possible interference is shielded from the data telegram and discharged to ground potential. A conductor of at least $2.5 \mathrm{~mm}^{2}$ must be used for grounding. Mount the module on a grounded DIN rail. The module is functional grounded by snapping it onto the DIN rail.

### 2.2.3 Assignment of the RJ45 Ethernet connectors



Please note that for operation with 1000 Mbps (Gigabit), cables with four twisted pairs (eight wires), which meet the requirements of CAT5e as a minimum, must be used.


Please note that only devices in the 2100/2300 version support Gigabit.

Table 2-1 Pin assignment of RJ45 connectors

Pin number	10Base-T/10 Mbps	100Base-T/100 Mbps	1000Base-T/1000 Mbps
1	TD+ (transmit)	TD+ (transmit)	BI_DA+ (bidirectional)
2	TD- (transmit)	TD- (transmit)	BI_DA- (bidirectional)
3	RD+ (receive)	RD+ (receive)	BI_DB+ (bidirectional)
4	-	-	BI_DC+ (bidirectional)
5	-	-	BI_DC- (bidirectional)
6	RD- (receive)	RD- (receive)	BI_DB- (bidirectional)
7	-	-	BI_DD+ (bidirectional)
8	-	-	BI_DD- (bidirectional)

### 2.2.4 Use of SFP slots (principle)

The SFP slots are used by SFP modules (FO fiberglass modules in SFP format). By selecting the SFP modules, the user can specify whether the switch has multimode or singlemode FO ports, for example.
The SFP modules are available separately as accessories, see "Technical data and ordering data" on page 75.

### 2.2.4.1 Elements of the SFP modules



Figure 2-6 Elements of the SFP modules

### 2.2.4.2 Mounting the SFP modules

## Inserting the SFP modules

- Insert the SFP modules in the relevant slots on the switch.
- Ensure correct mechanical alignment of the SFP modules.


Figure 2-7 Inserting the SFP modules (example)

## Removing the SFP modules

- Remove the FO connector before removing the SFP module.
- Turn the release latch to the side and pull out the SFP module.


### 2.2.5 Using the SD card

The switch is provided with a Phoenix Contact SD card, thereby enabling quick configuration. The slot for the SD card is located on the back of the device.


Figure 2-8 Position of the SD card slot

## Automatically reading the configuration on the SD card

To automatically read the configuration on the SD card, make sure that the card is inserted when the switch is started. As soon as the boot process has been completed (indicated by the LEDs on the port going out), the configuration is applied in the internal switch memory and is active during operation. The SD card can then be removed. The configuration also remains active when the switch is restarted, provided an SD card is not inserted in the device.

## 3 Startup and function

### 3.1 Delivery state/factory settings

By default upon delivery or after the system is reset to the factory settings, the following functions and properties are available:

- The user name is: "admin"
- The password is: "private"
- All IP parameters are deleted. The switch has no valid IP address.
- The available RJ45 ports are set to auto negotiation and auto crossing
- All counters of the SNMP agent are reset
- The web server (HTTP) and SNMPv2 are activated
- CLI (Telnet) is activated
- Port mirroring and MRP are deactivated
- Rapid Spanning Tree (RSTP) is activated (as of firmware Version 2.01)
- The digital alarm output is an open drain output. In the event of redundant power supply, the output is connected to ground potential. If there is no redundant power supply, the output is floated.
- BootP for assigning IP parameters is activated
- The MAC address table does not contain any entries
- LLDP is activated
- DHCP server is deactivated


### 3.2 Using Smart mode

Smart mode enables the user to change the operating mode of the switch, without having access to one of the management interfaces.
The following setting options can be selected via Smart mode:

- Resetting the IP configuration
- Operating in EtherNet/IP mode
- Operating with a static IP address
- Operating in Unmanaged mode
- Reset to the factory settings

The Mode button is used to call/exit Smart mode and to select the desired setting. The four mode LEDs indicate the mode that is currently selected and that will apply when exiting Smart mode.

### 3.2.1 Calling Smart mode

- Following the switch boot phase, as soon as the LEDs of all ports go out, press and hold down the Mode button for more than five seconds. If Smart mode is active, the four LEDs of port X1 and X2 will flash. The active state is indicated alternately by the flashing of all four LEDs.
- When Smart mode is started, the switch is initially in the "Exit without changes" state.


### 3.2.2 Selecting the desired setting

- To select the various settings, press the Mode button briefly and select the desired operating mode (see Table "Operating modes in Smart mode" on page 18).


### 3.2.3 Possible operating modes in Smart mode

The switch supports the selection of the following operating modes in Smart mode:
Table 3-1 Operating modes in Smart mode

Mode	LED at port 1   top	LED at port 1   bottom	LED at port 2   top	LED at port 2   bottom
Exit Smart mode without changes	On	Off	Off	Off
Reset to the factory settings	Off	On	Off	Off
Set EtherNet/IP mode	Off	Off	On	Off
Operating with a default IP address	Off	On	On	Off
Reset the IP configuration	On	On	On	Off
Operating in Unmanaged mode	Off	On	Off	On

### 3.2.4 Exiting Smart mode

- To exit, press and hold down the Mode button for at least five seconds. The previously selected operating mode is saved and activated.


### 3.2.5 Operating with a default IP address

For operation with a default IP address, the device is assigned a fixed IP address. A DHCP server is activated on the switch and assigns an IP address to the connected PC via DHCP.

To start up the device with a default IP address, activate the "Operating with a static IP address" Smart mode as described in "Using Smart mode" on page 17.

1. In the network settings on your PC, select the "Obtain an IP address automatically" option.


Deactivate all other network interfaces on your PC.
2. Connect the switch to your PC.
3. Select the "Operating with a default IP address" Smart mode as described in "Using Smart mode" on page 17.
4. The switch assigns an IP address to the PC via DHCP.
5. The switch can now be accessed via IP address "192.168.0.254".

Set the desired IP address via web-based management.

### 3.2.6 Operating in Unmanaged mode

For operation in Unmanaged mode, the switch can also be used without an IP address. The switch adopts the static IP address 0.0 .0 .0 . The subnet mask and gateway are also configured to 0.0.0.0. In this way, web-based management can no longer be accessed, and the switch no longer sends BootP and DHCP requests.

The main functions remain active in Unmanaged mode:

- Redundancy mechanisms for loop avoidance (RSTP, FRD, LTS)
- Functions for hardening the network (broadcast/multicast limiter)
- Functions for reducing the network load (IGMP snooping)

The functions must be configured in Managed mode and will remain active when switching to Unmanaged mode. Alternatively, Unmanaged mode can be activated using a configuration file and SD card.

Unmanaged mode can only be exited by switching to a different Smart mode or by resetting the switch to the factory settings.

### 3.3 Assigning IP parameters via BootP

BootP is activated by default.

For IP address assignment, the device uses the BootP protocol. Numerous BootP servers are available on the Internet. You can use any of these programs for address assignment.

This section explains IP address assignment using the "FL NETWORK MANAGER Basic" (Order No. 2702889) and "IP Assignment Tool" software tools from Phoenix Contact.

## Notes on BootP

During initial startup, the device sends BootP requests without interruption until it receives a valid IP address. As soon as it receives a valid IP address, the device stops sending BootP requests.

After a restart, the device sends three BootP requests and will only then accept the old IP address if there is no BootP response.

### 3.3.1 Assigning the IP address using FL NETWORK MANAGER Basic

## Requirements

The device is connected to a PC with a Microsoft Windows operating system and the FL NETWORK MANAGER has been successfully installed.

## Step 1: parameterizing the BootP server

- Open the FL NETWORK MANAGER software
- Open a new project in the software
- Under Tools $\rightarrow$ Options, select the BOOTP/DHCP SERVER menu item
- Configure the network interface on your PC to which the device is connected and select "BootP" mode. You can also adjust the subnet mask and configure a default gateway.
- Click "OK" to confirm the parameterization


Figure 3-1 Settings for the BootP server

## Step 2: starting the BootP server

- In your project in the BOOTP/DHCP SERVER window, click on the Play icon next to the selected network interface. The BootP server is now activated.
- BootP requests that are received are listed in the BOOTP/DHCP SERVER window in table format


Figure 3-2 BootP server

## Step 3: inserting incoming BootP requests in the reservation list and assigning IP parameters

- If you would now like to assign IP parameters to a device, such as an IP address, subnet mask or default gateway, right-click on an incoming BootP request in the BOOTP/DHCP SERVER window and select "Add to BOOTP/DHCP reservations".
- Now enter the IP address to be assigned in the BOOTP/DHCP reservations window. The IP parameters are immediately transferred to the device.
- You can check whether IP address assignment was successful in the "IP address" column in the BOOTP/DHCP SERVER window.


Figure 3-3 FL Network Manager with BootP/DHCP reservation list displayed

- If required, the IP parameters set here can be changed in web-based management (see "Requirements for the use of WBM" on page 27).


### 3.3.2 Assigning the IP address using IPAssign.exe

## Requirements

The device is connected to a computer with a Microsoft Windows operating system.

## Step 1: downloading and executing the program

- On the Internet, select the link phoenixcontact.net/catalog.
- Follow further instructions in order to access the search field.
- Enter order number 2702323 in the search field, for example.

The BootP IP addressing tool can be found among the various product-related downloads.

- Double-click on the "IPAssign.exe" file.
- In the window that opens, click on the "Run" button.


## Step 2: "IP Assignment Tool"

The program opens and the start screen of the addressing tool appears.
The program is mostly in English for international purposes. However, the program buttons change according to the country-specific settings.
The start screen displays the IP address of the PC. This helps when addressing the device in the following steps.

- Click on the "Next" button.


## Step 3: "IP Address Request Listener"

All devices sending a BootP request are listed in the window which opens. These devices are waiting for a new IP address.


Figure 3-4 "IP Address Request Listener" window

The MAC address of the switch can be found on the sticker on the side.

In this example, the switch has MAC address 00.A0.45.04.08.A3.

- Select the device to which you want to assign an IP address.
- Click on the "Next" button.


## Step 4: "Set IP Address"

The following information is displayed in the window which opens:

- IP address of the PC
- MAC address of the selected device
- IP parameters of the selected device
(IP address, subnet mask, and gateway address)
- Any incorrect settings

Phoenix Contact - IP Assignment Tool		
Set IP Address   Please specify an IP Address to use.		
This PC's IP Address	192.168.1.100	
Please specify the IP Address to be used below.		
Selected MAC Address	00:a0:45:04:08:a3	
IP Address	192 • $168 \cdot 22 \cdot 21$	
Subnet Mask	255 . 255 . 255 . 0	
Gateway Address	0 . 0 . 0 . 0	
WARNING: this address is in a different Subnet.		
Once you have entered a valid IP address, click Next.		
	< Zurück Weiter >	Abbrechen

Figure 3-5 "Set IP Address" window with incorrect settings

- Adjust the IP parameters according to your requirements.

If inconsistencies are no longer detected, a message appears indicating that a valid IP address has been set.

- Click on the "Next" button.


## Step 5: "Assign IP Address"

The program attempts to transmit the set IP parameters to the device.


Figure 3-6 "Assign IP Address" window

Following successful transmission, the next window opens.

## Step 6: completing IP address assignment

The window that opens informs you that IP address assignment has been successfully completed. It gives an overview of the IP parameters that have been transmitted to the device with the MAC address shown.

To assign IP parameters for additional devices:

- Click on the "Back" button.

To exit IP address assignment:

- Click on the "Finish" button.

If required, the IP parameters set here can be changed in web-based management (see Section "Network" on page 39).

## 4 Frame switching

The switch operates in store and forward mode. When receiving a data packet, the switch analyzes the source and destination addresses. The switch stores up to 8192 MAC addresses in its address table with an adjustable aging time of 10 to 825 seconds.

### 4.1 Store and forward

All data telegrams received by the switch are stored and checked for validity. Invalid or faulty data packets (> 1536 bytes or CRC errors) and fragments (< 64 bytes) are rejected. Valid data telegrams are forwarded by the switch.

### 4.2 Multi-address function

The switch learns all the source addresses for each port. Only packets with:

- Unknown source addresses
- A source address for this port or
- A multicast/broadcast address
in the destination address field are forwarded via the relevant port. The switch can learn up to 8192 addresses. This is important if more than one end device is connected to one or more ports. Several independent subnetworks can be connected to one switch.


### 4.2.1 Learning addresses

The switch independently learns the addresses for end devices, which are connected via this port, by evaluating the source addresses in the data telegrams. When the switch receives a data telegram, it forwards this data telegram to only that port that connects to the specified device (if the address could be learned beforehand).
The switch monitors the age of the learned addresses. The switch automatically deletes from its address table address entries that exceed a specific age (default: 40 seconds, adjustable from 10 to 825 seconds, aging time).

All learned entries are deleted on a restart.
A link down deletes all the entries of the affected port.
A list of detected MAC addresses can be found in the MAC address table. The MAC address table can be deleted via the "Clear" button.

The aging time is set using the "dot1dTpAgingTime" MIB object
(OID 1.3.6.1.2.1.17.4.2). The available setting range is $10-825$ seconds. For static configuration, an aging time of 300 seconds is recommended.

### 4.2.2 Prioritization

The switch supports eight priority queues (traffic classes according to IEEE 802.1Q) for adjusting the internal packet processing sequence. Data telegrams that are received are assigned to these classes according to their priority, which is specified in the VLAN/prioritization tag, where the value " 0 " in the tag indicates the lowest priority and the value " 7 " indicates the highest priority.

## Processing rules

The switch controller in the device forwards received packets to the available receive queues according to the following decisions:

- BPDU packets are always assigned to the high-priority queue.
- Packets with VLAN/prioritization tag are forwarded according to the queues listed above.
- All remaining data is assigned to the low-priority queue.


### 4.2.2.1 Class of Service (CoS)

Class of Service refers to a mechanism used to take into consideration the value of the priority field (values 1 to 7 ) in VLAN data packets with a tag. The switch assigns the data streams in various processing queues, depending on the priority information contained in the CoS tag. The switch supports four internal processing queues.

### 4.2.2.2 Quality of Service (QoS)

Quality of Service affects the forwarding and handling of data streams and results in individual data streams being given differential treatment (usually preferential). QoS can be used, e.g., to guarantee a transmission bandwidth for individual data streams. The switch uses QoS in connection with prioritization.

## 5 Configuration and diagnostics in web-based management

The user-friendly web-based management (WBM) interface can be used to manage the switch from anywhere in the network using a standard browser (e.g., Internet Explorer 11). The configuration and diagnostic functions are clearly displayed on a graphical user interface. Every user with a network connection to the device has read/write access to that device via a browser. A wide range of information about the device itself, set parameters, and the operating state can be viewed.

Modifications to the device can only be made by entering the valid password. By default upon delivery, the user name is "admin" and the password is "private".

For security reasons, we recommend changing the existing password to a new one known only to you.

### 5.1 Requirements for the use of WBM

As the web server operates using the Hyper Text Transfer Protocol, a standard browser can be used. Access is via the URL "http://IP address of the device". Example:
"http://172.16.29.112". If the web server is set to the secure HTTPS protocol in WBM, access is via the URL "https://IP address of the device". For full operation of the web pages, the browser must support JavaScript 1.2 and Cascading Style Sheets Level 1. We recommend the use of Microsoft Internet Explorer 11.

WBM can only be called using a valid IP address. By default upon delivery, the switch has no valid IP address (see "Assigning IP parameters via BootP" on page 19).


Device login is only possible if cookies are allowed in the browser settings.


Some functions are opened in pop-up windows. It is therefore only possible to use all of the functions if pop-ups are permitted in the browser settings.

In order to make changes, you must log into the device. To do so, click on the "Login" button.
By default upon delivery, the user name is "admin" and the password is "private".

LoginSPHCENIX   INSPIRING INNOVATIONS   Username: (?)   Password: (?)

Figure 5-1 Login window

### 5.2 Functions/information in WBM

WBM is split into the following areas:

- Information: general device information
- Configuration: device configuration
- Diagnostics: device-specific diagnostics


Figure 5-2 Start page for web-based management (example)

### 5.2.1 Information area of WBM

### 5.2.1.1 Help \& Documentation

Help \& Documentation
Help
The navigation tree is structured as follows:
Information
Here you will find information on the product and the current device status. You do not need to log-in to access the web pages.
Configuration
Here you can configure the Device. For security reasons you must log-in with a password before you can access the website.
Quick setup
The Quick Setup website includes all parameters for fast and easy configuration of a the device.
Diagnostics
Here you will find further information on diagnostics of the device.
Help There is a (?) after every parameter on the website. When you move the mouse pointer across you will get information on
the parameter in a Fly Out window.
Device Description Files and Tools
Description Files (SNMP) (?) FL_SWITCH_2000_Descr.zip
IP Assignment Tool (?) IPAssign.zip
User Manual (?) Product page

Figure 5-3 "Help \& Documentation" web page

Here you will find useful information about using web-based management. On this page, the following files and software, which are supplied with the device, can be downloaded directly from the device:

- Description Files (SNMP)
- IP Assignment Tool (see "Assigning the IP address using FL NETWORK MANAGER Basic" on page 19)


### 5.2.1.2 Device Status

Here you will find general information about your device, such as the serial number, firmware version or hardware version.

Device Status		
Device Identification		
Vendor		Phoenix Contact GmbH \& Co. KG
Address		D-32823 Blomberg
Phone		+49-(0)5235-3-00
Internet		mow. PhoenixContact.com
Type		FL SWITCH 2208
Order No	:	2702327
Serial No	:	2033403292
Firmware Version	:	1.00
Hardware Version		00
Bootloader Version	:	1.00
Device Name		
Description		
Physical Location		
Contact	:	
IP Address	:	192.168.0.101
Subnet Mask	:	255.255.0.0
Gateway	:	0.0.0.0
IP Address Assignment		BootP
MAC Address		00:A0:45:D2:DO:30
System Status		
Date \& time	:	
Uptime		$12 \mathrm{~min}, 54 \mathrm{sec}$
Alarm Sutnut 1		Failad

Figure 5-4 "Device Status" web page

### 5.2.1.3 Technical Data

Here you will find the technical data for your device, such as specifications for the power supply.

Technical Data	
Technical Data	
Degree of Protection	IP 20, IEC 60529
Class of Protection	Class3 VDE 0106, EN 61140
Mechanical Dimension	$45 \times 115 \times 130$ (width $\times$ height $\times$ depth in mm)
Weight	220 g
Power Supply	
Connection Type	via COMBICON   cable diameter $1.5 \mathrm{~mm}^{2}$ maximum
Nominal Power Supply	24 V DC
Voltage Range	18 V DC to 32 V DC
Current Consumption	180 mA
Interfaces	
Ethernet Ports	8
For modifications to the Webpage.	the data sheet, please refer to our Product

Figure 5-5 "Technical Data" web page

### 5.2.1.4 Local Diagnostics

Here you will find a brief explanation of how to interpret the individual LEDs on the device.

Local Diagnostics	
Power Supply	: Supply Voltage 1 (green LED)
US1	Supply Voltage 2 (green LED)
US2	
Alarm Output	Alarm Output failed (red LED)
FAIL	$:$ Link and Activity (Green LED)
Ethernet	$:$ Speed $10 / 100$ Mbit/s (LED off/green)
PORT LED 1	
PORT LED 2	

Figure 5-6 "Local Diagnostics" web page

### 5.2.1.5 Alarm \& Events

You will find a list of alarms and events on this page. The entries in the "Event Table" are also retained after power up. The "Event Table" can be downloaded from the device in CSV format.

Alarm \& Events		
Event Table		
Index	Event	System Uptime
1	Cold start.	0 sec
2	Configuration Loaded	0 sec
3	US 2 lost.	0 sec
4	Alarm output 1 Failed.	0 sec
5	Link up on port 1.	0 sec
6	LLDP new neighbour on Port 1.	0 sec
7	IP address changed on interface 1.	0 sec
8	Configuration saved successfully.	0 sec
9	Link up on port 8.	0 sec
10	LLDP new neighbour on Port 8.	0 sec
11	LLDP neighbour information changed on Port 8.	0 sec
12	Link down on port 8.	0 sec
13	LLDP neighbour lost on Port 8 .	0 sec
14	Link up on port 8.	0 sec
15	LLDP new neighbour on Port 8.	0 sec
16	LLDP neighbour information changed on Port 8.	0 sec
17	, , ,	0
System Uptime (?) $17 \mathrm{~min}, 35 \mathrm{sec}$		
Event Count (?) Loaded 173 events		
Event Table as CSV File (?) Read from device		
Clear Event Table (?) Clear		

Figure 5-7 "Alarm \& Events" web page

### 5.2.1.6 Port Table

You will find a list of the current states of the individual ports on this page.

Clicking on the "Redundancy Port Table" button opens a table with information on the individual ports and their redundancy mechanism assignment.

Port Table			
Advanced Tables			
(?) Port Redundancy Table			
Physical Ports			
Interface/Port	Type	Status	Modus
1	TX 10/100	enable	$100 \mathrm{MBit} / \mathrm{s}$ FD
$\underline{2}$	TX 10/100	enable	Not connected
3	TX 10/100	enable	$100 \mathrm{MBit} / \mathrm{s}$ FD
4	TX 10/100	enable	$100 \mathrm{MBit} / \mathrm{s}$ FD
5	TX 10/100	enable	Not connected
$\underline{6}$	TX 10/100	enable	Not connected
7	TX 10/100	enable	Not connected
$\underline{8}$	TX 10/100	enable	$100 \mathrm{MBit} / \mathrm{s}$ FD

Figure 5-8 "Port Table" web page

### 5.2.1.7 MAC Address Table

You will find a list of the current devices in the network on this page. The list can be downloaded from the device in CSV format.


MAC Table as CSV File (?) Read from device
Clear MAC Table (?) Clear

Figure 5-9 "MAC Address Table" web page

### 5.2.2 Configuration area of WBM

### 5.2.2.1 System

Reset Device: clicking on the "Reset" button restarts the device. All unsaved parameters will be lost.


Apply Revert

Figure 5-10 "System" web page

The connection to the device is interrupted for the boot phase.

## Firmware Update

Clicking on the "Update Firmware" link opens a pop-up in which the parameters for the firmware update must be entered.

## Pop-up: Update Firmware

Update via HTTP: select "HTTP" as the method. Clicking on "Browse" allows you to select the desired file on your PC. Clicking on "Apply" starts the update.

| Firmware Update |  |
| ---: | ---: | ---: |
| Update method (?) HTTP <br> TFTP Server IP Address (?) <br> Remote Firmware Filename (?) <br> Automatic Reboot After Write (?) Reboot <br> Update Status (?) No Update |  |

Figure 5-11 "Firmware Update via HTTP" pop-up

Update via TFTP: select "TFTP" as the method.

| Firmware UpdateUpdate method (?) TFTP |  |
| :---: | :---: | :---: |
| TFTP Server IP Address (?) 192.168 .0 .10 <br> Remote Firmware Filename (?) fl_switch_2000_v1_00.bi <br> Automatic Reboot After Write (?) Reboot <br> Update Status (?)  | No Update |

Figure 5-12 "Firmware Update via TFTP" pop-up

- TFTP server IP address:

Here, set the IP address of the computer on which the TFTP server is active.

- Remote firmware filename: Here, set the name of the firmware file which is to be transferred to the device.
- Automatic reboot after upload:

Here, set whether a reboot should be carried out after the firmware update. The firmware update starts as soon as you click on "Apply".

## Configuration Handling

Status of Current Configuration: indicates the status of the active configuration
SD Card State: indicates whether or not an SD card is inserted
This display can only be refreshed by reloading the web page.

Perform Action:

- Compare: compares the configuration file on the SD card with the one on the device.
- Clear: deletes the configuration file on the SD card.

The selected action is performed by clicking in the drop-down list.
Perform Configuration Action:

- Factory Default: resets the device configuration to the delivery state.
- Save Configuration: saves the active device configuration to the SD card.
- Reload Configuration: loads the configuration file from the SD card and applies it. The device is then restarted.
The selected action is performed by clicking in the drop-down list.
Advanced Configuration: clicking on the "Further configuration handling options" link opens a window in which the parameters for transferring a configuration file from the device to the PC (download) or from the PC to the device (upload) must be entered.
Secure Uls: clicking on the "Security Context" link opens the "Security Context" pop-up (see page 37).


## Pop-up: Advanced Configuration

File Type: select the file type here.
Direction: here you should select whether the configuration is to be uploaded to or downloaded from the device.
Update status: indicates the current transfer status.
Start transfer: click on the "Start" button to start the transfer of the configuration.
Configuration name: here you should enter the name under which you want to save the configuration on the PC.

Transfer via HTTP: select "HTTP" as the transfer method. Clicking on "Browse" allows you to select the desired file on your PC. You can upload the desired file directly to the PC via your browser by selecting "HTTP Upload".


Figure 5-13 "Advanced Configuration" pop-up

Transfer via TFTP: select "TFTP" as the transfer method.
TFTP server IP address: here you should enter the IP address via which the TFTP server can be reached.

Remote filename: here you should enter the name of the file to be uploaded or downloaded.


Figure 5-14 "Advanced Configuration" pop-up

## Pop-up: Security Context

Create new context: clicking on the "Generate" button creates all the necessary keys and certificates for operation with HTTPS and SSH.

Current state: displays the status of the current availability of the security context.
Root CA: clicking on the "cacert.cer" link loads the Root CA certificate for the installation in the browser.
Advanced Configuration: clicking on the "File transfer" link opens the "Advanced Configuration" pop-up (see "Pop-up: Advanced Configuration" on page 35).


Figure 5-15 "Security Context" pop-up

Administrator Password

Administrator Password	
Username (?)	admin
Administrator Password (?)	
Retype Password (?)	

Figure 5-16 "Administrator Password" configuration area

You can change the administrator password here. The new password must be between 8 and 63 characters long. The new password will be activated after logout. By default upon delivery, the password is "private" (please note that it is case-sensitive). For security reasons, the input fields do not display your password, but instead "*******" is displayed.

## Device Identification

Device information can be configured in this area, which is then displayed on the "Device Status" page.

Device Name: you can configure the device name here.
Device Description: you can enter a device description in this text field.
Physical Location: here you can provide the location of the device, such as the building in which it is installed.

Device Contact: you can enter a contact address in this field.

### 5.2.2.2 Quick Setup

The basic settings can be made in Quick Setup.


Figure 5-17 "Quick Setup" web page

Automation Profile: select a profile which is optimized for the desired operating mode.
IP Assignment: select the type of IP address assignment

- STATIC: static IP address
- BOOTP: assignment via the Bootstrap protocol
- DHCP: assignment via a DHCP server

IP address: set the desired IP address.
Network mask: set the desired subnet mask here.
Default gateway: set the desired default gateway here.
Administrator password: you can change the administrator password here.
Device Name: you can enter the device name of the switch here.
Device Description: you can enter a description for the device here.
Physical Location: you can enter a location for the device here.
Device Contact: you can enter the name of a contact person for the device here.
LLDP Mode: you can enable or disable LLDP here.

- Disable: LLDP is deactivated
- Enable: LLDP is activated
- Send only: received LLDP BPDUs are ignored
- Receive only: no LLDP BPDUs are sent

The "LLDP Topology" link opens the corresponding page which can also be accessed via the menu item of the same name (see "Link Layer Discovery Protocol (LLDP)" on page 65).

Port-based LLDP configuration can be found on the "Service" page (see "Service" on page 40).

### 5.2.2.3 Network

The basic network settings are made here.


Figure 5-18 "Network" web page

IP Address Assignment: select the type of IP address assignment.

- STATIC: static IP address
- BOOTP: assignment via the Bootstrap protocol
- DHCP: assignment via a DHCP server

If you have chosen "STATIC", now make the following settings:
IP Address: set the desired IP address.

Network Mask: set the desired subnet mask here.
Default Gateway: set the desired default gateway here.
Management VLAN: set the VLAN here, in which the management is to be located (default: "1").

ACD Mode: you can enable/disable the "Address Conflict Detection" function here.
ACD Status Information: clicking on the link opens the "Device Status" page.

ACD Conflict State	$:$ No Conflict
ACD Conflict IP Address	$: 0.0 .0 .0$
ACD Conflict MAC Address	$: 00: 00: 00: 00: 00: 00$

Figure 5-19 ACD status information on the "Device Status" page

### 5.2.2.4 Service



Figure 5-20 "Service" web page

Web Server: you can enable/disable the web server function and select the mode (HTTP/HTTPS) here.

SNMP Server: you can enable/disable the SNMP server function and the mode (SNMP v2, SNMP v3) here.

CLI Service:

- Disable: entry of CLI commands is deactivated
- Telnet: entry of CLI commands via Telnet is activated
- SSH: entry of CLI commands via Secure Shell (SSH) is activated

CLI Network Scripting UI:

- Disable: transmission of CLI commands via the network is deactivated
- Enable: transmission of CLI commands via the network is activated


## LLDP Mode:

- Disable: LLDP is disabled
- Enable: LLDP is enabled
- Send only: only LLDP BPDUs are sent.
- Receive only: only LLDP BPDUs are received.

Port-based LLDP configuration can be found on the "Service" page (see "Service" on page 40).

LLDP Transmit Interval: here you can set the interval in which LLDP telegrams are to be sent. The value must be between 5 and 32786 seconds (default: 5 s ).
LLDP Transmission: you can enable/disable port-specific forwarding of LLDP telegrams here
LLDP Reception: you can enable/disable port-specific ignoring of LLDP telegrams here
For additional information on "LLDP", refer to "Link Layer Discovery Protocol (LLDP)" on page 65.

### 5.2.2.5 Port Configuration

Individual Port Configuration


Figure 5-21 "Port Configuration" web page
Port: select the port that you want to configure individually.
Status: the port can be activated/deactivated here.
Name: you can assign the port a name.
Type: describes the physical properties of the port.
Link: displays the current link status of the port.
Negotiation Mode: indicates the current auto negotiation status.

Speed: displays the current transmission speed at which the port is operating.
Duplex: displays the transmission mode of the port.
Mode: the port can be set to a fixed speed and transmission mode here.
Link Monitoring: here you can set whether the link behavior is to be monitored at the selected port.
Default Priority: set the priority for incoming data packets at this port here.
Flow Control: flow control for the selected port can be enabled and disabled here.

## Advanced Port Configuration

Clicking on the "Configure all ports simultaneously" link takes you to the "Port Configuration Table" page. You can set the status, mode, link monitoring, and flow control for all ports here.


Figure 5-22 "Port Configuration Table" web page

Clicking on the "Configure Port Mirroring" button takes you to the port mirroring configuration (see "Port Mirroring" on page 53).

Clicking on the "Configure Port Settings for a VLAN" button takes you to the "VLAN Port Configuration" page (see "VLAN Configuration" on page 71).

### 5.2.2.6 VLAN Configuration

For additional information on "VLAN", refer to "Virtual Local Area Network (VLAN)" on page 71.


Figure 5-23 "VLAN Configuration" web page

### 5.2.2.7 Multicast Filtering



Figure 5-24 "Multicast Filtering" web page

For additional information on "Multicast", refer to "Multicast filtering" on page 69.

### 5.2.2.8 Network Redundancy

## Spanning-Tree Configuration



Figure 5-25 "Spanning-Tree Configuration" configuration area

RSTP Mode:

- Disable: the RSTP function is not activated
- 802.1w: the RSTP function is activated globally and operates according to standard 802.1w

The functions below are only available if " $802.1 w$ " is activated.

- Large Tree Support: the "Large Tree Support" option makes the ring topology suitable for 28 switches along the relevant path if RSTP is used. The "Large Tree Support" option could provide an RSTP ring topology with up to 57 devices.
- Fast Ring Detection: this function speeds up switch-over to a redundant path in the event of an error and provides easy diagnostics. RSTP fast ring detection provides each ring with an ID. This ID is made known to each switch in the relevant ring. A switch can belong to several different rings at the same time.
- Bridge Priority: the bridge and backup roots can be specified via "Bridge Priority". Only multiples of 4096 are permitted. The value will be rounded automatically to the next multiple of 4096. Once you have clicked on "Apply\&Save", the initialization mechanism is started (default value: 32768).
- Bridge Hello Time: specifies the time interval within which the root bridge regularly reports to the other switches via BPDU.
- Bridge Forward Delay: the bridge forward delay value indicates how long the switch is to wait for the port state in STP mode to change from "Discarding" to "Listening" and from "Listening" to "Learning" ( 2 x forward delay).
- Bridge Max Age: the parameter is set by the root switch and used by all switches in the ring. The parameter is sent to make sure that each switch in the network has a constant value, against which the age of the saved configuration is tested.
Clicking on the "RSTP Port Configuration" button takes you to the "RSTP Port Configuration" pop-up.

Clicking on the "RSTP Port Configuration Table" button takes you to the "RSTP Port Configuration Table" pop-up (see page 47).

Clicking on the "RSTP Diagnostic" button opens the "RSTP Diagnostic" page as a pop-up (see page 52).

## Media Redundancy Protocol (MRP)

MRP device mode:

- Disable: the MRP function is not activated
- Client: the MRP function is activated and the switch is the client
- Manager: the MRP function is activated and the switch is the ring manager

The manager function is only available for the 2200/2300 versions provided that the SD card is inserted and has a MRP master license (MRM) (see "Ordering data" on page 85).

Ring Port 1: select the first MRP ring port here
Ring Port 2: select the second MRP ring port here

## Pop-up: RSTP Port Configuration

```
RSTP Port Configuration
\begin{tabular}{rlrl}
Select Port (?) & port-1 & \\
RSTP Enable (?) & enable \\
Admin Path Cost (?) & 0 \\
Operating Path Cost (?) & 200000 \\
Auto Edge (?) & enable & \(\vee\) \\
Admin Edge (?) & Non-Edge \\
Operating Edge (?) & Edge \\
Priority (?) & 128
\end{tabular}
```

Forward Transitions (?) 1
Designated Root (?) 8000.00:A0:45:D2:D0:30
Designated Bridge (?) 8000.00:A0:45:D2:DO:30
Designated Port ID (?) 8001
Designated Cost (?) 0
Protocol Version (?) RSTP

Figure 5-26 "RSTP Port Configuration" web page

Select Port: select the port for which you want to change the RSTP settings here.

## RSTP Enable:

- Enable: RSTP is activated for the port
- Disable: RSTP is deactivated for the port

Admin Path Cost: displays the path costs set for this port. A path cost equal to "0" activates the cost calculation according to the transmission speed ( $10 \mathrm{Mbps}=2000000 ; 100 \mathrm{Mbps}=$ 200000).

Operating Path Cost: displays the path costs used for this port.
Auto Edge: here you can set whether an automatic change from non-edge port to edge port is to be carried out after a link up.

Admin Edge: here you can set whether this port is to be operated as an edge port (default setting), if possible.

Operating Edge: indicates whether this port is operated as an edge port or a non-edge port.
Priority: indicates the priority set for this port (default value: 128).
Forward Transitions: indicates the number of times the port switches from the "Discarding" state to the "Forwarding" state.

Designated Root: indicates the root bridge for this spanning tree.
Designated Bridge: indicates the switch from which the port receives the best BPDUs.
Designated Port ID: indicates the port via which the BPDUs are sent from the designated bridge. The value is based on the port priority (2 digits) and the port number.

Designated Cost: displays the path costs of this segment to the root switch.
Protocol Version: displays the protocol version.

## Pop-up: RSTP Port Configuration Table

RSTP Port Configuration Table						
Port	RSTP Enable		Admin Edge		Admin Cost	
1	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
2	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
3	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
4	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
5	enable	$v$	Non-Edge	$\checkmark$	0	
6	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
7	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
8	enable	$\checkmark$	Non-Edge	$\checkmark$	0	
				Apply	Revert	Apply\&Save

Figure 5-27 "RSTP Port Configuration Table" web page

Port: indicates the ports for which RSTP is available.
RSTP Enable: here you can individually activate or deactivate RSTP for each port.
Admin Edge: here you can set whether this port is to be operated as an edge port (default setting), if possible.
Admin Cost: displays the path costs set for this port. A path cost equal to " 0 " activates the cost calculation according to the transmission speed (10 Mbps $=2000000 ; 100 \mathrm{Mbps}=$ 200000).

### 5.2.2.9 Security

Security	
UI Security	Secure Uls (?) Security Context

Figure 5-28 "Security" web page

Secure Uls: clicking on the "Security Context" link opens the pop-up of the same name (see page 37).

### 5.2.2.10 DHCP Service

Leases DHCP Port-based Service (?) Port-based DHCP Configuration 1 (?) Current DHCP leases

Figure 5-29 "DHCP Service" web page

DHCP Mode: select the DHCP service you wish to use here.

- None: a DHCP service is not used on the switch.
- Relay Agent: the DHCP relay agent (DHCP Option 82) is enabled.
- Server: the switch is used as the DHCP server.

The following fields are only available after selecting "Relay Agent" as the DHCP mode.

Option82: select the address which should be used as the remote ID here.

- IP: uses the IP address of the switch as the remote ID.
- MAC: uses the MAC address of the switch as the remote ID.

Server IP Address: set the IP address of the DHCP server in your network here.
Port Mode: select the ports for which the DHCP relay agent should be activated here.
The following fields are only available after selecting "Server" as the DHCP mode.

- Running State: shows the current status of the DHCP server. The status is "Inactive" if some setting options are incorrect.
- Pool Start Address: set the first IP address of the DHCP server address pool here.
- Pool Size: set the number of IP addresses in the DHCP server address pool here. Please note that the number of IP addresses must match the configured subnetwork.
- Network Mask: set the subnet mask that is assigned to the DHCP clients here.
- Router IP: set the router/default gateway IP address that is assigned to the DHCP clients here.
- DNS IP: set the DNS IP address that is assigned to the DHCP clients here.
- Lease Time (s): the time that the DHCP server leases an IP address to a client before it has to report to the server again can be set here. The value must be between 300 and 2592000 seconds, " 0 " is interpreted as an infinite time (default: 3600).
- Accept Bootp: here you can set whether the switch acting as the DHCP server accepts BootP requests. If this function is activated, an IP address with an infinite lease time is assigned to the requesting DHCP clients.
Port-based DHCP Configuration: opens the "Port-based DHCP Configuration" pop-up. Current DHCP leases: opens the "Current DHCP Leases" pop-up where the IP addresses that are currently assigned are displayed.
DHCP static leases: opens the "DHCP Static Leases" pop-up for configuring static IP address assignment.


## Pop-up: Port-based DHCP Configuration

The port-based DHCP server functionality can be configured in this pop-up.

- Select Port: select the port for which you wish to carry out port-based DHCP server configuration here.
- Local Service enable: activate the port-based DHCP server functionality for the selected port here.
- Local IP: enter the IP address that is assigned to the client at the selected port here.
- Netmask: enter the subnet mask that is assigned to the client at the selected port here.
- Router: enter the gateway address that is assigned to the client at the selected port here.
- DNS: enter the DNS address that is assigned to the client at the selected port here.

DHCP Port Local Service			
Select Port (?) port-1	$\checkmark$		
Local Service enable (?) disable	$\checkmark$		
Local IP (?) 0.0 .0 .0			
Netmask (?) 0.0.0.0			
Router (?) 0.0.0.0			
DNS (?) 0.0.0.0			
Clear Port Local Service (?) Clear			
	Apply	Revert	Apply\&Save

Figure 5-30 "DHCP Port Local Service" pop-up

## Pop-up: Current DHCP Leases

This pop-up displays the IP addresses that are currently assigned.

- Leased IP: displays the assigned IP addresses.
- Client ID: displays the MAC address of the client to which the IP address is assigned.
- System Uptime: displays the time that has elapsed since the IP address was assigned to the client.
- Local Port: indicates the port to which the client is connected.
- State: indicates the status of the client.
- Lease count: displays the number of assigned IP addresses.
- Release: clicking on the "Release" button releases unused entries.


## Pop-up: DHCP Static Leases

This pop-up displays the configured static IP assignment.
Lease list:

- IP address: displays the static IP address assigned.
- Client address: displays the MAC address of the client.
- Delete: clicking on the red cross deletes the entry.

Create new static entry:

- IP address: enter the static IP address that you wish to assign here.
- Client address: enter the MAC address to which you wish to assign a static IP address here.
- Create: click on the "Create" button to carry out static assignment.

Clear static table: click on the "Clear" button to delete all the static DHCP leases.

### 5.2.2.11 Local Events



Figure 5-31 "Local Events" web page

## Alarm output 1:

Here you can activate the digital alarm output and read the current status (if a red " 0 " is present, this event has occurred).

Events: here you can determine under which conditions a digital alarm output should report an error.

- Power Supply lost: in the event that US1 or US2 is lost
- Monitored link down: under "Advanced", select the ports to which link down behavior should be reported.
- MRP Ring Failure: indicates an error message in the event of an MRP ring error.
- Pluggable Memory missing: an error message is generated if no memory card is present.


### 5.2.2.12 Quality of Service

## Broadcast Limiter

Broadcast: the broadcast limiter can be activated or deactivated here.
Broadcast Threshold: set the threshold value in frames per second for the broadcast limiter here. The entered value is rounded down to the next valid value.

Multicast: the multicast limiter can be activated or deactivated here.
Multicast Threshold: set the threshold value in frames per second for the multicast limiter here. The entered value is rounded down to the next valid value.

Unknown Unicast: the limiter for unknown unicasts can be activated or deactivated here. Unicasts of a MAC address that has been learned by the switch are not affected.

Unicast Threshold: set the threshold value in frames per second for the limiter of unknown unicasts here. The entered value is rounded down to the next valid value.

## Flow Control

Port Configuration: clicking on the "Configure Flow Control per port" link opens the "Port Configuration" web page, which contains the configuration options for flow control.

Port Configuration Table: clicking on the "Configure Flow control for multiple ports at once" link opens the "Port Configuration Table" web page where flow control can be configured for all ports.


Figure 5-32 "Quality of Service" web page

### 5.2.3 Diagnostics area of WBM

### 5.2.3.1 LLDP Topology

For additional information, please refer to "Link Layer Discovery Protocol (LLDP)" on page 65.

### 5.2.3.2 RSTP Diagnostic

\(\left.\begin{array}{|r|}\hline RSTP Diagnostic <br>
Designated Root (?) 8000.00: 1 \mathrm{~d}: 9 \mathrm{c}: b6:69:80 <br>
Root Port (?) 38 <br>

Root Cost (?) 0\end{array}\right]\)| Topology Changes (?) 4 |
| ---: |
| Last Topology Change (?) 0 days, 0 hours, 42 min, 21 sec ago |
| Hello Time (?) 2 |
| Forward Delay (?) 15 |
| Max Age (?) 20 |
| (?) Redundancy Port Table |

Figure 5-33 "RSTP Diagnostic" web page

Designated Root: indicates the root bridge for this spanning tree.
Root Port: indicates the port to which the root is connected. If the root is not directly connected, it shows the direction of the root.

Root Cost: displays the total path costs for the root.
Topology Changes: indicates the number of topology changes.
Last Topology Change: indicates when the last topology change took place.
Hello Time: shows the hello time set at the root.
Forward Delay: shows the forward delay set at the root.
Max Age: shows the max age time set at the root.
Clicking on the "Redundancy Port Table" button opens a table with information on the individual ports and their redundancy mechanism assignment.

### 5.2.3.3 MRP Diagnostic

Operating Mode: indicates the current MRP device status.
MRP Manager Function: indicates whether an MRP manager license (MRM) is available.
The following fields are only available after selecting "Manager" as the operating mode.

Ring Status: indicates the current status of the MRP ring.

Change Counter: indicates the number of changes in state in the MRP ring.
Clicking on the "Redundancy Port Table" button opens a table with information on the individual ports and their redundancy mechanism assignment.


Figure 5-34 "MRP Diagnostic" web page

### 5.2.3.4 Current VLANs

For additional information, refer to "Current VLANs" on page 74.

### 5.2.3.5 Current Multicast Groups

For additional information, refer to "Multicast filtering" on page 69.

### 5.2.3.6 Port Mirroring



Figure 5-35 "Port Mirroring" web page

Global Status:

- Enable: port mirroring is activated globally
- Disable: port mirroring is deactivated globally

Destination Port: select the port to which the measuring device (PC) is connected here.
Mirrored Ports (Ingress): specify the ports from which the incoming data traffic should be mirrored here.

Mirrored Ports (Egress): specify the ports from which the outgoing data traffic should be mirrored here.

### 5.2.3.7 Trap Manager



Figure 5-36 "Trap Manager" web page

## Trap Mode:

- Enable: sending of SNMP traps is enabled
- Disable: sending of SNMP traps is disabled

Trap Server: all trap servers which are to receive SNMP traps from this device are displayed here.

Add Trap Server: enter the IP address of a trap server and click on "Add\&Save" to create this trap server.

Test Trap Connection: the connection to the trap server is tested by clicking on the "Send Trap" button.

The table lists the SNMP traps which can be sent by the device. Here you can select the actions for which SNMP traps should be sent.

### 5.2.3.8 Port Counter

| Port Counter |
| :---: | :---: |
| Port (?) port-1 |
| Name (?) Port 1 |
| Frames (?) 10646 |
| Upto 64 Octets (?) 6263 |
| 65 To 127 Octets (?) 2098 |
| 128 To 255 Octets (?) 9 |
| 256 To 511 Octets (?) 804 |
| 512 To 1023 Octets (?) 1070 |
| 1024 To 1518 Octets (?) 402 |
| Unicast Pkts (?) 6263 |
| Broadcast Pkts (?) 1700 |
| Multicast Pkts (?) 2683 |
| Fragments (?) 0 |
| Undersize Pkts (?) 0 |
| Oversize Pkts (?) 0 |
| CRC Errors (?) 0 |
| Jabbers (?) 0 |
| Collisions (?) 0 |

Figure 5-37 "Port Counter" web page

Here you will find an overview of the port statistics.

### 5.2.3.9 Port Utilization



Figure 5-38 "Port Utilization" web page

Here you will find an overview of the port utilization for this device as a percentage. For a detailed overview, click on the graph of an individual port.

### 5.2.3.10 SFP Diagnostics



Figure 5-39 "SFP Diagnostics" web page

Here you will find an overview of the SFP ports.
Interface/Port: the ports that can be used with SFP modules are displayed here. Clicking on a port number opens the port configuration for that port.
Type: the type of SFP module used is displayed here. If no SFP module is inserted, "NO SFP" is displayed.

Serial No: the serial number of the SFP module used is displayed in this column.
RX Power ( dBm ): the incoming power level is displayed in this column.
TX Power (dBm): the outgoing power level is displayed in this column.

## 6 Configuration and diagnostics via Command Line Interface (CLI)

### 6.1 Using the Command Line Interface (CLI)

The Command Line Interface (CLI) is a text-based tool that can be used to configure and diagnose the switch. The CLI is accessed by means of a connection via Telnet (factory default) or SSH. The configuration of the CLI service via the switch's web-based management is described in "Assigning IP parameters via BootP" on page 19.

### 6.2 Access to the CLI

The CLI is accessed via a Telnet connection (factory default) or SSH connection from a management host, e.g., a PC. For example, the Windows command prompt or the PuTTY freeware tool can be used as an input terminal.

The switch requires an IP address and a subnet mask in order to access the CLI. The configuration of the switch network parameters is described in "Assigning IP parameters via BootP" on page 19 and "Network" on page 39.


Figure 6-1 Configuration of a Telnet connection in PuTTY


Figure 6-2 Command terminal in PuTTY

## Administrator: C:\Windows\system32\cmd.exe

```
G:\Users\Administrator>telnet 192.168.10.42
```

Figure 6-3 Establishing a Telnet connection via Windows command prompt

```
Telnet 192.168.10.42
<FL SWITCH 2206-2FX)
User: admin
Password: ********

 FL SWITCH 22G6-2FX
**

```

Figure 6-4 Command terminal in Windows command prompt

### 6.3 Basic principles for using CLI commands

In this section, the CLI command names are written in bold. CLI parameters are written in italics and must be replaced by appropriate values (e.g., names or numbers). If a command has several parameters, the order of these must be strictly observed.

The parameters of a command may be mandatory, optional or a selection of values (see Table "Structure of CLI commands" on page 58).

Table 6-1 Structure of CLI commands

Symbol	Example	Description
$<>$ Angle brackets	<Value>	Denotes a mandatory parameter that must be entered in   place of the brackets
[ ] Square brackets	[Value]	Denotes an optional parameter that can be entered in place   of the brackets
\{\} Braces	\{choice1 I choice2\}	Denotes the mandatory selection of a value from a given list   of values
I Vertical bar	choice1 I choice2	Separates mutually exclusive selection options
[\{\}] Braces within square   brackets	[\{choice 1 I choice 2$\}]$	Denotes a selection within an optional parameter

### 6.4 Command syntax

A command consists of one or more terms which can be followed by one or more parameters. These parameters can be mandatory or optional values.

Some commands, e.g., show network or clear config, do not require parameters. Other commands, e.g., network parms, require values to be specified after the command name. The parameters must be entered in the specified order, whereby optional parameters always follow mandatory parameters.

The following example illustrates the syntax using the command network parms:
network parms <ipaddr> <netmask> [gateway]

- network parms is the command name.
- <ipaddr> and <netmask> are parameters and represent mandatory values, which must be specified after the entry of the command name.
- [gateway] is an optional parameter, which means that a value does not have to be specified.

The following examples illustrate the correct syntax for entering the network parms command:
network parms 192.168.10.42 255.255.255.0
network parms 192.168.10.42 255.255.255.0 192.168.10.0
The following examples illustrate incorrect syntax for entering the network parms command:
network parms 192.168.10.42-missing mandatory parameter network parms 255.255.255.0 - missing mandatory parameter network parms 255.255.255.0 192.168.10.42 - incorrect parameter sequence

### 6.5 Using the CLI Help

Entering a question mark (?) in the command prompt displays a list of all the commands currently available together with a brief description.

Table 6-2 Structure of CLI commands

Command	Description
$?$	Display available commands

Typing a question mark (?) after each entry displays all the available command names or parameters from this point on.

>spanning-tree	
port	Configure spanning tree port parameter
max-age	Configure bridge maximum aging time.
fwd-delay	Configure bridge forward delay.
hello-time	Configure bridge hello time.
bdg-prio	Configure bridge priority.
frd	Configure fast ring detection.
lts	Configure large tree support.
status	Select spanning tree status.
>spanning-tree bdg-prio	

If the Help output displays a parameter in angle brackets, this parameter must be replaced by a value. Example:
<ipaddr> Enter the IP address


If at any point there are no further command names or parameters available or further parameters are optional, the following message appears in the output prompting you to execute the command that was entered:
<cr> Press Enter to execute the command
>show mrp
<cr> $\quad$ Press Enter to execute the command.
>show mrp
OK

### 6.6 Auto-completion of commands

The Autocomplete command is an additional way of writing a command, provided enough letters have already been entered to clearly identify the command name. As soon as enough letters have been entered, press space or TAB to automatically complete the words.

```
>spanning-tree f
2 Possibilities:
 fwd-delay
 frd
>spanning-tree fwd-delay
```


### 6.7 Using the CLI Network Scripting UI

The CLI Network Scripting UI enables CLI commands from scripts to be loaded onto the switch via the network. This means that the switch can be configured and diagnosed using a URL via PC or from a controller. Each command that is entered is confirmed by the switch, either with OK (config commands) or by outputting the switch data (show commands).

The command entry must follow a specific syntax:
http://ipaddress/php/command.php?usr=username\&pwd=password\&cmd=cli_command_1 | cli_command_2 | ....

The following examples illustrate the correct syntax for entering commands via the CLI Network Scripting UI:
Example: changing the device name
http://192.168.10.42/php/command.php?usr=admin\&pwd=private\&cmd=device-identity name Switch2000
( 192.168.10.42/php/command.php?usr=admin\&pwd= private\&<cmd=device-identity name Switch2000

OK

Example: displaying the network parameters and changing the user password http://192.168.10.42/php/command.php?usr=admin\&pwd=private\&cmd=show network | users passwd private2

[^0][^1]
## 7 Simple Network Management Protocol (SNMP)

### 7.1 General function

SNMP is a non-proprietary standard for network management. It defines commands for reading and writing information, and defines formats for error and status messages. SNMP is also a structured model that consists of agents, their relevant Management Information Base (MIB), and a manager. The manager is a software tool that is executed on a network management station. The agents are located inside switches, bus terminals, routers, and other devices that support SNMP. The task of the agents is to collect and provide data in the MIB. The manager regularly requests and displays this information. The devices can be configured by writing data from the manager to the MIB. In the event of an emergency, the agents can also send messages (traps) directly to the manager.


All configuration modifications, which are to take effect after a device restart, must be saved permanently using the "fIWorkFWCtrIConfSave" object.

## SNMP interface

All managed Factoryline components have an SNMP agent. The agent of this type of device manages the following MIBs (Management Information Bases):

- FL Managed Infrastructure MIB
- IldpMIB
- RFC1213 MIB
- rmon
- snmpMIB
- ifMIB
- snmpFrameworkMIB
- etherMIB
- pBridgeMIB
- qBridgeMIB
- dot1dBridge
- rstpMIB
- IP MIB

Network management stations, such as a PC with a MIB browser, can read and modify configuration and diagnostic data from network devices via the Simple Network Management Protocol. In addition, any SNMP tools or network management tools can be used to access Factoryline products via SNMP. To do this, the MIBs supported by the relevant device must be made available to the SNMP management tools.
On the one hand, these are globally valid MIBs, which are specified and described in RFCs (Requests for Comments). This includes, for example, MIB2 according to RFC1213, which is supported by all SNMP-compatible network devices. On the other hand, manufacturers can specify their own SNMP objects, which are then assigned to a private manufacturer area in the large SNMP object tree. Manufacturers are then responsible for their own private (enterprise) areas, i.e., they must ensure that only one object (object name and parameters)
is assigned to an object ID and can be published. If an object is no longer needed, it can be labeled as "expired", but it cannot be reused with other parameters under any circumstances.

Phoenix Contact provides notification of ASN1 SNMP objects by publishing their descriptions on the Internet.

Reading SNMP objects is not password-protected. However, a password is required for read access in SNMP, but this is set to "public", which is usual for network devices, and cannot be modified. By default upon delivery, the password for write access is "private" and can be changed by the user.

SNMP and the web interface use the same password, which can be changed by the user.

## Use of SNMPv3

When using SNMPv3, several points must be observed when accessing the SNMP objects. In contrast to SNMPv2, SNMPv3 is a secure protocol via which the message content and the passwords are transmitted in encrypted form.

To use SNMPv3, the switch must first be configured accordingly (see "Service" on page 40). In addition, you need to change the MIB browser to SNMPv3 and create an SNMPv3 user with the following parameters:

- MD5 as the algorithm for authentication
- DES as the algorithm for privacy
- User name: "admin"
- Password: current device password (Note: the password must be at least 8 characters long. If the default password is "private", "private_" must be used for access.).

Another benefit for the user is the option of sending traps using the Simple Network Management Protocol.

## Management Information Base (MIB)

Description which contains all the data (objects and variables) required for network management.

## Agent

An agent is a software tool which collects data from the network device on which it is installed and transmits this data on request. Agents reside in all managed network components and transmit the values of specific settings and parameters to the management station. On a request of a manager or on the occurrence of a specific event, the agent transmits the collected information to the management station.

Not all devices support all object classes. If an unsupported object class is requested, an error message is generated. If an attempt is made to modify an unsupported object class, an error message is also generated.

The descriptions of the individual SNMP objects are located in the respective MIBs and can be downloaded from the Phoenix Contact e-shop. Note that the MIB is located in a firmware's respective software package (zip file).

## 8 Link Layer Discovery Protocol (LLDP)

LLDP

Displaying LLDP information

## LLDP general

### 8.1 Basics

The switch supports LLDP according to IEEE 802.1ab and enables topology detection of devices that also have LLDP activated.
Advantages of using LLDP:

- Improved error location detection
- Improved device replacement
- More efficient network configuration

The following information is received by or sent to neighbors, as long as LLDP is activated:

- The device transmits its own management and connection information to neighboring devices.
- The device receives management and connection information from neighboring devices.

The information that is collected is presented in a table in WBM. The table includes the two port numbers that are used to connect both devices together, as well as the IP address, the device name of neighboring devices, and the device type.

Please note that a blocking port using RSTP does not receive LLDP BPDUs, but does send them.

The Link Layer Discovery Protocol (LLDP) according to 802.1 ab is used by network devices to learn and maintain the individual neighborhood relationships.

## Function

A network infrastructure component transmits a port-specific BPDU (Bridge Protocol Data Unit), which contains the individual device information, at the "Message Transmit Interval" to each port in order to distribute topology information. The peer connected to the relevant port learns the corresponding port-specific neighbors from these BPDUs.
The information learned from the BPDUs is saved for a defined period of time known as the TTL (Time To Live) value. Subsequent receipt of the same BPDUs increases the TTL value again and the information is still saved. When the TTL elapses, the neighbor information is deleted.

The switch manages a maximum of 50 items of neighborhood information, all other information is ignored.

If several neighbors are displayed on one switch port, then at least one other switch/hub, which does not support or has not activated LLDP, is installed between this switch and the neighbor indicated.

Table 8-1 Event table for LLDP

Event	Activity of the individual   LLDP agent	Response of the neigh-   boring LLDP agent
Activate LLDP agent or de-   vice startup	Transmit LLDP BPDUs to all   ports	Include sender in the list of   neighbors
Deactivate LLDP agent or   software reset	Transmit LLDP BPDUs with   a TTL value of 0 seconds to   all ports	Delete sender from the list   of neighbors
Link up	Transmit port-specific LLDP   BPDUs	Include sender in the list of   neighbors
Link down	Delete all neighbors for this   port	-
Timer (Message Transmit   Interval)	Cyclic transmission of   BPDUs to all ports	Update information
Aging (Time To Live)	Delete neighborhood infor-   mation	-
Receiving a BPDU from a   new neighbor	Extend list of neighbors and   respond with port-specific   BPDU	Include sender in the list of   neighbors

## Link Layer

Discovery Protocol

$\qquad$
Apply $\qquad$
Revert
Apply\&Save

Figure 8-1 "Link Layer Discovery Protocol" web page

For devices in the 2000/2100 version, LLDP can be activated or deactivated globally for all ports. Devices in the 2200/2300 version also offer a port-based configuration option for sending and receiving LLDP telegrams.
The LLDP can be configured on the "Service" page in WBM (see "Service" on page 40).

## LLDP topology

LLDP Topology	Chassis ID	IP Address	Remote Port
Local Port	$00: A D: 45: D E: 96: 22$	192.168 .0 .100	Port 5
1	$00: A D: 45: D 8: 37: 3 A$	0.0 .0 .0	Port 1
3	$00: A D: 45: D 8: 2 C: D 2$	192.168 .10 .42	Port 4
4	$00: A D: 45: D 8: 30: C 2$	192.168 .10 .202	
8			

Figure 8-2 "LLDP Topology" web page

A table is created for known neighbors and contains the following four columns:

- Local Port

Contains the port number of the local switch that is used to connect a neighbor to this switch.

- Chassis ID MAC address of the connected neighboring device
- IP address Indicates the management IP address of the neighbor.
- Remote Port Indicates the port number of the neighboring switch that is used to connect the neighbor to the local switch.


## 9 Multicast filtering

### 9.1 Multicast Configuration

### 9.1.0.1 Multicast Filtering



Figure 9-1 "Multicast Filtering" web page

## IGMP Snooping:

- disable: the "IGMP Snooping" function is disabled
- enable: the "IGMP Snooping" function is enabled

Snoop Aging Time: the snoop aging time can be set here. The snoop aging time is the time period during which membership reports are expected from the querier. If no membership reports are received during this time, the associated ports are deleted from the multicast groups. The value must be between 30 and 3600 (default: 300).
IGMP Query Version: you can set the IGMP query version which the switch should use to send the queries here.

Query Interval: set the interval in which the switch should send the queries here.
Current Querier: displays the IP address of the current querier in the network.
Extension FUQ (Forward Unknown to Querier): select here whether a multicast group should be created for unknown multicast packets which forwards the packets in the direction of the querier.

Extension BUQ (Block Unknown at Querier): select here whether unknown multicast packets should be blocked at the querier.

Auto Query Ports: here you can set whether automatic selection of additional query ports is activated. Ports are automatically integrated in every multicast group. In the case of redundancy switch-over, the multicast packets are not blocked because the ports required are already members of the multicast group.

Clear AQP: button for deleting the ports that are automatically assigned to the groups.
Static Query Ports: select which ports are static query ports.
Clicking on the "Current multicast groups" link opens the "Current Multicast Groups" web page as a pop-up.

The device can manage up to 50 dynamic multicast groups.

Current Multicast Groups		
VLAN ID	Multicast Address	Port Member
1	$01: 00: 5 \mathrm{e}: 00: 01: 81$	56
1	$01: 00: 5 \mathrm{e}: 40: 0 \mathrm{e}: c 1$	56
1	$01: 00: 5 \mathrm{e}: 40: 0 \mathrm{f}: 00$	56
1	$01: 00: 5 \mathrm{e}: 7 \mathrm{ffff} \mathbf{f a}$	6,56

Figure 9-2 "Current Multicast Groups" web page

## 10 Virtual Local Area Network (VLAN)

### 10.0.0.1 VLAN Configuration

VLAN Configuration		
VLAN Mode (?) Tagged $\vee$		
Static VLANs		
Static VLAN Configuration Webpages (?) Static VLAN Configuration   VLAN Port Configuration   VLAN Port Configuration Table		
VLAN Diagnostic		
VLAN Diagnostic Webpages (?) Current VLANs		

Figure 10-1 "VLAN Configuration" web page

## VLAN Mode:

- Transparent: in "Transparent" mode, the switch processes the incoming data packets as described in the "Frame switching" section. Neither the structure nor the contents of the data packets are changed. The information about VLAN assignment from a tag that may be contained in the data packet is ignored.
- Tagged: in "Tagged" mode, the switch forwards the data packets depending on the VLAN assignment.

Clicking on the "Static VLAN Configuration" button takes you to the "Static VLAN Configuration" page. Up to 8 (2000/2100 version) or up to 32 (2200/2300 version) static VLANs can be set up here.

## Pop-up: Static VLAN Configuration



Figure 10-2 "Static VLAN Configuration" web page

List of Static VLANs: all VLANs created up to this point are displayed here.
VLAN ID: set the VLAN ID which you wish to assign to the new VLAN here. The value must be between 2 and 4094.

VLAN Name: specify the name of the VLAN which you wish to create here.
VLAN Memberships: specify which ports should be located in the VLAN.

- T: tagged port
- U: untagged port
- -: not a member of the VLAN

Use the "Delete" button to delete the VLAN selected in the list.
VLAN 1 cannot be deleted.

Clicking on the "VLAN port configuration" button takes you to the "VLAN Port configuration" page.

## Pop-up: VLAN Port configuration



Figure 10-3 "VLAN Port configuration" web page
Port number: enter the port for which you wish to change the VLAN settings.
Default VLAN ID: set the VLAN ID to which the port should be assigned here.
Default Priority: set the VLAN priority for the selected port here.
Ingress Filter: set here whether the ingress filter should be activated.
Clicking on the "VLAN Port Table" button takes you to the VLAN port table.
Pop-up: VLAN Port Configuration Table

VLAN Port Configuration Table								
Port	Default VLAN		Default Priority			Ingress Filter		
1	1	$\checkmark$	0	$\checkmark$		disable	$\checkmark$	
2	1	$\checkmark$	0	$\checkmark$		disable	$\checkmark$	
3	1	$\checkmark$	0	$\checkmark$		disable	$\checkmark$	
4	1	$v$	0	$\checkmark$		disable	$\checkmark$	
5	1	$\checkmark$	0	$\checkmark$		disable	$\checkmark$	
6	1	$\checkmark$	0	$\checkmark$		disable	$\checkmark$	
7	1	$v$	0	$\checkmark$		disable	$\checkmark$	
8	1	$\checkmark$	0	$\checkmark$		disable	$\checkmark$	
					Apply	Revert	Appl	ply\&Save

Figure 10-4 "VLAN Port Configuration Table" web page

Clicking on the "Current VLANs" link opens the "Current VLANs" web page as a pop-up.

## Current VLANs

This page lists the current VLANs and displays the ports for each VLAN, which are either "Tagged" or "Untagged".

Current VLANs			
VLAN ID	Type	Untagged Member	Tagged Member
1	Static	$1,2,3,4,5,6,7,8$	

Figure 10-5 "Current VLANs" web page

## 11 Technical data and ordering data

### 11.1 Technical data for devices in the $\mathbf{2 0 0 0}$ version

General data	
Function	Ethernet/Fast Ethernet Switch; conforms to standard IEEE 802.3/802.3u
Switch principle	Store and forward
Address table	8192 MAC addresses
SNMP	Version 2c, Version 3
Transmission capacity per port 64-byte packet size, half duplex	At 10 Mbps: 14880 pps (packets per second)   At $100 \mathrm{Mbps}:$ 148800 pps
Supported MIBs	MIB II and private SNMP objects from Phoenix Contact
Housing dimensions (width x height x depth) in mm	$45 \times 130 \times 115$ (depth from top edge of DIN rail)
Permissible operating temperature	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Permissible storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Degree of protection	IP20 (not assessed in compliance with UL, assessed by PTL), IEC 60529
Protection class	Class 3 VDE 0106; IEC 60536, for inside use only
Humidity	
Operation	10\% to 95\%, non-condensing
Storage	10\% to 95\%, non-condensing
Air pressure	
Operation	86 kPa to $108 \mathrm{kPa}, 1500 \mathrm{~m}$ above sea level
Storage	66 kPa to $108 \mathrm{kPa}, 3500 \mathrm{~m}$ above sea level
Ambient compatibility	Free from substances that would hinder coating with paint or varnish according to VW specification
Mounting position	Perpendicular to a standard DIN rail
Connection to protective earth ground	Snapped onto a grounded DIN rail
Pollution degree	2
Overvoltage category	None
Weight	Up to 220 g , typical
Supply voltage (US)	
Connection	Via COMBICON; maximum conductor cross section $=1.5 \mathrm{~mm}^{2}$, use copper wires that are suitable for $75^{\circ} \mathrm{C}$ or equivalent
Nominal value	24 V DC
Permissible voltage range	18 V DC to 32 V DC
Permissible ripple (within the permissible voltage range)	3.6 VPP
Current consumption at US for 18 V DC, maximum	$\begin{aligned} & 300 \mathrm{~mA} \text { (FL SWITCH 2005) } \\ & 350 \mathrm{~mA} \text { (FL SWITCH 2008) } \end{aligned}$
Current consumption at US for 24 V DC, maximum	165 mA (FL SWITCH 2005)   180 mA (FL SWITCH 2008)
Test voltage	170 V DC for one minute
Interfaces	
Number of Ethernet ports	$5 / 8$


Ethernet interfaces	
Properties of the RJ45 ports	
Number	Up to 8 with auto crossing and auto negotiation
Connection format	8 -pos. RJ45 socket on the switch
Connection medium	Twisted pair cable
Cable impedance	100 ohms
Transmission speed	10/100 Mbps
Maximum network segment expansion	100 m
Mechanical tests	
Shock testing according to IEC 60068-2-27	Operation: 30g, half-sine shock pulse
Vibration resistance according to IEC 60068-2-6	Operation/storage/transport: 2g, $10 \mathrm{~Hz}-150 \mathrm{~Hz}$
Free fall according to IEC 60068-2-32	1 m
Conformance with EMC Directives	
Developed according to IEC 61000-6-2	
Noise emission according to EN 55022: 1998 + A1: 2000 + A2: 2003 (interference voltage)	Class A (industrial applications)
Noise emission according to EN 55011: 1998   + A1: 1999 + A2: 2002 (electromagnetic interference)	Class A (industrial applications)
Noise immunity according to EN 61000-4-2 (IEC 1000-4-2) (ESD)   Contact discharge:   Air discharge:   Indirect discharge:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion B   Test intensity 3, criterion A   Test intensity 3 , criterion A
Noise immunity according to EN 61000-4-3 (IEC 1000-4-3) (electromagnetic fields)	Requirements according to DIN EN 61000-6-2 Test intensity 3, criterion A
Noise immunity according to EN 61000-4-6 (IEC 1000-4-6) (conducted)	Requirements according to DIN EN 61000-6-2 Test intensity 3, criterion A
Noise immunity according to EN 61000-4-4 (IEC 1000-4-4) (burst) Data cables:   Power supply:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion A   Test intensity 3, criterion A
Noise immunity according to EN 61000-4-5 (IEC 1000-4-5) (surge)   Data cables:   Power supply:	Requirements according to DIN EN 61000-6-2   Test intensity 2, criterion A   Test intensity 1, criterion A

## Additional certifications

RoHS

### 11.2 Technical data for devices in the $\mathbf{2 1 0 0}$ version

General data	
Function	Ethernet/Fast Ethernet/Gigabit Switch; conforms to standard
IEEE 802.3/802.3u/802.3ab	
Switch principle	Store and forward
Address table	8192 MAC addresses


General data		
SNMP	Version 2c, Version 3	
Transmission capacity per port 64-byte packet size, half duplex	At 10 Mbps : At 100 Mbps : At 1000 Mbps :	$\begin{aligned} & 14880 \mathrm{p} \\ & 148800 \\ & 148810 \end{aligned}$
Supported MIBs	MIB II and private SNMP objects from Phoenix Contact	
Housing dimensions (width x height x depth) in mm	$45 \times 130 \times 115$ (depth from top edge of DIN rail)	
Permissible operating temperature	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	
Permissible storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Degree of protection	IP20 (not assessed in compliance with UL, assessed by PTL), IEC 60529	
Protection class	Class 3 VDE 0106; IEC 60536, for inside use only	
Humidity		
Operation	10\% to 95\%, non-condensing	
Storage	10\% to 95\%, non-condensing	
Air pressure		
Operation	86 kPa to $108 \mathrm{kPa}, 1500 \mathrm{~m}$ above sea level	
Storage	66 kPa to $108 \mathrm{kPa}, 3500 \mathrm{~m}$ above sea level	
Ambient compatibility	Free from substances that would hinder coating with paint or varnish according to VW specification	
Mounting position	Perpendicular to a standard DIN rail	
Connection to protective earth ground	Snapped onto a grounded DIN rail	
Pollution degree	2	
Overvoltage category	None	
Weight	Up to 240 g , typical	
Supply voltage (US)		
Connection	Via COMBICON; maximum conductor cross section $=1.5 \mathrm{~mm} 2$, use copper wires that are suitable for $75^{\circ} \mathrm{C}$ or equivalent	
Nominal value	24 V DC	
Permissible voltage range	18 V DC to 32 V DC	
Permissible ripple (within the permissible voltage range)	3.6 VPP	
Current consumption at US for 18 V DC, maximum	350 mA (FL SWITCH 2105) 400 mA (FL SWITCH 2108)	
Current consumption at US for 24 V DC, maximum	$\begin{aligned} & 225 \mathrm{~mA} \text { (FL SWITCH 2105) } \\ & 275 \mathrm{~mA} \text { (FL SWITCH 2108) } \end{aligned}$	
Test voltage	170 V DC for one minute	
Interfaces		
Number of Ethernet ports	$5 / 8$	
Ethernet interfaces		
Properties of the RJ45 ports		
Number	Up to 8 with auto crossing and auto negotiation	
Connection format	8-pos. RJ45 socket on the switch	
Connection medium	Twisted pair cable	

## FL SWITCH 2000

Ethernet interfaces (Fortsetzung)	
Cable impedance	100 ohms
Transmission speed	10/100/1000 Mbps
Maximum network segment expansion	100 m
Mechanical tests	
Shock testing according to IEC 60068-2-27	Operation: 30g, half-sine shock pulse
Vibration resistance according to IEC 60068-2-6	Operation/storage/transport: 2g, $10 \mathrm{~Hz}-150 \mathrm{~Hz}$
Free fall according to IEC 60068-2-32	1 m
Conformance with EMC Directives	
Developed according to IEC 61000-6-2	
Noise emission according to EN 55022: 1998 + A1: 2000 + A2: 2003 (interference voltage)	Class A (industrial applications)
Noise emission according to EN 55011: 1998 + A1: 1999 + A2: 2002 (electromagnetic interference)	Class A (industrial applications)
Noise immunity according to EN 61000-4-2 (IEC 1000-4-2) (ESD)   Contact discharge:   Air discharge:   Indirect discharge:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion B   Test intensity 3, criterion A   Test intensity 3, criterion A
Noise immunity according to EN 61000-4-3 (IEC 1000-4-3) (electromagnetic fields)	Requirements according to DIN EN 61000-6-2 Test intensity 3, criterion A
Noise immunity according to EN 61000-4-6 (IEC 1000-4-6) (conducted)	Requirements according to DIN EN 61000-6-2 Test intensity 3, criterion A
Noise immunity according to EN 61000-4-4 (IEC 1000-4-4) (burst)   Data cables:   Power supply:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion A   Test intensity 3 , criterion A
Noise immunity according to EN 61000-4-5 (IEC 1000-4-5) (surge)   Data cables:   Power supply:	Requirements according to DIN EN 61000-6-2   Test intensity 2, criterion A   Test intensity 1 , criterion A

## Additional certifications



C

### 11.3 Technical data for devices in the $\mathbf{2 2 0 0}$ version

General data	
Function	Ethernet/Fast Ethernet Switch; conforms to standard IEEE 802.3/802.3u
Switch principle	Store and forward
Address table	8192 MAC addresses
SNMP	Version 2c, Version 3
Transmission capacity per port	At 10 Mbps
64-byte packet size, half duplex	At $100 \mathrm{Mbps}: \quad 14880 \mathrm{pps}$ (packets per second)
Supported MIBs	MIB II and private SNMP objects from Phoenix Contact
Housing dimensions (width $x$ height $x$ depth) in mm	$45 \times 130 \times 115$ (depth from top edge of DIN rail)


General data	
Permissible operating temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Permissible storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Degree of protection	IP20 (not assessed in compliance with UL, assessed by PTL), IEC 60529
Protection class	Class 3 VDE 0106; IEC 60536, for inside use only
Humidity	
Operation	10\% to 95\%, non-condensing
Storage	10\% to 95\%, non-condensing
Air pressure	
Operation	68 kPa to $108 \mathrm{kPa}, 3000 \mathrm{~m}$ above sea level
Storage	66 kPa to $108 \mathrm{kPa}, 3500 \mathrm{~m}$ above sea level
Ambient compatibility	Free from substances that would hinder coating with paint or varnish according to VW specification
Mounting position	Perpendicular to a standard DIN rail
Connection to protective earth ground	Snapped onto a grounded DIN rail
Pollution degree	2
Overvoltage category	None
Weight	Up to 260 g, typical
Supply voltage (US1/US2 redundant)	
Connection	Via COMBICON; maximum conductor cross section $=1.5 \mathrm{~mm}^{2}$, use copper wires that are suitable for $75^{\circ} \mathrm{C}$ or equivalent
Nominal value	24 V DC
Permissible ripple (within the permissible voltage range)	$3.6 V_{P P}$
Permissible voltage range	9 V DC to 57 V DC for the following devices   FL SWITCH 2205   FL SWITCH 2208   FL SWITCH 2207-FX   FL SWITCH 2207-FX SM   FL SWITCH 2206-2FX   FL SWITCH 2206-2FX SM   FL SWITCH 2206-2FX ST   FL SWITCH 2206-2FX SM ST
Permissible voltage range	12 V DC to 57 V DC for the following devices FL SWITCH 2204-2TC-2SFX FL SWITCH 2206-2SFX
Current consumption at US for 9 V DC, maximum (without digital output)	$\begin{aligned} & \text { 1.2 A (FL SWITCH 2205) } \\ & \text { 1.3 A (FL SWITCH 2208) } \\ & \text { 1.4 A (FL SWITCH 2207-FX) } \\ & \text { 1.4 A (FL SWITCH 2207-FX SM) } \\ & \text { 1.5 A (FL SWITCH 2206-2FX) } \\ & \text { 1.5 A (FL SWITCH 2206-2FX SM) } \\ & \text { 1.5 A (FL SWITCH 2206-2FX ST) } \\ & \text { 1.5 A (FL SWITCH 2206-2FX SM ST) } \end{aligned}$

## FL SWITCH 2000

Supply voltage (US1/US2 redundant) (Fortsetzung)	
Current consumption at US for 12 V DC, maximum (without digital output)	1.4 A (FL SWITCH 2204-2TC-2SFX)   1.4 A (FL SWITCH 2206-2SFX)
Current consumption at US for 24 V DC, maximum (without digital output)	```170 mA (FL SWITCH 2205) 190 mA (FL SWITCH 2208) 220 mA (FL SWITCH 2207-FX) 220 mA (FL SWITCH 2207-FX SM) 260 mA (FL SWITCH 2206-2FX) 260 mA (FL SWITCH 2206-2FX SM) 260 mA (FL SWITCH 2206-2FX ST) 260 mA (FL SWITCH 2206-2FX SM ST) 250 mA (FL SWITCH 2204-2TC-2SFX) 230 mA (FL SWITCH 2206-2SFX)```
Test voltage	170 V DC for one minute
Interfaces	
Number of Ethernet ports	5/8
Digital alarm output	
Voltage	12-58V DC
Current carrying capacity	100 mA , typical/0.7 A, maximum (1 minute)

## Ethernet interfaces

Properties of the RJ45 ports

Number	Up to 8 with auto crossing and auto negotiation
Connection format	8 -pos. RJ45 socket on the switch
Connection medium	Twisted pair cable
Cable impedance	100 ohms
Transmission speed	$10 / 100 \mathrm{Mbps}$
Maximum network segment expansion	Up to 2
Properties of the fiberglass ports	SC/ST/SFX format (depending on the device used)
Number	Fiberglass
Connection format	SC/ST/LC format (depending on the device used)
Connection medium	100 Mbps
Connecting plug	Depends on the SFP module/fiber type used
Transmission speed	Depends on the SFP module/fiber type used
Maximum network segment expansion	1
Fiber type	$850 / 1310$ nm (depending on the device/SFP module used)
Laser protection class	
Wavelength	Up to 2
Properties of the combo ports	100 Mbps
Number	Depends on the SFP module used
Transmission speed	Depends on the SFP module used
Wavelength	
Maximum transmission length	


Mechanical tests	
Shock testing according to IEC 60068-2-27	Operation: 30g, half-sine shock pulse
Vibration resistance according to IEC 60068-2-6	Operation/storage/transport: $5 \mathrm{~g}, 10 \mathrm{~Hz}-150 \mathrm{~Hz}$
Free fall according to IEC 60068-2-32	1 m
Conformance with EMC Directives	
Developed according to IEC 61000-6-2	
Noise emission according to EN 55022: 1998 + A1: 2000 + A2: 2003 (interference voltage)	Class A (industrial applications)
Noise emission according to EN 55011: 1998 + A1: 1999 + A2: 2002 (electromagnetic interference)	Class A (industrial applications)
Noise immunity according to EN 61000-4-2 (IEC 1000-4-2) (ESD)   Contact discharge:   Air discharge:   Indirect discharge:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion B   Test intensity 3, criterion A   Test intensity 3 , criterion A
Noise immunity according to EN 61000-4-3 (IEC 1000-4-3) (electromagnetic fields)	Requirements according to DIN EN 61000-6-2 Test intensity 3, criterion A
Noise immunity according to EN 61000-4-6 (IEC 1000-4-6) (conducted)	Requirements according to DIN EN 61000-6-2 Test intensity 3, criterion A
Noise immunity according to EN 61000-4-4 (IEC 1000-4-4) (burst) Data cables:   Power supply:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion A   Test intensity 3 , criterion A
Noise immunity according to EN 61000-4-5 (IEC 1000-4-5) (surge)   Data cables:   Power supply:	Requirements according to DIN EN 61000-6-2   Test intensity 2, criterion A   Test intensity 1, criterion A


Additional certifications	
RoHS	@EEE 2002/95/EC - WEEE 2002/96/EC
	IECEx:
	IEC $60079-0: 2011,6^{\text {th }}$ Edition
	IEC $60079-15: 2010,4^{\text {th }}$ Edition
	ATEX:
	EN 60079-0:2012+A11:2013
	EN 60079-15:2010
	Field of application:
	II 3 G Ex nA IIC T4 Gc
	IECEx ULD 16.0018X
	CE

### 11.4 Technical data for devices in the $\mathbf{2 3 0 0}$ version

## General data

Function	Ethernet/Fast Ethernet/Gigabit Switch; conforms to standard
	IEEE 802.3/802.3u/802.3ab
Switch principle	Store and forward
Address table	8192 MAC addresses

## FL SWITCH 2000

General data	
SNMP	Version 2c, Version 3
Transmission capacity per port 64-byte packet size, half duplex	At $10 \mathrm{Mbps}:$ 14880 pps (packets per second)   At $100 \mathrm{Mbps}:$ 148800 pps   At $1000 \mathrm{Mbps}:$ 1488100 pps
Supported MIBs	MIB II and private SNMP objects from Phoenix Contact
Housing dimensions (width x height x depth) in mm	$45 \times 130 \times 115$ (depth from top edge of DIN rail)
Permissible operating temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Permissible storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Degree of protection	IP20 (not assessed in compliance with UL, assessed by PTL), IEC 60529
Protection class	Class 3 VDE 0106; IEC 60536, for inside use only
Humidity	
Operation	10\% to 95\%, non-condensing
Storage	$10 \%$ to $95 \%$, non-condensing
Air pressure	
Operation	53 kPa to $108 \mathrm{kPa}, 5000 \mathrm{~m}$ above sea level
Storage	53 kPa to $108 \mathrm{kPa}, 5000 \mathrm{~m}$ above sea level
Ambient compatibility	Free from substances that would hinder coating with paint or varnish according to VW specification
Mounting position	Perpendicular to a standard DIN rail
Connection to protective earth ground	Snapped onto a grounded DIN rail
Pollution degree	2
Overvoltage category	None
Weight	Up to 310 g , typical
Supply voltage (US1/US2 redundant)	
Connection	Via COMBICON; maximum conductor cross section $=1.5 \mathrm{~mm}^{2}$, use copper wires that are suitable for $75^{\circ} \mathrm{C}$ or equivalent
Nominal value	24 V DC
Permissible voltage range	12 V DC to 57 V DC
Permissible ripple (within the permissible voltage range)	3.6 VPP
Current consumption at US for 12 V DC, maximum	```1.4 A (FL SWITCH 2308) 1.5 A (FL SWITCH 2304-2GC-2SFP) 1.5 A (FL SWITCH 2306-2SFP)```
Current consumption at US for 24 V DC, maximum	$\begin{aligned} & 280 \mathrm{~mA} \text { (FL SWITCH 2308) } \\ & 290 \mathrm{~mA} \text { (FL SWITCH 2304-2GC-2SFP) } \\ & 280 \mathrm{~mA} \text { (FL SWITCH 2306-2SFP) } \end{aligned}$
Test voltage	170 V DC for one minute
Interfaces	
Number of Ethernet ports	8
Digital alarm output	
Voltage	12-57V DC
Current carrying capacity	100 mA , maximum $700 \mathrm{~mA} / 1$ minute


Ethernet interfaces	
Properties of the RJ45 ports	
Number	Up to 8 with auto crossing and auto negotiation
Connection format	8 -pos. RJ45 socket on the switch
Connection medium	Twisted pair cable
Cable impedance	100 ohms
Transmission speed	10/100/1000 Mbps
Maximum network segment expansion	100 m
Properties of the fiberglass ports	
Number	Up to 2
Connection format	Gigabit SFP format
Connection medium	Fiberglass
Connecting plug	LC format (SFP module)
Transmission speed	100/1000 Mbps (depending on the SFP module used)
Maximum network segment expansion	Depends on the SFP module/fiber type used
Fiber type	Depends on the SFP module used
Laser protection class	1
Wavelength	850/1310/1550 nm (depending on the device/SFP module used)
Properties of the combo ports	
Number	Up to 2
Transmission speed	100/1000 Mbps
Wavelength	Depends on the SFP module used
Maximum transmission length	Depends on the SFP module used
Mechanical tests	
Shock testing according to IEC 60068-2-27	Operation: 30g, half-sine shock pulse
Vibration resistance according to IEC 60068-2-6	Operation/storage/transport: $5 \mathrm{~g}, 10 \mathrm{~Hz}-150 \mathrm{~Hz}$
Free fall according to IEC 60068-2-32	1 m
Conformance with EMC Directives	
Developed according to IEC 61000-6-2	
Noise emission according to EN 55022: 1998 + A1: 2000 + A2: 2003 (interference voltage)	Class A (industrial applications)
Noise emission according to EN 55011: 1998 + A1: 1999 + A2: 2002 (electromagnetic interference)	Class A (industrial applications)
Noise immunity according to EN 61000-4-2 (IEC 1000-4-2) (ESD)   Contact discharge:   Air discharge:   Indirect discharge:	Requirements according to DIN EN 61000-6-2   Test intensity 3, criterion B   Test intensity 3, criterion A   Test intensity 3, criterion A

Noise immunity according to EN 61000-4-3 (IEC 1000-4-3) (electromagnetic fields)

## Class A (industrial applications)

Class A (industrial applications)

Requirements according to DIN EN 61000-6-2
Test intensity 3, criterion A

## FL SWITCH 2000

Conformance with EMC Directives
Noise immunity according to EN 61000-4-6 (IEC 1000-4-6) (conducted)
:---
Test intensity 3, criterion A

### 11.5 Ordering data

## Products



Order designation
FL SWITCH 2005
FL SWITCH 2008
FL SWITCH 2105
FL SWITCH 2108
FL SWITCH 2205
FL SWITCH 2208
FL SWITCH 2207-FX


Order No.	Pcs./Pkt.
2702323	1
2702324	1
2702665	1
2702666	1
2702326	1
2702327	1
2702328	1

FL SWITCH 2207-FX SM

2702329	1

FL SWITCH $2206-2 F X$
FL SWITCH 2206-2FX SM
2702331

FL SWITCH 2206-2FX ST

FL SWITCH 2206-2FX SM ST

FL SWITCH 2204-2TC-2SFX
2702333

FL SWITCH 2206-2SFX	2702969	1
FL SWITCH 2308	2702652	1
FL SWITCH 2306-2SFP	2702970	1
FL SWITCH 2304-2GC-2SFP	2702653	1

## Accessories

Description	S
Program and configuration memory, plug-in, 2 Gbytes	F
Program and configuration memory, plug-in, with MRP master license   (MRM), 2 Gbytes	E/
FL Network Manager, SNMP-based configuration and firmware update soft-   ware, for easy startup of Managed Switches	FL
Universal end bracket	FL
Gigabit SFP module for transmission up to 30 km with a wavelength of 1310   nm	FL
Gigabit SFP module for transmission up to 1 km with a wavelength of 850 nm	F
Gigabit SFP module for transmission up to 80 km with a wavelength of 1550   nm	F
Gigabit SFP module for transmission up to 100 m	F
Gigabit SFP module for transmission up to 2 km with a wavelength of 1310 nm	FL
The narrow form-factor plug-in module provides a fiber optic interface with a   data transmission speed of 100 Mbps with a wavelength of 1310 nm (long)	FL
The narrow form-factor plug-in module provides a fiber optic interface with a   data transmission speed of 100 Mbps with a wavelength of 1310 nm (long).	FL
Fast Ethernet SFP WDM module for transmission up to a maximum of 20 km   on a single fiber with a wavelength of $1310 / 1550$ nm	FL


Order designation	Order No.	Pcs./Pkt.
SD FLASH 2GB	2988162	1
FL SD FLASH/MRM	2700270	1
FL NETWORK MANAGER BASIC	2702889	1
E/NS 35 N	0800886	1
FL SFP LX	2891767	1
FL SFP SX	2891754	1
FL SFP LX LH	2989912	1
FL SFP GT	2989420	1
FL SFP SX2	2702397	1
FL SFP FX	2891081	1
FL SFP FX SM	2891082	1
FL SFP FE WDM20-A	2702437	1

## FL SWITCH 2000

## Description (Fortsetzung)

Fast Ethernet SFP WDM module for transmission up to a maximum of 20 km on a single fiber with a wavelength of $1550 / 1310 \mathrm{~nm}$.

Fast Ethernet SFP WDM set for transmission up to a maximum of 20 km on a single fiber with a wavelength of $1310 / 1550 \mathrm{~nm}$

Gigabit SFP WDM module for transmission up to a maximum of 10 km on a single fiber with a wavelength of 1310/1550 nm
Gigabit SFP WDM module for transmission up to a maximum of 10 km on a single fiber with a wavelength of 1310/1550 nm

Gigabit SFP WDM set for transmission up to a maximum of 10 km on a single fiber with a wavelength of 13101/1550 nm
The FL DIN RA is installed in a standard, 19-inch rack (EIA-310-D, IEC 60297-3-100) to allow DIN rail mounted equipment to be rack mounted

Network monitoring with HMI/SCADA systems
PCB connector, plug, nominal current: 8 A , rated voltage (III/2): 160 V , number of positions: 5 , pitch: 3.81 mm , connection method: screw connection with tension sleeve, color: gray, contact surface: tin
PCB connector, plug, nominal current: 8 A , rated voltage (III/2): 160 V , number of positions: 5 , pitch: 3.81 mm , connection method: screw connection with tension sleeve, color: gray, contact surface: tin
PCB connector, plug, nominal current: 8 A , rated voltage (III/2): 160 V , number of positions: 5 , pitch: 3.81 mm , connection method: Push-in spring connection, color: gray, contact surface: tin

PCB connector, plug, nominal current: 8 A , rated voltage (III/2): 160 V , number of positions: 5 , pitch: 3.81 mm , connection method: Push-in spring connection, color: green, contact surface: tin
SNMP-based software in English, for detection and display of Ethernet networks with a maximum of 64 network nodes

SNMP-based software in English, for detection and display of Ethernet networks with a maximum of 256 network nodes
SNMP-based software in English, for detection and display of Ethernet networks with a maximum of 512 network nodes

Fuse terminal block for cartridge fuse-link, cross section: $0.5-16 \mathrm{~mm}^{2}$, AWG: 24-6, width: 12 mm , color: black
Lever-type fuse terminal block, black, for $5 \times 20 \mathrm{~mm}$ cartridge fuse-links, with
LED for 24 V DC
Thermomagnetic circuit breaker, 1-pos., for DIN rail mounting, 2 A
Pre-assembled relay module with Push-in connection, consisting of: relay base with ejector and power contact relay. Contact type: 1 changeover contact. Input voltage: 24 V DC
FO patch cable, multimode, preconfigured, 1.0 m long, LC-LC connector
FO patch cable, single mode, preconfigured, 1.0 m long, LC-LC connector
FO patch cable, multimode, preconfigured, 1.0 m long, LC-SC connector
FO patch cable, multimode, preconfigured, 1.0 m long, $\mathrm{SC}-\mathrm{SC}$ connector
FO patch cable, multimode, preconfigured, 1.0 m long, SC-ST connector
FO patch cable, single mode, preconfigured, 1.0 m long, LC-SC connector
FO patch cable, single mode, preconfigured, 1.0 m long, SC-SC connector
FO patch cable, single mode, preconfigured, 1.0 m long, SC-ST connector
Patch cable, CAT6, pre-assembled, 1.0 m long
Patch cable, CAT5, pre-assembled, 1.0 m long
Order designation
FL SFP FE WDM20-B
FL SFP FE WDM20-SET

FL SFP WDM10-A
FL SFP WDM10-B

FL SFP WDM10-SET
FL DIN RA
FL SNMP OPC SERVER V3

MCVW 1.5/ 5-ST-3.81 GY BD-GND

MCVW 1.5/ 5-ST-3.81 GY BD-D0

FK-MCP 1,5/5-ST-3,81 GY

FMC 1,5/ 5-ST-3,81
FL VIEW 64

FL VIEW 256

## FL VIEW 512

UK 10-DREHSILED 24 (5X20)
UT 4-HESILED 24 (5X20)
UT 6-TMC M 2A
RIF-0-RPT-24DC/21

FL MM PATCH 1,0 LC-LC
FL SM PATCH 1,0 LC-LC
FL MM PATCH 1,0 LC-SC
FL MM PATCH 1,0 SC-SC
FL MM PATCH 1,0 SC-ST
FL SM PATCH 1,0 LC-SC
FL SM PATCH 1,0 SC-SC
FL SM PATCH 1,0 SC-ST

FL CAT6 PATCH 1,0
FL CAT5 PATCH 1,0

$2702442 \quad 1$
2891053
2701139

1715127

1715126


1745920
2701472
$2701473 \quad 1$
2701474

3046090	50
0916605	6
2903370	1
2989158	1
2989187	1
2989161	1
2901805	1
2901809	1
2989190	1
2901829	1
2901832	1
2891385	10
2832276	10

## HOTLINE:

If there are any problems that cannot be solved using this documentation, please call our hotline:

䇦 +495281 9-462888

## A Appendix for document lists

## A 1 List of figures

## Section 1

Figure 1-1: Dimensions of the FL SWITCH 2000 .................................................... 8
Figure 1-2: Elements of the devices ....................................................................... 9

## Section 2

## Section 3

Figure 2-1: Snapping the device onto the DIN rail ................................................ 11
Figure 2-2: Removing the device ......................................................................... 12
Figure 2-3: Operating the device with one power supply (example) ...................... 12
Figure 2-4: Redundant operation with two power supplies (example) .................... 13
Figure 2-5: Connecting a relay to the digital alarm output ..................................... 13
Figure 2-6: Elements of the SFP modules ............................................................ 15
Figure 2-7: Inserting the SFP modules (example) ................................................. 15
Figure 2-8: Position of the SD card slot ................................................................ 16

Figure 3-1: Settings for the BootP server .............................................................. 20
Figure 3-2: BootP server ........................................................................................ 20
Figure 3-3: FL Network Manager with BootP/DHCP reservation list displayed ..... 21
Figure 3-4: "IP Address Request Listener" window ............................................... 22
Figure 3-5: "Set IP Address" window with incorrect settings ................................. 23
Figure 3-6: "Assign IP Address" window ............................................................... 23

## Section 4

## Section 5

Figure 5-1: Login window ....................................................................................... 27
Figure 5-2: Start page for web-based management (example) ............................. 28
Figure 5-3: "Help \& Documentation" web page ..................................................... 29
Figure 5-4: "Device Status" web page .................................................................. 30
Figure 5-5: "Technical Data" web page .................................................................. 30
Figure 5-6: "Local Diagnostics" web page ..... 31
Figure 5-7: "Alarm \& Events" web page ..... 31
Figure 5-8: "Port Table" web page ..... 32
Figure 5-9: "MAC Address Table" web page ..... 32
Figure 5-10: "System" web page ..... 33
Figure 5-11: "Firmware Update via HTTP" pop-up ..... 34
Figure 5-12: "Firmware Update via TFTP" pop-up ..... 34
Figure 5-13: "Advanced Configuration" pop-up ..... 36
Figure 5-14: "Advanced Configuration" pop-up ..... 37
Figure 5-15: "Security Context" pop-up ..... 37
Figure 5-16: "Administrator Password" configuration area ..... 38
Figure 5-17: "Quick Setup" web page ..... 38
Figure 5-18: "Network" web page ..... 39
Figure 5-19: ACD status information on the "Device Status" page ..... 40
Figure 5-20: "Service" web page ..... 40
Figure 5-21: "Port Configuration" web page ..... 41
Figure 5-22: "Port Configuration Table" web page ..... 43
Figure 5-23: "VLAN Configuration" web page ..... 43
Figure 5-24: "Multicast Filtering" web page ..... 44
Figure 5-25: "Spanning-Tree Configuration" configuration area ..... 44
Figure 5-26: "RSTP Port Configuration" web page ..... 46
Figure 5-27: "RSTP Port Configuration Table" web page ..... 47
Figure 5-28: "Security" web page ..... 47
Figure 5-29: "DHCP Service" web page ..... 48
Figure 5-30: "DHCP Port Local Service" pop-up ..... 49
Figure 5-31: "Local Events" web page ..... 50
Figure 5-32: "Quality of Service" web page ..... 51
Figure 5-33: "RSTP Diagnostic" web page ..... 52
Figure 5-34: "MRP Diagnostic" web page ..... 53
Figure 5-35: "Port Mirroring" web page ..... 53
Figure 5-36: "Trap Manager" web page ..... 54
Figure 5-37: "Port Counter" web page ..... 55
Figure 5-38: "Port Utilization" web page ..... 55
Figure 5-39: "SFP Diagnostics" web page ..... 56

## Section 6

Figure 6-2: $\quad$ Command terminal in PuTTY ..... 57
Figure 6-3: Establishing a Telnet connection via Windows command prompt ..... 58
Figure 6-4: Command terminal in Windows command prompt ..... 58
Section 7
Section 8
Figure 8-1: "Link Layer Discovery Protocol" web page ..... 66
Figure 8-2: "LLDP Topology" web page ..... 67
Section 9
Figure 9-1: "Multicast Filtering" web page ..... 69
Figure 9-2: "Current Multicast Groups" web page ..... 70
Section 10
Figure 10-1: "VLAN Configuration" web page ..... 71
Figure 10-2: "Static VLAN Configuration" web page ..... 72
Figure 10-3: "VLAN Port configuration" web page ..... 73
Figure 10-4: "VLAN Port Configuration Table" web page ..... 73
Figure 10-5: "Current VLANs" web page ..... 74

## Section 11

## Appendix A

## B 2 List of tables

Section 1
Table 1-1: ..... 9
Section 2
Table 2-1: Pin assignment of RJ45 connectors ..... 14
Section 3
Table 3-1: $\quad$ Operating modes in Smart mode ..... 18
Section 4
Section 5
Section 6
Table 6-1: $\quad$ Structure of CLI commands ..... 58
Table 6-2: $\quad$ Structure of CLI commands ..... 59
Section 7
Section 8
Table 8-1: Event table for LLDP ..... 66
Section 9
Section 10
Section 11
Appendix A

## C 3 Index

Numerics
24 V DC voltage ..... 12
802.1w ..... 45
A
ACD status ..... 40
Address Conflict Detection ..... 40
Address table ..... $25,75,76,78,81$
Admin Cost ..... 47
Admin Edge ..... 46
Admin Path Cost ..... 46
Administrator password ..... 38
Agent ..... 64
Air pressure $75,77,79,82$
Alarm ..... 31
Alarm contact ..... 50
Ambient compatibility 75, 77, 79, 82
ASN1 SNMP objects ..... 64
Auto Edge ..... 46
Auto Query Ports ..... 70
Automation Profile ..... 38
B
BootP ..... 19
BootP request ..... 19
BPDU packets ..... 26
Bridge Forward Delay ..... 45
Bridge Hello Time ..... 45
Bridge Max Age ..... 45
Bridge Priority ..... 45
C
Class of Service ..... 26
Clear AQP ..... 70
CoS ..... 26
CRC error ..... 25
D
Default IP address ..... 18
Default Priority ..... 42
Degree of protection ..... $75,77,79,82$
Delivery state ..... 17
Designated Bridge ..... 46
Designated Cost ..... 46
Designated Root ..... 46
Destination address ..... 25
Destination address field ..... 25
Destination Port ..... 54
Device status ..... 30
DHCP Option 82 ..... 48
DHCP Relay Agent ..... 48
DHCP server ..... 18
DHCP Services ..... 48
Diagnostics ..... 10
DIN rail ..... 11
dot1dBridge ..... 63
E
Egress ..... 54
etherMIB ..... 63
Events ..... 31
Extension BUQ ..... 69
Extension FUQ ..... 69
F
Factory settings ..... 17
Fast Ring Detection ..... 45
Firmware Update ..... 33
FL Managed Infrastructure MIB ..... 63
Forward Delay ..... 45
Fragments ..... 25
Functional earth grounding ..... 14
G
Grounding ..... 14
H
Hello Time ..... 45
Housing dimensions ..... 75, 77, 78, 82
Humidity ..... 75, 77, 79, 82
I
IEEE 802.1D ..... 26
ifMIB ..... 63
IGMP Query Version ..... 69
IGMP Snooping ..... 69
Ingress ..... 54
IP configuration ..... 17
IP MIB ..... 63
IPAssign.exe ..... 21
L
Learning addresses ..... 25
Link Monitoring ..... 42
List of Static VLANs ..... 72
LLDP ..... 41
IldpMIB ..... 63
Load distribution ..... 13
Local Events ..... 50
M
MAC Address Table ..... 32
Management Information Base ..... 63, 64
Max Age ..... 45
MIB ..... 63
Mirroring ..... 43, 54
Monitored link ..... 50
Mounting ..... 11
Mounting position. 75, 77, 79, 82
Multi-address function ..... 25
Multicast/broadcast address ..... 25
N
Network Redundancy ..... 44
0
Operating Edge ..... 46
Operating modes ..... 18
Operating Path Cost ..... 46
Operating temperature ..... 75, 77, 79, 82
Option 82 ..... 48
P
Packet processing sequence ..... 26
Password ..... 17, 38
Path Cost ..... 46
pBridgeMIB ..... 63
Port Counter ..... 55
Port ID ..... 46
Port Mirroring ..... 43, 54
Port Table ..... 31
Prioritization ..... 26
Priority ..... 26
Priority queues ..... 26
Processing queue ..... 26
Processing rules ..... 26
Protection class ..... 75, 77, 79, 82
Q
qBridgeMIB ..... 63
QoS. ..... 26
Quality of Service ..... 26
Query Interval ..... 69
Queue ..... 26
Quick Setup ..... 38
R
Receive queue ..... 26
Redundancy ..... 44
Redundant operation ..... 13
Relay Agent ..... 48
Removal ..... 11
Reset ..... 33
RFC1213 MIB ..... 63
Ripple ..... 75, 77, 79, 82
RJ45 Ethernet connector ..... 14
rmon ..... 63
Root ..... 46
Root Cost ..... 52
Root Port ..... 52
RSTP ..... 44
rstpMIB ..... 63
S
SFP modules ..... 15
SFP slot ..... 14
Simple Network Management. ..... 57, 63
Smart mode ..... 17
SNMP ..... 63
SNMP interface ..... 63
snmpFrameworkMIB ..... 63
snmpMIB ..... 63
Snoop Aging Time ..... 69
Source and destination addresses. ..... 25
Static Query Ports ..... 70
Storage temperature 75, 77, 79, 82
Store and forward mode. ..... 25
Switch principle 75, 76, 78, 81
T
Tagged ..... 71
Topology Change. ..... 52
Traffic classes. ..... 26
Transparent ..... 71
Trap ..... 63
Trap Manager ..... 54
Tree structure of the MIB ..... 64
U
User name ..... 17
Utilization ..... 55
V
VLAN/priority tag ..... 26


[^0]:    (e) 192.168.10.42/php/command.php?usr=admin\&pwd= private\&<cmd=show network | users passwd private2

[^1]:    OK IP Assignment : bootp IP Address : 192.168.10.42 Network Mask : 255.255.255.0 Default Gateway : 0.0.0.0 Management VLAN : 1 ACD Mode : None ERROR

