
Cryptographic Co-Processor ATECC508A (Qwiic) Hookup Guide

Introduction

🔒 Note: Please follow through the hookup guide in its entirety before using this board. The chip cannot be
re-configured after it is PERMANENTLY locked.

The SparkFun Cryptographic Co-processor Breakout ATECC508A (Qwiic) takes all the great features of the
Microchip ATECC508A Cryptographic Authentication Device and adds two Qwiic ports for plug and play
functionality. In this tutorial we will cover the fundamentals of cryptographic authentication and how to use the
ATECC508A to add a very high level of security to your projects.

The ATECC508A is capable of many cryptographic processes. This tutorial focuses on Elliptic-curve cryptographic
digital signatures (ECC) - using asymetric private/public keys. If those last few words are new to you, please read
on! We will spend some time explaining in a bit.

SparkFun Cryptographic Co-Processor Breakout -
ATECC508A (Qwiic)
 DEV-15573

https://www.sparkfun.com/
https://www.sparkfun.com/products/15573
https://www.sparkfun.com/qwiic
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.sparkfun.com/products/15573
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15573

🔒 Note:This chip is NOT capable of encrypting and decrypting data. It can however, perform quite a few
cryptographic authentication processes such as secure private key creation, secure key storage and digital
signature creation and verification.

At a very high level, the purpose of using this chip is to (1) verify that the message received actually came from the
true sender and (2) verify that the data received was not tampered with. This technology is used in hyper-critical
devices such as rocket launches, medical devices, two factor authentication keys (2FA), ink cartridges, garage
door openers and car key FOBs.

Probably it's most important feature: this device can securely store a private ECC key. In fact, this private key will
never be accessible - not even to you, the owner. It is created internally on the chip during configuration, and it can
never be read from the chip (even if your de-capped the chip). Although you will never know it, you can still
command the co-processor to use the secret private key to create a unique signature on some data. With this
functionality, it can be used to securely authenticate a message in any kind of communication system. For
example, between systems such as a node in an IoT system. Follow along, and you'll be creating 64 byte
signatures (yes, bytes) and verifying them securely in no time!

Product Showcase: SparkFun Cryptographic Co-ProProduct Showcase: SparkFun Cryptographic Co-Pro……

Product Showcase: SparkFun Cryptographic DeveloProduct Showcase: SparkFun Cryptographic Develo……

https://www.youtube.com/watch?v=_MjjF211BM8
https://www.youtube.com/watch?v=N4tfyhkM7jM

Checkout these videos for more details on this tutorial.

Required Materials

To follow along with this tutorial, you will need the following materials that are included in the kit. You may not need
everything though depending on what you have. Add it to your cart, read through the guide, and adjust the cart as
necessary.

Note: To follow this tutorial, an Artemis microcontroller board has to be used with this product due to the
buffer size required for the I C bus.

For more advanced users, other microcontrollers can be used, but the buffer size of Wire library and/or the
syntax for the serial print statements will need to be modified. (*This is outside the scope of this tutorial.)

Suggested Reading

If you aren’t familiar with the following concepts, we recommend you read over these tutorials before continuing.

2

SparkFun Cryptographic Development Kit
 KIT-18303

https://www.sparkfun.com/categories/424
https://www.sparkfun.com/products/18303
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/18303
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c

Cryptographic Authentication
Cryptography is a large subject matter. There many different types of cryptographic processes, each with their own
different purpose and type of math. In this tutorial, we are focusing on cryptographic authentication. On a very high
level, this usually involves data, digital signatures and verification. First, we must understand what a digital
signature is and how it is created. Second we must understand verification which includes the use of a
private/public key pair. Let's jump into digital signatures!

Digital signatures

A digital signature is quite similar to a hand-written signature. After you write a letter, you add your signature at the
bottom. Just like the hand-written signature, a digital signature is added to your data. When we say "added" we
mean that it is included as a separate chunk of data. So when sending some data with a digital signature, you
would send the data as one piece of data, and then you would also send the digital signature as a separate piece
of data. So this is the first difference to understand: digital signatures are like hand-written signatures, except they
don't live on the same piece of paper (they are a separate chunk of data).

Another big difference: to create a digital signature, you need a bit more than a pen. You actually need three
things:

1. Data: This is the data you want to sign. For this co-processor, we are going to sign 32 bytes of data. This is
essentially your "letter without a signature".

2. A Key: Is simply a unique chunk of data. The key lives on a protected part of the co-processors memory. It
was created during configuration. We will never have access to it. The idea of a single digital key is pretty
straight forward. It parallels the physical door key quite well. The chunk of data is unique, just like the
grooves and cuts of a physical key are unique.

3. An Algorithm: The complex math that we will offload to the co-processor. It is a particular type of
cryptographic math called Elliptic Curve Cryptography (ECC). Using our data and key, this algorithm will
output a digital signature.

Serial Communication
Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

Artemis Development with Arduino
Get our powerful Artemis based boards (Artemis Nano,
BlackBoard Artemis, and BlackBoard Artemis ATP)
blinking in less than 5 minutes using the SparkFun
Artemis Arduino Core!

Hookup Guide for the SparkFun RedBoard
Artemis
Get started with the RedBoard Artemis - all the
functionality of the SparkFun Artemis module wrapped
in the familiar Uno footprint

https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/artemis-development-with-arduino
https://learn.sparkfun.com/tutorials/hookup-guide-for-the-sparkfun-redboard-artemis

One more thing: digital signatures will be different when you change your message. This is pretty different than the
traditional idea of a signature. When we think of hand-written signatures, we think that the entire purpose is for it to
be exactly the same every time. The author should be the only one who can hold the pen like so and make that
unique signature. With digital signatures we need to think a bit differently. Remember that we are sending our
message (and a key) into an algorithm. This will result in a new and different signature if the message or key
changes. In most cases, a digital signature is always unique from all other previous digital signatures.

So that was easy enough, right? Good. Digital signatures aren't so scary now. But what would we want to do with
one of these? Verify it.

Verification

Verification of a digital signature is quite similar verifying a hand-written signature. In both cases, we want to
determine if the signature is authentic. With a hand-written signature, you might just use your eyes to see if it looks
correct. With a digital signature we need to use a bit more than our eyes. We need the data, the signature, a key,
and an algorithm (sound familiar?). Simple enough, right? Well this is where it starts to get slightly more complex.
We need to understand one more concept: the idea of key pairs.

Up until this point, we have called the "key" simply a "key", but to be more accurate, this should be called the
private key. And it is part of a key pair. When we configure the co-processor it actually creates a key pair which
includes two keys: one private key and one public key. These two keys work together, and they allow us to sign
and verify signatures. We use the private key to sign the data, and we use the public key to verify data. This is also
known as an asymetric cryptographic process.

Now that we're talking private and public key pairs, let's clearly define what we need to create a digital signature,
and what we need to verify a digital signature:

To create a digital signature we need: To verify a digital signature we need:

1. Data
2. Private Key
3. Algorithm

1. Data
2. Signature
3. Public Key
4. Algorithm

Algorithm output: a new digital signature Algorithm output: yes or no

From Alice to Bob

Although you can accomplish a few neat things using only one of these chips (signing data, verifying signatures,
creating high-quality random numbers, etc.), the truly powerful communication security starts when you have two
of them (we will refer to them as Alice and Bob).

Our Arduino library utilizes the old story of Alice, Bob and Eve. If you read up on cryptography, you will often come
across these names. Alice and Bob are always trying to have a private conversation, but Eve keeps
eavesdropping (and sometimes trying to impersonate Alice). So Alice and Bob start using cryptography to keep
Eve out of the mix.

Side note: In a lot of traditional examples, Alice and Bob are encrypting and decrypting their messages. I want to
highlight here again, that this chip utilizes a different cryptographic tool: authentication. With the ATECC508A, we
can create and verify signatures. The message is still sent out in the open/public for Eve to clearly read. However,
Eve will never have Alice's private key and could never create a valid signature (to authenticate the message).
Therefore, Eve can never pretend to be Alice!

In our examples, Alice is sending a message to Bob. Alice can use her own co-processor to create a digital
signature. She can then send her message and signature to Bob. Bob can then use his own separate co-
processor to verify the message and signature.

An example demonstrating the functionality of an asymmetric key pair (Alice and Bob).

If you are brand new to cryptography, take a minute to watch the above gif loop a couple times. It shows the basic
steps necessary to have an authenticated message from Alice to Bob. The use of a private/public key pair can be
a bit daunting at first sight, but after going through this tutorial, we hope it can become a piece of cake.

Hardware Overview

Power

There is a power status LED to help make sure that your Cryptographic Co-processor Breakout is getting power.
You can power the board either through the polarized Qwiic connector system or the breakout pins (3.3V and
GND) provided. This Qwiic system is meant to use 3.3V, be sure that you are NOT using another voltage when
using the Qwiic system.

Power connections.

LED

The board includes a red power LED to indicate you have power plugged in properly. Note, there is a jumper on
the back to disconnect this from the circuit. This is useful if you really want to conserve current consumption on
your system.

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/alicebobv1.gif
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Power.jpg

Power LED.

ATECC508A Cryptographic Co-Processor

The co-processor on this board is the Microchip ATECC508A. It's primary features include creating/storing ECC
keys, creating digital signatures and verifying them. It is also capable of doing many other cryptographic processes
includeing SHA-256 hash, Diffie-Hellman Key Exchange, and high quality random number generation. For more
details on the ATECC508A cryptographic chip, check out the datasheet.

ATECC508A cryptographic IC.

Characteristic Description

Operating Voltage 2.0V to 5.5V (Default on Qwiic System: 3.3V)

Current Draw Active: 3 to 16 mA
Idle: 800 µA
Sleep: 30 to 150 nA

Operating Temperature -40 to 85°C

EEPROM Storage Capacity: 10 Kb
Data Retention: >10 years
Write Endurance: 400,000 cycles

Configurable I C Address (7-bit) 0x60 (Default)2

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/PWR_LED_highlight.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Microchip_ATECC508A_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/IC_highlight.jpg

Connections

We've included two qwiic connectors for plug and play operation.

Qwiic connectors.

It also has the pins broken out to 0.1-inch PTH headers, if you'd like a more permanent (soldered) connection to
the I C lines.

Breakout pins.

Pin Label Pin Function Input/Output Notes

3.3V Power Supply Input 3.3V on Qwiic system.

GND Ground Input Ground

SDA I C Data Signal Bi-directional Bi-directional data line.

SCL I C Clock Signal Input Master-controlled clock signal.

Jumpers

There are two jumpers on this board. The first, connects pull-up resistors to the I C bus and the other connects the
power to the PWR status LED.

2

2

2

2

https://www.sparkfun.com/qwiic
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/15573-SparkFun_Cryptographic_Co-Processor_Breakout_-_ATECC508A__Qwiic_-02_.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/15573-SparkFun_Cryptographic_Co-Processor_Breakout_-_ATECC508A__Qwiic_-03_.jpg

LED and I2C jumper pads.

Name Description Usage

I2C I C Pull-Up Resistors Opening these disables theI C pull-up resistors used for I C communication. If
multiple I C devices are being used, these pull-ups should be disabled on all
but one device. If these pins (SDA/SCL) are being used for other purposes
(UART, LEDs, GPIO), the pull-up resistors should usually be disabled.

LED Enable/Disable LED Cut this jumper to disconnect the LED and save power!

Board Dimensions

For those interested, the basic board dimensions are shown below, all measurements are in inches and the grid
spacing is 0.1". The SparkFun Cryptographic Co-processor PCB itself, measures (approximately) 1x1 inch.
Additionially, we have provided a PDF of the dimensional drawing, if necessary.

Board dimensions in inches.

Hardware Hookup

Note: To follow this tutorial, an Artemis microcontroller board has to be used with this product due to the
buffer size required for the I C bus.

For more advanced users, other microcontrollers can be used, but the buffer size of Wire library and/or the
syntax for the serial print statements will need to be modified. (*This is outside the scope of this tutorial.)

With the Qwiic connector system, assembling the hardware is fairly simple. For the examples below, all you need
to do is connect your Cryptographic Co-Processor Breakout to a RedBoard Artemis with a Qwiic cable. Otherwise,
you can use the I C pins, if you don't have a Qwiic connector on your microcontroller board. Just be aware of your

2 2 2

2

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/15573-bottom_jumpers.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-processor_ATECC508A_Dimensions.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-processor_ATECC508A_Dimensions.png
https://www.sparkfun.com/categories/424
https://www.sparkfun.com/products/15573
https://www.sparkfun.com/products/15444
https://www.sparkfun.com/products/15081

input voltage and any logic level shifting you may need to do. (*Don't forget to plug the Artemis into a computer
with a USB-C cable.)

Hardware assembly between the RedBoard Artemis and a Cryptographic Co-Processor Breakout board.

Note, the setup shown here is used for the configuration example and the single-board examples (1,2,3 and 5).
For the more advanced examples that involve Alice and Bob (Example 4 and Example 6), you will need to setup
two Artemis boards - each with their own co-processor. Additional hardware hookup instructions are included at
those sections.

Software Setup

Note: This tutorial assumes you are using the latest stable version of the Arduino IDE on your desktop. If this
is your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

Installing Arduino

If you haven't used the Arduino IDE before, head on over to our Installing the Arduino IDE tutorial to get set up:

Installing Arduino IDE
MARCH 26, 2013
A step-by-step guide to installing and testing the Arduino software on Windows,
Mac, and Linux.

https://www.sparkfun.com/products/15424
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-Processor_Breakout_-_ATECC508A__Qwiic__Hookup_Guide-03.jpg
https://learn.sparkfun.com/tutorials/cryptographic-co-processor-atecc508a-qwiic-hookup-guide/example-4-from-alice-to-bob
https://learn.sparkfun.com/tutorials/cryptographic-co-processor-atecc508a-qwiic-hookup-guide/example-6-challenge
https://www.sparkfun.com/products/15444
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/installing-arduino-ide

Getting the Arduino Library

To make Configuration and start using your Cryptographic Co-processor, we have written an Arduino Library. It
currently supports only the Artemis board family. This is because some of the commands to the Co-processor
require a larger I2C buffer. You have two options to install this library:

Use the library manager or install in the Arduino IDE
We recommend using the library manager to tool within the Arduino IDE (Sketch > Include Library >
Manage Libraries...). In the Library Manager, search for Sparkfun_Cryptographic. For help installing
the library, check out our How to Install an Arduino Library tutorial.

Download the Github repository
Users can also manually download and install the library from Github. You can Visit the GitHub
repository to download the most recent version of the library, or click the link below:

DOWNLOAD THE ARDUINO LIBRARY

Setting up the Artemis Board

In case you haven't checked out the hookup guide for the RedBoard Artemis, we suggest reviewing it as the
features are very different from your standard Arduino Uno.

Installing Artemis Board Package

This tutorial and Arduino Library support the Artemis Boards. You will need to use the Boards manager to install
the necessary packages. You can visit the specific section of the Artemis tutorial here, or read the entire tutorial in
the link below:

Installing an Arduino Library
JANUARY 11, 2013
How do I install a custom Arduino library? It's easy! This tutorial will go over how
to install an Arduino library using the Arduino Library Manager. For libraries not
linked with the Arduino IDE, we will also go over manually installing an Arduino
library.

https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/SparkFun_ATECCX08a_Arduino_Library
https://github.com/sparkfun/SparkFun_ATECCX08a_Arduino_Library/archive/master.zip
https://learn.sparkfun.com/tutorials/hookup-guide-for-the-sparkfun-redboard-artemis
https://learn.sparkfun.com/tutorials/artemis-development-with-arduino/all#arduino-installation
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/artemis-development-with-arduino

CH340 Driver Installation for the RedBoard Artemis

Don't forget, if you've never connected an CH340 device to your computer before, you may need to install drivers
for the USB-to-serial converter. Check out our section on How to Install CH340 Drivers for help with the
installation.

Arduino Library

Artemis Development with Arduino
JUNE 20, 2019
Get our powerful Artemis based boards (Artemis Nano, BlackBoard Artemis, and
BlackBoard Artemis ATP) blinking in less than 5 minutes using the SparkFun
Artemis Arduino Core!

How to Install CH340 Drivers
AUGUST 6, 2019
How to install CH340 drivers (if you need them) on Windows, Mac OS X, and
Linux.

https://learn.sparkfun.com/tutorials/sparkfun-serial-basic-ch340c-hookup-guide#drivers-if-you-need-them
https://learn.sparkfun.com/tutorials/artemis-development-with-arduino
https://learn.sparkfun.com/tutorials/how-to-install-ch340-drivers

Note: This code/library has been written and tested on Arduino IDE version 1.8.10. Otherwise, make sure
you are using the latest stable version of the Arduino IDE on your desktop.

If this is your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

We've written a library to easily get setup and start using the Cryptographic Co-processor ATECC508A. If you'd
like to jump right into signing and verifying, then feel free to skip ahead to Example 1: Configuration However, it's
not a bad idea to familiarize yourself a bit with the source code behind the examples, so let's take a closer look at
the available functions in the library. You can install this library through the Arduino Library Manager. Search for
SparkFun_Cryptographic and you should be able to install the latest version. If you prefer manually downloading
the libraries from the GitHub repository, you can grab them here:

DOWNLOAD THE SPARKFUN ATECC508A ARDUINO LIBRARY (ZIP)

Let's get started by looking at the functions that set up the ATECC508A.

Setup

.begin() or .begin(i2caddr, TwoWire)

Creates a connection to an I C device over the I C bus using the default or specified I C address.

Input: i2caddr
Unassigned 7-bit integer for device address. If not defined, the library will use the default I C
address stored in the I C library (0x60). This can be changed by writing the I C address to the
specific Configuration Zone address (byte 16) prior to locking that zone.

Input: Wire
Wire port assignment. If not defined, the library will use the default Wire port. (*This is only
available to change on boards that in fact have multiple Wire Ports (i.e. Artemis). Currently, only
the default wire port located on the Qwiic connector is supported on the Artemis.)

Output: Boolean
True- Connected to I C device on the default (or specified) address.
False- No device found or connected.

Communication

.wakeUp()

Checks to see if a device over the I C bus is connected. Returns boolean true or false depending on if the
slave device has correctly ACK 'd to an I C request and responded with the correct "wake verification"
response: 0x11 .

Output: Boolean
True- Device present on the default (or specified) address.
False- No device found or transmission error.

.idleMode()

The ATECCX08A goes into the idle mode and ignores all subsequent I/O transitions until the next wake flag.
The contents of TempKey and RNG Seed registers are retained. (*Idle Power Supply Current: 800uA.)

2 2 2

2

2 2

2

2

2

https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/cryptographic-co-processor-atecc508a-qwiic-hookup-guide/example-1-configuration
https://github.com/sparkfun/SparkFun_ATECCX08a_Arduino_Library
https://github.com/sparkfun/SparkFun_ATECCX08a_Arduino_Library/archive/master.zip

Note, it will automatically go into sleep mode after watchdog timer has been reached (1.3-1.7sec).

.receiveResponseData(uint8_t length, boolean debug)

This function receives messages from the ATECCX08a IC (up to 128 Bytes). It will return true if it receives
the correct amount of data and good CRCs. What we hear back from the IC is always formatted with the
following series of bytes:

COUNT, DATA, CRC[0], CRC[1]

Note, the count number includes itself, the num of data bytes, and the two CRC bytes in the total, so a
simple response message from the IC that indicates that it heard the wake condition properly is like so:

EXAMPLE Wake success response: 0x04 , 0x11 , 0x33 , 0x44

Input: length
Unassigned 8-bit integer.
Length of data in bytes (max 32 bytes).
Includes: Count + DATA + 2 CRC bytes.

Output: Boolean
True- Communication complete and message count and CRC are good.
False- Communication failure (count error, CRC error, or no device present)

.checkCount(boolean debug)

This function checks that the count byte received in the most recent message equals countGlobal. Users
must call .receiveResponseData and then immediately call this to check the count of the complete
message.

Output: Boolean
True- count received and count calculated match (aka inputBuffer[0] == countGlobal)
False- Count error, message invalid.

.checkCrc(boolean debug)

This function checks that the CRC bytes received in the most recent message equals calculated CRCs.
Users must call .receiveResponseData then call immediately call this to check the CRCs of the complete
message.

Output: Boolean
True- CRC received and CRC calculated match (aka inputBuffer[0] == countGlobal)
False- CRC error, message invalid.

.atca_calculate_crc(uint8_t length, uint8_t *data)

This function calculates CRC. It was copied directly from the App Note provided from Microchip (*it seems to
be their own unique implementation of CRC cacluation.).

You're CRC bytes will be located for use at global public variable .crc .

Input: length
Unassigned 8-bit integer. Length number of bytes in buffer.

Input: data
Unassigned 8-bit integer. Data to be used in the CRC calculation.

.sendCommand(uint8_t command_opcode, uint8_t param1, uint16_t param2, uint8_t *data, size_t

length_of_data)

Generic function for sending commands to the IC.
This function handles creating the "total transmission" to the IC.
This contains WORD_ADDRESS_VALUE, COUNT, OPCODE, PARAM1, PARAM2, DATA (optional), and
CRCs.
Note, it always calls the wake() function, assuming that you have let the IC fall asleep (default 1.7 sec)
Note, for anything other than a command (reset, sleep and idle), you need a different "Word Address Value",
So those specific transmissions are handled in unique functions.

Input: command_opcode
Unassigned 8-bit integer.
COMMAND_OPCODE_INFO - Return device state information.
COMMAND_OPCODE_LOCK - Lock configuration and/or Data and OTP zones.
COMMAND_OPCODE_RANDOM - Create and return a random number (32 bytes of data).
COMMAND_OPCODE_READ - Return data at a specific zone and address.
COMMAND_OPCODE_WRITE - Return data at a specific zone and address.
COMMAND_OPCODE_GENKEY - Create a public and/or private key and store it in a slot.
COMMAND_OPCODE_NONCE - Generates a nonce for use by a subsequent command.
COMMAND_OPCODE_SIGN - Create ECC signature with TempKey and designated private key.
COMMAND_OPCODE_VERIFY - Verify an ECDSA (R,S) signature against data and public key.

Input: param1
Unassigned 8-bit integer. Unique to each command.

Input: param2
Unassigned 16-bit integer. Unique to each command.

Input: data
Unassigned 8-bit integer pointer. Unique to each command.

Input: length_of_data
Unassigned 8-bit integer. Unique to each command.

.read(uint8_t zone, uint16_t address, uint8_t length, boolean debug)

Reads data from the IC at a specific zone and address.
Your data response will be available at .inputBuffer .

Input: zone
Unassigned 8-bit integer.
Zone to be read from.
ZONE_CONFIG - Configuration Zone.
ZONE_OTP - One Time Programming Zone.
ZONE_DATA - Data Zone (for keys and certificates).

Input: address
Unassigned 16-bit integer.
Address within zone be read (must include modification for offset)

Input: length
Unassigned 8-bit integer.
Length of data to be read (can only be 4 bytes or 32 bytes)

Output: Boolean

True- Communication complete and message count and CRC are good.
False- Communication failure or command execution failure.

.write(uint8_t zone, uint16_t address, uint8_t *data, uint8_t length_of_data)

Writes data the IC at a specific zone and address.
Note, once a zone is locked, you can no longer write to it, and this function will return false.

Input: zone
Unassigned 8-bit integer.
Zone to be read from.
ZONE_CONFIG - Configuration Zone.
ZONE_OTP - One Time Programming Zone.
ZONE_DATA - Data Zone (for keys and certificates).

Input: address
Unassigned 16-bit integer.
Address within zone be written to (must include modification for offset)

Input: data
Unassigned 8-bit integer pointer.

Input: length_of_data
Unassigned 8-bit integer.
Length of data to be written (can only be 4 bytes or 32 bytes)

Output: Boolean
True- Communication complete and message count and CRC are good.
False- Communication failure or command execution failure.

Configuration

.writeConfigSparkFun()

Writes the necessary configuration settings to the IC in order to work with the SparkFun Arduino Library
examples.
For key slots 0 and 1, this enables ECC private key pairs, public key generation, and external signature
verifications.

Output: Boolean
True- All write commands were successful.
False- Communication failure or IC command execution failure.

.lockConfig()

This function sends the LOCK Command with the configuration zone parameter and listens for a successful
response (0x00).

Output: Boolean
True- Lock command was successful.
False- Communication failure or IC command execution failure.

.lockDataAndOTP()

This function sends the LOCK Command with the Data and OTP (one-time-programming) zone parameter
and listens for a successful response (0x00).

Output: Boolean

True- Lock command was successful.
False- Communication failure or IC command execution failure.

.lockDataSlot0()

This function sends the LOCK Command with the Slot 0 zone parameter and listens for a successful
response (0x00).

Output: Boolean
True- Lock command was successful.
False- Communication failure or IC command execution failure.

.lock(uint8_t zone)

This function sends the LOCK Command using the argument zone as parameter 1 and listens for a
successful response (0x00).

Input: zone
Unassigned 8-bit integer.
LOCK_MODE_ZONE_CONFIG - Lock only the configuration data zone.
LOCK_MODE_ZONE_DATA_AND_OTP - Lock only the Data and OTP zones.
LOCK_MODE_SLOT0 - Lock only the KEYID data slot 0.

Output: Boolean
True- Lock command was successful.
False- Communication failure or IC command execution failure.

.readConfigZone()

This function reads the entire configuration zone EEPROM memory on the device.
It stores them for viewing in a large global public variable array called .configZone (128 bytes).
In addition to configuration settings, the configuration memory on the IC also
contains the serial number, revision number, lock statuses, and much more.
This function also updates global variables for these other things.

.createNewKeyPair(uint16_t slot)

This function sends the command to create a new key pair (private AND public)
in the slot designated by argument slot (default slot 0).
Sparkfun Default Configuration Sketch calls this, and then locks the data/otp zones and slot 0.

Input: slot
Unassigned 8-bit integer. The KEYID data slot you'd like it to be created in.

Output: Boolean
True- GENKEY command was successful.
False- Communication failure or IC command execution failure.

Sign and Verify

.createSignature(uint8_t *data, uint16_t slot)

Creates a 64-byte ECC signature on 32 bytes of data.
Defauts to use private key located in slot 0.
Your signature will be available at global public variable .signature
Note, the IC actually needs you to store your data in a temporary memory location

called TempKey. This function first loads TempKey, and then signs TempKey. Then it
receives the signature and copies it to signature.

Input: data
Unassigned 8-bit integer pointer. (Max 32 bytes).

Input: slot
Unassigned 8-bit integer. The KEYID data slot you'd like to use for ECC calculation.

Output: Boolean
True- Both load tempKey and signTempkey commands were successful.
False- Communication failure or IC command execution failure.

.verifySignature(uint8_t *message, uint8_t *signature, uint8_t *publicKey)

Verifies an ECC digital signature against a message and an external public key.
Note, the IC actually needs you to store your message in a temporary memory location
called TempKey. This function first loads TempKey with the message, and then sends the verify command
with additional data paramaters: signature and publicKey. Then it listens for result from IC.

Input: message
Unassigned 8-bit integer pointer. (32 bytes).

Input: signature
Unassigned 8-bit integer pointer. (64 bytes)

Input: publicKey
Unassigned 8-bit integer pointer. (64 bytes)

Output: Boolean
True- Both load tempKey and verify commands were successful.
False- Verification failure, Communication failure or IC command execution failure.

Random Number Generator

.random(long max)

This function returns a positive random Long between 0 and max.
Max can be up to the larges positive value of a long: 2147483647

Input: max
Long. (1-2147483647)

Output: Long 32 bits (4 bytes)

.random(long min, long max)

This function returns a random Long between min and max.
Min and max can be positive or negative numbers.

Input: min
Long. (-2147483647 to +2147483647)

Input: max
Long. (-2147483647 to +2147483647)

Output: Long 32 bits (4 bytes)

.getRandomByte(boolean debug)

This function returns a positive random byte.
Output: Byte

.getRandomInt(boolean debug)

This function returns a positive random integer.
Output: Unassigned 16-bit integer

.getRandomLong(boolean debug)

This function returns a Long.
Output: Long 32 bits (4 bytes)r

.updateRandom32Bytes(boolean debug)

This function gets a complete random number from the IC (all 32 bytes).
It stores it in a global public variable array called .random32Bytes
If you wish to access this global variable and use as a 256 bit random number,
then you will need to access this array and combine it's elements as you wish.

Output: Boolean
True- Random command execution successful.
False- Communication failure or IC command execution failure.

Example 1: Configuration

🔒Warning: Configuration settings are PERMANENT. We would like to stress the fact that these cannot be
changed later. If you intend to follow along with this tutorial, then configure with SparkFun standard
settings.

If you intend to use different features of the co-processor like the Diffie-Hellman Key Exchange and some of
its other use cases, please consider designing your own custom configuration. This hookup guide only
focuses on digital signature creation and verification.

This example shows how to setup your Cryptographic Co-processor with SparkFun's standard settings. This will
allow you to sign data and verify data with external signatures. The type of private keys we use in all of these
examples are ECC. We have also included an example to use the random number generator and a challenge
example. Beyond these functions, you may need to start with a different custom configuration.

To configure, upload Example1_Configuration.ino and open a serial terminal at 115200 baud. If communication
with a fresh chip is successful, your Artemis will print out some useful information about your chip.

It will then prompt you to type a y to configure your device. Note, if you do not wish to configure your device, you
can simply unplug at this time. Also, did we mention yet, that if you type a y , there's no going back.

https://learn.sparkfun.com/tutorials/terminal-basics

Output in the Arduino Serial Monitor.

Example 2: Sign
This example shows how to create a digital signature. To try it out, simply upload the Example2_Sign.ino , and
watch your serial terminal at 115200 baud. Note, you may need to hit reset.

Output in the Arduino Serial Monitor.

Important things to know about ECC signatures:

1. ECC signatures are created using a secret private key and the elliptical curve algorithm. For the purpose of
this example, we can just ignore the printout of the keys public key at the top - this is part of the
printInfo() function. As a side note, we will never know the devices private key. The private key for this

device is created, stored and locked up inside the device.

2. ECC signatures are 64 bytes long.

3. Contrary to most definitions of signatures, ECC signatures are different every time! ECCs include intentional
randomness in the calculation, and so it will always produce a new unique signature. However, every
signature that it creates will pass verification (as we will later see in example 3). Try hitting reset on your

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Crypto_Ex1.gif
https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/sign_output.png

Artemis a few times and watch the signature values change. Same message + same private key = new
signature .

4. With the ATECC508A, we can only send it 32 bytes of data to sign. If you need to sign something larger,
then it is recommended that you create a 32-byte hash of the data first, then you can sign the hash.
Basically, when you send a bunch of data into a hashing algorithm (such as SHA256), it will always respond
with a unique 32 byte digest. It is very similar to creating a digital signature, however it does not require a
key, so anyone can calculate the hash of any data. You may find that for many projects, 32 bytes is enough
data, so for now, there's no need to pursue hashes.

The Code

Now lets take a quick look at the important parts of the example code. There are two things worthy of note:

At the very top, we define the message we want to sign.

// array to hold our 32 bytes of message. Note, it must be 32 bytes, no more or less.
uint8_t message[32] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
,
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F
};

Not much to say here, other than it's a nice array of 32 unsigned 8 bit integers. We chose to make the values
simply count from 0 to 32, but these could really be anything.

//Let's create a digital signature!
atecc.createSignature(message); // by default, this uses the private key securely stored and loc
ked in slot 0.

Well, the comments say it all, but I will mention that by sending the argument "message", we are sending a pointer
to the first index (0), of the array. createSignature actually does 4 things for us under the hood:

1. Loads the message into the co-processor's memory location on the chip called tempKey .

2. Commands the co-processor to sign the contents of tempKey.

3. Receives the 64 byte signature and stores it in a public variable accessible at atecc.signature . Note, we
created an instance of the ATECCX08A class with the name atecc , but you could choose something
different, and then you'd need to modify how you access this signature array.

4. Prints a nice ready to compile serial debug message showing the signature. Handy for copying and
pasting between code.

Example 3: Verify

Note: If you upload the sketch as is, then it will fail to verify. This is because the public key, message and
signaure are blank. They are simply place holders at this point. Example three requires that you copy/paste
three things from Example 2: public key, message and signature. Please follow along below to get a
successful verification.

This Example shows how to verify a signature. In order for the co-processor to do this, it needs three things:

https://en.wikipedia.org/wiki/Hash_function

1. Public Key (of the sender)
2. Message
3. Signature

If you have just completed Example2_sign , then you should remember seeing these 3 things printed out on the
serial terminal. Before uploading Example3_verify.ino , please ensure you update the public key, message and
signature at the top of the sketch.

Also very important: you will need to rename the publicKey[64] array at the top to publicKeyExternal[64] .
This is what we will use to verify the message and signature, and so we must clarify that it is external.

Before uploading Example3_Verify.ino , we encourage you to click on the .gif below and watch a couple times.
This can help show exactly what to do.

Copying the publicKey[64] , message[32] , and signature[64] from the output of Example2_sign.ino to
operate Example3_Verify.ino . (Click to Enlarge)

The Code

The fresh code that you see when you open up Example3_Verify.ino has place holders. Notice how all the bytes
in each array is simply a bunch of 0x00 s.

uint8_t publicKeyExternal[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

uint8_t message[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

uint8_t signature[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

You will need to delete these and paste in your own unique arrays. You could type them in manually, but it will be
much easier to copy and paste them from the terminal output from Example 2.

Also note, when you highlight text within an Arduino serial monitor window, you must use the keyboard to actually
copy them (Ctrl + C). It won't let you right-click to copy.

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Crypto_Ex3d3.gif
https://learn.sparkfun.com/tutorials/terminal-basics
https://learn.sparkfun.com/tutorials/terminal-basics

And the actual verification of the signature happens as a single function call. It is located at the bottom of setup().

// Let's verirfy!
if (atecc.verifySignature(message, signature, publicKeyExternal)) Serial.println("Success! Signa
ture Verified.");
else Serial.println("Verification failure.");

atecc.verifySignature(message, signature, publicKeyExternal) is the actual call. This function will return a
boolean true if all three things are good, and a false if something doesn't add up. If you change a single bit in any
three of the arguments, then it won't verify.

Two nice things to thing about:

1. The only place in the world that could create the signature that will verify (using this public key) is inside
your one unique co-processor. No one else in the world would ever be able to impersonate it. Pretty cool
huh!

2. If any of the message was changed (even just a single bit flipped), then this verification would fail. This
means that you can be very confident that the message was transmitted and received properly. In this way it
is acting as a very robust checksum. It also means that if someone actually intercepted this message, they
won't be able to change anything in the message. Sweet!

Example 4: From Alice to Bob

Note: There are 2 unique Arduino sketches for this example. Example4_Alice.ino and Example4_Bob.ino .
You will need to use both of these to complete this Example. We recommend opening two separate instances
of Arduino, this way you can setup each one with its own com port for uploading and serial terminal.

Hardware hookup

For Example 4, you will need to setup two Artemis boards with two co-processors, and connect a couple jumper
wires between them. Using the Artemis Redboard, there is no soldering required for this setup.

Connect both of your Artemis boards to your computer using USB-C cables. Connect a Cryptographic Co-
processor to each board using a Qwiic cable.

The board on the left is Alice. The board on the right is Bob. Connect Alice's TX1 pin to Bob's RX1 pin. Also
connect GND to GND for good measure.

Fritzing diagram for hardware connections.

Note, both Alice and Bob need their own co-processor. So you're complete setup should look something like this:

https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/fritz_ab1.png

Hardware connections.

Code setup

We will need to copy/paste Alice's public Key into the top of Bob's Sketch. First upload Alice's sketch to Alice, then
watch her terminal at 115200. Copy her public key.

Now go over to Bob's sketch. Delete the place holder "blank" public key at the top, and paste in Alice's public key.
Upload Bob's sketch to Bob.

Now watch both Alice's and Bob's terminal at 115200. Type a y into Alice's terminal, and she will send a signed
message to Bob. Watch Bob's terminal. He will receive the message and verify it.

Watch this looped video to see it all happen. (click to enlarge).

Operation of Example4_Alice.ino and Example4_Bob.ino working in conjunction. (Click to Enlarge)

Things to note about this:

1. We are now using two separate co-processors! In this example, Bob is simply using his co-processor as a
verification engine. This could be accomplished by any computer that can compute ECC signature
verification. But it's really quite nice to offload this calculation to a co-processor, and it will perform the
calculations very fast.

2. Alice signed her message with her private key and she gave her public key to Bob. Hopefully the private vs
public thing is starting to sink in.

3. Bob used an external public key (Alice's) to verify the authenticity of Alice. He could potentially name this
anything he wants. And he could store lots of them, if he wanted to be able to verify messages from other
senders.

4. Alice will most likely make her public key truly public and let everyone know about it. Once everyone has it,
then she can send authenticated messages to anyone she likes, and they will truly know that it came from
Alice.

5. It does not have to be a one-way street. The example could easily be reversed and Bob could give Alice his
public key. When they both have shared their public key with the other, they can both send and verify.

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-Processor_Breakout_-_ATECC508A__Qwiic__Hookup_Guide-02.jpg
https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Crypto_Ex4.gif

The Code

As mentioned above, this example has two sketches. The purpose of splitting it up allows us to build upon the first
three examples, and communicate securely between two completely separate systems.

Alice's sketch is actually quite similar to the Example2_Sign.ino , although it also sends the message and
signature out it's TX1 pin.

Let's take a closer look at the important stuff within Alice's sketch:

//Let's create a digital signature!
atecc.createSignature(message); // by default, this uses the private key securely stored and loc
ked in slot 0.

// Now let's send the message to Bob.
// this will include three things:
// (1) start header ("$$$") ASCII "$" = 0x24 HEX
// (2) message (32 bytes)
// (3) signature (64 bytes)

// start header
Serial1.print("$$$");

// message
// note, we use "Serial.write" because we are sending bytes of data (not characters)
for (int i = 0; i < sizeof(message) ; i++) Serial1.write(message[i]);

// signature
// Note, in Example4_Alice we are printing the signature we JUST created,
// and it lives inside the library as a public array called "atecc.signature"
for (int i = 0; i < sizeof(atecc.signature) ; i++) Serial1.write(atecc.signature[i]);

At the top of this code block, you can see she is using atecc.createSignature(message) , just like in
Example2_sign .

Then Alice sends everything to Bob, including a start "header" ($$$). This is simply used to avoid errors during
transmission and helps ensure that Bob hears the entire message.

One important thing to note is that when Alice sends her message and signature to Bob, she uses the
Serial1.write() function, because she is sending data (not ASCII characters).

Now let's take a closer look at the important stuff in Example4_Bob.ino. Bob's sketch is actually quite similar to
Example3_Verify.ino , although he receives the message and signature on his RX1 pin.

// Delete this "blank" public key,
// copy/paste Alice's true unique public key from her terminal printout in Example4_Alice.

uint8_t AlicesPublicKey[64] = {
0xB4, 0x07, 0x88, 0x28, 0x8C, 0xFA, 0x71, 0xBA, 0x08, 0xE3, 0x38, 0xE0, 0x4A, 0x17, 0x68, 0xCC,
0x3E, 0xCD, 0x48, 0xA8, 0x11, 0x52, 0xDD, 0x37, 0xA1, 0xC2, 0x55, 0x75, 0x81, 0xBE, 0x4E, 0x7E,
0x78, 0x98, 0x95, 0xF6, 0x6D, 0xE7, 0x1C, 0x9A, 0x36, 0xE6, 0xB0, 0x14, 0x5D, 0x50, 0x67, 0x91,
0x7C, 0x41, 0xB8, 0x99, 0x20, 0x75, 0x3A, 0x7D, 0xA1, 0xFB, 0xF5, 0x5E, 0x8A, 0x65, 0xF5, 0x8A
};

At the top, you need to copy in Alice's public key. Bob will need this to verify any messages and signatures he
receives. Note, yours will be different than what I'm showing above.

void loop()
{
 if (Serial1.available() > 0) // listen on Serial1
 {
 // check for start header
 byte input = Serial1.read();
 //Serial.print(input, HEX);
 if (input == '$') headerCount++;
 if (headerCount == 3)
 {
 delay(100); // wait for entire message to come into Serial1 buffer (96 bytes at 9600 bau
d).

 headerCount = 0; // reset
 Serial.println("Message Received!");
 Serial.println();

 for (int bytes = 0 ; bytes < 32 ; bytes++) message[bytes] = Serial1.read();

 for (int bytes = 0 ; bytes < 64 ; bytes++) signature[bytes] = Serial1.read();

 printMessage();

 printSignature();

 // Let's verirfy!
 if (atecc.verifySignature(message, signature, AlicesPublicKey)) Serial.println("Success! S
ignature Verified.");
 else Serial.println("Verification failure.");
 }
 }
}

Above, we have Bob's entire loop() . He is listening for incoming data on his RX1 pin. If he hears the expected
$$$, then he starts reading in the message and the signature, storing them in variables for later use.

Then Bob uses the atecc.verifySignature() function to see if everything is authentic. Note his third argument to
this function - he is using AlicesPublicKey!

Example 5: Random
This example shows how to use the Random Number Generator on the Sparkfun Cryptographic Co-processor. It
will print random numbers once a second on the serial terminal at 115200.

This example only requires 1 Artemis and 1 co-processor. If you just completed example 4, you can choose to use
Alice or Bob. This example helps set the stage for Example 6, so it's a good idea to check it out and see how the
ATECC508A does random numbers - particularly its ability to create 32 bytes of random data!

https://learn.sparkfun.com/tutorials/terminal-basics

Output in the Arduino Serial Monitor.

Note, this chip is a bit more capable than the built-in Arduino function random() .

random(max)
random(min, max)

It has a basic random(min, max) . This will return a random number of type long. Note, it works very similarly to
the built-in Arduino random() function, you can send it a single argument as a max, or you can send it two (as min
and max).

It also has the following 3 other functions that can be useful in other applications.

getRandomByte()
getRandomInt()
getRandomLong()

Each of these functions return a random number of the type written into the name.

And lastly...

updateRandom32Bytes() will create 32 bytes of random data and store it in atecc.random32Bytes[] .

After calling updateRandom32Bytes() then your random 32 bytes of data are available at a public variable within
the library instance. If your instance was named atecc as in the SparkFun examples, this array would be
atecc.random32Bytes[] . This can be useful as a challenge or time-to-live-token (aka NONCE) to send to another

device.

Example 6: Challenge
This example shows how to setup a "challenge and response" for authentication between two systems. This is one
way to add more security to your communication channel. More specifically, it prevents attackers from intercepting
a message and sending it at a later time. This doesn't seem like such a bad thing, but timing of a message is
sometimes equally as important as the message itself. Once such interception attack was called the RollJam, and
could be used to maliciously open garage doors and unlock cars. After completing this example, you will be able to
defend your projects against this type of attack!

Note: If you upload the sketch as is, then it will fail to verify. This is because Bob does not have Alice's public
key yet. The array at the top of the sketch is simply place holders at this point. Please follow along below to
get a successful challenge and verification.

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Crypto_Ex5.gif
https://www.wired.com/2015/08/hackers-tiny-device-unlocks-cars-opens-garages/

Hardware Hookup

For Example6_Challenge , you will need to setup two Artemis boards (each with their own co-processors) and
connect a few jumper wires between Alice and Bob.

Connect the following pins like so:

Alice (left) Bob (right)

GND GND

TX1 RX1

RX1 TX1

Fritzing diagram for hardware connections.

Note, you're setup will also need to include a co-processor on each side connected via qwiic cables, and should
look something like this:

Hardware connections.

Code Setup

Like Example 4, this also requires two unique sketches and setups. You will need to use both
Example6_Challenge_Alice.ino and Example6_Challenge_Bob.ino .

Again, you will need to copy Alice's public key from her serial terminal, and then paste it into the top of Bob's
sketch. Then upload Bob's sketch and watch both terminals.

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/fritz_ab2.png
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-Processor_Breakout_-_ATECC508A__Qwiic__Hookup_Guide-01.jpg
https://learn.sparkfun.com/tutorials/terminal-basics

Operation of Example6_Challenge_Alice.ino and Example6_Challenge_Bob.ino working in conjunction.
(Click to Enlarge)

For any new authentication cycle, Alice will initiate. User must reset Alice and send a "y" over serial at 115200.
Bob will create a new random array of 32 bytes (this will be called a token - aka NONCE). It is also known as a
"time-to-live token", because it will become invalid after a set amount of time. Bob sends the token to Alice. Alice
will sign the token using her private ECC key, then send the signature to Bob. Bob will use the token, the
signature, and Alice's Public Key to verify everything.

By creating a new random token, Bob now has the ability to control how long he thinks that token should be valid.
This means that if an attacker intercepted the message, and they tried to send it later, it would no longer be valid.

Bob will also invalidate the token after a set amount of time. For our example it will be 150ms. This prevents any
attacker from intercepting the message, and hanging on to it for later use. So if Alice doesn't respond within the set
window of time (150ms), then Bob will clear out the token, and Alice must ask for another.

Because the token is unique every time, that means that Alice's signature will be unique every time. This prevents
an attacker from trying to impersonate Alice by recording communications, and then later sending one.

Troubleshooting

 Need help?
If your product is not working as you expected or you need technical assistance or information, head on over
to the SparkFun Technical Assistance page for some initial troubleshooting.

If you don't find what you need there, the SparkFun Forums are a great place to find and ask for help. If this
is your first visit, you'll need to create a Forum Account to search product forums and post questions.

For extra guidance, checkout the product video, which also includes the examples, laid out in this tutorial.

Resources and Going Further
Now that you've sent signed message between two systems, you are ready to integrate some security into your
projects! In these examples we have used hard-wired serial messages between two Arduinos. That
communication channel could be anything: Bluetooth, RFM69s, Wifi and the internet, you name it! Good luck!

Schematic (PDF)
Eagle Files (ZIP)
Github (Hardware)
Github (Arduino Library)
Microchip ATECC508A DataSheet (PDF)
CryptoAuthLib - Microchip CryptoAuthentication Library (includes python support)
Board Dimensions (PDF) or (PNG)

https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Crypto_Ex6.gif
https://www.sparkfun.com/technical_assistance
https://forum.sparkfun.com/index.php
https://forum.sparkfun.com/ucp.php?mode=register
https://www.youtube.com/watch?v=_MjjF211BM8
https://cdn.sparkfun.com/assets/3/3/1/d/4/SparkFun_Qwiic_Cryptographic__ATECC508A_Schematic.pdf
https://cdn.sparkfun.com/assets/a/0/b/4/3/SparkFun_Qwiic_Cryptographic_ATECC508A.zip
https://github.com/sparkfun/SparkFun_Cryptographic_Co-Processor_Breakout_ATECC508A_Qwiic
https://github.com/sparkfun/SparkFun_ATECCX08a_Arduino_Library
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/Microchip_ATECC508A_Datasheet.pdf
https://github.com/MicrochipTech/cryptoauthlib
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-processor_ATECC508A_Dimensions.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/1/0/0/3/SparkFun_Cryptographic_Co-processor_ATECC508A_Dimensions.png

Product Video

Additional Documentation on the Cryptographic Standards (linked from datasheet):

SHA-256 Algorithm
HMAC Algorithm
Elliptic Curve Digital Signature Algorithm (ECDSA)
Elliptic Curve Diffie-Hellman (ECDH) Key Agreement (Revision 2)
Elliptic Curve Diffie-Hellman (ECDH) Key Agreement (Revision 2- Draft)
Diversified Keys
NIST CAVP certification of the RNG

Need inspiration? Check out some of the Qwiic or IoT related tutorials!

GPS-RTK2 Hookup Guide
Get precision down to the diameter of a dime with the
new ZED-F9P from u-blox.

Qwiic OpenLog Hookup Guide
The updated Qwiic version of the OpenLog Hookup
Guide

SparkFun Edge Hookup Guide
Get to know your Edge board, including both the
hardware features for you to utilize as well as how to
get talking to it.

MicroMod ESP32 Processor Board Hookup
Guide
A short hookup guide to get started with the SparkFun
MicroMod ESP32 Processor Board.

SparkFun Blocks for Intel® Edison - I2C
Breakout Block

Sparcade: Edison as a Web Server for Browser
Games

https://www.youtube.com/watch?v=_MjjF211BM8
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://csrc.nist.gov/csrc/media/publications/fips/198/1/final/documents/fips-198-1_final.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-56a/rev-2/final/documents/draft-sp-800-56a.pdf
http://ww1.microchip.com/downloads/en/appnotes/doc8666.pdf
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation/validation-list/drbg
https://learn.sparkfun.com/tutorials/gps-rtk2-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-openlog-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-edge-hookup-guide
https://learn.sparkfun.com/tutorials/micromod-esp32-processor-board-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-blocks-for-intel-edison---i2c-breakout-block
https://learn.sparkfun.com/tutorials/sparcade-edison-as-a-web-server-for-browser-games

A quick overview of the features of the I2C Breakout
Block.

Turn the Intel® Edison into an access point that serves
a simple browser-based game. High scores from the
game are displayed on a character LCD.

Using the PSoC 6 Pioneer Board with the
Pioneer IoT Add-on Shield
Cypress's PSoC 6 Pioneer Board is a development tool
for the powerful PSoC 6 processor. In this tutorial, we'll
show you how to use the PSoC 6 Pioneer Board along
with the SparkFun/Digi-Key Pioneer IoT Add-on Shield
to send data to a Raspberry Pi via BLE or WiFi.

How to Use Remote Desktop on the Raspberry
Pi with VNC
Use RealVNC to connect to your Raspberry Pi to
control the graphical desktop remotely across the
network.

https://learn.sparkfun.com/tutorials/using-the-psoc-6-pioneer-board-with-the-pioneer-iot-add-on-shield
https://learn.sparkfun.com/tutorials/how-to-use-remote-desktop-on-the-raspberry-pi-with-vnc

