
February 2022 RM0367 Rev 8 1/1040

1

RM0367
Reference manual

Ultra-low-power STM32L0x3 advanced Arm®-based
 32-bit MCUs

Introduction

This reference manual targets application developers. It provides complete information on
how to use the STM32L0x3 microcontroller memory and peripherals.

The STM32L0x3 is a line of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, mechanical and electrical device characteristics please refer to the
corresponding datasheets.

For information on the Arm® Cortex®-M0+ core, refer to the Cortex®-M0+ Technical
Reference Manual.

The STM32L0x3 microcontrollers include state-of-the-art patented technology.

Related documents

• Cortex®-M0+ Technical Reference Manual, available from www.arm.com.

• STM32L0 Series Cortex®-M0+ programming manual (PM0223).

• STM32L0x3 datasheets.

• STM32L0x3 erratasheet.

www.st.com

http://www.st.com

Contents RM0367

2/1040 RM0367 Rev 8

Contents

1 Documentation conventions . 52

1.1 General information . 52

1.2 List of abbreviations for registers . 52

1.3 Glossary . 53

1.4 Availability of peripherals . 53

1.5 Product category definition . 53

2 System and memory overview . 56

2.1 System architecture . 56

2.1.1 S0: Cortex®-bus . 57

2.1.2 S1: DMA-bus . 57

2.1.3 BusMatrix . 57

AHB/APB bridges .57

2.2 Memory organization . 58

2.2.1 Introduction . 58

2.2.2 Memory map and register boundary addresses 59

2.3 Embedded SRAM . 64

2.4 Boot configuration . 64

Bank swapping (category 5 devices only) .65

Physical remap .65

Embedded bootloader .65

3 Flash program memory and data EEPROM (FLASH) 66

3.1 Introduction . 66

3.2 NVM main features . 66

3.3 NVM functional description . 67

3.3.1 NVM organization . 67

3.3.2 Dual-bank boot capability . 71

3.3.3 Reading the NVM . 72

Protocol to read .72

Relation between CPU frequency/Operation mode/NVM read time.73

Data buffering .75

3.3.4 Writing/erasing the NVM . 81

Write/erase protocol .81

RM0367 Rev 8 3/1040

RM0367 Contents

40

Unlocking/locking operations .82

Detailed description of NVM write/erase operations. .85

Parallel write half-page Flash program memory .91

Status register .95

3.4 Memory protection . 96

3.4.1 RDP (Read Out Protection) . 97

3.4.2 PcROP (Proprietary Code Read-Out Protection) 98

3.4.3 Protections against unwanted write/erase operations 100

3.4.4 Write/erase protection management . 101

3.4.5 Protection errors . 102

Write protection error flag (WRPERR) .102

Read error (RDERR) .102

3.5 NVM interrupts . 102

3.5.1 Hard fault . 103

3.6 Memory interface management . 103

3.6.1 Operation priority and evolution . 103

Read .103

Write/erase .103

Option byte loading. .104

3.6.2 Sequence of operations . 104

Read as data while write .104

Fetch while write .104

Write while another write operation is ongoing. .105

3.6.3 Change the number of wait states while reading 105

3.6.4 Power-down . 105

3.7 Flash register description . 106

Read registers .106

Write to registers .106

3.7.1 Access control register (FLASH_ACR) . 107

3.7.2 Program and erase control register (FLASH_PECR) 108

3.7.3 Power-down key register (FLASH_PDKEYR) 112

3.7.4 PECR unlock key register (FLASH_PEKEYR) 112

3.7.5 Program and erase key register (FLASH_PRGKEYR) 112

3.7.6 Option bytes unlock key register (FLASH_OPTKEYR) 113

3.7.7 Status register (FLASH_SR) . 114

3.7.8 Option bytes register (FLASH_OPTR) . 116

3.7.9 Write protection register 1 (FLASH_WRPROT1) 118

3.7.10 Write protection register 2 (FLASH_WRPROT2) 119

Contents RM0367

4/1040 RM0367 Rev 8

3.7.11 Flash register map . 120

3.8 Option bytes . 121

3.8.1 Option bytes description . 121

3.8.2 Mismatch when loading protection flags . 122

3.8.3 Reloading Option bytes by software . 122

4 Cyclic redundancy check calculation unit (CRC) 123

4.1 Introduction . 123

4.2 CRC main features . 123

4.3 CRC functional description . 124

4.3.1 CRC block diagram . 124

4.3.2 CRC internal signals . 124

4.3.3 CRC operation . 124

Polynomial programmability .125

4.4 CRC registers . 126

4.4.1 CRC data register (CRC_DR) . 126

4.4.2 CRC independent data register (CRC_IDR) . 126

4.4.3 CRC control register (CRC_CR) . 127

4.4.4 CRC initial value (CRC_INIT) . 128

4.4.5 CRC polynomial (CRC_POL) . 128

4.4.6 CRC register map . 129

5 Firewall (FW) . 130

5.1 Introduction . 130

5.2 Firewall main features . 130

5.3 Firewall functional description . 131

5.3.1 Firewall AMBA bus snoop . 131

5.3.2 Functional requirements . 131

Debug consideration. .131

Write protection .132

Interrupts management .132

5.3.3 Firewall segments . 132

Code segment .132

Non-volatile data segment .132

Volatile data segment .133

5.3.4 Segment accesses and properties . 133

Segment access depending on the Firewall state .133

RM0367 Rev 8 5/1040

RM0367 Contents

40

Segments properties .134

5.3.5 Firewall initialization . 134

5.3.6 Firewall states . 135

Opening the Firewall. .136

Closing the Firewall .136

5.4 Firewall registers . 137

5.4.1 Code segment start address (FW_CSSA) . 137

5.4.2 Code segment length (FW_CSL) . 137

5.4.3 Non-volatile data segment start address (FW_NVDSSA) 138

5.4.4 Non-volatile data segment length (FW_NVDSL) 138

5.4.5 Volatile data segment start address (FW_VDSSA) 139

5.4.6 Volatile data segment length (FW_VDSL) . 139

5.4.7 Configuration register (FW_CR) . 140

5.4.8 Firewall register map . 141

6 Power control (PWR) . 142

6.1 Power supplies . 142

6.1.1 Independent A/D and DAC converter supply and reference voltage . . 143

On packages with VREF+ pin. .143

On packages without VREF+ pin .143

6.1.2 Independent LCD supply . 144

6.1.3 RTC and RTC backup registers . 144

RTC registers access .144

6.1.4 Voltage regulator . 145

6.1.5 Dynamic voltage scaling management . 145

Range 1 .145

Range 2 and 3 .146

6.1.6 Dynamic voltage scaling configuration . 147

6.1.7 Voltage regulator and clock management when VDD drops
below 1.71 V . 147

6.1.8 Voltage regulator and clock management when modifying the
VCORE range . 147

6.1.9 Voltage range and limitations when VDD ranges from 1.71 V to 2.0 V 148

6.2 Power supply supervisor . 148

6.2.1 Power-on reset (POR)/power-down reset (PDR) 150

6.2.2 Brown out reset (BOR) . 150

6.2.3 Programmable voltage detector (PVD) . 151

6.2.4 Internal voltage reference (VREFINT) . 152

Contents RM0367

6/1040 RM0367 Rev 8

6.3 Low-power modes . 153

6.3.1 Behavior of clocks in low-power modes . 154

Sleep and Low-power sleep modes .154

Stop and Standby modes .154

6.3.2 Slowing down system clocks . 155

6.3.3 Peripheral clock gating . 155

6.3.4 Low-power run mode (LP run) . 155

Entering Low-power run mode .155

Exiting Low-power run mode .156

6.3.5 Entering low-power mode . 156

6.3.6 Exiting low-power mode . 156

6.3.7 Sleep mode . 157

I/O states in Sleep mode .157

Entering Sleep mode .157

Exiting Sleep mode. .157

6.3.8 Low-power sleep mode (LP sleep) . 158

I/O states in Low-power sleep mode .158

Entering Low-power sleep mode .158

Exiting Low-power sleep mode. .159

6.3.9 Stop mode . 160

I/O states in Low-power sleep mode .160

Entering Stop mode .160

Exiting Stop mode .161

6.3.10 Standby mode . 163

I/O states in Standby mode .163

Entering Standby mode .163

Exiting Standby mode. .163

Debug mode .164

6.3.11 Waking up the device from Stop and Standby modes using the RTC
and comparators . 164

RTC auto-wakeup (AWU) from the Stop mode .165

RTC auto-wakeup (AWU) from the Standby mode. .165

Comparator auto-wakeup (AWU) from the Stop mode.166

6.4 Power control registers . 167

6.4.1 PWR power control register (PWR_CR) . 167

6.4.2 PWR power control/status register (PWR_CSR) 170

6.4.3 PWR register map . 172

7 Reset and clock control (RCC) . 173

RM0367 Rev 8 7/1040

RM0367 Contents

40

7.1 Reset . 173

7.1.1 System reset . 173

Software reset .173

Low-power management reset .173

Option byte loader reset .173

7.1.2 Power reset . 174

7.1.3 RTC and backup registers reset . 174

7.2 Clocks . 175

7.2.1 HSE clock . 178

External source (HSE bypass) .179

External crystal/ceramic resonator (HSE crystal) .179

7.2.2 HSI16 clock . 179

Calibration .179

7.2.3 MSI clock . 180

Calibration .180

7.2.4 HSI48 clock . 180

7.2.5 PLL . 181

7.2.6 LSE clock . 182

External source (LSE bypass) .182

7.2.7 LSI clock . 182

LSI measurement .182

7.2.8 System clock (SYSCLK) selection . 183

7.2.9 System clock source frequency versus voltage range 183

7.2.10 HSE clock security system (CSS) . 183

7.2.11 LSE Clock Security System . 184

7.2.12 RTC and LCD clock . 184

7.2.13 Watchdog clock . 185

7.2.14 Clock-out capability . 185

7.2.15 Internal/external clock measurement using TIM21 185

7.2.16 Clock-independent system clock sources for TIM2/TIM21/TIM22 186

7.3 RCC registers . 187

7.3.1 Clock control register (RCC_CR) . 187

7.3.2 Internal clock sources calibration register (RCC_ICSCR) 190

7.3.3 Clock recovery RC register (RCC_CRRCR) . 191

7.3.4 Clock configuration register (RCC_CFGR) . 192

7.3.5 Clock interrupt enable register (RCC_CIER) . 194

7.3.6 Clock interrupt flag register (RCC_CIFR) . 196

7.3.7 Clock interrupt clear register (RCC_CICR) . 197

Contents RM0367

8/1040 RM0367 Rev 8

7.3.8 GPIO reset register (RCC_IOPRSTR) . 198

7.3.9 AHB peripheral reset register (RCC_AHBRSTR) 199

7.3.10 APB2 peripheral reset register (RCC_APB2RSTR) 200

7.3.11 APB1 peripheral reset register (RCC_APB1RSTR) 201

7.3.12 GPIO clock enable register (RCC_IOPENR) . 204

7.3.13 AHB peripheral clock enable register (RCC_AHBENR) 205

7.3.14 APB2 peripheral clock enable register (RCC_APB2ENR) 207

7.3.15 APB1 peripheral clock enable register (RCC_APB1ENR) 209

7.3.16 GPIO clock enable in Sleep mode register (RCC_IOPSMENR) 212

7.3.17 AHB peripheral clock enable in Sleep mode
register (RCC_AHBSMENR) . 213

7.3.18 APB2 peripheral clock enable in Sleep mode
register (RCC_APB2SMENR) . 214

7.3.19 APB1 peripheral clock enable in Sleep mode
register (RCC_APB1SMENR) . 215

7.3.20 Clock configuration register (RCC_CCIPR) . 217

7.3.21 Control/status register (RCC_CSR) . 219

7.3.22 RCC register map . 223

8 Clock recovery system (CRS) . 226

8.1 Introduction . 226

8.2 CRS main features . 226

8.3 CRS implementation . 226

8.4 CRS functional description . 227

8.4.1 CRS block diagram . 227

8.4.2 Synchronization input . 227

8.4.3 Frequency error measurement . 228

8.4.4 Frequency error evaluation and automatic trimming 228

8.4.5 CRS initialization and configuration . 229

RELOAD value .229

FELIM value .229

8.5 CRS low-power modes . 230

8.6 CRS interrupts . 230

8.7 CRS registers . 231

8.7.1 CRS control register (CRS_CR) . 231

8.7.2 CRS configuration register (CRS_CFGR) . 232

8.7.3 CRS interrupt and status register (CRS_ISR) 233

RM0367 Rev 8 9/1040

RM0367 Contents

40

8.7.4 CRS interrupt flag clear register (CRS_ICR) . 235

8.7.5 CRS register map . 235

9 General-purpose I/Os (GPIO) . 237

9.1 Introduction . 237

9.2 GPIO main features . 237

9.3 GPIO functional description . 237

9.3.1 General-purpose I/O (GPIO) . 239

9.3.2 I/O pin alternate function multiplexer and mapping 240

9.3.3 I/O port control registers . 241

9.3.4 I/O port data registers . 241

9.3.5 I/O data bitwise handling . 241

9.3.6 GPIO locking mechanism . 241

9.3.7 I/O alternate function input/output . 242

9.3.8 External interrupt/wakeup lines . 242

9.3.9 Input configuration . 242

9.3.10 Output configuration . 243

9.3.11 Alternate function configuration . 244

9.3.12 Analog configuration . 245

9.3.13 Using the HSE or LSE oscillator pins as GPIOs 246

9.3.14 Using the GPIO pins in the RTC supply domain 246

9.4 GPIO registers . 246

9.4.1 GPIO port mode register (GPIOx_MODER)
(x =A to E and H) . 246

9.4.2 GPIO port output type register (GPIOx_OTYPER)
(x = A to E and H) . 247

9.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A to E and H) . 247

9.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A to E and H) . 248

9.4.5 GPIO port input data register (GPIOx_IDR)
(x = A to E and H) . 248

9.4.6 GPIO port output data register (GPIOx_ODR)
(x = A to E and H) . 249

9.4.7 GPIO port bit set/reset register (GPIOx_BSRR)
(x = A to E and H) . 249

9.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A to E and H) . 249

Contents RM0367

10/1040 RM0367 Rev 8

9.4.9 GPIO alternate function low register (GPIOx_AFRL)
(x = A to E and H) . 251

9.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A to E and H) . 251

9.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A to E and H) 252

9.4.12 GPIO register map . 252

10 System configuration controller (SYSCFG) . 254

10.1 Introduction . 254

10.2 SYSCFG registers . 255

10.2.1 SYSCFG memory remap register (SYSCFG_CFGR1) 255

10.2.2 SYSCFG peripheral mode configuration register (SYSCFG_CFGR2) 257

10.2.3 Reference control and status register (SYSCFG_CFGR3) 258

10.2.4 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1) . 260

10.2.5 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2) . 261

10.2.6 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3) . 261

10.2.7 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4) . 262

10.2.8 SYSCFG register map . 262

11 Direct memory access controller (DMA) . 264

11.1 Introduction . 264

11.2 DMA main features . 264

11.3 DMA implementation . 265

11.3.1 DMA . 265

11.3.2 DMA request mapping . 265

DMA controller .265

11.4 DMA functional description . 267

11.4.1 DMA block diagram . 267

11.4.2 DMA transfers . 268

11.4.3 DMA arbitration . 269

11.4.4 DMA channels . 270

Programmable data sizes. .270

Pointer incrementation .270

Channel configuration procedure .271

Channel state and disabling a channel. .271

RM0367 Rev 8 11/1040

RM0367 Contents

40

Circular mode (in memory-to-peripheral/peripheral-to-memory transfers)272

Memory-to-memory mode .272

Peripheral-to-peripheral mode .273

Programming transfer direction, assigning source/destination273

11.4.5 DMA data width, alignment and endianness . 273

Addressing AHB peripherals not supporting byte/half-word write transfers274

11.4.6 DMA error management . 275

11.5 DMA interrupts . 275

11.6 DMA registers . 275

11.6.1 DMA interrupt status register (DMA_ISR) . 276

11.6.2 DMA interrupt flag clear register (DMA_IFCR) 278

11.6.3 DMA channel x configuration register (DMA_CCRx) 279

11.6.4 DMA channel x number of data to transfer register (DMA_CNDTRx) . 282

11.6.5 DMA channel x peripheral address register (DMA_CPARx) 283

11.6.6 DMA channel x memory address register (DMA_CMARx) 283

11.6.7 DMA channel selection register (DMA_CSELR) 285

11.6.8 DMA register map . 285

12 Nested vectored interrupt controller (NVIC) . 288

12.1 Main features . 288

12.2 SysTick calibration value register . 288

12.3 Interrupt and exception vectors . 288

13 Extended interrupt and event controller (EXTI) 291

13.1 Introduction . 291

13.2 EXTI main features . 291

13.3 EXTI functional description . 291

13.3.1 EXTI block diagram . 292

13.3.2 Wakeup event management . 292

13.3.3 Peripherals asynchronous interrupts . 293

13.3.4 Hardware interrupt selection . 293

13.3.5 Hardware event selection . 293

13.3.6 Software interrupt/event selection . 293

13.4 EXTI interrupt/event line mapping . 294

13.5 EXTI registers . 296

13.5.1 EXTI interrupt mask register (EXTI_IMR) . 296

13.5.2 EXTI event mask register (EXTI_EMR) . 296

Contents RM0367

12/1040 RM0367 Rev 8

13.5.3 EXTI rising edge trigger selection register (EXTI_RTSR) 297

13.5.4 Falling edge trigger selection register (EXTI_FTSR) 298

13.5.5 EXTI software interrupt event register (EXTI_SWIER) 298

13.5.6 EXTI pending register (EXTI_PR) . 299

13.5.7 EXTI register map . 300

14 Analog-to-digital converter (ADC) . 301

14.1 Introduction . 301

14.2 ADC main features . 302

14.3 ADC functional description . 303

14.3.1 ADC pins and internal signals . 303

14.3.2 ADC voltage regulator (ADVREGEN) . 304

Analog reference for the ADC internal voltage regulator 304

ADVREG enable sequence .305

ADVREG disable sequence .305

14.3.3 Calibration (ADCAL) . 305

Calibration factor forcing software procedure. .307

14.3.4 ADC on-off control (ADEN, ADDIS, ADRDY) . 307

14.3.5 ADC clock (CKMODE, PRESC[3:0], LFMEN) 308

Low frequency .309

14.3.6 ADC connectivity . 310

14.3.7 Configuring the ADC . 311

14.3.8 Channel selection (CHSEL, SCANDIR) . 311

Temperature sensor, VREFINT and LCD_VLCD1 internal channels311

14.3.9 Programmable sampling time (SMP) . 312

14.3.10 Single conversion mode (CONT = 0) . 312

14.3.11 Continuous conversion mode (CONT = 1) . 313

14.3.12 Starting conversions (ADSTART) . 313

14.3.13 Timings . 314

14.3.14 Stopping an ongoing conversion (ADSTP) . 315

14.4 Conversion on external trigger and trigger polarity (EXTSEL, EXTEN) . 315

14.4.1 Discontinuous mode (DISCEN) . 316

14.4.2 Programmable resolution (RES) - Fast conversion mode 316

14.4.3 End of conversion, end of sampling phase (EOC, EOSMP flags) 317

14.4.4 End of conversion sequence (EOS flag) . 317

14.4.5 Example timing diagrams (single/continuous modes
hardware/software triggers) . 318

14.5 Data management . 320

RM0367 Rev 8 13/1040

RM0367 Contents

40

14.5.1 Data register and data alignment (ADC_DR, ALIGN) 320

14.5.2 ADC overrun (OVR, OVRMOD) . 320

14.5.3 Managing a sequence of data converted without using the DMA 321

14.5.4 Managing converted data without using the DMA without overrun . . . 321

14.5.5 Managing converted data using the DMA . 321

DMA one shot mode (DMACFG = 0) .322

DMA circular mode (DMACFG = 1) .322

14.6 Low-power features . 323

14.6.1 Wait mode conversion . 323

14.6.2 Auto-off mode (AUTOFF) . 324

14.7 Analog window watchdog (AWDEN, AWDSGL, AWDCH,
ADC_TR) . 325

14.7.1 Description of the analog watchdog . 325

14.7.2 ADC_AWD1_OUT output signal generation . 326

14.7.3 Analog watchdog threshold control . 328

14.8 Oversampler . 329

14.8.1 ADC operating modes supported when oversampling 331

14.8.2 Analog watchdog . 331

14.8.3 Triggered mode . 331

14.9 Temperature sensor and internal reference voltage 332

Main features .333

Reading the temperature .333

Calculating the actual VDDA voltage using the internal reference voltage 334

Converting a supply-relative ADC measurement to an absolute voltage value .334

14.10 VLCD voltage monitoring . 334

14.11 ADC interrupts . 335

14.12 ADC registers . 336

14.12.1 ADC interrupt and status register (ADC_ISR) 336

14.12.2 ADC interrupt enable register (ADC_IER) . 337

14.12.3 ADC control register (ADC_CR) . 339

14.12.4 ADC configuration register 1 (ADC_CFGR1) 341

14.12.5 ADC configuration register 2 (ADC_CFGR2) 345

14.12.6 ADC sampling time register (ADC_SMPR) . 346

14.12.7 ADC watchdog threshold register (ADC_TR) 347

14.12.8 ADC channel selection register (ADC_CHSELR) 347

14.12.9 ADC data register (ADC_DR) . 348

14.12.10 ADC Calibration factor (ADC_CALFACT) . 348

Contents RM0367

14/1040 RM0367 Rev 8

14.12.11 ADC common configuration register (ADC_CCR) 349

14.13 ADC register map . 350

15 Digital-to-analog converter (DAC) . 352

15.1 Introduction . 352

15.2 DAC1 main features . 352

15.3 DAC output buffer enable . 354

15.4 DAC channel enable . 354

15.5 Single mode functional description . 354

15.5.1 DAC data format . 354

15.5.2 DAC channel conversion . 354

Independent trigger with single LFSR generation .355

Independent trigger with single triangle generation .355

15.5.3 DAC output voltage . 356

15.5.4 DAC trigger selection . 356

15.6 Dual-mode functional description . 357

15.6.1 DAC data format . 357

15.6.2 DAC channel conversion in dual mode . 357

15.6.3 Description of dual conversion modes . 357

Independent trigger without wave generation. .358

Independent trigger with single LFSR generation .358

Independent trigger with different LFSR generation. .358

Independent trigger with single triangle generation .359

Independent trigger with different triangle generation .359

Simultaneous software start .359

Simultaneous trigger without wave generation. .359

Simultaneous trigger with single LFSR generation. .360

Simultaneous trigger with different LFSR generation .360

Simultaneous trigger with single triangle generation .360

Simultaneous trigger with different triangle generation 361

15.6.4 DAC output voltage . 361

15.6.5 DAC trigger selection . 361

15.7 Noise generation . 361

15.8 Triangle-wave generation . 362

15.9 DMA request . 363

DMA underrun .363

15.10 DAC registers . 364

RM0367 Rev 8 15/1040

RM0367 Contents

40

15.10.1 DAC control register (DAC_CR) . 364

15.10.2 DAC software trigger register (DAC_SWTRIGR) 368

15.10.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . 368

15.10.4 DAC channel1 12-bit left-aligned data holding register
(DAC_DHR12L1) . 369

15.10.5 DAC channel1 8-bit right-aligned data holding register
(DAC_DHR8R1) . 369

15.10.6 DAC channel2 12-bit right-aligned data holding register
(DAC_DHR12R2) . 369

15.10.7 DAC channel2 12-bit left-aligned data holding register
(DAC_DHR12L2) . 370

15.10.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2) . 370

15.10.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD) . 371

15.10.10 Dual DAC 12-bit left-aligned data holding register
(DAC_DHR12LD) . 371

15.10.11 Dual DAC 8-bit right-aligned data holding register
(DAC_DHR8RD) . 371

15.10.12 DAC channel1 data output register (DAC_DOR1) 372

15.10.13 DAC channel2 data output register (DAC_DOR2) 372

15.10.14 DAC status register (DAC_SR) . 372

15.10.15 DAC register map . 374

16 Comparator (COMP) . 376

16.1 Introduction . 376

16.2 COMP main features . 376

16.3 COMP functional description . 377

16.3.1 COMP block diagram . 377

16.3.2 COMP pins and internal signals . 377

16.3.3 COMP reset and clocks . 378

16.3.4 Comparator LOCK mechanism . 378

16.3.5 Power mode . 378

16.4 COMP interrupts . 378

16.5 COMP registers . 378

16.5.1 Comparator 1 control and status register (COMP1_CSR) 378

16.5.2 Comparator 2 control and status register (COMP2_CSR) 380

16.5.3 COMP register map . 382

Contents RM0367

16/1040 RM0367 Rev 8

17 Liquid crystal display controller (LCD) . 383

17.1 Introduction . 383

Glossary .383

17.2 LCD main features . 384

17.3 LCD implementation . 385

17.4 LCD functional description . 385

17.4.1 General description . 385

17.4.2 Frequency generator . 386

17.4.3 Common driver . 387

COM signal bias .387

COM signal duty .388

8 to 1 Mux. .390

17.4.4 Segment driver . 390

In the case of 1/4 or 1/8 duty .390

Blink .394

17.4.5 Voltage generator and contrast control . 394

LCD supply source .394

LCD intermediate voltages .395

LCD drive selection .395

External decoupling .397

Deadtime .397

17.4.6 Double buffer memory . 398

17.4.7 COM and SEG multiplexing . 398

Output pins versus duty modes .398

Remapping capability for small packages .398

Summary of COM and SEG functions versus duty and remap 399

17.4.8 Flowchart . 403

17.5 LCD low-power modes . 404

17.6 LCD interrupts . 404

Start of frame (SOF) .404

Update display done (UDD) .404

17.7 LCD registers . 405

17.7.1 LCD control register (LCD_CR) . 405

17.7.2 LCD frame control register (LCD_FCR) . 406

17.7.3 LCD status register (LCD_SR) . 408

17.7.4 LCD clear register (LCD_CLR) . 409

17.7.5 LCD display memory (LCD_RAM) . 410

17.7.6 LCD register map . 411

RM0367 Rev 8 17/1040

RM0367 Contents

40

18 Touch sensing controller (TSC) . 413

18.1 Introduction . 413

18.2 TSC main features . 413

18.3 TSC functional description . 414

18.3.1 TSC block diagram . 414

18.3.2 Surface charge transfer acquisition overview 414

18.3.3 Reset and clocks . 416

18.3.4 Charge transfer acquisition sequence . 417

18.3.5 Spread spectrum feature . 418

18.3.6 Max count error . 418

18.3.7 Sampling capacitor I/O and channel I/O mode selection 419

18.3.8 Acquisition mode . 420

18.3.9 I/O hysteresis and analog switch control . 420

18.4 TSC low-power modes . 421

18.5 TSC interrupts . 421

18.6 TSC registers . 422

18.6.1 TSC control register (TSC_CR) . 422

18.6.2 TSC interrupt enable register (TSC_IER) . 424

18.6.3 TSC interrupt clear register (TSC_ICR) . 425

18.6.4 TSC interrupt status register (TSC_ISR) . 426

18.6.5 TSC I/O hysteresis control register (TSC_IOHCR) 426

18.6.6 TSC I/O analog switch control register
(TSC_IOASCR) . 427

18.6.7 TSC I/O sampling control register (TSC_IOSCR) 427

18.6.8 TSC I/O channel control register (TSC_IOCCR) 428

18.6.9 TSC I/O group control status register (TSC_IOGCSR) 428

18.6.10 TSC I/O group x counter register (TSC_IOGxCR) 429

18.6.11 TSC register map . 430

19 AES hardware accelerator (AES) . 432

19.1 Introduction . 432

19.2 AES main features . 432

19.3 AES implementation . 433

19.4 AES functional description . 433

19.4.1 AES block diagram . 433

19.4.2 AES internal signals . 433

Contents RM0367

18/1040 RM0367 Rev 8

19.4.3 AES cryptographic core . 434

Overview. .434

Typical data processing .434

Chaining modes .434

Electronic codebook (ECB) mode .435

Cipher block chaining (CBC) mode .436

Counter (CTR) mode .437

19.4.4 AES procedure to perform a cipher operation 437

Introduction. .437

Initialization of AES. .438

Data append .438

19.4.5 AES decryption key preparation . 440

19.4.6 AES ciphertext stealing and data padding . 441

19.4.7 AES task suspend and resume . 441

19.4.8 AES basic chaining modes (ECB, CBC) . 442

Overview. .442

ECB/CBC encryption sequence .445

ECB/CBC decryption sequence .445

Suspend/resume operations in ECB/CBC modes .446

Alternative single ECB/CBC decryption using Mode 4 .447

19.4.9 AES counter (CTR) mode . 447

Overview. .447

CTR encryption and decryption .448

Suspend/resume operations in CTR mode .450

19.4.10 AES data registers and data swapping . 450

Data input and output .450

Data swapping .450

Data padding .452

19.4.11 AES key registers . 452

19.4.12 AES initialization vector registers . 452

19.4.13 AES DMA interface . 452

Data input using DMA. .453

Data output using DMA .453

DMA operation in different operating modes .454

19.4.14 AES error management . 455

Read error flag (RDERR) .455

Write error flag (WDERR). .455

19.5 AES interrupts . 455

19.6 AES processing latency . 456

19.7 AES registers . 457

RM0367 Rev 8 19/1040

RM0367 Contents

40

19.7.1 AES control register (AES_CR) . 457

19.7.2 AES status register (AES_SR) . 459

19.7.3 AES data input register (AES_DINR) . 460

19.7.4 AES data output register (AES_DOUTR) . 460

19.7.5 AES key register 0 (AES_KEYR0) . 461

19.7.6 AES key register 1 (AES_KEYR1) . 462

19.7.7 AES key register 2 (AES_KEYR2) . 462

19.7.8 AES key register 3 (AES_KEYR3) . 462

19.7.9 AES initialization vector register 0 (AES_IVR0) 463

19.7.10 AES initialization vector register 1 (AES_IVR1) 463

19.7.11 AES initialization vector register 2 (AES_IVR2) 464

19.7.12 AES initialization vector register 3 (AES_IVR3) 464

19.7.13 AES register map . 464

20 True random number generator (RNG) . 466

20.1 Introduction . 466

20.2 RNG main features . 466

20.3 RNG functional description . 467

20.3.1 RNG block diagram . 467

20.3.2 RNG internal signals . 467

20.3.3 Random number generation . 468

Noise source. .469

Post processing .469

Output buffer. .469

Health checks .470

20.3.4 RNG initialization . 470

20.3.5 RNG operation . 470

Normal operations .470

Low-power operations .471

Software post-processing .471

20.3.6 RNG clocking . 471

20.3.7 Error management . 471

Clock error detection .471

Noise source error detection .472

20.3.8 RNG low-power usage . 472

20.4 RNG interrupts . 472

20.5 RNG processing time . 472

Contents RM0367

20/1040 RM0367 Rev 8

20.6 RNG entropy source validation . 473

20.6.1 Introduction . 473

20.6.2 Validation conditions . 473

20.6.3 Data collection . 473

20.7 RNG registers . 473

20.7.1 RNG control register (RNG_CR) . 473

20.7.2 RNG status register (RNG_SR) . 475

20.7.3 RNG data register (RNG_DR) . 476

20.7.4 RNG register map . 476

21 General-purpose timers (TIM2/TIM3) . 477

21.1 TIM2/TIM3 introduction . 477

21.2 TIM2/TIM3 main features . 477

21.3 TIM2/TIM3 functional description . 479

21.3.1 Time-base unit . 479

Prescaler description .479

21.3.2 Counter modes . 481

Upcounting mode .481

Downcounting mode. .484

Center-aligned mode (up/down counting) .487

21.3.3 Clock selection . 491

Internal clock source (CK_INT) .491

External clock source mode 1 .492

External clock source mode 2 .494

21.3.4 Capture/compare channels . 495

21.3.5 Input capture mode . 497

21.3.6 PWM input mode . 499

21.3.7 Forced output mode . 500

21.3.8 Output compare mode . 500

21.3.9 PWM mode . 501

PWM edge-aligned mode .502

Downcounting configuration .503

PWM center-aligned mode .503

21.3.10 One-pulse mode . 505

Particular case: OCx fast enable: .506

21.3.11 Clearing the OCxREF signal on an external event 506

21.3.12 Encoder interface mode . 507

21.3.13 Timer input XOR function . 509

RM0367 Rev 8 21/1040

RM0367 Contents

40

21.3.14 Timers and external trigger synchronization . 510

Slave mode: Reset mode .510

Slave mode: Gated mode. .511

Slave mode: Trigger mode .512

Slave mode: External Clock mode 2 + trigger mode .513

21.3.15 Timer synchronization . 514

Using one timer as prescaler for another timer .514

Using one timer to enable another timer .515

Using one timer to start another timer .517

Starting 2 timers synchronously in response to an external trigger 519

21.3.16 Debug mode . 520

21.4 TIM2/TIM3 registers . 521

21.4.1 TIMx control register 1 (TIMx_CR1) . 521

21.4.2 TIMx control register 2 (TIMx_CR2) . 523

21.4.3 TIMx slave mode control register (TIMx_SMCR) 524

21.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) 526

21.4.5 TIMx status register (TIMx_SR) . 527

21.4.6 TIMx event generation register (TIMx_EGR) . 529

21.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) 530

Output compare mode .530

Input capture mode. .531

21.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) 533

Output compare mode .533

Input capture mode. .534

21.4.9 TIMx capture/compare enable register (TIMx_CCER) 534

21.4.10 TIMx counter (TIMx_CNT) . 536

21.4.11 TIMx prescaler (TIMx_PSC) . 536

21.4.12 TIMx auto-reload register (TIMx_ARR) . 536

21.4.13 TIMx capture/compare register 1 (TIMx_CCR1) 537

21.4.14 TIMx capture/compare register 2 (TIMx_CCR2) 537

21.4.15 TIMx capture/compare register 3 (TIMx_CCR3) 538

21.4.16 TIMx capture/compare register 4 (TIMx_CCR4) 538

21.4.17 TIMx DMA control register (TIMx_DCR) . 539

21.4.18 TIMx DMA address for full transfer (TIMx_DMAR) 539

Example of how to use the DMA burst feature .540

21.4.19 TIM2 option register (TIM2_OR) . 541

21.4.20 TIM3 option register (TIM3_OR) . 542

21.5 TIMx register map . 543

Contents RM0367

22/1040 RM0367 Rev 8

22 General-purpose timers (TIM21/22) . 545

22.1 Introduction . 545

22.2 TIM21/22 main features . 545

22.2.1 TIM21/22 main features . 545

22.3 TIM21/22 functional description . 547

22.3.1 Timebase unit . 547

Prescaler description .547

22.3.2 Counter modes . 549

Upcounting mode .549

Downcounting mode. .553

Center-aligned mode (up/down counting) .556

22.3.3 Clock selection . 560

Internal clock source (CK_INT) .560

External clock source mode 2 .562

22.3.4 Capture/compare channels . 563

22.3.5 Input capture mode . 565

22.3.6 PWM input mode . 567

22.3.7 Forced output mode . 568

22.3.8 Output compare mode . 568

22.3.9 PWM mode . 569

PWM center-aligned mode .571

Hints on using center-aligned mode .572

22.3.10 Clearing the OCxREF signal on an external event 572

22.3.11 One-pulse mode . 573

Particular case: OCx fast enable .575

22.3.12 Encoder interface mode . 575

22.3.13 TIM21/22 external trigger synchronization . 577

Slave mode: Reset mode .577

Slave mode: Gated mode. .578

Slave mode: Trigger mode .579

22.3.14 Timer synchronization (TIM21/22) . 580

22.3.15 Debug mode . 580

22.4 TIM21/22 registers . 581

22.4.1 TIM21/22 control register 1 (TIMx_CR1) . 581

22.4.2 TIM21/22 control register 2 (TIMx_CR2) . 583

22.4.3 TIM21/22 slave mode control register (TIMx_SMCR) 584

22.4.4 TIM21/22 Interrupt enable register (TIMx_DIER) 587

22.4.5 TIM21/22 status register (TIMx_SR) . 587

RM0367 Rev 8 23/1040

RM0367 Contents

40

22.4.6 TIM21/22 event generation register (TIMx_EGR) 589

22.4.7 TIM21/22 capture/compare mode register 1 (TIMx_CCMR1) 590

Output compare mode .590

Input capture mode. .592

22.4.8 TIM21/22 capture/compare enable register (TIMx_CCER) 593

22.4.9 TIM21/22 counter (TIMx_CNT) . 594

22.4.10 TIM21/22 prescaler (TIMx_PSC) . 594

22.4.11 TIM21/22 auto-reload register (TIMx_ARR) . 594

22.4.12 TIM21/22 capture/compare register 1 (TIMx_CCR1) 595

22.4.13 TIM21/22 capture/compare register 2 (TIMx_CCR2) 595

22.4.14 TIM21 option register (TIM21_OR) . 596

22.4.15 TIM22 option register (TIM22_OR) . 597

22.4.16 TIM21/22 register map . 598

23 Basic timers (TIM6/7) . 600

23.1 Introduction . 600

23.2 TIM6/7 main features . 600

23.3 TIM6/7 functional description . 601

23.3.1 Time-base unit . 601

Prescaler description .601

23.3.2 Counting mode . 603

23.3.3 Clock source . 606

23.3.4 Debug mode . 607

23.4 TIM6/7 registers . 608

23.4.1 TIM6/7 control register 1 (TIMx_CR1) . 608

23.4.2 TIM6/7 control register 2 (TIMx_CR2) . 609

23.4.3 TIM6/7 DMA/Interrupt enable register (TIMx_DIER) 609

23.4.4 TIM6/7 status register (TIMx_SR) . 610

23.4.5 TIM6/7 event generation register (TIMx_EGR) 610

23.4.6 TIM6/7 counter (TIMx_CNT) . 610

23.4.7 TIM6/7 prescaler (TIMx_PSC) . 611

23.4.8 TIM6/7 auto-reload register (TIMx_ARR) . 611

23.4.9 TIM6/7 register map . 612

24 Low-power timer (LPTIM) . 613

24.1 Introduction . 613

24.2 LPTIM main features . 613

Contents RM0367

24/1040 RM0367 Rev 8

24.3 LPTIM implementation . 614

24.4 LPTIM functional description . 614

24.4.1 LPTIM block diagram . 614

24.4.2 LPTIM trigger mapping . 615

24.4.3 LPTIM reset and clocks . 615

24.4.4 Glitch filter . 615

24.4.5 Prescaler . 616

24.4.6 Trigger multiplexer . 617

24.4.7 Operating mode . 617

One-shot mode. .617

Continous mode .618

24.4.8 Timeout function . 619

24.4.9 Waveform generation . 619

24.4.10 Register update . 620

24.4.11 Counter mode . 621

24.4.12 Timer enable . 622

24.4.13 Encoder mode . 622

24.4.14 Debug mode . 623

24.5 LPTIM low-power modes . 623

24.6 LPTIM interrupts . 624

24.7 LPTIM registers . 624

24.7.1 LPTIM interrupt and status register (LPTIM_ISR) 625

24.7.2 LPTIM interrupt clear register (LPTIM_ICR) . 626

24.7.3 LPTIM interrupt enable register (LPTIM_IER) 626

24.7.4 LPTIM configuration register (LPTIM_CFGR) 627

24.7.5 LPTIM control register (LPTIM_CR) . 630

24.7.6 LPTIM compare register (LPTIM_CMP) . 631

24.7.7 LPTIM autoreload register (LPTIM_ARR) . 632

24.7.8 LPTIM counter register (LPTIM_CNT) . 632

24.7.9 LPTIM register map . 633

25 Independent watchdog (IWDG) . 634

25.1 Introduction . 634

25.2 IWDG main features . 634

25.3 IWDG functional description . 634

25.3.1 IWDG block diagram . 634

RM0367 Rev 8 25/1040

RM0367 Contents

40

25.3.2 Window option . 635

Configuring the IWDG when the window option is enabled635

Configuring the IWDG when the window option is disabled635

25.3.3 Hardware watchdog . 636

25.3.4 Register access protection . 636

25.3.5 Debug mode . 636

25.4 IWDG registers . 637

25.4.1 IWDG key register (IWDG_KR) . 637

25.4.2 IWDG prescaler register (IWDG_PR) . 638

25.4.3 IWDG reload register (IWDG_RLR) . 639

25.4.4 IWDG status register (IWDG_SR) . 640

25.4.5 IWDG window register (IWDG_WINR) . 641

25.4.6 IWDG register map . 642

26 System window watchdog (WWDG) . 643

26.1 Introduction . 643

26.2 WWDG main features . 643

26.3 WWDG functional description . 643

26.3.1 WWDG block diagram . 644

26.3.2 Enabling the watchdog . 644

26.3.3 Controlling the down-counter . 644

26.3.4 How to program the watchdog timeout . 644

26.3.5 Debug mode . 646

26.4 WWDG interrupts . 646

26.5 WWDG registers . 646

26.5.1 WWDG control register (WWDG_CR) . 646

26.5.2 WWDG configuration register (WWDG_CFR) 647

26.5.3 WWDG status register (WWDG_SR) . 647

26.5.4 WWDG register map . 648

27 Real-time clock (RTC) . 649

27.1 Introduction . 649

27.2 RTC main features . 650

27.3 RTC implementation . 650

27.4 RTC functional description . 651

27.4.1 RTC block diagram . 651

Contents RM0367

26/1040 RM0367 Rev 8

27.4.2 GPIOs controlled by the RTC . 652

27.4.3 Clock and prescalers . 653

27.4.4 Real-time clock and calendar . 654

27.4.5 Programmable alarms . 655

27.4.6 Periodic auto-wakeup . 655

27.4.7 RTC initialization and configuration . 656

RTC register access .656

RTC register write protection .656

Calendar initialization and configuration. .656

Daylight saving time .657

Programming the alarm .657

Programming the wakeup timer .657

27.4.8 Reading the calendar . 657

When BYPSHAD control bit is cleared in the RTC_CR register.657

When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow reg-
isters) .658

27.4.9 Resetting the RTC . 658

27.4.10 RTC synchronization . 659

27.4.11 RTC reference clock detection . 659

27.4.12 RTC smooth digital calibration . 660

Calibration when PREDIV_A<3 .661

Verifying the RTC calibration .661

Re-calibration on-the-fly .662

27.4.13 Time-stamp function . 662

27.4.14 Tamper detection . 663

RTC backup registers. .663

Tamper detection initialization .663

Trigger output generation on tamper event .664

Timestamp on tamper event .664

Edge detection on tamper inputs .664

Level detection with filtering on RTC_TAMPx inputs .664

27.4.15 Calibration clock output . 665

27.4.16 Alarm output . 665

Alarm output .665

27.5 RTC low-power modes . 666

27.6 RTC interrupts . 666

27.7 RTC registers . 667

27.7.1 RTC time register (RTC_TR) . 667

27.7.2 RTC date register (RTC_DR) . 668

RM0367 Rev 8 27/1040

RM0367 Contents

40

27.7.3 RTC control register (RTC_CR) . 669

27.7.4 RTC initialization and status register (RTC_ISR) 672

27.7.5 RTC prescaler register (RTC_PRER) . 675

27.7.6 RTC wakeup timer register (RTC_WUTR) . 676

27.7.7 RTC alarm A register (RTC_ALRMAR) . 677

27.7.8 RTC alarm B register (RTC_ALRMBR) . 678

27.7.9 RTC write protection register (RTC_WPR) . 679

27.7.10 RTC sub second register (RTC_SSR) . 679

27.7.11 RTC shift control register (RTC_SHIFTR) . 680

27.7.12 RTC timestamp time register (RTC_TSTR) . 681

27.7.13 RTC timestamp date register (RTC_TSDR) . 682

27.7.14 RTC time-stamp sub second register (RTC_TSSSR) 683

27.7.15 RTC calibration register (RTC_CALR) . 684

27.7.16 RTC tamper configuration register (RTC_TAMPCR) 685

27.7.17 RTC alarm A sub second register (RTC_ALRMASSR) 688

27.7.18 RTC alarm B sub second register (RTC_ALRMBSSR) 689

27.7.19 RTC option register (RTC_OR) . 690

27.7.20 RTC backup registers (RTC_BKPxR) . 690

27.7.21 RTC register map . 691

28 Inter-integrated circuit (I2C) interface . 693

28.1 Introduction . 693

28.2 I2C main features . 693

28.3 I2C implementation . 694

28.4 I2C functional description . 694

28.4.1 I2C1/3 block diagram . 695

28.4.2 I2C2 block diagram . 696

28.4.3 I2C pins and internal signals . 697

28.4.4 I2C clock requirements . 697

28.4.5 Mode selection . 697

Communication flow .698

28.4.6 I2C initialization . 698

Enabling and disabling the peripheral .698

Noise filters. .698

I2C timings .700

28.4.7 Software reset . 703

28.4.8 Data transfer . 704

Contents RM0367

28/1040 RM0367 Rev 8

Reception .704

Transmission .705

Hardware transfer management .705

28.4.9 I2C slave mode . 706

I2C slave initialization .706

Slave clock stretching (NOSTRETCH = 0) .707

Slave without clock stretching (NOSTRETCH = 1). .707

Slave byte control mode .708

Slave transmitter. .709

Slave receiver .713

28.4.10 I2C master mode . 715

I2C master initialization .715

Master communication initialization (address phase) .717

Initialization of a master receiver addressing a 10-bit address slave718

Master transmitter. .719

Master receiver .723

28.4.11 I2C_TIMINGR register configuration examples 727

28.4.12 SMBus specific features . 728

Introduction. .728

Bus protocols .728

Address resolution protocol (ARP) .728

Received command and data acknowledge control .729

Host notify protocol .729

SMBus alert .729

Packet error checking. .729

Timeouts. .729

Bus idle detection .731

28.4.13 SMBus initialization . 731

Received command and data acknowledge control (Slave mode).731

Specific address (Slave mode) .731

Packet error checking. .731

Timeout detection .732

Bus idle detection .732

28.4.14 SMBus: I2C_TIMEOUTR register configuration examples 733

28.4.15 SMBus slave mode . 733

SMBus slave transmitter. .733

SMBus Slave receiver .735

SMBus master transmitter .737

SMBus master receiver .739

28.4.16 Wakeup from Stop mode on address match . 741

28.4.17 Error conditions . 741

RM0367 Rev 8 29/1040

RM0367 Contents

40

Bus error (BERR) .741

Arbitration lost (ARLO) .742

Overrun/underrun error (OVR) .742

Packet error checking error (PECERR) .742

Timeout Error (TIMEOUT) .742

Alert (ALERT) .743

28.4.18 DMA requests . 743

Transmission using DMA .743

Reception using DMA. .744

28.4.19 Debug mode . 744

28.5 I2C low-power modes . 744

28.6 I2C interrupts . 745

28.7 I2C registers . 746

28.7.1 I2C control register 1 (I2C_CR1) . 746

28.7.2 I2C control register 2 (I2C_CR2) . 749

28.7.3 I2C own address 1 register (I2C_OAR1) . 751

28.7.4 I2C own address 2 register (I2C_OAR2) . 752

28.7.5 I2C timing register (I2C_TIMINGR) . 753

28.7.6 I2C timeout register (I2C_TIMEOUTR) . 754

28.7.7 I2C interrupt and status register (I2C_ISR) . 755

28.7.8 I2C interrupt clear register (I2C_ICR) . 757

28.7.9 I2C PEC register (I2C_PECR) . 758

28.7.10 I2C receive data register (I2C_RXDR) . 759

28.7.11 I2C transmit data register (I2C_TXDR) . 759

28.7.12 I2C register map . 760

29 Universal synchronous/asynchronous receiver
transmitter (USART/UART) . 762

29.1 Introduction . 762

29.2 USART main features . 762

29.3 USART extended features . 763

29.4 USART implementation . 764

29.5 USART functional description . 764

29.5.1 USART character description . 767

29.5.2 USART transmitter . 769

Character transmission. .769

Single byte communication. .770

Break characters .771

Contents RM0367

30/1040 RM0367 Rev 8

Idle characters .771

29.5.3 USART receiver . 772

Start bit detection .772

Character reception .773

Break character .773

Idle character .773

Overrun error .774

Selecting the proper oversampling method .774

Framing error .776

Configurable stop bits during reception .777

29.5.4 USART baud rate generation . 777

How to derive USARTDIV from USART_BRR register values778

29.5.5 Tolerance of the USART receiver to clock deviation 779

29.5.6 USART auto baud rate detection . 781

29.5.7 Multiprocessor communication using USART 782

Idle line detection (WAKE=0) .783

4-bit/7-bit address mark detection (WAKE=1) .783

29.5.8 Modbus communication using USART . 784

Modbus/RTU .784

Modbus/ASCII .784

29.5.9 USART parity control . 785

Even parity .785

Odd parity .785

Parity checking in reception .785

Parity generation in transmission .785

29.5.10 USART LIN (local interconnection network) mode 786

LIN transmission. .786

LIN reception .786

29.5.11 USART synchronous mode . 788

29.5.12 USART Single-wire Half-duplex communication 791

29.5.13 USART Smartcard mode . 791

Block mode (T=1) .794

Direct and inverse convention .795

29.5.14 USART IrDA SIR ENDEC block . 796

IrDA low-power mode .797

29.5.15 USART continuous communication in DMA mode 798

Transmission using DMA .798

Reception using DMA. .799

Error flagging and interrupt generation in multibuffer communication 800

RM0367 Rev 8 31/1040

RM0367 Contents

40

29.5.16 RS232 hardware flow control and RS485 driver enable
using USART . 800

RS232 RTS flow control .801

RS232 CTS flow control .801

RS485 Driver Enable .802

29.5.17 Wakeup from Stop mode using USART . 802

Using Mute mode with Stop mode .803

Determining the maximum USART baud rate allowing to wakeup correctly from
Stop mode when the USART clock source is the HSI clock.803

29.6 USART in low-power modes . 804

29.7 USART interrupts . 804

29.8 USART registers . 806

29.8.1 USART control register 1 (USART_CR1) . 806

29.8.2 USART control register 2 (USART_CR2) . 809

29.8.3 USART control register 3 (USART_CR3) . 813

29.8.4 USART baud rate register (USART_BRR) . 817

29.8.5 USART guard time and prescaler register (USART_GTPR) 817

29.8.6 USART receiver timeout register (USART_RTOR) 818

29.8.7 USART request register (USART_RQR) . 819

29.8.8 USART interrupt and status register (USART_ISR) 820

29.8.9 USART interrupt flag clear register (USART_ICR) 825

29.8.10 USART receive data register (USART_RDR) 826

29.8.11 USART transmit data register (USART_TDR) 826

29.8.12 USART register map . 827

30 Low-power universal asynchronous receiver
transmitter (LPUART) . 829

30.1 Introduction . 829

30.2 LPUART main features . 830

30.3 LPUART implementation . 830

30.4 LPUART functional description . 831

30.4.1 LPUART character description . 833

30.4.2 LPUART transmitter . 835

Character transmission. .835

Single byte communication. .836

Break characters .837

Idle characters .837

30.4.3 LPUART receiver . 837

Contents RM0367

32/1040 RM0367 Rev 8

Start bit detection .837

Character reception .838

Break character .838

Idle character .838

Overrun error .839

Selecting the clock source .839

Framing error .840

Configurable stop bits during reception .840

30.4.4 LPUART baud rate generation . 840

30.4.5 Tolerance of the LPUART receiver to clock deviation 842

30.4.6 Multiprocessor communication using LPUART 843

Idle line detection (WAKE=0) .843

4-bit/7-bit address mark detection (WAKE=1) .844

30.4.7 LPUART parity control . 845

Even parity .845

Odd parity .845

Parity checking in reception .846

Parity generation in transmission .846

30.4.8 Single-wire Half-duplex communication using LPUART 846

30.4.9 Continuous communication in DMA mode using LPUART 846

Transmission using DMA .847

Reception using DMA. .848

Error flagging and interrupt generation in multibuffer communication 849

30.4.10 RS232 Hardware flow control and RS485 Driver Enable
using LPUART . 849

RS232 RTS flow control .850

RS232 CTS flow control .850

RS485 Driver Enable .851

30.4.11 Wakeup from Stop mode using LPUART . 852

Using Mute mode with Stop mode .853

Determining the maximum LPUART baud rate allowing to wakeup correctly from
Stop mode when the LPUART clock source is the HSI clock.853

30.5 LPUART in low-power mode . 854

30.6 LPUART interrupts . 854

30.7 LPUART registers . 856

30.7.1 Control register 1 (LPUART_CR1) . 856

30.7.2 Control register 2 (LPUART_CR2) . 859

30.7.3 Control register 3 (LPUART_CR3) . 861

30.7.4 Baud rate register (LPUART_BRR) . 863

30.7.5 Request register (LPUART_RQR) . 863

RM0367 Rev 8 33/1040

RM0367 Contents

40

30.7.6 Interrupt & status register (LPUART_ISR) . 864

30.7.7 Interrupt flag clear register (LPUART_ICR) . 867

30.7.8 Receive data register (LPUART_RDR) . 868

30.7.9 Transmit data register (LPUART_TDR) . 868

30.7.10 LPUART register map . 870

31 Serial peripheral interface/ inter-IC sound (SPI/I2S) 871

31.1 Introduction . 871

31.1.1 SPI main features . 871

31.1.2 SPI extended features . 872

31.1.3 I2S features . 872

31.2 SPI/I2S implementation . 872

31.3 SPI functional description . 873

31.3.1 General description . 873

31.3.2 Communications between one master and one slave 874

Full-duplex communication. .874

Half-duplex communication .874

Simplex communications .875

31.3.3 Standard multi-slave communication . 877

31.3.4 Multi-master communication . 878

31.3.5 Slave select (NSS) pin management . 878

31.3.6 Communication formats . 880

Clock phase and polarity controls. .880

Data frame format. .881

31.3.7 SPI configuration . 882

31.3.8 Procedure for enabling SPI . 882

31.3.9 Data transmission and reception procedures 883

Rx and Tx buffers .883

Tx buffer handling. .883

Rx buffer handling .883

Sequence handling. .883

31.3.10 Procedure for disabling the SPI . 885

31.3.11 Communication using DMA (direct memory addressing) 886

31.3.12 SPI status flags . 888

Tx buffer empty flag (TXE) .888

Rx buffer not empty (RXNE). .888

Busy flag (BSY) .888

31.3.13 SPI error flags . 889

Contents RM0367

34/1040 RM0367 Rev 8

Overrun flag (OVR). .889

Mode fault (MODF). .889

CRC error (CRCERR) .890

TI mode frame format error (FRE) .890

31.4 SPI special features . 890

31.4.1 TI mode . 890

TI protocol in master mode. .890

31.4.2 CRC calculation . 891

CRC principle .891

CRC transfer managed by CPU .891

CRC transfer managed by DMA. .892

Resetting the SPIx_TXCRC and SPIx_RXCRC values892

31.5 SPI interrupts . 893

31.6 I2S functional description . 894

31.6.1 I2S general description . 894

31.6.2 I2S full-duplex . 895

31.6.3 Supported audio protocols . 896

I2S Philips standard .897

MSB justified standard .899

LSB justified standard. .900

PCM standard. .902

31.6.4 Clock generator . 903

31.6.5 I2S master mode . 905

Procedure .905

Transmission sequence .905

Reception sequence. .906

31.6.6 I2S slave mode . 907

Transmission sequence .907

Reception sequence. .908

31.6.7 I2S status flags . 908

Busy flag (BSY) .908

Tx buffer empty flag (TXE) .909

RX buffer not empty (RXNE) .909

Channel Side flag (CHSIDE) .909

31.6.8 I2S error flags . 909

Underrun flag (UDR). .909

Overrun flag (OVR). .910

Frame error flag (FRE) .910

31.6.9 I2S interrupts . 910

31.6.10 DMA features . 910

RM0367 Rev 8 35/1040

RM0367 Contents

40

31.7 SPI and I2S registers .911

31.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode) 911

31.7.2 SPI control register 2 (SPI_CR2) . 913

31.7.3 SPI status register (SPI_SR) . 914

31.7.4 SPI data register (SPI_DR) . 916

31.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S
mode) . 916

31.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode) 917

31.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode) 917

31.7.8 SPI_I2S configuration register (SPI_I2SCFGR) 918

31.7.9 SPI_I2S prescaler register (SPI_I2SPR) . 919

31.7.10 SPI register map . 920

32 Universal serial bus full-speed device interface (USB) 921

32.1 Introduction . 921

32.2 USB main features . 921

32.3 USB implementation . 921

32.4 USB functional description . 922

32.4.1 Description of USB blocks . 923

32.5 Programming considerations . 924

32.5.1 Generic USB device programming . 924

32.5.2 System and power-on reset . 925

USB reset (RESET interrupt) .925

Structure and usage of packet buffers .925

Endpoint initialization .927

IN packets (data transmission) .927

OUT and SETUP packets (data reception) .928

Control transfers .929

32.5.3 Double-buffered endpoints . 930

32.5.4 Isochronous transfers . 932

32.5.5 Suspend/Resume events . 933

32.6 USB and USB SRAM registers . 936

32.6.1 Common registers . 936

USB control register (USB_CNTR). .936

USB interrupt status register (USB_ISTR) .938

USB frame number register (USB_FNR) .941

USB device address (USB_DADDR) .941

Buffer table address (USB_BTABLE). .942

Contents RM0367

36/1040 RM0367 Rev 8

LPM control and status register (USB_LPMCSR) .942

Battery charging detector (USB_BCDR) .943

Endpoint-specific registers .944

USB endpoint n register (USB_EPnR), n=[0..7] .944

32.6.2 Buffer descriptor table . 949

Transmission buffer address n (USB_ADDRn_TX) .949

Transmission byte count n (USB_COUNTn_TX) .949

Reception buffer address n (USB_ADDRn_RX) .950

Reception byte count n (USB_COUNTn_RX) .950

32.6.3 USB register map . 952

33 Debug support (DBG) . 954

33.1 Overview . 954

33.2 Reference Arm® documentation . 955

33.3 Pinout and debug port pins . 955

33.3.1 SWD port pins . 955

33.3.2 SW-DP pin assignment . 955

33.3.3 Internal pull-up & pull-down on SWD pins . 956

33.4 ID codes and locking mechanism . 956

33.4.1 MCU device ID code . 956

DBG_IDCODE .956

33.5 SWD port . 957

33.5.1 SWD protocol introduction . 957

33.5.2 SWD protocol sequence . 957

33.5.3 SW-DP state machine (reset, idle states, ID code) 958

33.5.4 DP and AP read/write accesses . 959

33.5.5 SW-DP registers . 959

33.5.6 SW-AP registers . 960

33.6 Core debug . 961

33.7 BPU (Break Point Unit) . 961

33.7.1 BPU functionality . 961

33.8 DWT (Data Watchpoint) . 962

33.8.1 DWT functionality . 962

33.8.2 DWT Program Counter Sample Register . 962

33.9 MCU debug component (DBG) . 962

33.9.1 Debug support for low-power modes . 962

33.9.2 Debug support for timers, watchdog and I2C . 963

RM0367 Rev 8 37/1040

RM0367 Contents

40

33.9.3 Debug MCU configuration register (DBG_CR) 963

33.9.4 Debug MCU APB1 freeze register (DBG_APB1_FZ) 965

33.9.5 Debug MCU APB2 freeze register (DBG_APB2_FZ) 967

33.10 DBG register map . 968

34 Device electronic signature . 969

34.1 Memory size register . 969

34.1.1 Flash size register . 969

34.2 Unique device ID registers (96 bits) . 969

Appendix A Code examples. 971

A.1 Introduction . 971

A.2 NVM/RCC Operation code example . 971

A.2.1 Increasing the CPU frequency preparation sequence code 971

A.2.2 Decreasing the CPU frequency preparation sequence code 971

A.2.3 Switch from PLL to HSI16 sequence code . 972

A.2.4 Switch to PLL sequence code. 972

A.3 NVM Operation code example . 973

A.3.1 Unlocking the data EEPROM and FLASH_PECR register
code example . 973

A.3.2 Locking data EEPROM and FLASH_PECR register code example. . . 973

A.3.3 Unlocking the NVM program memory code example 973

A.3.4 Unlocking the option bytes area code example 974

A.3.5 Write to data EEPROM code example . 974

A.3.6 Erase to data EEPROM code example . 974

A.3.7 Program Option byte code example . 975

A.3.8 Erase Option byte code example . 975

A.3.9 Program a single word to Flash program memory code example 976

A.3.10 Program half-page to Flash program memory code example 977

A.3.11 Erase a page in Flash program memory code example 978

A.3.12 Mass erase code example . 979

A.4 Clock Controller. 980

A.4.1 HSE start sequence code example . 980

A.4.2 PLL configuration modification code example 981

A.4.3 MCO selection code example. 982

A.5 GPIOs . 982

A.5.1 Locking mechanism code example. 982

Contents RM0367

38/1040 RM0367 Rev 8

A.5.2 Alternate function selection sequence code example. 982

A.5.3 Analog GPIO configuration code example . 982

A.6 DMA . 983

A.6.1 DMA Channel Configuration sequence code example 983

A.7 Interrupts and event . 983

A.7.1 NVIC initialization example . 983

A.7.2 Extended interrupt selection code example . 983

A.8 ADC. 984

A.8.1 Calibration code example . 984

A.8.2 ADC enable sequence code example . 984

A.8.3 ADC disable sequence code example . 985

A.8.4 ADC clock selection code example . 985

A.8.5 Single conversion sequence code example - Software trigger. 985

A.8.6 Continuous conversion sequence code example - Software trigger. . . 986

A.8.7 Single conversion sequence code example - Hardware trigger 986

A.8.8 Continuous conversion sequence code example - Hardware trigger . . 987

A.8.9 DMA one shot mode sequence code example 987

A.8.10 DMA circular mode sequence code example . 988

A.8.11 Wait mode sequence code example. 988

A.8.12 Auto off and no wait mode sequence code example 988

A.8.13 Auto off and wait mode sequence code example 989

A.8.14 Analog watchdog code example. 989

A.8.15 Oversampling code example . 990

A.8.16 Temperature configuration code example. 990

A.8.17 Temperature computation code example . 990

A.9 DAC. 991

A.9.1 Independent trigger without wave generation code example 991

A.9.2 Independent trigger with single triangle generation code example. . . . 991

A.9.3 DMA initialization code example . 991

A.10 TSC code example . 992

A.10.1 TSC configuration code example . 992

A.10.2 TSC interrupt code example . 993

A.11 Timers . 993

A.11.1 Upcounter on TI2 rising edge code example . 993

A.11.2 Up counter on each 2 ETR rising edges code example 993

A.11.3 Input capture configuration code example . 994

RM0367 Rev 8 39/1040

RM0367 Contents

40

A.11.4 Input capture data management code example 994

A.11.5 PWM input configuration code example . 995

A.11.6 PWM input with DMA configuration code example 995

A.11.7 Output compare configuration code example . 996

A.11.8 Edge-aligned PWM configuration example. 996

A.11.9 Center-aligned PWM configuration example . 997

A.11.10 ETR configuration to clear OCxREF code example 997

A.11.11 Encoder interface code example . 998

A.11.12 Reset mode code example . 998

A.11.13 Gated mode code example. 999

A.11.14 Trigger mode code example . 999

A.11.15 External clock mode 2 + trigger mode code example. 1000

A.11.16 One-Pulse mode code example . 1000

A.11.17 Timer prescaling another timer code example 1001

A.11.18 Timer enabling another timer code example. 1001

A.11.19 Master and slave synchronization code example 1002

A.11.20 Two timers synchronized by an external trigger code example 1004

A.11.21 DMA burst feature code example . 1005

A.12 Low-power timer (LPTIM) . 1006

A.12.1 Pulse counter configuration code example. 1006

A.13 IWDG code example . 1006

A.13.1 IWDG configuration code example . 1006

A.13.2 IWDG configuration with window code example. 1006

A.14 WWDG code example. 1007

A.14.1 WWDG configuration code example. 1007

A.15 RTC code example . 1007

A.15.1 RTC calendar configuration code example. 1007

A.15.2 RTC alarm configuration code example . 1008

A.15.3 RTC WUT configuration code example . 1008

A.15.4 RTC read calendar code example . 1009

A.15.5 RTC calibration code example . 1009

A.15.6 RTC tamper and time stamp configuration code example 1009

A.15.7 RTC tamper and time stamp code example . 1010

A.15.8 RTC clock output code example . 1010

A.16 I2C code example . 1010

A.16.1 I2C configured in slave mode code example 1010

Contents RM0367

40/1040 RM0367 Rev 8

A.16.2 I2C slave transmitter code example . 1011

A.16.3 I2C slave receiver code example . 1011

A.16.4 I2C configured in master mode to receive code example. 1011

A.16.5 I2C configured in master mode to transmit code example 1012

A.16.6 I2C master transmitter code example. 1012

A.16.7 I2C master receiver code example . 1012

A.16.8 I2C configured in master mode to transmit with DMA code example . 1012

A.16.9 I2C configured in slave mode to receive with DMA code example . . . 1013

A.17 USART code example. 1013

A.17.1 USART transmitter configuration code example. 1013

A.17.2 USART transmit byte code example. 1013

A.17.3 USART transfer complete code example . 1013

A.17.4 USART receiver configuration code example 1013

A.17.5 USART receive byte code example . 1014

A.17.6 USART LIN mode code example . 1014

A.17.7 USART synchronous mode code example . 1014

A.17.8 USART single-wire half-duplex code example 1015

A.17.9 USART smartcard mode code example . 1015

A.17.10 USART IrDA mode code example . 1015

A.17.11 USART DMA code example . 1016

A.17.12 USART hardware flow control code example 1016

A.18 LPUART code example. 1017

A.18.1 LPUART receiver configuration code example 1017

A.18.2 LPUART receive byte code example . 1017

A.19 SPI code example . 1017

A.19.1 SPI master configuration code example . 1017

A.19.2 SPI slave configuration code example . 1017

A.19.3 SPI full duplex communication code example 1017

A.19.4 SPI master configuration with DMA code example. 1018

A.19.5 SPI slave configuration with DMA code example 1018

A.19.6 SPI interrupt code example . 1018

A.20 DBG code example . 1018

A.20.1 DBG read device Id code example . 1018

A.20.2 DBG debug in LPM code example . 1018

Revision history . 1019

RM0367 Rev 8 41/1040

RM0367 List of tables

44

List of tables

Table 1. STM32L0x3 memory density . 54
Table 2. Overview of features per category . 54
Table 3. STM32L0x3 peripheral register boundary addresses. 60
Table 4. Boot modes. 64
Table 5. NVM organization (category 3 devices) . 67
Table 6. NVM organization for UFB = 0 (192 Kbyte category 5 devices) . 68
Table 7. Flash memory and data EEPROM remapping

(192 Kbyte category 5 devices) . 69
Table 8. NVM organization for UFB = 0 (128 Kbyte category 5 devices) . 69
Table 9. Flash memory and data EEPROM remapping (128 Kbyte category 5 devices) 70
Table 10. NVM organization for UFB = 0 (64 Kbyte category 5 devices) . 70
Table 11. Boot pin and BFB2 bit configuration . 71
Table 12. Link between master clock power range and frequencies . 73
Table 13. Delays to memory access and number of wait states. 73
Table 14. Internal buffer management . 76
Table 15. Configurations for buffers and speculative reading . 79
Table 16. Dhrystone performances in all memory interface configurations . 80
Table 17. NVM write/erase timings. 94
Table 18. NVM write/erase duration . 94
Table 19. Protection level and content of RDP Option bytes. 98
Table 20. Link between protection bits of FLASH_WRPROTx register

and protected address in Flash program memory . 99
Table 21. Memory access vs mode, protection and Flash program memory sectors. 100
Table 22. Flash interrupt request . 103
Table 23. Flash interface - register map and reset values . 120
Table 24. Option byte format . 121
Table 25. Option byte organization. 121
Table 26. CRC internal input/output signals . 124
Table 27. CRC register map and reset values . 129
Table 28. Segment accesses according to the Firewall state. 133
Table 29. Segment granularity and area ranges . 134
Table 30. Firewall register map and reset values . 141
Table 31. Performance versus VCORE ranges . 146
Table 32. Summary of low-power modes . 153
Table 33. Sleep-now. 157
Table 34. Sleep-on-exit. 158
Table 35. Sleep-now (Low-power sleep) . 159
Table 36. Sleep-on-exit (Low-power sleep) . 160
Table 37. Stop mode . 162
Table 38. Standby mode. 164
Table 39. PWR - register map and reset values. 172
Table 40. HSE/LSE clock sources . 178
Table 41. System clock source frequency . 183
Table 42. RCC register map and reset values . 223
Table 43. CRS features . 226
Table 44. Effect of low-power modes on CRS . 230
Table 45. Interrupt control bits . 230
Table 46. CRS register map and reset values . 235

List of tables RM0367

42/1040 RM0367 Rev 8

Table 47. Port bit configuration table . 239
Table 48. GPIO register map and reset values . 252
Table 49. SYSCFG register map and reset values. 262
Table 50. DMA implementation . 265
Table 51. DMA requests for each channel . 266
Table 52. Programmable data width and endian behavior (when PINC = MINC = 1) 274
Table 53. DMA interrupt requests . 275
Table 54. DMA register map and reset values . 285
Table 55. List of vectors . 288
Table 56. EXTI lines connections . 295
Table 57. Extended interrupt/event controller register map and reset values. 300
Table 58. ADC input/output pins. 303
Table 59. ADC internal input/output signals . 304
Table 60. External triggers . 304
Table 61. Latency between trigger and start of conversion . 309
Table 62. Configuring the trigger polarity . 315
Table 63. tSAR timings depending on resolution . 317
Table 64. Analog watchdog comparison. 326
Table 65. Analog watchdog channel selection . 326
Table 66. Maximum output results vs N and M. Grayed values indicates truncation 330
Table 67. ADC interrupts . 335
Table 68. ADC register map and reset values . 350
Table 69. DAC pins. 353
Table 70. External triggers . 356
Table 71. DAC register map and reset values . 374
Table 72. COMP register map and reset values. 382
Table 73. Implementation . 385
Table 74. Example of frame rate calculation . 386
Table 75. Blink frequency . 394
Table 76. VLCDrail connections to GPIO pins . 397
Table 77. Remapping capability . 399
Table 78. LCD behavior in low-power modes. 404
Table 79. LCD interrupt requests . 404
Table 80. LCD register map and reset values . 411
Table 81. Acquisition sequence summary . 416
Table 82. Spread spectrum deviation versus AHB clock frequency . 418
Table 83. I/O state depending on its mode and IODEF bit value . 419
Table 84. Effect of low-power modes on TSC . 421
Table 85. Interrupt control bits . 421
Table 86. TSC register map and reset values . 430
Table 87. AES internal input/output signals . 433
Table 88. CTR mode initialization vector definition. 449
Table 89. Key endianness in AES_KEYRx registers . 452
Table 90. DMA channel configuration for memory-to-AES data transfer . 453
Table 91. DMA channel configuration for AES-to-memory data transfer . 454
Table 92. AES interrupt requests . 456
Table 93. Processing latency (in clock cycle) . 456
Table 94. AES register map and reset values . 464
Table 95. RNG internal input/output signals . 467
Table 96. RNG interrupt requests . 472
Table 97. RNG register map and reset map. 476
Table 98. Counting direction versus encoder signals . 508

RM0367 Rev 8 43/1040

RM0367 List of tables

44

Table 99. TIM2/TIM3 internal trigger connection . 525
Table 100. Output control bit for standard OCx channels. 535
Table 101. TIM2/3 register map and reset values . 543
Table 102. Counting direction versus encoder signals . 576
Table 103. TIMx Internal trigger connection . 586
Table 104. Output control bit for standard OCx channels. 594
Table 105. TIM21/22 register map and reset values . 598
Table 106. TIM6/7 register map and reset values . 612
Table 107. STM32L0x3 LPTIM features. 614
Table 108. LPTIM1 external trigger connection . 615
Table 109. Prescaler division ratios . 616
Table 110. Encoder counting scenarios . 622
Table 111. Effect of low-power modes on the LPTIM. 623
Table 112. Interrupt events. 624
Table 113. LPTIM register map and reset values. 633
Table 114. IWDG register map and reset values . 642
Table 115. WWDG register map and reset values . 648
Table 116. RTC implementation . 650
Table 117. RTC pin PC13 configuration . 652
Table 118. RTC_OUT mapping . 653
Table 119. Effect of low-power modes on RTC . 666
Table 120. Interrupt control bits . 666
Table 121. RTC register map and reset values . 691
Table 122. STM32L0x3 I2C features . 694
Table 123. I2C input/output pins. 697
Table 124. I2C internal input/output signals . 697
Table 125. Comparison of analog vs. digital filters . 699
Table 126. I2C-SMBus specification data setup and hold times . 702
Table 127. I2C configuration. 706
Table 128. I2C-SMBus specification clock timings . 717
Table 129. Examples of timing settings for fI2CCLK = 8 MHz . 727
Table 130. Examples of timings settings for fI2CCLK = 16 MHz . 727
Table 131. SMBus timeout specifications. 729
Table 132. SMBus with PEC configuration. 732
Table 133. Examples of TIMEOUTA settings for various I2CCLK frequencies

(max tTIMEOUT = 25 ms) . 733
Table 134. Examples of TIMEOUTB settings for various I2CCLK frequencies 733
Table 135. Examples of TIMEOUTA settings for various I2CCLK frequencies

(max tIDLE = 50 µs) . 733
Table 136. Effect of low-power modes on the I2C . 744
Table 137. I2C Interrupt requests . 745
Table 138. I2C register map and reset values . 760
Table 139. STM32L0x3 USART/LPUART features . 764
Table 140. Noise detection from sampled data . 776
Table 141. Error calculation for programmed baud rates at fCK = 32 MHz in both cases of

oversampling by 16 or by 8. 779
Table 142. Tolerance of the USART receiver when BRR [3:0] = 0000. 780
Table 143. Tolerance of the USART receiver when BRR [3:0] is different from 0000 780
Table 144. Frame formats . 785
Table 145. Effect of low-power modes on the USART . 804
Table 146. USART interrupt requests. 804
Table 147. USART register map and reset values . 827

List of tables RM0367

44/1040 RM0367 Rev 8

Table 148. STM32L0x3 USART/LPUART features . 831
Table 149. Error calculation for programmed baud rates at fck = 32.768 kHz 841
Table 150. Error calculation for programmed baud rates at fck = 32 MHz . 841
Table 151. Tolerance of the LPUART receiver . 842
Table 152. Frame formats . 845
Table 153. Effect of low-power modes on the LPUART . 854
Table 154. LPUART interrupt requests. 854
Table 155. LPUART register map and reset values . 870
Table 156. STM32L0x3 SPI implementation . 872
Table 157. SPI interrupt requests . 893
Table 158. Audio-frequency precision using standard 8 MHz HSE . 904
Table 159. I2S interrupt requests . 910
Table 160. SPI register map and reset values . 920
Table 161. STM32L0x3 USB implementation. 921
Table 162. Double-buffering buffer flag definition. 931
Table 163. Bulk double-buffering memory buffers usage . 931
Table 164. Isochronous memory buffers usage . 933
Table 165. Resume event detection . 934
Table 166. Reception status encoding . 947
Table 167. Endpoint type encoding . 947
Table 168. Endpoint kind meaning . 947
Table 169. Transmission status encoding . 948
Table 170. Definition of allocated buffer memory . 951
Table 171. USB register map and reset values . 952
Table 172. SW debug port pins . 955
Table 173. REV_ID values . 957
Table 174. Packet request (8-bits) . 957
Table 175. ACK response (3 bits). 958
Table 176. DATA transfer (33 bits) . 958
Table 177. SW-DP registers . 959
Table 178. 32-bit debug port registers addressed through the shifted value A[3:2] 960
Table 179. Core debug registers . 961
Table 180. DBG register map and reset values . 968
Table 181. Document revision history . 1019

RM0367 Rev 8 45/1040

RM0367 List of figures

51

List of figures

Figure 1. System architecture . 56
Figure 2. Memory map. 59
Figure 3. Structure of one internal buffer . 75
Figure 4. Timing to fetch and execute instructions with prefetch disabled. 77
Figure 5. Timing to fetch and execute instructions with prefetch enabled . 79
Figure 6. RDP levels . 98
Figure 7. CRC calculation unit block diagram . 124
Figure 8. STM32L0x3 firewall connection schematics . 131
Figure 9. Firewall functional states . 135
Figure 10. Power supply overview . 143
Figure 11. Performance versus VDD and VCORE range . 146
Figure 12. Power supply supervisors . 149
Figure 13. Power-on reset/power-down reset waveform . 150
Figure 14. BOR thresholds . 151
Figure 15. PVD thresholds. 152
Figure 16. Simplified diagram of the reset circuit . 174
Figure 17. Clock tree . 177
Figure 18. Using TIM21 channel 1 input capture to measure

frequencies . 185
Figure 19. CRS block diagram. 227
Figure 20. CRS counter behavior . 228
Figure 21. Basic structure of an I/O port bit . 238
Figure 22. Basic structure of a 5-Volt tolerant I/O port bit . 238
Figure 23. Input floating / pull up / pull down configurations . 243
Figure 24. Output configuration . 244
Figure 25. Alternate function configuration . 245
Figure 26. High impedance-analog configuration . 245
Figure 27. DMA request mapping . 266
Figure 28. DMA block diagram . 268
Figure 29. Extended interrupts and events controller (EXTI) block diagram 292
Figure 30. Extended interrupt/event GPIO mapping . 294
Figure 31. ADC block diagram . 303
Figure 32. ADC calibration. 306
Figure 33. Calibration factor forcing . 307
Figure 34. Enabling/disabling the ADC . 308
Figure 35. ADC clock scheme . 308
Figure 36. ADC connectivity . 310
Figure 37. Analog to digital conversion time . 314
Figure 38. ADC conversion timings . 314
Figure 39. Stopping an ongoing conversion . 315
Figure 40. Single conversions of a sequence, software trigger . 318
Figure 41. Continuous conversion of a sequence, software trigger . 318
Figure 42. Single conversions of a sequence, hardware trigger . 319
Figure 43. Continuous conversions of a sequence, hardware trigger . 319
Figure 44. Data alignment and resolution (oversampling disabled: OVSE = 0). 320
Figure 45. Example of overrun (OVR) . 321
Figure 46. Wait mode conversion (continuous mode, software trigger). 323
Figure 47. Behavior with WAIT = 0, AUTOFF = 1 . 324

List of figures RM0367

46/1040 RM0367 Rev 8

Figure 48. Behavior with WAIT = 1, AUTOFF = 1 . 325
Figure 49. Analog watchdog guarded area . 326
Figure 50. ADC_AWD1_OUT signal generation . 327
Figure 51. ADC_AWD1_OUT signal generation (AWD flag not cleared by software) 328
Figure 52. ADC1_AWD_OUT signal generation (on a single channel) . 328
Figure 53. Analog watchdog threshold update . 329
Figure 54. 20-bit to 16-bit result truncation . 330
Figure 55. Numerical example with 5-bits shift and rounding . 330
Figure 56. Triggered oversampling mode (TOVS bit = 1) . 332
Figure 57. Temperature sensor and VREFINT channel block diagram . 333
Figure 58. DAC block diagram. 353
Figure 59. Data registers in single DAC channel mode . 354
Figure 60. Timing diagram for conversion with trigger disabled TEN = 0 . 355
Figure 61. Data registers in dual DAC channel mode . 357
Figure 62. DAC LFSR register calculation algorithm . 361
Figure 63. DAC conversion (SW trigger enabled) with LFSR wave generation. 362
Figure 64. DAC triangle wave generation . 362
Figure 65. DAC conversion (SW trigger enabled) with triangle wave generation 363
Figure 66. Comparator 1 and 2 block diagrams . 377
Figure 67. LCD controller block diagram . 385
Figure 68. 1/3 bias, 1/4 duty . 388
Figure 69. Static duty case 1 . 389
Figure 70. Static duty case 2 . 389
Figure 71. 1/2 duty, 1/2 bias . 390
Figure 72. 1/3 duty, 1/3 bias . 391
Figure 73. 1/4 duty, 1/3 bias . 392
Figure 74. 1/8 duty, 1/4 bias . 393
Figure 75. LCD voltage control . 396
Figure 76. Deadtime . 397
Figure 77. SEG/COM mux feature example . 402
Figure 78. Flowchart example . 403
Figure 79. TSC block diagram . 414
Figure 80. Surface charge transfer analog I/O group structure . 415
Figure 81. Sampling capacitor voltage variation . 416
Figure 82. Charge transfer acquisition sequence . 417
Figure 83. Spread spectrum variation principle . 418
Figure 84. AES block diagram . 433
Figure 85. ECB encryption and decryption principle . 435
Figure 86. CBC encryption and decryption principle . 436
Figure 87. CTR encryption and decryption principle . 437
Figure 88. STM32 cryptolib AES flowchart example . 438
Figure 89. Encryption key derivation for ECB/CBC decryption (Mode 2). 441
Figure 90. Example of suspend mode management . 442
Figure 91. ECB encryption. 442
Figure 92. ECB decryption. 443
Figure 93. CBC encryption. 443
Figure 94. CBC decryption. 444
Figure 95. ECB/CBC encryption (Mode 1) . 445
Figure 96. ECB/CBC decryption (Mode 3) . 446
Figure 97. Message construction in CTR mode. 448
Figure 98. CTR encryption. 448
Figure 99. CTR decryption. 449

RM0367 Rev 8 47/1040

RM0367 List of figures

51

Figure 100. 128-bit block construction with respect to data swap . 451
Figure 101. DMA transfer of a 128-bit data block during input phase . 453
Figure 102. DMA transfer of a 128-bit data block during output phase . 454
Figure 103. AES interrupt signal generation . 456
Figure 104. RNG block diagram . 467
Figure 105. Entropy source model . 468
Figure 106. General-purpose timer block diagram . 478
Figure 107. Counter timing diagram with prescaler division change from 1 to 2 480
Figure 108. Counter timing diagram with prescaler division change from 1 to 4 480
Figure 109. Counter timing diagram, internal clock divided by 1 . 481
Figure 110. Counter timing diagram, internal clock divided by 2 . 482
Figure 111. Counter timing diagram, internal clock divided by 4 . 482
Figure 112. Counter timing diagram, internal clock divided by N. 483
Figure 113. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). 483
Figure 114. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). 484
Figure 115. Counter timing diagram, internal clock divided by 1 . 485
Figure 116. Counter timing diagram, internal clock divided by 2 . 485
Figure 117. Counter timing diagram, internal clock divided by 4 . 486
Figure 118. Counter timing diagram, internal clock divided by N. 486
Figure 119. Counter timing diagram, Update event when repetition counter

is not used . 487
Figure 120. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 488
Figure 121. Counter timing diagram, internal clock divided by 2 . 489
Figure 122. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 489
Figure 123. Counter timing diagram, internal clock divided by N. 490
Figure 124. Counter timing diagram, Update event with ARPE=1 (counter underflow). 490
Figure 125. Counter timing diagram, Update event with ARPE=1 (counter overflow) 491
Figure 126. Control circuit in normal mode, internal clock divided by 1 . 492
Figure 127. TI2 external clock connection example. 492
Figure 128. Control circuit in external clock mode 1 . 493
Figure 129. External trigger input block . 494
Figure 130. Control circuit in external clock mode 2 . 495
Figure 131. Capture/compare channel (example: channel 1 input stage) . 496
Figure 132. Capture/compare channel 1 main circuit . 496
Figure 133. Output stage of capture/compare channel (channel 1). 497
Figure 134. PWM input mode timing . 499
Figure 135. Output compare mode, toggle on OC1. 501
Figure 136. Edge-aligned PWM waveforms (ARR=8) . 502
Figure 137. Center-aligned PWM waveforms (ARR=8) . 504
Figure 138. Example of one-pulse mode. . 505
Figure 139. Clearing TIMx OCxREF . 507
Figure 140. Example of counter operation in encoder interface mode . 509
Figure 141. Example of encoder interface mode with TI1FP1 polarity inverted 509
Figure 142. Control circuit in reset mode . 510
Figure 143. Control circuit in gated mode . 511
Figure 144. Control circuit in trigger mode. 512
Figure 145. Control circuit in external clock mode 2 + trigger mode . 514
Figure 146. Master/Slave timer example . 514
Figure 147. Gating timer y with OC1REF of timer x. 516
Figure 148. Gating timer y with Enable of timer x . 517
Figure 149. Triggering timer y with update of timer x. 518
Figure 150. Triggering timer y with Enable of timer x . 518

List of figures RM0367

48/1040 RM0367 Rev 8

Figure 151. Triggering timer x and y with timer x TI1 input . 519
Figure 152. General-purpose timer block diagram (TIM21/22) . 546
Figure 153. Counter timing diagram with prescaler division change from 1 to 2 548
Figure 154. Counter timing diagram with prescaler division change from 1 to 4 549
Figure 155. Counter timing diagram, internal clock divided by 1 . 550
Figure 156. Counter timing diagram, internal clock divided by 2 . 551
Figure 157. Counter timing diagram, internal clock divided by 4 . 551
Figure 158. Counter timing diagram, internal clock divided by N. 552
Figure 159. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not

preloaded). 552
Figure 160. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 553
Figure 161. Counter timing diagram, internal clock divided by 1 . 554
Figure 162. Counter timing diagram, internal clock divided by 2 . 554
Figure 163. Counter timing diagram, internal clock divided by 4 . 555
Figure 164. Counter timing diagram, internal clock divided by N. 555
Figure 165. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 557
Figure 166. Counter timing diagram, internal clock divided by 2 . 557
Figure 167. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 558
Figure 168. Counter timing diagram, internal clock divided by N. 558
Figure 169. Counter timing diagram, Update event with ARPE=1 (counter underflow). 559
Figure 170. Counter timing diagram, Update event with ARPE=1 (counter overflow) 559
Figure 171. Control circuit in normal mode, internal clock divided by 1 . 560
Figure 172. TI2 external clock connection example. 561
Figure 173. Control circuit in external clock mode 1 . 562
Figure 174. External trigger input block . 562
Figure 175. Control circuit in external clock mode 2 . 563
Figure 176. Capture/compare channel (example: channel 1 input stage) . 564
Figure 177. Capture/compare channel 1 main circuit . 564
Figure 178. Output stage of capture/compare channel (channel 1 and 2). 565
Figure 179. PWM input mode timing . 567
Figure 180. Output compare mode, toggle on OC1. 569
Figure 181. Edge-aligned PWM waveforms (ARR=8) . 570
Figure 182. Center-aligned PWM waveforms (ARR=8) . 571
Figure 183. Clearing TIMx OCxREF . 573
Figure 184. Example of one pulse mode . 574
Figure 185. Example of counter operation in encoder interface mode . 576
Figure 186. Example of encoder interface mode with TI1FP1 polarity inverted 577
Figure 187. Control circuit in reset mode . 578
Figure 188. Control circuit in gated mode . 579
Figure 189. Control circuit in trigger mode. 580
Figure 190. Basic timer block diagram . 600
Figure 191. Counter timing diagram with prescaler division change from 1 to 2 602
Figure 192. Counter timing diagram with prescaler division change from 1 to 4 602
Figure 193. Counter timing diagram, internal clock divided by 1 . 603
Figure 194. Counter timing diagram, internal clock divided by 2 . 604
Figure 195. Counter timing diagram, internal clock divided by 4 . 604
Figure 196. Counter timing diagram, internal clock divided by N. 605
Figure 197. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not

preloaded). 605
Figure 198. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 606

RM0367 Rev 8 49/1040

RM0367 List of figures

51

Figure 199. Control circuit in normal mode, internal clock divided by 1 . 607
Figure 200. Low-power timer block diagram . 614
Figure 201. Glitch filter timing diagram . 616
Figure 202. LPTIM output waveform, single counting mode configuration . 618
Figure 203. LPTIM output waveform, Single counting mode configuration

and Set-once mode activated (WAVE bit is set) . 618
Figure 204. LPTIM output waveform, Continuous counting mode configuration 619
Figure 205. Waveform generation . 620
Figure 206. Encoder mode counting sequence . 623
Figure 207. Independent watchdog block diagram . 634
Figure 208. Watchdog block diagram . 644
Figure 209. Window watchdog timing diagram . 645
Figure 210. RTC block diagram . 651
Figure 211. I2C1/3 block diagram . 695
Figure 212. I2C2 block diagram. 696
Figure 213. I2C bus protocol . 698
Figure 214. Setup and hold timings . 700
Figure 215. I2C initialization flow . 703
Figure 216. Data reception . 704
Figure 217. Data transmission . 705
Figure 218. Slave initialization flow . 708
Figure 219. Transfer sequence flow for I2C slave transmitter, NOSTRETCH = 0. 710
Figure 220. Transfer sequence flow for I2C slave transmitter, NOSTRETCH = 1. 711
Figure 221. Transfer bus diagrams for I2C slave transmitter. 712
Figure 222. Transfer sequence flow for slave receiver with NOSTRETCH = 0 713
Figure 223. Transfer sequence flow for slave receiver with NOSTRETCH = 1 714
Figure 224. Transfer bus diagrams for I2C slave receiver . 714
Figure 225. Master clock generation . 716
Figure 226. Master initialization flow . 718
Figure 227. 10-bit address read access with HEAD10R = 0 . 718
Figure 228. 10-bit address read access with HEAD10R = 1 . 719
Figure 229. Transfer sequence flow for I2C master transmitter for N≤255 bytes 720
Figure 230. Transfer sequence flow for I2C master transmitter for N>255 bytes 721
Figure 231. Transfer bus diagrams for I2C master transmitter . 722
Figure 232. Transfer sequence flow for I2C master receiver for N≤255 bytes 724
Figure 233. Transfer sequence flow for I2C master receiver for N >255 bytes 725
Figure 234. Transfer bus diagrams for I2C master receiver . 726
Figure 235. Timeout intervals for tLOW:SEXT, tLOW:MEXT. 730
Figure 236. Transfer sequence flow for SMBus slave transmitter N bytes + PEC. 734
Figure 237. Transfer bus diagrams for SMBus slave transmitter (SBC=1) . 735
Figure 238. Transfer sequence flow for SMBus slave receiver N Bytes + PEC 736
Figure 239. Bus transfer diagrams for SMBus slave receiver (SBC=1). 737
Figure 240. Bus transfer diagrams for SMBus master transmitter . 738
Figure 241. Bus transfer diagrams for SMBus master receiver . 740
Figure 242. USART block diagram . 766
Figure 243. Word length programming . 768
Figure 244. Configurable stop bits . 770
Figure 245. TC/TXE behavior when transmitting . 771
Figure 246. Start bit detection when oversampling by 16 or 8 . 772
Figure 247. Data sampling when oversampling by 16 . 775
Figure 248. Data sampling when oversampling by 8 . 776
Figure 249. Mute mode using Idle line detection . 783

List of figures RM0367

50/1040 RM0367 Rev 8

Figure 250. Mute mode using address mark detection . 784
Figure 251. Break detection in LIN mode (11-bit break length - LBDL bit is set) 787
Figure 252. Break detection in LIN mode vs. Framing error detection. 788
Figure 253. USART example of synchronous transmission. 789
Figure 254. USART data clock timing diagram (M bits = 00). 789
Figure 255. USART data clock timing diagram (M bits = 01) . 790
Figure 256. RX data setup/hold time . 790
Figure 257. ISO 7816-3 asynchronous protocol . 792
Figure 258. Parity error detection using the 1.5 stop bits . 793
Figure 259. IrDA SIR ENDEC- block diagram . 797
Figure 260. IrDA data modulation (3/16) -Normal Mode . 798
Figure 261. Transmission using DMA . 799
Figure 262. Reception using DMA . 800
Figure 263. Hardware flow control between 2 USARTs . 800
Figure 264. RS232 RTS flow control . 801
Figure 265. RS232 CTS flow control . 802
Figure 266. USART interrupt mapping diagram . 805
Figure 267. LPUART block diagram . 832
Figure 268. Word length programming . 834
Figure 269. Configurable stop bits . 835
Figure 270. TC/TXE behavior when transmitting . 837
Figure 271. Mute mode using Idle line detection . 844
Figure 272. Mute mode using address mark detection . 845
Figure 273. Transmission using DMA . 848
Figure 274. Reception using DMA . 849
Figure 275. Hardware flow control between 2 LPUARTs . 849
Figure 276. RS232 RTS flow control . 850
Figure 277. RS232 CTS flow control . 851
Figure 278. LPUART interrupt mapping diagram . 855
Figure 279. SPI block diagram. 873
Figure 280. Full-duplex single master/ single slave application . 874
Figure 281. Half-duplex single master/ single slave application . 875
Figure 282. Simplex single master/single slave application (master in transmit-only/

slave in receive-only mode) . 876
Figure 283. Master and three independent slaves. 877
Figure 284. Multi-master application . 878
Figure 285. Hardware/software slave select management . 879
Figure 286. Data clock timing diagram . 881
Figure 287. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0,

RXONLY=0) in the case of continuous transfers . 884
Figure 288. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0,

RXONLY=0) in the case of continuous transfers . 885
Figure 289. Transmission using DMA . 887
Figure 290. Reception using DMA . 888
Figure 291. TI mode transfer . 891
Figure 292. I2S block diagram . 894
Figure 293. Full-duplex communication . 896
Figure 294. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0). 897
Figure 295. I2S Philips standard waveforms (24-bit frame with CPOL = 0) . 897
Figure 296. Transmitting 0x8EAA33 . 898
Figure 297. Receiving 0x8EAA33 . 898
Figure 298. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) 898

RM0367 Rev 8 51/1040

RM0367 List of figures

51

Figure 299. Example of 16-bit data frame extended to 32-bit channel frame 899
Figure 300. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 899
Figure 301. MSB justified 24-bit frame length with CPOL = 0 . 899
Figure 302. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 900
Figure 303. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 . 900
Figure 304. LSB justified 24-bit frame length with CPOL = 0. 900
Figure 305. Operations required to transmit 0x3478AE. 901
Figure 306. Operations required to receive 0x3478AE . 901
Figure 307. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 901
Figure 308. Example of 16-bit data frame extended to 32-bit channel frame 902
Figure 309. PCM standard waveforms (16-bit) . 902
Figure 310. PCM standard waveforms (16-bit extended to 32-bit packet frame). 902
Figure 311. Audio sampling frequency definition . 903
Figure 312. I2S clock generator architecture . 903
Figure 313. USB peripheral block diagram . 922
Figure 314. Packet buffer areas with examples of buffer description table locations 926
Figure 315. Block diagram of STM32L0x3 MCU and Cortex®-M0+-level debug support 954

Documentation conventions RM0367

52/1040 RM0367 Rev 8

1 Documentation conventions

1.1 General information

The STM32L0x3 devices have an Arm®(a) Cortex®-M0+ core.

1.2 List of abbreviations for registers

The following abbreviations(b) are used in register descriptions:

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

b. This is an exhaustive list of all abbreviations applicable to STMicroelectronics microcontrollers, some of
them may not be used in the current document.

read/write (rw) Software can read and write to this bit.

read-only (r) Software can only read this bit.

write-only (w) Software can only write to this bit. Reading this bit returns the reset value.

read/clear write0 (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no
effect on the bit value.

read/clear write1 (rc_w1) Software can read as well as clear this bit by writing 1. Writing 0 has no
effect on the bit value.

read/clear write (rc_w) Software can read as well as clear this bit by writing to the register. The
value written to this bit is not important.

read/clear by read (rc_r) Software can read this bit. Reading this bit automatically clears it to 0.
Writing this bit has no effect on the bit value.

read/set by read (rs_r) Software can read this bit. Reading this bit automatically sets it to 1.
Writing this bit has no effect on the bit value.

read/set (rs) Software can read as well as set this bit. Writing 0 has no effect on the bit
value.

read/write once (rwo) Software can only write once to this bit and can also read it at any time.
Only a reset can return the bit to its reset value.

toggle (t) The software can toggle this bit by writing 1. Writing 0 has no effect.

read-only write trigger (rt_w1) Software can read this bit. Writing 1 triggers an event but has no effect on
the bit value.

Reserved (Res.) Reserved bit, must be kept at reset value.

RM0367 Rev 8 53/1040

RM0367 Documentation conventions

55

1.3 Glossary

This section gives a brief definition of acronyms and abbreviations used in this document:

• Sector: 32 pages write protection granularity in the Code area

• Page: 32 words for Code and System Memory areas, 1 word for Data, Factory Option
and User Option areas

• Word: data of 32-bit length.

• Half-word: data of 16-bit length.

• Byte: data of 8-bit length.

• IAP (in-application programming): IAP is the ability to re-program the Flash memory
of a microcontroller while the user program is running.

• ICP (in-circuit programming): ICP is the ability to program the Flash memory of a
microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the
device is mounted on the user application board.

• Option bytes: product configuration bits stored in the Flash memory.

• OBL: option byte loader.

• AHB: advanced high-performance bus.

• NVM: non-volatile memory.

• ECC: error code correction.

• DMA: direct memory access.

• MIF: NVM interface.

• PCROP: proprietary code readout protection.

1.4 Availability of peripherals

For availability of peripherals and their number across all sales types, refer to the particular
device datasheet.

1.5 Product category definition

Table 1 gives an overview of memory density versus product line.

The present reference manual describes the superset of features for each product line,
Refer to Table 2 for the list of features per category.

Documentation conventions RM0367

54/1040 RM0367 Rev 8

Table 1. STM32L0x3 memory density

Memory density Category 3 Category 5

16 Kbytes - -

32 Kbytes
STM32L053x

STM32L063x (AES)
-

64 Kbytes
STM32L053x

STM32L063x (AES)

STM32L073x

STM32L083x (AES)

128 Kbytes -
STM32L073x

STM32L083x (AES)

192 Kbytes -
STM32L073x

STM32L083x (AES)

Table 2. Overview of features per category

Feature Category 3 Category 5

MPU full-featured full-featured

NVM
full-featured,
single bank

full-featured

Cyclic redundancy check calculation unit (CRC) full-featured full-featured

Firewall (FW) full-featured full-featured

Power control (PWR) full-featured full-featured

Reset and clock control (RCC) full-featured full-featured

Clock recovery system (CRS) full-featured full-featured

GPIOA full-featured full-featured

GPIOB full-featured full-featured

GPIOC full-featured full-featured

GPIOD [2] full-featured

GPIOE - full-featured

GPIOH [0:1] [0:1][9:10]

System configuration controller (SYSCFG) full-featured full-featured

Direct memory access controller (DMA1) full-featured full-featured

Nested vectored interrupt controller (NVIC) full-featured full-featured

Extended interrupt and event controller (EXTI) full-featured full-featured

Analog-to-digital converter (ADC1) full-featured full-featured

Digital-to-analog converter (DAC1) full-featured full-featured

Digital-to-analog converter (DAC2) - full-featured

Comparator (COMP1) full-featured full-featured

Comparator (COMP2) full-featured full-featured

RM0367 Rev 8 55/1040

RM0367 Documentation conventions

55

Liquid crystal display controller (LCD) 8x28 or 4x32 8x48 or 4x52

Touch sensing controller (TSC1) full-featured full-featured

Advanced encryption standard hardware accelerator (AES) full-featured full-featured

Random number generator (RNG) full-featured full-featured

General-purpose timers (TIM2) full-featured full-featured

General-purpose timers (TIM3) - full-featured

General-purpose timers (TIM21) full-featured full-featured

General-purpose timers (TIM22) full-featured full-featured

Basic timers (TIM6) full-featured full-featured

Basic timers (TIM7) - full-featured

Low power timer (LPTIM1) full-featured full-featured

Independent watchdog (IWDG) full-featured full-featured

System window watchdog (WWDG) full-featured full-featured

Real-time clock (RTC) full-featured full-featured

Inter-integrated circuit (I2C1) interface full-featured full-featured

Inter-integrated circuit (I2C2) interface full-featured full-featured

Inter-integrated circuit (I2C3) interface - full-featured

Universal synchronous asynchronous receiver transmitter
(USART1)

full-featured full-featured

Universal synchronous asynchronous receiver transmitter
(USART2)

full-featured full-featured

Universal synchronous asynchronous receiver transmitter
(USART4)

- full-featured

Universal synchronous asynchronous receiver transmitter
(USART5)

- full-featured

Low-power universal asynchronous receiver transmitter
(LPUART1)

full-featured full-featured

Serial peripheral interface(SPI1) full-featured full-featured

Serial peripheral interface/ inter-IC sound (SPI2/I2S2) full-featured full-featured

Universal serial bus full-featured-speed device interface
(USB)

full-featured full-featured

Debug support (DBG) full-featured full-featured

Device electronic signature full-featured full-featured

Table 2. Overview of features per category (continued)

Feature Category 3 Category 5

System and memory overview RM0367

56/1040 RM0367 Rev 8

2 System and memory overview

2.1 System architecture

The main system consists of:

• Two masters:

– Cortex®-M0+ core (AHB-lite bus)

– GP-DMA (general-purpose DMA)

• Three slaves:

– Internal SRAM

– Internal Non-volatile memory

– AHB to APB, which connects all the APB peripherals

These are interconnected using a multilayer AHB bus architecture as shown in Figure 1:

Figure 1. System architecture

1. Refer to Table 1: STM32L0x3 memory density, to Table 2: Overview of features per category and to the device datasheets
for the GPIO ports and peripherals available on your device.

MS32790V2

Busmatrix

APB buses

MIF
Memory interface

SRAM

AHB2APB
Bridges

Cortex
M0+

DMA
Controller
(Channels

1 to 7)

System bus

DMA

AES

A
H

B
 b

us

Reset and
clock

controller
(RCC)

Touch
sensing

controller
(TSC)

CRC

DMA request

GPIO ports
A,B,C,D,E,H

NVM memory

RNG

SYSCFG
FIREWALL

PWR
CRS
EXTI
ADC
DAC

COMP1/2
TIM2/3/6/7/21/22

LPTIM1
IWDG

WWDG
RTC

DBGMCU
I2C1/2/3

USART1/2/3/4/LPUART1
SPI1/2

USB SRAM
USB FS

LCD

IOPORT

RM0367 Rev 8 57/1040

RM0367 System and memory overview

57

2.1.1 S0: Cortex®-bus

This bus connects the DCode/ICode bus of the Cortex®-M0+ core to the BusMatrix. This
bus is used by the core to fetch instructions, get data and access the AHB/APB resources.

2.1.2 S1: DMA-bus

This bus connects the AHB master interface of the DMA to the BusMatrix which manages
the access of the different masters to Flash memory and data EEPROM, the SRAM and the
AHB/APB peripherals.

2.1.3 BusMatrix

The BusMatrix manages the access arbitration between masters. The arbitration uses a
Round Robin algorithm. The BusMatrix is composed of two masters (CPU, DMA) and three
slaves (NVM interface, SRAM, AHB2APB1/2 bridges).

AHB/APB bridges

The AHB/APB bridge provide full synchronous connections between the AHB and the 2
APB buses. APB1 and APB2 operate at a maximum frequency of 32 MHz.

Refer to Section 2.2.2: Memory map and register boundary addresses on page 59 for the
address mapping of the peripherals connected to this bridge.

After each device reset, all peripheral clocks are disabled (except for the SRAM and MIF).
Before using a peripheral you have to enable its clock in the RCC_AHBENR,
RCC_APB2ENR, RCC_APB1ENR or RCC_IOPENR register.

Note: When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

RM0367

58/1040 RM0367 Rev 8

2.2 Memory organization

2.2.1 Introduction

Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.

The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte the most
significant.

The addressable memory space is divided into eight main blocks, of 512 Mbytes each.

RM0367 Rev 8 59/1040

RM0367

65

2.2.2 Memory map and register boundary addresses

Figure 2. Memory map

All the memory map areas that are not allocated to on-chip memories and peripherals are
considered “Reserved”. For the detailed mapping of available memory and register areas,
refer to the following table.

MS34761V2

Reserved

IOPORT

0

1

2

3

4

5

6

7
0xFFFF FFFF

Peripherals

SRAM

Flash system
memory

reserved

System
memory

Option bytes

0xE010 0000

Flash, system
memory or

SRAM,
depending on

BOOT
configuration

0x0000 0000

0xE000 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x6000 0000

0x4000 0000

0x2000 0000

0x0000 0000

0x0800 0000

0x1FFF FFFF

reserved
CODE

APB1

APB2

reserved

0x4000 0000

0x4000 8000

0x4001 0000

0x4001 8000

reserved

0x4002 0000
AHB

0x5000 0000

reserved

0x5000 1FFF

0x4002 63FF

Cortex-M0+
peripherals

RM0367

60/1040 RM0367 Rev 8

The following table gives the boundary addresses of the peripherals available in the
devices.

Table 3. STM32L0x3 peripheral register boundary addresses(1)

Bus Boundary address Size (bytes) Peripheral Peripheral register map

IOPORT

0X5000 1C00 - 0X5000 1FFF 1K GPIOH
Section 9.4.12: GPIO register

map

0X5000 1400 - 0X5000 1BFF 2 K Reserved -

0X5000 1000 - 0X5000 13FF 1K GPIOE
Section 9.4.12: GPIO register

map

0X5000 0C00 - 0X5000 0FFF 1K GPIOD
Section 9.4.12: GPIO register

map

0X5000 0800 - 0X5000 0BFF 1K GPIO C
Section 9.4.12: GPIO register

map

0X5000 0400 - 0X5000 07FF 1K GPIOB
Section 9.4.12: GPIO register

map

0X5000 0000 - 0X5000 03FF 1K GPIOA
Section 9.4.12: GPIO register

map

AHB

0X4002 6400 - 0X4002 FFFF 49 K Reserved -

0X4002 6000 - 0X4002 63FF 1 K
AES (Cat 3 and

5 with AES
only)

Section 19.7.13: AES register
map

0X4002 5400 - 0X4002 5FFF 3 K Reserved -

0X4002 5000 - 0X4002 53FF 1 K RNG
Section 20.7.4: RNG register

map

0X4002 4400 - 0X4002 4FFF 3 K Reserved -

0X4002 4000 - 0X4002 43FF 1 K TSC
Section 18.6.11: TSC register

map

0X4002 3400 - 0X4002 3FFF 3 K Reserved -

0X4002 3000 - 0X4002 33FF 1 K CRC Section 4.4.6: CRC register map

0X4002 2400 - 0X4002 2FFF 3 K Reserved -

0X4002 2000 - 0X4002 23FF 1 K FLASH
Section 3.7.11: Flash register

map

0X4002 1400 - 0X4002 1FFF 3 K Reserved -

0X4002 1000 - 0X4002 13FF 1 K RCC
Section 7.3.22: RCC register

map

0X4002 0400 - 0X4002 0FFF 3 K Reserved -

0X4002 0000 - 0X4002 03FF 1 K DMA1
Section 11.6.8: DMA register

map

RM0367 Rev 8 61/1040

RM0367

65

APB2

0X4001 5C00 - 0X4001 FFFF 42 K Reserved -

0X4001 5800 - 0X4001 5BFF 1 K DBG
Section 33.10: DBG register

map

0X4001 3C00 - 0X4001 57FF 7 K Reserved -

0X4001 3800 - 0X4001 3BFF 1 K USART1
Section 29.8.12: USART

register map

0X4001 3400 - 0X4001 37FF 1 K Reserved -

0X4001 3000 - 0X4001 33FF 1 K SPI1
Section 31.7.10: SPI register

map

0X4001 2800 - 0X4001 2FFF 2 K Reserved -

0X4001 2400 - 0X4001 27FF 1 K ADC1
Section 14.13: ADC register

map

0X4001 2000 - 0X4001 23FF 1 K Reserved -

0X4001 1C00 - 0X4001 1FFF 1 K Firewall
Section 5.4.8: Firewall register

map

0X4001 1800 - 0X4001 1BFF 1 K Reserved -

0X4001 1400 - 0X4001 17FF 1 K TIM22
Section 22.4.16: TIM21/22

register map

0X4001 0C000 - 0X4001 13FF 2 K Reserved -

0X4001 0800 - 0X4001 0BFF 1 K TIM21
Section 22.4.16: TIM21/22

register map

0X4001 0400 - 0X4001 07FF 1 K EXTI
Section 13.5.7: EXTI register

map

0X4001 0000 - 0X4001 03FF 1 K
SYSCFG,

COMP

Section 10.2.8: SYSCFG
register map, Section 16.5.3:

COMP register map

Table 3. STM32L0x3 peripheral register boundary addresses(1) (continued)

Bus Boundary address Size (bytes) Peripheral Peripheral register map

RM0367

62/1040 RM0367 Rev 8

APB1

0X4000 8000 - 0X4000 FFFF 32 K Reserved -

0X4000 7C00 - 0X4000 7FFF 1 K LPTIM1
Section 24.7.9: LPTIM register

map

0X4000 7800 - 0X4000 7BFF 1K I2C3
Section 28.7.12: I2C register

map

0X4000 7400 - 0X4000 77FF 1 K DAC1/2
Section 15.10.15: DAC register

map

0X4000 7000 - 0X4000 73FF 1 K PWR
Section 6.4.3: PWR register

map

0X4000 6C00 - 0X4000 6FFF 1 K CRS Section 8.7.5: CRS register map

0X4000 6800 - 0X4000 6BFF 1 K Reserved -

0X4000 6000 - 0X4000 67FF 2 K
USB (SRAM
512x16bit)

-

0X4000 5C00 - 0X4000 5FFF 1 K USB FS
Section 32.6.3: USB register

map

Table 3. STM32L0x3 peripheral register boundary addresses(1) (continued)

Bus Boundary address Size (bytes) Peripheral Peripheral register map

RM0367 Rev 8 63/1040

RM0367

65

APB1

0X4000 5800 - 0X4000 5BFF 1 K I2C2
Section 28.7.12: I2C register

map

0X4000 5400 - 0X4000 57FF 1 K I2C1
Section 28.7.12: I2C register

map

0X4000 5000 - 0X4000 53FF 1 K USART5
Section 29.8.12: USART

register map

0X4000 4C00 - 0X4000 4FFF 1 K USART4
Section 29.8.12: USART

register map

0X4000 4800 - 0X4000 4BFF 1 K LPUART1
Section 30.7.10: LPUART

register map

0X4000 4400 - 0X4000 47FF 1 K USART2
Section 29.8.12: USART

register map

0X4000 3C000 - 0X4000 43FF 2 K Reserved -

0X4000 3800 - 0X4000 3BFF 1 K SPI2
Section 31.7.10: SPI register

map

0X4000 3400 - 0X4000 37FF 1 K Reserved -

0X4000 3000 - 0X4000 33FF 1 K IWDG
Section 25.4.6: IWDG register

map

0X4000 2C00 - 0X4000 2FFF 1 K WWDG
Section 26.5.4: WWDG register

map

0X4000 2800 - 0X4000 2BFF 1 K
RTC +

BKP_REG
Section 27.7.21: RTC register

map

0X4000 2400 - 0X4000 27FF 1 K LCD
Section 17.7.6: LCD register

map

0X4000 1800 - 0X4000 23FF 3 K Reserved -

0X4000 1400 - 0X4000 17FF 1 K TIMER7
Section 23.4.9: TIM6/7 register

map

0X4000 1000 - 0X4000 13FF 1 K TIMER6
Section 23.4.9: TIM6/7 register

map

0X4000 0800 - 0X4000 0FFF 1 K Reserved -

0X4000 0400 - 0X4000 07FF 1 K TIMER3 Section 21.5: TIMx register map

0X4000 0000 - 0X4000 03FF 1 K TIMER2 Section 21.5: TIMx register map

SRAM
0X2000 2000 - 0X3FFF FFFF ~524 M Reserved -

0X2000 0000 - 0X2000 4FFF up to 20 K SRAM -

Table 3. STM32L0x3 peripheral register boundary addresses(1) (continued)

Bus Boundary address Size (bytes) Peripheral Peripheral register map

RM0367

64/1040 RM0367 Rev 8

2.3 Embedded SRAM

STM32L0x3 devices feature up to 20 Kbytes of static SRAM.

This RAM can be accessed as bytes, half-words (16 bits) or full words (32 bits). This
memory can be addressed at maximum system clock frequency without wait state and thus
by both CPU and DMA.

The SRAM start address is 0x2000 0000.

The CPU can access the SRAM from address 0x0000 0000 when physical remap is
selected through boot pin or MEM_MODE (see Section 10.2.1: SYSCFG memory remap
register (SYSCFG_CFGR1)).

2.4 Boot configuration

In the STM32L0x3, three different boot modes can be selected through the BOOT0 pin and
boot configuration bits in the User option byte, as shown in the following table.

NVM

0X0800 0000 - 0X0802 FFFF up to 192 K
Flash program

memory
-

0x0808 0000 - 0x0808 17FF up to 6 K Data EEPROM -

0x1FF0 0000 - 0x1FF0 1FFF 8 K
System
memory

-

0x1FF8 0020 - 0x1FF8 007F 96
Factory option

bytes
-

0x1FF8 0000 - 0x1FF8 001F 32
User option

bytes
-

1. Refer to Table 1: STM32L0x3 memory density, to Table 2: Overview of features per category and to the device datasheets
for the GPIO ports and peripherals available on your device. The memory area corresponding to unavailable GPIO ports or
peripherals are reserved.

Table 3. STM32L0x3 peripheral register boundary addresses(1) (continued)

Bus Boundary address Size (bytes) Peripheral Peripheral register map

Table 4. Boot modes(1)

1. BOOT1 value is the opposite of nBOOT1 option bit.

Boot mode selection
Boot mode Aliasing

BOOT1 pin BOOT0 pin

X 0
Flash program

memory
Flash program memory is selected as boot area

0 1 System memory System memory is selected as boot area

1 1 Embedded SRAM Embedded SRAM is selected as boot area

RM0367 Rev 8 65/1040

RM0367

65

The boot mode configuration is latched on the 4th rising edge of SYSCLK after reset. It is up
to the user to set nBOOT1 and BOOT0 to select the required boot mode.

The boot mode configuration is also re-sampled when exiting from Standby mode.
Consequently the boot mode configuration must not be modified in Standby mode. After this
startup delay has elapsed, the CPU fetches the top-of-stack value from address
0x0000 0000, then starts code execution from the boot memory at 0x0000 0004.

Depending on the selected boot mode, Flash program memory, system memory or SRAM is
accessible as follows:

• Boot from Flash program memory: the Flash program memory is aliased in the boot
memory space (0x0000 0000), but still accessible from its original memory space
(0x0800 0000). In other words, the Flash memory contents can be accessed starting
from address 0x0000 0000 or 0x0800 0000.

• Boot from system memory: the system memory is aliased in the boot memory space
(0x0000 0000), but still accessible from its original memory space (0x1FF0 0000).

• Boot from the embedded SRAM: the SRAM is aliased in the boot memory space
(0x0000 0000), but it is still accessible from its original memory space (0x2000 0000).

Bank swapping (category 5 devices only)

For devices featuring two banks, the bank swapping mechanism allows the CPU to point
either to bank1 or to bank 2 in the boot memory space (0x0000 0000). Either Flash program
and data EEPROM address are changed (see Table 8: NVM organization for UFB = 0
(128 Kbyte category 5 devices), Table 10: NVM organization for UFB = 0 (64 Kbyte category
5 devices)).

Physical remap

Once the boot pin and bit are selected, the application software can modify the memory
accessible in the code area. This modification is performed by programming the
MEM_MODE bits in the SYSCFG memory remap register (SYSCFG_CFGR1).

Embedded bootloader

The embedded bootloader is located in the System memory, programmed by ST during
production. It is used to reprogram the Flash memory using one of the following serial
interfaces:

• For category 3 devices: USART1, USART2, SPI1 or SPI2

• For category 5 devices with USB interface: USART1, USART2 or USB.

• For category 5 devices without USB interface: USART1, USART2, SPI1, SPI2, I2C1 or
I2C2.

For details concerning the bootloader serial interface corresponding I/O, refer to your device
datasheet.

For further details on STM32 bootloader, please refer to AN2606.

Flash program memory and data EEPROM (FLASH) RM0367

66/1040 RM0367 Rev 8

3 Flash program memory and data EEPROM (FLASH)

3.1 Introduction

The non-volatile memory (NVM) is composed of:

• Up to 192 Kbytes of Flash program memory. This area is used to store the application
code.

• Up to 6 Kbytes of data EEPROM

• An information block:

– Up to 8 Kbytes of System memory

– Up to 8x4 bytes of user Option bytes

– Up to 96 bytes of factory Option bytes

3.2 NVM main features

The NVM interface features:

• Read interface organized by word, half-word or byte in every area

• Programming in the Flash memory performed by word or half-page

• Programming in the Option bytes area performed by word

• Programming in the data EEPROM performed by word, half-word or byte (granularity of
the data EEPROM is one word, erase/write endurance cycles are linked to one word
granularity)

• Erase operation performed by page (in Flash memory, data EEPROM and Option
bytes)

• Option byte Loader

• ECC (Error Correction Code): 6 bits stored for every word to recognize and correct just
one error

• Mass erase operation

• Read / Write protection

• PCROP protection

• Low-power mode

• Category 5 devices only:

– Dual-bank memory with read-while-write

– Dual-bank boot capability allowing to boot either from Bank 1 or Bank 2 at startup

– Bank swapping capability.

RM0367 Rev 8 67/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.3 NVM functional description

3.3.1 NVM organization

The NVM is organized as 32-bit memory cells that can be used to store code, data, boot
code or Option bytes.

The memory array is divided into pages. A page is composed of 32 words (or 128 bytes) in
Flash program memory and System memory, and 1 single word (or 4 bytes) in data
EEPROM and Option bytes areas (user and factory). The erase/write endurance cycles are
linked to one page granularity for Flash program memory and one single word granularity for
data EEPROM.

A Flash sector is made of 32 pages (or 4 Kbytes). The sector is the granularity of the write
protection.

Table 5. NVM organization (category 3 devices)

NVM NVM addresses
Size

(bytes)
Name Description

 Flash program
memory(1)

0x0800 0000 - 0x0800 007F 128 bytes Page 0

sector 0
0x0800 0080 - 0x0800 00FF 128 bytes Page 1

- - -

0x0800 0F80 - 0x0800 0FFF 128 bytes Page 31

.

.

.

.

.

.

.

.

.

.

.

.

0x0800 7000 - 0x0800 707F 128 bytes Page 224

sector 7
0x0800 7080 - 0x0800 70FF 128 bytes Page 225

- - -

0x0800 7F80 - 0x0800 7FFF 128 bytes Page 255

.

.

.

.

.

.

.

.

.

.

.

.

0x0800 F000 - 0x0800 F07F 128 bytes Page 480

sector 15
0x0800 F080 - 0x0800 F0FF 128 bytes Page 481

- - -

0x0800 FF80 - 0x0800 FFFF 128 bytes Page 511

Data EEPROM 0x0808 0000 - 0x0808 07FF 2 Kbytes - Data EEPROM

Information block

0x1FF0 0000 - 0x1FF0 0FFF 4 Kbytes - System memory

0x1FF8 0020 - 0x1FF8 007F 96 bytes - Factory Options

0x1FF8 0000 - 0x1FF8 001F 32 bytes - User Option bytes

1. For 32 Kbyte category 3 devices, the Flash program memory is divided into 256 pages of 128 bytes each.

Flash program memory and data EEPROM (FLASH) RM0367

68/1040 RM0367 Rev 8

Table 6. NVM organization for UFB = 0 (192 Kbyte category 5 devices)

NVM NVM addresses
Size

(bytes)
Name Description

 Flash program
memory

0x0800 0000 - 0x0800 007F 128 bytes Page 0

sector 0

Bank 1

0x0800 0080 - 0x0800 00FF 128 bytes Page 1

- - -

0x0800 0F80 - 0x0800 0FFF 128 bytes Page 31

.

.

.

.

.

.

.

.

.

.

.

.

0x0800 7000 - 0x0800 707F 128 bytes Page 224

sector 7
0x0800 7080 - 0x0800 70FF 128 bytes Page 225

- - -

0x0800 7F80 - 0x0800 7FFF 128 bytes Page 255

.

.

.

.

.

.

.

.

.

.

.

.

- - -

0x0801 7F80- 0x0801 7FFF 128 bytes Page 767 sector 23

0x0801 8000 - 0x0801 807F 128 bytes Page 768 sector 24

Bank 2

.

.

.

.

.

.

.

.

.

.

.

.

0x0802 F000 - 0x0802 F07F 128 bytes Page 1504

sector 47
0x0802 F080 - 0x0802 F0FF 128 bytes Page 1505

- - -

0x0802 FF80 - 0x0802 FFFF 128 bytes Page 1535

Data EEPROM
0x0808 0000 - 0x0808 0BFF

6 Kbytes
- Data EEPROM Bank 1

0x0808 0C00 - 0x0808 17FF - Data EEPROM Bank 2

Information block

0x1FF0 0000 - 0x1FF0 1FFF 8 Kbytes - System memory

0x1FF8 0020 - 0x1FF8 007F 96 bytes - Factory Options

0x1FF8 0000 - 0x1FF8 001F 32 bytes - User Option bytes

RM0367 Rev 8 69/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Table 7. Flash memory and data EEPROM remapping
(192 Kbyte category 5 devices)

NVM Description

NVM addresses Remapped addresses

MEM_MODE = 0,
BOOT0= 0 and

UFB = 0

MEM_MODE = 0,
BOOT0= 0 and

UFB = 1

MEM_MODE = 0,
BOOT0= 0 and

UFB = 0

MEM_MODE = 0,
BOOT0= 0 and

UFB = 1

 Flash
program
memory

Bank 1
0x0800 0000 -
0x0801 7FFF

0x0801 8000 -
0x0802 FFFF

0x0000 0000 -
0x0001 7FFF

0x0001 8000 -
0x0002 FFFF

Bank 2
0x0801 8000 -
0x0802 FFFF

0x08000 0000 -
0x0801 7FFF

0x0001 8000 -
0x0002 FFFF

0x0000 0000 -
0x0001 7FFF

Data
EEPROM

Bank 1
0x0808 0000 -
0x0808 0BFF

0x0808 0C00 -
0x0808 17FF

0x0008 0000 -
0x0008 0BFF

0x0008 0C00 -
0x0008 17FF

Bank 2
0x0808 0C00 -
0x0808 17FF

0x0808 0000 -
0x0008 0BFF

0x0008 0C00 -
0x0008 17FF

0x0008 0000 -
0x0008 0BFF

Table 8. NVM organization for UFB = 0 (128 Kbyte category 5 devices)

NVM NVM addresses Size (bytes) Name Description

 Flash program
memory

0x0800 0000 - 0x0800 007F 128 bytes Page 0

sector 0

Bank 1

0x0800 0080 - 0x0800 00FF 128 bytes Page 1

- - -

0x0800 0F80 - 0x0800 0FFF 128 bytes Page 31

.

.

.

.

.

.

.

.

.

.

.

.

0x0800 7000 - 0x0800 707F 128 bytes Page 224

sector 7
0x0800 7080 - 0x0800 70FF 128 bytes Page 225

- - -

0x0800 7F80 - 0x0800 7FFF 128 bytes Page 255

.

.

.

.

.

.

.

.

.

.

.

.

0x0800 FF80- 0x0800 FFFF 128 bytes Page 511 sector 15

0x0801 0000 - 0x0801 007F 128 bytes Page 512 sector 16

Bank 2

.

.

.

.

.

.

.

.

.

.

.

.

0x0801 F000 - 0x0801 F07F Page 992

sector 31
- - -

0x0801 FF80 - 0x0801 FFFF 128 bytes Page 1023

Data EEPROM
0x0808 0000 - 0x0808 0BFF

6 Kbytes
- Data EEPROM Bank 1

0x0808 0C00 - 0x0808 17FF - Data EEPROM Bank 2

Flash program memory and data EEPROM (FLASH) RM0367

70/1040 RM0367 Rev 8

Information block

0x1FF0 0000 - 0x1FF0 1FFF 8 Kbytes - System memory

0x1FF8 0020 - 0x1FF8 007F 96 bytes - Factory Options

0x1FF8 0000 - 0x1FF8 001F 32 bytes User Option bytes

Table 8. NVM organization for UFB = 0 (128 Kbyte category 5 devices) (continued)

NVM NVM addresses Size (bytes) Name Description

Table 9. Flash memory and data EEPROM remapping (128 Kbyte category 5 devices)

NVM Description

NVM addresses Remapped addresses

MEM_MODE = 0,
BOOT0= 0 and

UFB = 0

MEM_MODE = 0,
BOOT0= 0 and

UFB = 1

MEM_MODE = 0,
BOOT0= 0 and

UFB = 0

MEM_MODE = 0,
BOOT0= 0 and

UFB = 1

 Flash program
memory

Bank 1
0x0800 0000 -
0x0800 FFFF

0x0801 0000 -
0x0801 FFFF

0x0000 0000 -
0x0000 FFFF

0x0001 0000 -
0x0001 FFFF

Bank 2
0x0801 0000 -
0x0801 FFFF

0x0800 0000 -
0x0800 FFFF

0x0001 0000 -
0x0001 FFFF

0x0000 0000 -
0x0000 FFFF

Data EEPROM

Bank 1
0x0808 0000 -
0x0808 0BFF

0x0808 0C00 -
0x0808 17FF

0x0008 0000 -
0x0008 0BFF

0x0008 0C00 -
0x0008 17FF

Bank 2
0x0808 0C00 -
0x0808 17FF

0x0808 0000 -
0x0808 0BFF

0x0008 0C00 -
0x0008 17FF

0x0008 0000 -
0x0008 0BFF

Table 10. NVM organization for UFB = 0 (64 Kbyte category 5 devices)(1)

NVM NVM addresses Size (bytes) Name Description

 Flash program
memory

0x0800 0000 - 0x0800 007F 128 bytes Page 0

sector 0

Bank 1

0x0800 0080 - 0x0800 00FF 128 bytes Page 1

- - -

0x0800 0F80 - 0x0800 0FFF 128 bytes Page 31

.

.

.

.

.

.

.

.

.

.

.

.

0x0800 F000 - 0x0800 F07F 128 bytes Page 480

sector 15
- - -

- - -

0x0800 FF80 - 0x0800 FFFF 128 bytes Page 511

Data EEPROM 0x0808 0C00 - 0x0808 17FF 3 Kbytes - Data EEPROM Bank 2

Information block

0x1FF0 0000 - 0x1FF0 1FFF 8 Kbytes - System memory

0x1FF8 0020 - 0x1FF8 007F 96 bytes - Factory Options

0x1FF8 0000 - 0x1FF8 001F 32 bytes User Option bytes

1. Flash memory and data EEPROM remapping is not possible on 64 Kbyte category 5 devices.

RM0367 Rev 8 71/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.3.2 Dual-bank boot capability

Category 5 devices have two Flash memory banks: Bank 1 and Bank 2. They feature an
additional boot mechanism which allows booting either from Bank 2 or from Bank 1
depending on BFB2 bit status (bit 23 in FLASH_OPTR register).

• When the BFB2 bit is set and the boot pins are configured to boot from Flash memory
(BOOT0 = 0 and BOOT1 = x), the device maps the System memory at address 0. It
boots from the System memory after reset and Standby and executes (during
approximately 440 µs) the embedded bootloader code which implements the dual-
bank boot mechanism:

a) The System memory code first checks Bank 2. If it contains a valid code (see note
below), it sets the UFB bit in SYSCFG_CFGR1 register to map Bank 2 at address
0x0800 0000, jumps to the application code located in Bank 2, and leaves the
bootloader.

b) If the code located in Bank 2 is not valid, the System memory code checks Bank 1
code. If it is valid (see note below), it jumps to the application located in Bank 1
(UFB is kept at ‘0’ so that Bank 1 remains mapped at address 0x0800 0000).

c) If both Bank 2 and Bank 1 do not contain valid code (see note below), the normal
bootloader operations are executed when the protection level2 is disabled.
Otherwise, the System memory code jumps to Bank 1 regardless of its validity.
Refer to Table 11 for more details.

• When BFB2 bit is reset (default state), the dual-bank boot mechanism is not performed.

Note: The code is considered as valid when the first data located at the bank start address (which
should be the stack pointer) points to a valid address (stack top address).

For category 5 devices, the Flash memory Bank 1 and Bank 2, System memory or SRAM
can be selected as the boot area, as shown in Table 11 below.

Table 11. Boot pin and BFB2 bit configuration

Protection
level

BFB2
bit

Boot mode
selection

Boot mode AliasingnBOOT1
option

bit

BOOT0
pin

0 or 1

0

X 0 User Flash memory
User Flash memory Bank1 is selected as the
boot area.

1 1 System memory Boot on System memory to execute bootloader.

0 1 Embedded SRAM Boot on Embedded SRAM

1

X 0 System memory
Boot on System memory to execute dual bank
boot mechanism. If Bank 2 and Bank 1are not
valid, bootloader is executed for Flash update.

1 1 System memory Boot on System memory to execute bootloader.

0 1 Embedded SRAM Boot on Embedded SRAM.

Flash program memory and data EEPROM (FLASH) RM0367

72/1040 RM0367 Rev 8

When entering System memory, you can either execute the bootloader (for Flash update) or
execute Dual Bank Jump (see Table 11).

When protection level2 is enabled, the bootloader is never executed to perform a Flash
update.

When the conditions a, b, and c described below are fulfilled, it is equivalent to configuring
boot pins for System memory boot (BOOT0 = 1 and BOOT1 = 0). In this case when
protection level2 is disabled, normal bootloader operations are executed.

a) BFB2 bit is set.

b) Both banks do not contain valid code.

c) Boot pins configured as follows: BOOT0 = 0 and BOOT1 = x.

When the BFB2 bit is set, and Bank 2 and/or Bank 1 contain valid user application code, the
Dual Bank Boot is always performed (bootloader always jumps to the user code).

Consequently, if you have set the BFB2 bit (to boot from Bank 2) then, to be able to execute
the bootloader code for Flash update when protection level2 is disabled, you have to:

a) Set the BFB2 bit to 0, BOOT0 = 1 and BOOT1 = 0 or,

b) Program the content of address 0x0801 8000/0x0801 0000 (base address of
Bank2) and 0x0800 0000 (base address of Bank1) to 0x0.

3.3.3 Reading the NVM

Protocol to read

To read the NVM content, take any address from Section 3.3.1: NVM organization. The
clock of the memory interface must be running. (see MIFEN bit in Section 7.3.13: AHB
peripheral clock enable register (RCC_AHBENR)).

Depending on the clock frequency, a 0 or a 1 wait state can be necessary to read the NVM.

The user must set the correct number of wait states (LATENCY bit in the FLASH_ACR
register). No control is done to verify if the frequency or the power used is correct, with
respect to the number of wait states. A wrong number of wait states can generate wrong
read values (high frequency and 0 wait states) or a long time to execute a code (low
frequency with 1 wait state).

2

0

X 0 User Flash memory
User Flash memory Bank1 is selected as the
boot area.

1 1 User Flash memory

0 1 User Flash memory

1

X 0 System memory
Boot on System memory to execute dual bank
boot mechanism. If Bank 2 isn’t valid, it jumps to
Bank 1.

1 1 System memory

0 1 System memory

Table 11. Boot pin and BFB2 bit configuration (continued)

Protection
level

BFB2
bit

Boot mode
selection

Boot mode AliasingnBOOT1
option

bit

BOOT0
pin

RM0367 Rev 8 73/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

You can read the NVM by word (4 bytes), half-word (2 bytes) or byte.

When the NVM features only one bank, it is not possible to read the NVM during a
write/erase operation. If a write/erase operation is ongoing, the reading will be in a wait state
until the write/erase operation completes, stalling the master that requested the read
operation, except when the address is read-protected. In this case, the error is sent to the
master by a hard fault or a memory interface flag; no stall is generated and no read is
waiting.

When two banks are available (category 5 devices), read operations from one bank can be
performed while write or erase operations are performed on the other bank.

Relation between CPU frequency/Operation mode/NVM read time

The device (and the NVM) can work at different power ranges. For every range, some
master clock frequencies can be set. Table 12 resumes the link between the power range
and the frequencies to ensure a correct time access to the NVM.

Table 13 shows the delays to read a word in the NVM. Comparing the complete time to read
a word (Ttotal) with the clock period, you can see that in Range 3 no wait state is necessary,
also with the maximum frequency (4.2 MHz) allowed by the device. Ttotal is the time that the
NVM needs to return a value, and not the complete time to read it (from memory to Core
through the memory interface); all remaining time is lost.

Table 12. Link between master clock power range and frequencies

Name Power range
Maximum frequency

(with 1 wait state)
Maximum frequency
(without wait states)

Range 1 1.65 V - 1.95 V 32 MHz 16 MHz

Range 2 1.35 V - 1.65 V 16 MHz 8 MHz

Range 3 1.05 V - 1.35 V 4.2 MHz 4.2 MHz

Table 13. Delays to memory access and number of wait states

Name Ttotal Frequency Period
Number of wait
state required

Range 1 46.1 ns
32 MHz 31.25 1

16 MHz 62.5 0

Range 2 86.8 ns
16 MHz 62.5 1

8 MHz 125 0

Range 3 184.6 ns
 4 MHz 250 0

2 MHz 500 0

Flash program memory and data EEPROM (FLASH) RM0367

74/1040 RM0367 Rev 8

Change the CPU Frequency

After reset, the clock used is the MSI (2.1 MHz) and 0 wait state is configured in the
FLASH_ACR register. The following software sequences have to be respected to tune the
number of wait states needed to access the NVM with the CPU frequency.

A CPU clock or a number of wait state configuration changes may take some time before
being effective. Checking the AHB prescaler factor and the clock source status values is a
way to ensure that the correct CPU clock frequency is the configured one. Similarly, the read
of FLASH_ACR is a way to ensure that the number of programmed wait states is effective.

Increasing the CPU frequency (in the same voltage range)

1. Program 1 wait state in LATENCY bit of FLASH_ACR register, if necessary.

2. Check that the new number of wait states is taken into account by reading the
FLASH_ACR register. When the number of wait states changes, the memory interface
modifies the way the read access is done to the NVM. The number of wait states
cannot be modified when a read operation is ongoing, so the memory interface waits
until no read is done on the NVM. If the master reads back the content of the
FLASH_ACR register, this reading is stopped (and also the master which requested
the reading) until the number of wait states is really changed. If the user does not read
back the register, the following access to the NVM may be done with 0 wait states,
even if the clock frequency has been increased, and consequently the values are
wrong.

3. Modify the CPU clock source and/or the AHB clock prescaler in the Reset & Clock
Controller (RCC).

4. Check that the new CPU clock source and/or the new CPU clock prescaler value is
taken into account by reading respectively the clock source status and/or the AHB
prescaler value in the Reset & Clock Controller (RCC). This check is important as some
clocks may take time to get available.

For code example, refer to A.2.1: Increasing the CPU frequency preparation sequence
code, A.2.3: Switch from PLL to HSI16 sequence code and A.2.4: Switch to PLL sequence
code.

Decreasing the CPU frequency (in the same voltage range)

1. Modify the CPU clock source and/or the AHB clock prescaler in the Reset & Clock
Controller (RCC).

2. Check that the new CPU clock source and/or the new CPU clock prescaler value is
taken into account by reading respectively the clock source status and/or the AHB
prescaler value in the Reset and Clock Controller (RCC).

3. Program 0 wait state in LATENCY bit of the FLASH_ACR register, if needed.

4. Check that the new number of wait states is taken into account by reading
FLASH_ACR. It is necessary to read back the register for the reasons explained in the
previous paragraph.

RM0367 Rev 8 75/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Data buffering

In the NVM, six buffers can impact the performance (and in some conditions help to reduce
the power consumption) during read operations, both for fetch and data. The structure of
one buffer is shown on Figure 3.

Figure 3. Structure of one internal buffer

Each buffer stores 3 different types of information: address, data and history. In a read
operation, if the address is found, the memory interface can return data without accessing
the NVM. Data in the buffer is 32 bit wide (even if the master only reads 8 or 16 bits), so that
a value can be returned whatever the size used in a previous reading. The history is used to
know if the content of a buffer is valid and to delete (with a new value) the older one.

The buffers are used to store the value received by the NVM during normal read operations,
and for speculative readings. Disabling the speculative reading makes that only the data
requested by masters is stored in buffers, if enabled (default). This can increase the
performance as no wait state is necessary if the value is already available in buffers, and
reduce the power consumption as the number of reads in memory is reduced and all
combinatorial paths from memory are stable.

The buffers are divided in groups to manage different tasks. The number of buffers in every
group can change starting from the configuration selected by the user (see Table 14). The
total number of buffers used is always 6 (if enabled). The history is always managed by
group.

The memory interface always searches if a particular address is available in all buffers
without checking the group of buffers and if the read is fetch or data.

At reset or after a write/erase operation that changes several addresses, all buffers are
empty and the history is set to EMPTY. After a program by word, half-word or byte, only the
buffer with the concerned address is cleaned.

MS32395V1

Address

Value

History

Flash program memory and data EEPROM (FLASH) RM0367

76/1040 RM0367 Rev 8

If a value in a buffer is not empty, the history shows the time elapsed between the moment it
has been read or written. The history is organized as a list of values from the latest to the
oldest one. At a given instant, only one buffer in a group can have a particular value of
history (except the empty value). Moving a buffer to the latest position, all other buffers in
the group move one step further, thus maintaining the order. The history is changed to the
latest position when the buffer is read (the master requests for the buffer content) or written
(with a new value from the NVM). The memory interface always writes the oldest buffer (or
one empty buffer, if any) of the right group when a new address is required in memory.

Three configuration bits of the FLASH_ACR register are used to manage the buffering:

• DISAB_BUF
Setting this bit disables all buffers. When this bit is 1, the prefetch or the pre-read
operations cannot be enabled and if, for example, the master requests the same
address twice, two readings are generated in the NVM.

• PRFTEN
Setting this bit to 1 (with DISAB_BUF to 0) enables the prefetch. When the memory
interface does not have any operation in progress, the address following the last
address fetched is read and stored in a buffer.

• PRE_READ
Setting this bit to 1 (with DISAB_BUF to 0) enables the pre-read. When the memory
interface does not have any operation in progress or prefetch to execute, the address
following the last data address is read and stored in a buffer.

Fetch and prefetch

A memory interface fetch is a read from the NVM to execute the operation that has been
read. The memory interface does not check the master who performs the read operation, or
the location it reads from, but it only verifies if the read operation is done to execute what
has been read. It means that a fetch can be performed:

• in all areas,

• with any size (16 or 32 bits).

The memory interface stores in the buffers:

• The address of jumps so that, in a loop, it is only necessary to access the NVM the first
time, because then the jump address is already available.

• The last read address so that, when performing a fetching on 16 bits, the other 16 bits
are already available.

Table 14. Internal buffer management

DISAB_BUF PREFTEN PRE_READ

Buffers for fetch Buffers for data

Buffers for
jumps

Buffers for
prefetch

Buffers for
last value

Buffers for
pre-read

Buffers for
last value

1 - - 0 0 0 0 0

0 0 0 3 0 1 0 2

0 1 0 2 1 1 0 2

0 0 1 3 0 1 1 1

0 1 1 2 1 1 1 1

RM0367 Rev 8 77/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

To manage the fetch, the memory interface uses 4 buffers: at reset (DISAB_BUF = 0,
PRFTEN = 0, PRE_READ = 0). 3 buffers are used to manage the jumps and 1 buffer to
store the last value fetched. With this configuration, the 4 buffers for fetch are organized in 2
groups with separate histories: the group for loops and the group for the last value fetched.

Setting the PRFTEN bit to 1 enables the prefetch. The prefetch is a speculative read in the
NVM, which is executed when no read is requested by masters, and where the memory
interface reads from the last address fetched increased by 4 (one word). This read is with a
lower priority and it is aborted if a master requests a read (data or fetch) to a different
address than the prefetch one. When the prefetch is enabled, one buffer for loops is moved
to a new group (of only one buffer) to store the prefetched value: 2 buffers continue to store
the jumps, 1 buffer is used for prefetch and 1 buffer is used for the last value.

The memory interface can only prefetch one address, so the function is temporarily disabled
when no fetch is done and the prefetch is already completed. After a prefetch, if the master
requests the prefetched value, the content of the prefetch buffer is copied to the last value
buffer and a new prefetch is enabled. If, instead, the master requests a different address,
the content of the prefetch buffer is lost, a read in the NVM is started (if necessary) and,
when it is complete, a new prefetch is enabled at the new address fetched increased by 4.

The prefetch can only increase the performance when reading with 1 wait state and for
mostly linear codes: the user must evaluate the pros and cons to enable or not the prefetch
in every situation. The prefetch increases the consumption because many more readings
are done in the NVM (and not all of them will be used by the master). To see the advantages
of prefetch on Dhrystone code, refer to the Dhrystone performances section.

Figure 4 shows the timing to fetch a linear code in the NVM when the prefetch is disabled,
both for 0 wait state (a) and 1 wait state (b). You can compare these two sequences with the
ones in Figure 5, when the prefetch is enabled, to have an idea of the advantages of a
prefetch on a linear code with 0 and 1 wait states.

Figure 4. Timing to fetch and execute instructions with prefetch disabled

1. (a) corresponds to 0 wait state.

2. (b) corresponds to 1 wait state.

MS32396V1

cycle
1

cycle
2

cycle
3

cycle
4

cycle
6

cycle
7

cycle
8

cycle
9

cycle
10 11

cycle
5

Fetch
1 & 2

Addr
1 & 2

Exec.
1

Exec.
2

Fetch
3 & 4

Addr
3 & 4

Exec.
3

Exec.
4

Fetch
5 & 6

Addr
5 & 6

Exec.
5

Exec.
6

(a)

Fetch
1 & 2

Addr
1 & 2

Exec.
1Wait

Exec.
2

Fetch
3 & 4

Addr
3 & 4

Exec.
3Wait

Exec.
4

Fetch
5 & 6

Addr
5 & 6

Exec.
5Wait

Exec.
6

(b)

cycle

Flash program memory and data EEPROM (FLASH) RM0367

78/1040 RM0367 Rev 8

Figure 5 shows the timing to fetch and execute instructions from the NVM with 0 wait states
(a) and 1 wait state (b) when the prefetch is enabled. The read executed by the prefetch
appears in green.

Read as data and pre-read

A data read from the memory interface, corresponds to any read operation that is not a
fetch. The master reads operation constants and parameters as data. All reads done by
DMA (to copy from one address to another) are read as data. No check is done on the
location of the data read (can be in every area of the NVM).

At reset, (DISAB_BUF = 0, PRFTEN = 0, PRE_READ = 0), the memory interface uses 2
buffers organized in one group to store the last two values read as data.

In some particular cases (for example when the DMA is reading a lot of consecutive words
in the NVM), it can be useful to enable the pre-read (PRE_READ = 1 with DISAB_BUF = 0).
The pre-read works exactly like the prefetch: it is a speculative reading at the last data
address increased by 4 (one word). With this configuration, one buffer of data is moved to a
new group to store the pre-read value, while the second buffer continues to store the last
value read. For a prefetch, the pre-read value is copied in the last read value if the master
requests it, or is lost if the master requests a different address.

The pre-read has a lower priority than a normal read or a prefetch operation: this means that
it will be launched only when no other type of read is ongoing. Pay attention to the fact that
a pre-read used in a wrong situation can be harmful: in a code where a data read is not
done linearly, reducing the number of buffers (from 2 to 1) used for the last read value can
increase the number of accesses to the NVM (and the time to read the value). Moreover,
this can generate a delay on prefetch. An example of this situation is the code Dhrystone,
whose results are shown in the corresponding section.

As for a prefetch operation, the user must select the right moment to enable and disable the
pre-read.

RM0367 Rev 8 79/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Figure 5. Timing to fetch and execute instructions with prefetch enabled

Table 15 is a summary of the possible configurations.

Table 15. Configurations for buffers and speculative reading

DISAB_BUF PRFTEN PRE_READ Description

1 X X Buffers disabled

0 0 0 Buffer enabled: no speculative reading is done

0 1 0
Prefetch enabled: speculative reading on fetch
enabled

0 0 1
pre-read enabled: speculative reading on data
enabled

0 1 1
Prefetch and pre-read enabled: speculative reading
on fetch and data enabled

MS32397V1

cycle
1

cycle
2

cycle
3

cycle
4

cycle
6

cycle
7

cycle
8

cycle
9

cycle
5

Fetch
1 & 2

Addr
1 & 2

Exec.
1

Exec.
2

Fetch
3 & 4

Addr
3 & 4

Exec.
3

Exec.
4

Fetch
5 & 6

Addr
5 & 6

Exec.
5

Exec.
6

Read
3 & 4

Addr
3 & 4

Read
5 & 6

Addr
5 & 6

(a)

Fetch
1 & 2

Addr
1 & 2

Exec.
1

Wait Exec.
2

Fetch
3 & 4

Addr
3 & 4

Exec.
3

Exec.
4

Fetch
5 & 6

Addr
5 & 6

Exec.
5

Exec.
6

Read
3 & 4

Addr
3 & 4

Wait

Read
5 & 6

Addr
5 & 6

Wait

(b)

Flash program memory and data EEPROM (FLASH) RM0367

80/1040 RM0367 Rev 8

Dhrystone performances

The Dhrystone test is used to evaluate the memory interface performances. The test has
been executed in all memory interface configurations. Refer to Table 16 for a summary of
the results.

Common parameters are:

• the matrix size is 20 x 20

• the loop is executed 1757 times

• the version of Arm® compiler is 4.1 [Build 561]

Here is some explanation about the results:

• The pre-read is not useful for this test: when enabled with the prefetch, it reduces the
memory interface performance because only one buffer is used to store the last data
read and, in this code, the master rarely reads the data linearly. This justifies the very
small increase of performance when enabled without a prefetch.

• The buffers (without speculative readings) with 1 wait state give a little advantage that
can be considered without any costs.

• At a 0 wait state, the best performance (as certified by Arm®) may be due to a different
code alignment during the compilation.

Table 16. Dhrystone performances in all memory interface configurations

Number of
wait states

DISAB_BUF PRFTEN PRE_READ
Number of

DMIPS (x1000)
DMIPS x MHz

0 1 0 0 953 15.25

0 0 0 0 953 15.25

0 0 1 0 953 15.25

0 0 0 1 953 15.25

0 0 1 1 953 15.25

1 1 0 0 677 21.66

1 0 0 0 690 22.08

1 0 1 0 823 26.34

1 0 0 1 691 22.11

1 0 1 1 816 26.11

RM0367 Rev 8 81/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.3.4 Writing/erasing the NVM

There are many ways to change the NVM content. The memory interface helps to reduce
the possibility of unwanted changes and to implement by hardware all sequences necessary
to erase or write in the different memory areas.

Write/erase protocol

To write/erase memory content when the protections have been removed, the user needs
to:

1. configure the operation to execute,

2. send to the memory interface the right number of data, writing one or several
addresses in the NVM,

3. wait for the operation to complete.

During the waiting time, the user can prepare the next operation (except in very particular
cases) writing the new configuration and starting to write data for the next write/erase
operation.

The waiting time depends on the type of operation. A write/erase can last from Tprog (3.2
ms) to 2 x Tglob (3.7 ms) + Tprog (3.2 ms). The memory interface can be configured to write
a half-page (16 words in the Flash program memory) with only one waiting time. This can
reduce the time to program a big amount of data.

Two different protocols can be used: single programming and multiple programming
operation.

Single programming operation

With this protocol, the software has to write a value in a not-protected address of the NVM.
When the memory interface receives this writing request, it stalls the master for some
pulses of clock (for more details, see Table 17) while it checks the protections and the
previous value and it latches the new value inside the NVM. The software can then start to
configure the next operation. The operation will complete when the EOP bit of FLASH_SR
register rises (if it was 0 at the operation start). The operation time is resumed in Table 19
for all operations.

Multiple programming operation (half page)

You can write a half-page (16 words) in Flash program memory, To execute this protocol,
follow the next conditions:

• PGAERR bit in the FLASH_SR register has to be zero (no previous alignment errors).

• The first address has to be half-page aligned (the 6 lower bits of the address have to be
at zero).

• All 16 words must be in the same half-page (address bits 7 to 31 must be the same for
all 16 words). This means that the first address sets the half-page and the next ones
must be inside this half-page. The written data will be stored sequentially in the next
addresses. It is not important that the addresses increase or change (for example, the
same address can be used 16 times), as the memory interface will automatically
increase the address internally.

• Only words (32 bits) can be written.

Flash program memory and data EEPROM (FLASH) RM0367

82/1040 RM0367 Rev 8

When the memory interface receives the first address, it stalls the master for some pulses of
clock while it checks the protections and the previous value and it latches the new value
inside the NVM (for more details, see Table 17). Then, the memory interface waits for the
second address. No read is accepted: only a fetch will be executed, but it aborts the ongoing
write operation. After the second address, the memory interface stalls the core for a short
time (less than the previous one) to perform a check and to latch it in the NVM before
waiting for the next one. This sequence continues until all 16 words have been latched
inside the NVM. A wrong alignment or size will abort the write operation. If the 16 addresses
are correctly latched, the memory interface starts the write operation. The operation will
complete when EOP bit of FLASH_SR register rises (if it was 0 at the operation start). The
operation time is resumed in Table 19.

This protocol can be used either through application code running from RAM or through
DMA with application code running from RAM or core sleeping.

Unlocking/locking operations

Before performing a write/erase operation, it is necessary to enable it. The user can write
into the Flash program memory, data EEPROM and Option bytes areas.

To perform a write/erase operation, unlock PELOCK bit of the FLASH_PECR register. When
this bit is unlocked (its value is 0), the other bits of the same register can be modified. When
PELOCK is 0, the write/erase operations can be executed in the data EEPROM.

To write/erase the Flash program memory, unlock PRGLOCK bit of the FLASH_PECR
register. The bit can only be unlocked when PELOCK is 0.

To write/erase the user Option bytes, unlock OPTLOCK bit of the FLASH_PECR register.
The bit can only be unlocked when PELOCK is 0. No relation exists between PRGLOCK
and OPTLOCK: the first one can be unlocked when the second one is locked and vice
versa.

Unlocking the data EEPROM and the FLASH_PECR register

After a reset, the data EEPROM and the FLASH_PECR register are not accessible in write
mode because PELOCK bit in the FLASH_PECR register is set. The same unlocking
sequence unprotects both of them at the same time.

The following sequence is used to unlock the data EEPROM and the FLASH_PECR
register:

• Write PEKEY1 = 0x89ABCDEF to the FLASH_PEKEYR register

• Write PEKEY2 = 0x02030405 to the FLASH_PEKEYR register

For code example, refer to A.3.1: Unlocking the data EEPROM and FLASH_PECR register
code example.

RM0367 Rev 8 83/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Any wrong key sequence will lock up FLASH_PECR until the next reset and generate a
hard fault. Idem if the master tries to write another register between the two key sequences
or if it uses the wrong key. A reading access does not generate an error and does not
interrupt the sequence. A hard fault is returned in any of the four cases below:

• After the first write access if the PEKEY1 value entered is erroneous.

• During the second write access if PEKEY1 is correctly entered but the value of
PEKEY2 does not match.

• If there is any attempt to write a third value to PEKEYR (pay attention: this is also true
for the debugger).

• If there is any attempt to write a different register of the memory interface between
PEKEY1 and PEKEY2.

When properly executed, the unlocking sequence clears PELOCK bit in the FLASH_PECR
register.

To lock FLASH_PECR and the data EEPROM again, the software only needs to set
PELOCK bit in FLASH_PECR. When locked again, PELOCK bit needs a new sequence to
return to 0.

For code example, refer to A.3.2: Locking data EEPROM and FLASH_PECR register code
example.

Unlocking the Flash program memory

An additional protection is implemented to write/erase the Flash program memory.

After a reset, the Flash program memory is no more accessible in write mode: PRGLOCK
bit is set in the FLASH_PECR register. A write access to the Flash program memory is
granted by clearing PRGLOCK bit.

The following sequence is used to unlock the Flash program memory:

• Unlock the FLASH_PECR register (see the Unlocking the data EEPROM and the
FLASH_PECR register section).

• Write PRGKEY1 = 0x8C9DAEBF to the FLASH_PRGKEYR register.

• Write PRGKEY2 = 0x13141516 to the FLASH_PRGKEYR register.

For code example, refer to A.3.3: Unlocking the NVM program memory code example.

If the keys are written with PELOCK set to 1, no error is generated and PRGLOCK remains
at 1. It will be unlocked while re-executing the sequence with PELOCK = 0.

Any wrong key sequence will lock up PRGLOCK in FLASH_PECR until the next reset, and
return a hard fault. A hard fault is returned in any of the four cases below:

• After the first write access if the entered PRGKEY1 value is erroneous.

• During the second write access if PRGKEY1 is correctly entered but the PRGKEY2
value does not match.

• If there is any attempt to write a third value to PRGKEYR (this is also true for the
debugger).

• If there is any attempt to write a different register of the memory interface between
PRGKEY1 and PRGKEY2.

When properly executed, the unlocking sequence clears the PRGLOCK bit and the Flash
program memory is write-accessible.

Flash program memory and data EEPROM (FLASH) RM0367

84/1040 RM0367 Rev 8

To lock the Flash program memory again, the software only needs to set PRGLOCK bit in
FLASH_PECR. When locked again, PRGLOCK bit needs a new sequence to return to 0. If
PELOCK returns to 1 (locked), PRGLOCK is automatically locked, too.

Unlocking the Option bytes area

An additional write protection is implemented on the Option bytes area. It is necessary to
unlock OPTLOCK to reload or write/erase the Option bytes area.

After a reset, the Option bytes area is not accessible in write mode: OPTLOCK bit in the
FLASH_PECR register is set. A write access to the Option bytes area is granted by clearing
OPTLOCK.

The following sequence is used to unlock the Option bytes area:

1. Unlock the FLASH_PECR register (see the Unlocking the data EEPROM and the
FLASH_PECR register section).

2. Write OPTKEY1 = 0xFBEAD9C8 to the FLASH_OPTKEYR register.

3. Write OPTKEY2 = 0x24252627 to the FLASH_OPTKEYR register.

For code example, refer to A.3.4: Unlocking the option bytes area code example.

If the keys are written with PELOCK = 1, no error is generated, OPTLOCK remains at 1 and
it will be unlocked when re-executing the sequence with PELOCK to 0.

Any wrong key sequence will lock up OPTLOCK in FLASH_PECR until the next reset, and
return a hard fault. A hard fault is returned in any of the four cases below:

• After the first write access if the OPTKEY1 value entered is erroneous.

• During the second write access if OPTKEY1 is correctly entered but the OPTKEY2
value does not match.

• If there is any attempt to write a third value to OPTKEYR (this is also true for the
debugger).

• If there is any attempt to write a different register of the memory interface between
OPTKEY1 and OPTKEY2.

When properly executed, the unlocking sequence clears the OPTLOCK bit and the Option
bytes area is write-accessible.

To lock the Option bytes area again, the software only needs to set OPTLOCK bit in
FLASH_PECR. When relocked, OPTLOCK bit needs a new sequence to return to 0. If
PELOCK returns to 1 (locked), OPTLOCK is automatically locked, too.

Select between different types of operations

When the necessary unlock sequence has been executed (PELOCK, PRGLOCK and
OPTLOCK), the user can enable different types of write and erase operations, writing the
right configuration in the FLASH_PECR register. The bits involved are:

• PRG

• DATA

• FIX

• ERASE

• FPRG

RM0367 Rev 8 85/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Detailed description of NVM write/erase operations

This section details the different types of write and erase operations, showing the necessary
bits for each one.

Write to data EEPROM

• Purpose

Write one word in the data EEPROM with a specific value.

• Size

Write by byte, half-word or word.

• Address

Select a valid address in the data EEPROM.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, ERASE = 0.

• Errors

WRPERR is set to 1 (and the write operation is not executed) if PELOCK = 1 or if the
memory is read-out protected.

• Description

This operation aims at writing a word or a part of a word in the data EEPROM. The user
must write the right value at the right address and with the right size. The memory
interface automatically executes an erase operation when necessary (if all bits are
currently set to 0, there is no need to delete the old content before writing). Similarly, if
the data to write is at 0, only the erase operation is executed. When only a write
operation or an erase operation is executed, the duration is Tprog (3.2 ms); if both are
executed, the duration is 2 x Tprog (6.4 ms). It is possible to force the memory interface
to execute every time both erase and write operations set the FIX flag to 1.

• Duration

Tprog (3.2 ms) or 2 x Tprog (6.4 ms).

• Options

Set the FIX bit to force the memory interface to execute every time an erase (to delete
the old content) and a write operation (to write new data) occur. This gives a fix time for
the operation for any data value and for previous data.

• Erase/write endurance cycles in data EEPROM are linked to one single word
granularity (one erase/write cycle degrades only one programmed word area in data
EEPROM).

For code example, refer to A.3.5: Write to data EEPROM code example.

Flash program memory and data EEPROM (FLASH) RM0367

86/1040 RM0367 Rev 8

Erase data EEPROM

• Purpose

Delete one row in data EEPROM. This operation performs the same function as Write a
word which size is null to data EEPROM. It is available for compatibility purpose only.

• Size

Erase only by word.

• Address

Select one valid address in the data EEPROM.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, ERASE = 1 (optional DATA = 1).

• Errors

WRPERR is set to 1 if PELOCK = 1 or if the memory is read-out protected.

SIZERR is set to 1 if the size is not a word.

• Description

This operation aims at deleting the content of a row in the data EEPROM. A row
contains only 1 word. The user must write a value at the right address with a word size.
The data is not important: only an erase is executed (also with data different from zero).

• Duration

Tprog (3.2 ms).

For code example, refer to A.3.6: Erase to data EEPROM code example.

Write Option bytes

• Purpose

Write one word in the Option bytes area with a specific value.

• Size

Write only by word.

• Address

Select a valid address in the Option bytes area.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, OPTLOCK = 0, ERASE = 0.

• Errors

WRPERR is set to 1 if PELOCK = 1 or OPTLOCK = 1.
WRPERR is set to 1 if the actual read-out protection level is 2 (the Option bytes area
cannot be written at Level 2).
SIZERR is set to 1 if the size is not the word

• Description

RM0367 Rev 8 87/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

This operation aims at writing a word in the Option bytes area. The Option bytes area
can only be written in Level 0 or Level 1.

The user must consider that, in a word, the 16 higher bits (from 16 to 31) have to be the
complement of the 16 lower bits (from 0 to 15): a mismatch between the higher and
lower parts of data would generate an error during the Option bytes loading (see
Section 3.8: Option bytes) and force the memory interface to load the default values.
The memory interface does not check at the write time if the data is correctly
complemented. The user must write the desired value at the right address with a word
size.

As for data EEPROM, the memory interface deletes the previous content before
writing, if necessary. If the data to write is at 0, the memory interface does not execute
the useless write operation. When only a write operation or only an erase operation is
executed, the duration is Tprog (3.2 ms). If both are executed, the duration is 2 x Tprog
(6.4 ms). The memory interface can be forced to execute every time both erase and
write operations set the FIX flag to 1.

Some configurations need a closer attention because they change the protections. The
memory interface can change the Option bytes write in a Mass Erase or force some
bits not to reduce the protections: for more details, see Section 3.4.4: Write/erase
protection management.

• Duration

Tprog (3.2 ms) or 2 x Tprog (6.4 ms).

• Options

FIX bit can be set to force the memory interface to execute every time an erase (to
delete the old content) and a write operation (to write the new data) occur. This gives a
fix time to program for every data value and for previous data.

For code example, refer to A.3.7: Program Option byte code example.

Flash program memory and data EEPROM (FLASH) RM0367

88/1040 RM0367 Rev 8

Erase Option bytes

• Purpose

Delete one row in the Option bytes area. This operation performs the same function as
Write Option Byte with a zero value. It is available for compatibility purpose only.

• Size

Erase only by word.

• Address

Select a valid address in the Option bytes area.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, OPTLOCK = 0, ERASE = 1 (optional OPT = 1).

• Errors

WRPERR is set to 1 if PELOCK = 1 or OPTLOCK = 1.

WRPERR is set to 1 if the actual protection level is 2 (the Option bytes area cannot be
erased at Level 2).

SIZERR is set to 1 if the size is not the word.

• Description

This operation aims at deleting the content of a row in the Option bytes area. A row
contains only 1 word. The use must write zero at the right address with a word size.

Refer to Section : Write Option bytes for additional information.

Since all bits are set to 0 after an erase operation, there will be a mismatch during the
Option bytes loading and the default values will be loaded.

• Duration

Tprog (3.2 ms).

For code example, refer to A.3.8: Erase Option byte code example.

RM0367 Rev 8 89/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Program a single word to Flash program memory

• Purpose

Write one word in the Flash program memory with a specific value.

• Size

Write only by word.

• Address

Select an address in the Flash program memory.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, PRGLOCK = 0.

• Errors

WRPERR is set to 1 if PELOCK = 1 or PRGLOCK = 1.

WRPERR is set to 1 if the user tries to write in a write-protected sector (see the PcROP
(Proprietary Code Read-Out Protection) section).

NOTZEROERR is set to 1 if the user tries to write a value in a word which is not zero.
This error does not stop the write operation on category 3 devices while the operation
is stopped on other categories.

SIZERR is set to 1 if the size is not a word.

• Description

This operation allows writing a word in Flash program memory. The user must write the
right value at the right address with a word size. The memory interface cannot execute
an erase to delete the previous content before the write operation is performed.

If the previous content is not null:

– Category 3 devices

NOTZEROERR is set to 1.

The real value written in the memory is the OR of the previous value and the new
value (the memory interface writes 1 when there was 0 before). This is done both
for data and ECC. Reading back the data might not return the old value, the new
one or the ORed values. The ECC is not compatible with the data any more.

– Other categories

NOTZEROERR is set to 1. Writing a word to an address containing a non-null
value is not performed.

• Duration

Tprog (3.2 ms).

• The erase/write endurance cycles in Flash program memory are linked to one page
granularity (one erase/write cycle will degrade one programmed page in word area in
Flash program memory).

For code example, refer to A.3.9: Program a single word to Flash program memory code
example.

Flash program memory and data EEPROM (FLASH) RM0367

90/1040 RM0367 Rev 8

Program half-page in Flash program memory

• Purpose

Write one half page (16 words) in the Flash program memory.

• Size

Write only by word.

• Address

Select one address in the Flash program memory aligned to a half-page (for the first
address) and inside the same half-page selected by the second address for the next 15
addresses.

• Protocol

Multiple programming operation.

• Requests

PELOCK = 0, PRGLOCK = 0, FPRG = 1, PRG = 1.

• Errors

WRPERR is set to 1 if PELOCK = 1 or PRGLOCK = 1. WRPERR is set to 1 if the user
tries to write in a write-protected sector (see the PcROP (Proprietary Code Read-Out
Protection) section).

NOTZEROERR is set to 1 if the user tries to write a value in a word which is not zero.
This error does not stop the write operation on category 3 devices while the operation
is stopped on other categories. The check is done when all 16 addresses have been
received, before the current write phase in Flash memory. The error flags are set only
when all checks are performed.

SIZERR is set to 1 if the size is not the word.

PGAERR is set to 1 if the first address is not aligned to a half-page and if one of the
following addresses (address from 2 to 16) is outside the half-page determined by the
first address. No check is done to verify if the address has increased or if it has
changed: this is done automatically by the memory interface. What is important is that
the first address is aligned to the half-page, and that the next addresses are in the
same half-page.

FWWERR is set to 1 if the write is aborted because the master fetched in the NVM.
The read as data does not stop the write operation.

• Description

This operation allows writing a half-page in Flash program memory. The user must
write the 16 desired values at the right address with a word size (as explained in the
multiple programming operation). The memory interface cannot execute an erase to
delete the previous content before writing (the user must delete the page before
writing).

As for the single programming operation, if the previous content is not null:

– Category 3 devices

NOTZEROERR is set to 1.

The written value is the OR of previous and new data. This means that reading
back the written address may return a value which is different from the written one.

RM0367 Rev 8 91/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

– Other categories

NOTZEROERR is set to 1. Writing a word to an address containing a non-null
value is not performed.

When a half-page operation starts, the memory interface waits for 16 addresses/data,
aborting (with a hard fault) all read accesses that are not a fetch (refer to Fetch and
prefetch). A fetch stops the half-page operation. The memory content remains
unchanged, the FWWERR error is set in the FLASH_SR register. To complete the half-
page programming operation, all the desired values should be written again.

• Duration

Tprog (3.2 ms).

For code example, refer to A.3.10: Program half-page to Flash program memory code
example.

Parallel write half-page Flash program memory

• Purpose

Write 2 half-pages (one per bank) in parallel in Flash program memory.

• Size

Write only by word.

• Address

For each half-page, one address, aligned to half-page start address, must be selected
in Flash program memory. The following 15 addresses must point to the half-page
selected by first address.

Furthermore, the addresses of the second half-page must be on a different bank with
respect to the start address of the first half-page (only the first address is checked).

• Protocol

Multiple programming operation.

• Requests

PELOCK = 0, PRGLOCK = 0, FPRG = 1, PRG = 1, PARALLELBANK=1.

• Errors

This operation can generate the same kind of errors as program half-page in flash
program memory. However, PGAERR is also generated when the second half-page
selected is located in the same bank as the first half-page.

All the errors detected during this operation abort the whole program operation (i.e.
both banks).

• Description

This operation programs in parallel one half-page on both Flash program memory
banks. This speeds up the initial programming of the whole NVM.

It is possible to start with Bank 1 or Bank 2.

• Duration

Tprog (3.2 ms).

Flash program memory and data EEPROM (FLASH) RM0367

92/1040 RM0367 Rev 8

Erase a page in Flash program memory

• Purpose

Delete one page (32 words) in the Flash program memory.

• Size

Erase only by word (it deletes a page of the Flash program memory writing with a word
size)

• Address

Select a valid address in the Flash program memory.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, PRGLOCK = 0, ERASE = 1, PRG = 1.

• Errors

WRPERR is set to 1 if PELOCK = 1 or PRGLOCK = 1.
WRPERR is set to 1 if the row is in a protected sector (see PcROP (Proprietary Code
Read-Out Protection)).

SIZERR is set to 1 if the size is not the word.

• Description

This operation aims at deleting the content of a row in the Flash program memory. The
user must write a value in the right address with a word size. The data is not important:
only an erase is executed (also with data not at zero). The address does not need to be
aligned to the page: the memory interface will delete the page which contents the
address.

• Duration

Tprog (3.2 ms).

For code example, refer to A.3.11: Erase a page in Flash program memory code example.

RM0367 Rev 8 93/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Mass erase

• Purpose

Remove the read and write protection on the Flash program memory and data
EEPROM.

• Size

Erase only by word.

• Address

To generate a mass erase, it is necessary to write 0x015500AA to the first Option bytes
address (bits 31 to 25 and 15 to 9 are not complemented because they are not used,
and not checked) with Level 1 as the actual level.

• Protocol

Single programming operation.

• Requests

PELOCK = 0, OPTLOCK = 0, Protection Level = 1, the lower nibble of data has to be
0xAA (Level 0), with 0x55 as the third nibble.

• Errors

WRPERR is set to 1 if PELOCK = 1 or OPTLOCK = 1.

WRPERR is set to 1 if the actual protection level is 2 (the Option bytes area cannot be
written in Level 2).

SIZERR is set to 1 if the size is not the word.

• Description

This operation is similar to the write user Option byte operation: the memory interface
changes it in a mass erase when the actual Protection Level is 1 and the requested
Protection Level is 0. The user must write the desired value in the first address of the
Option bytes area with a word size.

A mass erase deletes the content of the Flash program memory and data EEPROM,
changes the protection level to Level 0 and disables PcROP. (WPRMOD = 0). The bits
write protection and BOR_LEVEL remain unchanged.

Unlike all other operations, the software cannot request new writing operations while a
mass erase is ongoing. To be sure that a mass erase has completed, the software can
reset the EOP bit of FLASH_SR register before the write operation and check when
EOP goes to 1 (End Of Program). If this limitation is not respected, a wrong value may
be written in the Flash program memory and data EEPROM when the Protection Level
is written, thus adding unwanted protections (also for mismatch) that could make the
device useless.

• Duration

2 x Tprog (6.4 ms) + Tglob (3.7 ms)

For code example, refer to A.3.12: Mass erase code example.

Flash program memory and data EEPROM (FLASH) RM0367

94/1040 RM0367 Rev 8

Timing tables

Table 17. NVM write/erase timings

Operation
Delay to latch the first

address/data
(in AHB clock pulses)

Delay to latch the next
address/data

(in AHB clock pulses)

Write to data EEPROM 18 -

Erase data EEPROM 17 -

Write Option bytes 18 -

Erase Option bytes 17 -

Program a single word in Flash
program memory

78 -

Program half-page in Flash
program memory

63 6

Erase a page in Flash program
memory

76 -

Table 18. NVM write/erase duration

Operation Parameters/Conditions Duration

Write to data EEPROM

Previous data = 0
FIX = 0

Tprog (3.2 ms)

Previous data /= 0
New data = 0
Size = word

FIX = 0

Tprog (3.2 ms)

Other situations 2 x Tprog (6.4 ms)

Erase data EEPROM - Tprog (3.2 ms)

Write Option bytes

Previous data = 0
FIX = 0

Tprog (3.2 ms)

Previous data /= 0
New data = 0

FIX = 0
Tprog (3.2 ms)

Other situations 2 x Tprog (6.4 ms)

Erase Option bytes - Tprog (3.2 ms)

Program a single word in
Flash program memory

- Tprog (3.2 ms)

Program a half-page in
Flash program memory

- Tprog (3.2 ms)

Erase a page in Flash
program memory

- Tprog (3.2 ms)

Mass erase - 2 x Tprog (6.4 ms) + Tglob (3.7 ms)

RM0367 Rev 8 95/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Status register

The FLASH_SR Status Register gives some information on the memory interface or the
NVM status (operation(s) ongoing) and about errors that happened.

BSY

This flags is set and reset by hardware. It is set to 1 every time the memory interface
executes a write/erase operation, and it informs that no other operation can be executed. If
a new operation is requested, different behaviors can occur:

• Waiting for read, or waiting for write/erase, or waiting for option loading:

If the software requests a write operation while a write/erase operation is executing
(HVOFF = 0), the memory interface stalls the master and has the pending operation
execute as soon as the write/erase operation is complete.

• Hard fault:

If the software requests a data read in a half-page operation when the memory
interface is waiting for the next address/data (BSY is already 1 but HVOFF = 0), the
memory interface generates a hard fault (because it cannot execute the read) and
continues to wait for missing addresses.

• RDERR error:

If the software requests a read operation while a write/erase operation is executing
(HVOFF = 0) but the address is protected, the memory interface rises the flag and
continues to wait for the end of the write/erase operation.

• Write abort:

If the software fetches in the NVM when the memory interface is waiting for an
address/data in a half-page operation, the write/erase operation is aborted, the
FWWERR flag is raised and the fetch is executed.

EOP

This flag is set by hardware and reset by software. The software can reset it writing 1 in the
status register. This bit is set when the write/erase operation is completed and the memory
interface can work on other operations (or start to work on pending operations).

It is useful to clear it before starting a new write/erase operation, in order to know when the
actual operation is complete. It is very important to wait for this flag to rise when a mass
erase is ongoing, before requesting a new operation.

HVOFF

This flag is set and reset by hardware and it is a memory interface information copy coming
from the NVM: it informs when the High-Voltage Regulators are on (= 0) or off (= 1).

PGAERR

This flag is set by hardware and reset by software. It informs when an alignment error
happened. It is raised when:

• The first address in a half-page operation is not aligned to a half-page (lower 6 bits
equal to zero).

• A half-page change happened in a half-page operation (the addresses from 2 to 16 in a
half-page operation are not in the same half-page, selected by the first address).

An alignment error aborts the write/erase operation and an interrupt can be generated (if
ERRIE = 1 in the FLASH_PECR register). The content of the NVM is not changed.

If this flag is set, the memory interface blocks all other half-page operations.

Flash program memory and data EEPROM (FLASH) RM0367

96/1040 RM0367 Rev 8

To reset this flag, the software need to write it to 1.

SIZERR

This flag is set by hardware and reset by software. It informs when a size error happened. It
is raised when:

• A write by byte and half-word occurs in the Flash program memory and Option bytes.

• An erase (with bit ERASE = 1 in FLASH_PECR register) by byte or half-word occurs in
all areas.

A size error aborts the write/erase operation and an interrupt can be generated (if
ERRIE = 1 in the FLASH_PECR register). The content of the NVM is not changed.

To reset this flag, the software needs to write it to 1.

NOTZEROERR

This flag is set by hardware and reset by software. It indicates that the application software
is attempting to write to one or more NVM addresses that contain a non-zero value.

Except for category 3 devices, the modify operation is always aborted when this condition is
met. For category 3 devices, a not-zero error does not abort the write/erase operation but
the value might be corrupted.

In a write by half-page, all 16 words are checked between the first address/value and the
second one, and the flag is only set when all words are checked. If the flag is set, it means
that at least one word has an actual value not at zero.

In a write by word, only the targeted word is checked and the flag is immediately set if the
content is not zero.

An interrupt is generated if ERRIE = 1 in FLASH_PECR register. To reset this flag, the
application software needs to program it to 1.

Note: Notification of a not-zero error condition (i.e. NOTZEROERR flag and the associated
interrupt) can be disabled by the application software via the NZDISABLE bit in
FLASH_PECR register. However, for all device except category 3 devices, the condition is
still checked internally and modify operation is anyway blocked

3.4 Memory protection

The user can protect part of the NVM (Flash program memory, data EEPROM and Option
bytes areas) from unwanted write and against code hacking (unwanted read).

The read protection is activated by setting the RDP option byte and then applying a system
reset to reload the new RDP option byte.

Note: If the read protection is set while the debugger has been active (through SWD) after last
POR (power-on reset), apply a POR (power-on reset) or wakeup from Standby mode
instead of a system reset (the option bytes loading is not sufficient).

RM0367 Rev 8 97/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Three types of protections are implemented.

3.4.1 RDP (Read Out Protection)

This type of protection aims at protecting against unwanted read (hacking) of the NVM
content. This protection is managed by RDPROT bitfield in the FLASH_OPTR register. The
value is loaded from the Option bytes area during a boot and copied in the read-only
register.

Three protection levels are defined:

• Level 0: no protection

Level 0 is set when RDPROT is set to 0xAA. When this level is enabled, and if no other
protection is enabled, read and write can be done in the Flash program memory, data
EEPROM and Option bytes areas without restrictions. It is also possible to read and
write the backup registers freely.

• Level 1: memory read protection

Level 1 is set when RDPROT is set to any value except 0xAA and 0xCC, respectively
used for Level 0 and Level 2. This is the default protection level after an Option bytes
erase or when there is a mismatch in the RDPROT field.

Level 1 protects the Flash program memory and data EEPROM. When protection Level
1 is set through boot from RAM, bootloader or debugger, a power-down or a standby is
required to execute the user code.

When this level is enabled:

– No access to the Flash program memory and data EEPROM (read both for fetch
and data and write) and no backup register reading is performed if the debug
features (single-wire), or the device boot in the RAM, or the System memory is
connected. If the user tries to read the Flash memory or data EEPROM, a hard
fault is generated. No restriction is present on other areas: it is possible to read
and write/erase the Option bytes area and to execute or read in the System
Memory.

– All operations are possible when the boot is done in the Flash program memory.

– Writing the first Option byte with a value that changes the protection level to Level
0 (it is necessary that byte 0 is 0xAA and byte 2 is 0x55), a mass erase is
generated. The mass erase deletes the Flash program memory and data
EEPROM, deletes the first Option byte and then rewrites it to enable Level 0 and
disable PCROP (WPRMOD = 0), and deletes the backup registers content.

• Level 2: disable debug and chip read protection

Level 2 is set when RDPROT is set to 0xCC. When this level is enabled, it is only
possible to boot from the Flash program memory, and the debug features (single-wire)
are disabled. The Option bytes are protected against write/erase and the protection
level can no longer be changed. The application can write/erase to the Flash program
memory and data EEPROM (it is only possible to boot from the Flash program memory
and execute the customer code) and access the backup registers. When an Option
bytes loading is executed and Level 2 is enabled, old information on debug or boot in
the RAM or System memory are deleted.

Note: The debug feature is also disabled under reset. STMicroelectronics is not able to perform
analysis on defective parts on which level 2 protection has been set.

Figure 6 resumes the way the protection level can be changed and Table 19 the link
between the values read in the Option bytes and the protection level.

Flash program memory and data EEPROM (FLASH) RM0367

98/1040 RM0367 Rev 8

Figure 6. RDP levels

3.4.2 PcROP (Proprietary Code Read-Out Protection)

The Flash program memory can be protected from being read by a hacking code: the read
data are blocked (not for a fetch). The protected code must not access data in the protected
zone, including the literal pool.

The Flash program memory can be protected against a hacking code read: this blocks the
data read (not for a fetch), assuming that the native code is compiled according to the
PcROP option. This mode is activated setting WPRMOD = 1 in the FLASH_OPTR register.

The protection granularity is the sector (1 sector = 32 pages = 4 KB). To protect a sector, set
to 0 the right bit in the WRPROT configuration: 0 means read and write protection, 1 means
no protection.

Table 20 shows the link between the bits of the WRPROT configuration and the address of
the Flash memory sectors.

MS34776V1

RDP increase

RDP decrease

RDP unchanged

RDP = 0xAA
Mass erase

Write

RDP /= 0xCC and
Write

RDP /= 0xAA

Level 0

RDP = 0xAA

Write
RDP = 0xAA

Level 1

RDP /= 0xAA
RDP /= 0xCC

(default)

RDP /= 0xAA and
RDP /= 0xCC

Write

Write
RDP = 0xCC

Level 2

RDP = 0xCC

Write
RDP = 0xCC

Table 19. Protection level and content of RDP Option bytes

RDP byte value RDP complementary value Read Protection status

0xAA 0x55 Level 0

0xCC 0x33 Level 2

Any other value Complement of RDP byte Level 1

Any value Not the complement value of RDP byte Level 1

RM0367 Rev 8 99/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Any read access performed as data (see Read as data and pre-read) in a protected sector
will trigger the RDERR flag in the FLASH_SR register. Any read-protected sector is also
write-protected and any write access to one of these sectors will trigger the WRPERR flag in
the FLASH_SR register.

When WPRMOD = 1 (PcROP enabled), it is not possible to reduce the protection on a
sector: new zeros (to protect new sectors) can be set, but new ones (to remove the
protection from sectors) cannot be added. This is valid regardless of the protection level
(RDPROT configuration). When WPRMOD is active, if the user tries to reset WPRMOD or
to remove the protection from a sector, the programming is launched but WPRMOD or
protected sectors remain unchanged.

Table 20. Link between protection bits of FLASH_WRPROTx register
and protected address in Flash program memory

Bit Start address End address Bit Start address End address

0 0x0800 0000 0x0800 0FFF 24 0x0801 8000 0x0801 8FFF

1 0x0800 1000 0x0800 1FFF 25 0x0801 9000 0x0801 9FFF

2 0x0800 2000 0x0800 2FFF 26 0x0801 A000 0x0801 AFFF

3 0x0800 3000 0x0800 3FFF 27 0x0801 B000 0x0801 BFFF

4 0x0800 4000 0x0800 4FFF 28 0x0801 C000 0x0801 CFFF

5 0x0800 5000 0x0800 5FFF 29 0x0801 D000 0x0801 DFFF

6 0x0800 6000 0x0800 6FFF 30 0x0801 E000 0x0801 EFFF

7 0x0800 7000 0x0800 7FFF 31 0x0801 F000 0x0801 FFFF

8 0x0800 8000 0x0800 8FFF 32 0x0802 0000 0x0802 0FFF

9 0x0800 9000 0x0800 9FFF 33 0x0802 1000 0x0802 1FFF

10 0x0800 A000 0x0800 AFFF 34 0x0802 2000 0x0802 2FFF

11 0x0800 B000 0x0800 BFFF 35 0x0802 3000 0x0802 3FFF

12 0x0800 C000 0x0800 CFFF 36 0x0802 4000 0x0802 4FFF

13 0x0800 D000 0x0800 DFFF 37 0x0802 5000 0x0802 5FFF

14 0x0800 E000 0x0800 EFFF 38 0x0802 6000 0x0802 6FFF

15 0x0800 F000 0x0800 FFFF 39 0x0802 7000 0x0802 7FFF

16 0x0801 0000 0x0801 0FFF 40 0x0802 8000 0x0802 8FFF

17 0x0801 1000 0x0801 1FFF 41 0x0802 9000 0x0802 9FFF

18 0x0801 2000 0x0801 2FFF 42 0x0802 A000 0x0802 AFFF

19 0x0801 3000 0x0801 3FFF 43 0x0802 B000 0x0802 BFFF

20 0x0801 4000 0x0801 4FFF 44 0x0802 C000 0x0802 CFFF

21 0x0801 5000 0x0801 5FFF 45 0x0802 D000 0x0802 DFFF

22 0x0801 6000 0x0801 6FFF 46 0x0802 E000 0x0802 EFFF

23 0x0801 7000 0x0801 7FFF 47 0x0802 F000 0x0802 FFFF

Flash program memory and data EEPROM (FLASH) RM0367

100/1040 RM0367 Rev 8

The only way to remove a protection from a sector is to request a mass erase (which
changes the protection level to 0 and disables PcROP): when PcROP is disabled, the
protection on sectors can be changed freely.

3.4.3 Protections against unwanted write/erase operations

The memory interface implements two ways to protect against unwanted write/erase
operations which are valid for all matrix or only for specific sectors of the Flash program
memory.

As explained in the Unlocking/locking operations section, the user can:

• Write/erase to the data EEPROM only when PELOCK = 0 in the FLASH_PECR
register.

• Write/erase to the Option bytes area only when PELOCK = 0 and OPTLOCK = 0 in the
FLASH_PECR register.

• Write/erase to the Flash program memory only when PELOCK = 0 and PRGLOCK = 0
in the FLASH_PECR register.

To see the sequences to set PELOCK, PRGLOCK and OPTLOCK, refer to the Unlocking
the data EEPROM and the FLASH_PECR register, Unlocking the Flash program memory
and Unlocking the Option bytes area sections.

In the Flash program memory, it is possible to add another write protection with the sector
granularity. When PcROP is disabled (WPRMODE = 0), the bits of WRPROT are used to
enable the write protection on the sectors. The polarity is opposed relatively to PcROP: to
protect a sector, it is necessary to set the bit to 1; to remove the protection, it is necessary to
set the bit to 0. Table 20 is valid for a write protection as well. As explained, when PcROP is
enabled, the sectors protected against read are also protected against write/erase. It is
always possible to change the write protection on sectors both in Level 0 and Level 1
(provided that it is possible to write/erase to Option bytes and that PcROP is disabled).

Table 21 resumes the protections.

Table 21. Memory access vs mode, protection and Flash program memory sectors

Flash program memory
sectors

Mode

User
(including In Application

Programming)
no Debug, or

no Boot in RAM, or
no Boot in System memory

User
in Debug, or

with Boot in RAM, or
with Boot in System memory

RDP
Level 1
Level 0

Level 2 Level 0 Level 1 Level 2

Flash program memory
(FLASH_PRGLOCK = 1)

R R R
Protected

(no access)
NA(1)

Flash memory
(FLASH_PRLOCK = 0)

R / W R / W R / W
Protected

(no access)
NA(1)

Flash program memory
in WRP pages

R R R
Protected

(no access)
NA(1)

RM0367 Rev 8 101/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.4.4 Write/erase protection management

Here is a summary of the rules to change all previous protections:

• When the protection Level is 2, no protection change can be done.

• When in Level 0 or 1, it is always possible to move to Level 2, writing xx33xxCC (the x
are the hexadecimal digits that can have any value) in the first Option byte word.

• When in Level 0, it is possible to move to Level 1, writing any value in the first Option
byte word that is not xx33xxCC (Level 2) or xx55xxAA (Level 0).

• when in Level 1, the protection can be reduced to Level 0, writing xx55xxAA in the first
Option byte word. This generates a mass erase and deletes the PcROP field too.

• It is always possible to enable PcROP (except in Level 2), writing x0xxx1xx in the first
Option byte word. If there is a mismatch during an Option byte loading on this flag,
PcROP is enabled.

• PcROP can be removed on requesting a mass erase (move from Level 1 to Level 0).

• When PcROP is disabled, a write protection can be added on sectors (writing 1) or
removed (writing 0) in the third word of the Option bytes. A mismatch concerns all
write-protected sectors (if PcROP is disabled).

• When PcROP is enabled, protected sectors can be added (writing 0) but cannot be
removed. A mismatch concerns all read- and write-protected sectors (if PcROP is
enabled).

• A mass erase does not delete the third word of the Option bytes: the user must write it
correctly.

Flash program memory
in PCROP pages

Fetch Fetch Fetch
Protected

(no access)
NA(1)

Data EEPROM

(FLASH_PELOCK = 1)
R R R

Protected
(no access)

NA(1)

Data EEPROM
(FLASH_PELOCK = 0)

R / W R / W R / W
Protected

(no access)
NA(1)

Option bytes
(FLASH_OPTLOCK = 1)

R R R R NA(1)

Option bytes
(FLASH_OPTLOCK = 0)

R / W R R / W R / W NA(1)

1. NA stands for “not applicable”.

Table 21. Memory access vs mode, protection and Flash program memory sectors (continued)

Flash program memory
sectors

Mode

User
(including In Application

Programming)
no Debug, or

no Boot in RAM, or
no Boot in System memory

User
in Debug, or

with Boot in RAM, or
with Boot in System memory

RDP
Level 1
Level 0

Level 2 Level 0 Level 1 Level 2

Flash program memory and data EEPROM (FLASH) RM0367

102/1040 RM0367 Rev 8

3.4.5 Protection errors

Write protection error flag (WRPERR)

If an erase/program operation to a write-protected page of the Flash program memory and
data EEPROM is launched, the Write Protection Error flag (WRPERR) is set in the
FLASH_SR register. Consequently, the WRPERR flag is set when the software tries to:

• Write to a WRP page.

• Write to a System memory page or to factory option bytes.

• Write to the Flash program memory, data EEPROM or Option bytes if they are not
unlocked by PEKEY, PRGKEY or OPTKEY.

• Write to the Flash program memory, data EEPROM or Option bytes when the RDP
Option byte is set and the device is in debug mode or is booting from the RAM or from
the System memory.

A write-protection error aborts the write/erase operation and an interrupt can be generated
(if ERRIE = 1 in the FLASH_PECR register).

To reset this flag, the software needs to write it to 1.

Read error (RDERR)

If the software tries to read a sector protected by PcROP, the RDERR flag of FLASH_SR is
raised. The data received on the bus is at 0.

If the error interrupt is enabled (ERRIE = 1 in the FLASH_PECR register), an interrupt is
generated.

To reset this flag, the software needs to write it to 1.

3.5 NVM interrupts

Setting the End of programming interrupt enable bit (EOPIE) in the FLASH_PECR register
enables an interrupt generation when an erase or a programming operation ends
successfully. In this case, the End of programming (EOP) bit in the FLASH_SR register is
set. To reset it, the software needs to write it to 1.

Setting the Error interrupt enable bit (ERRIE) in the FLASH_PECR register enables an
interrupt generation if an error occurs during a programming or an erase operation request.
In this case, one or several error flags are set in the FLASH_SR register:

• RDERR (PCROP Read protection error flags)

• WRPERR (Write protection error flags)

• PGAERR (Programming alignment error flag)

• OPTVERR (Option validity error flag)

• SIZERR (Size error flag)

• FWWERR (Fetch while write error flag)

• NOTZEROERR (Write a not zero word error flag)

To reset the error flag, the software needs to write the right flag to 1.

RM0367 Rev 8 103/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.5.1 Hard fault

A hard fault is generated on:

• The memory bus if a read access is attempted when RDP is set.

• The memory bus if a read as data is received; then, the memory interface is waiting for
a data/address during a half-page write (after the 1st address and before the 16th
address).

• The register bus if an incorrect value is written in PEKEYR, PRGKEYR, or OPTKEYR.

3.6 Memory interface management

The purpose of this section is to clarify what happens when one operation is requested
while another is ongoing: the way the different operations work together and are managed
by the memory interface.

3.6.1 Operation priority and evolution

There are three types of operations and each of them has different flows:

Read

• If no operation is ongoing and the read address is not protected, the read is executed
without delays and with the actual configurations.

• If the read address is protected, the operation is filtered (the read requested is never
sent to the memory) and an error is raised.

• If the read address is not protected but the memory interface is busy and cannot
perform the operation, the read is put on hold to be executed as soon as possible.

Write/erase

• If no operation is ongoing and the write address is not protected, the write/erase will
start immediately; after some clock pulses (see Table 17) during which the bus and the

Table 22. Flash interrupt request

Interrupt event Event flag Enable control bit

End of operation EOP EOPIE

Error

RDERR

WRPERR

PGAERR

OPTVERR

SIZERR

FWWERR

NOTZEROERR

ERRIE

Flash program memory and data EEPROM (FLASH) RM0367

104/1040 RM0367 Rev 8

master are blocked, the memory interface continues the operation freeing the bus and
the master.

• If the address is protected, the write/erase is filtered (the write/erase requested is never
sent to the memory) and an error is raised.

• If the address is not protected but one or several conditions are not met, the operation
is aborted (the abort needs more time to be executed because the NVM and data
EEPROM need to return to default configuration) and an error is raised.

• If the address to write/erase is not protected and all rules are respected, and if the
memory interface is busy, the operation is put on hold to be executed as soon as
possible.

Option byte loading

• If a write/erase is ongoing, the Option byte loading waits for the end of operation then it
is executed: no other write/erase is accepted, even if waiting.

• If no write/erase is ongoing, the Option byte is executed directly (the read operation is
executed until the system reset goes to 0 as a result of the Option byte request).

This means that the Option byte loading has a bigger priority than the read and write/erase
operations. All other operations are executed in the order of request.

3.6.2 Sequence of operations

Read as data while write

If the master requests a read as data (see Read as data and pre-read) while a write
operation is ongoing, there are three different cases:

1. If the read is in a protected area, the RDERR flag is raised and the write operation
continues.

2. If the write operation uses a Single programming operation or a Multiple programming
operation (half page) and all addresses/data have been sent to the memory interface,
any read operation from the same bank is put on hold and will be executed when the
write operation is complete. It is important to emphasize that, during all the time spent
when the read waits to be executed, the master is blocked and no other operation can
be executed until the write and read operations are complete. However, any authorized
read operation from the other bank is accepted and served.

3. if the write operation uses a Multiple programming operation (half page) and not all
addresses/data have been sent to the memory interface, the read operation is not
accepted whatever the targeted bank, a hard fault is generated and the memory
interface continues to wait for the missing addresses/data to complete the write
operation.

Fetch while write

If the master fetches an instruction while a write is ongoing, the situation is similar to a read
as data (see step 1 and 2 above), but the last case is as follows:

• If the write operation uses a Multiple programming operation (half page) and not all
addresses/data have been sent to the memory interface, the write is aborted and it is
as it had never happened: the read operation is accepted whatever the targeted bank,
and the value is sent to the master.

RM0367 Rev 8 105/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Write while another write operation is ongoing

If the master requests a write operation while another one is ongoing, there are different
cases:

• If the previous write uses a Single programming operation or a Multiple programming
operation (half page) and all addresses/data have been sent to the memory interface,
and if the new write is in a protected area, the WRPERR flag is raised, the previous
write continues and the new write is deleted.

• If the previous write uses a Single programming operation or a Multiple programming
operation (half page) and all addresses/data have been sent to the memory interface,
and if the new Single programming operation or Multiple programming operation (half
page) is not in a protected area, the new write is put on hold and will be executed when
the first write operation is complete. It is important to emphasize that the master who
requested the second write is blocked until the first write completes and the second has
stored the address and data internally.

• It is forbidden to request a new write when a mass erase is ongoing: during all the
steps of the mass erase, the data is not stored internally and the new data can change
the value stored as a protection, adding unwanted protections.

• It is possible to change configurations to prepare a new write operation when the first
operation uses a Single programming operation or a Multiple programming operation
(half page) and all addresses/data have been sent to the memory interface.

3.6.3 Change the number of wait states while reading

To change the number of wait states, it is necessary to write to the FLASH_ACR register.
The read/write of a register uses a different interface than the memory read/write. The
number of wait states cannot be changed while the memory interface is reading and the
memory interface cannot be stopped if a request is sent to the register interface. For this
reason, while a master is reading the memory and another master changes the wait state
number, the register interface will be locked until the change takes effect (until the readings
stop). To stop the master which is changing the number of wait states, it is important to read
back the content of the FLASH_ACR register: it is not possible to know the number of clock
cycles that will be necessary to change the number of wait states as it depends on the
customer code.

3.6.4 Power-down

To put the NVM in power-down, it is necessary to execute an unlocking sequence.

The following sequence is used to unlock RUN_PD bit of the FLASH_ACR register:

• Write PDKEY1 = 0x04152637 to the FLASH_PDKEYR register.

• Write PEKEY2 = 0xFAFBFCFD to the FLASH_PDKEYR register.

It is necessary to write the two keys without constraints about other read or write. No error is
generated if the wrong key is used: when both have been written, RUN_PD bit is unlocked
and can be written to 1, putting the NVM in power-down mode.

Resetting the RUN_PD flag to 0 (making the NVM available) automatically resets the
sequence and the two keys are requested to re-enable RUN_PD.

Flash program memory and data EEPROM (FLASH) RM0367

106/1040 RM0367 Rev 8

3.7 Flash register description

Read registers

To read all internal registers of the memory interface, the user must read at the register
addresses. The content is available immediately (no wait state is necessary to read
registers). If the user tries to read the FLASH_ACR register after modifying the number of
wait states, the content will be available when the change takes effect (when no read is
done in the NVM memory, so the number of wait states is changed).

When no register is selected or when a wrong address is sent to the memory interface, a
zero value is sent as an answer. No error is generated.

When the master sends a request to read 8 or 16 bits, the memory interface returns the
corresponding part of the register on the data output bus. For example, if a register content
is 0x12345678 and the master sends a request to read the second byte, the output will be
0x34343434 (because 0x34 is the content of the second register byte when starting to count
bytes from zero). Similarly, if the master sends a request to read half-word zero of the
previous register, the output will be 0x56785678.

Write to registers

In the configuration registers of the memory interface, there are two types of bits:

• the bits that can be written to directly

• the bits needing a particular sequence to unlock.

To know which category a bit belongs to, see the next sections where every bit is explained
in details.

When it is possible to write directly to a register or a key-register, the user must write the
expected value at the register address. If the address is not correct, no error is generated. If
the user tries to modify a read-only register, no error is generated and the modify operation
does not take any effect. It is possible to write registers by byte, half-word and word.

When an unlock sequence is necessary, the correct values to use are given.

RM0367 Rev 8 107/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.7.1 Access control register (FLASH_ACR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res.

P
R

E
_

R
E

A
D

D
IS

A
B

_
B

U
F

R
U

N
_

P
D

S
L

E
E

P
_P

D

Res.

P
R

F
T

E
N

L
A

T
E

N
C

Y

rw rw rw rw rw rw

Bits 31:7 Reserved, must be kept at reset value

Bit 6 PRE_READ

This bit enables the pre-read.

0: The pre-read is disabled
1: The pre-read is enabled. The memory interface stores the last address read as data and
tries to read the next one when no other read or write or prefetch operation is ongoing.

Note: It is automatically reset every time the DISAB_BUF bit (in this register) is set to 1.

Bit 5 DISAB_BUF

This bit disables the buffers used as a cache during a read. This means that every read will
access the NVM even for an address already read (for example, the previous address). When
this bit is reset, the PRFTEN and PRE_READ bits are automatically reset, too.

0: The buffers are enabled
1: The buffers are disabled. Every time one NVM value is necessary, one new memory read
sequence has do be done.

Bit 4 RUN_PD

This bit determines if the NVM is in power-down mode or in idle mode when the device is in run
mode. It is possible to write this bit only when there is an unlocked writing of the
FLASH_PDKEYR register.

The correct sequence is explained in Section 3.6.4: Power-down. When writing this bit to 0, the
keys are automatically lost and a new unlock sequence is necessary to re-write it to 1.

0: When the device is in Run mode, the NVM is in Idle mode.
1: When the device is in Run mode, the NVM is in power-down mode.

Bit 3 SLEEP_PD

This bit allows to have the Flash program memory and data EEPROM in power-down mode or
in idle mode when the device is in Sleep mode.

0: When the device is in Sleep mode, the NVM is in Idle mode.
1: When the device is in Sleep mode, the NVM is in power-down mode.

Flash program memory and data EEPROM (FLASH) RM0367

108/1040 RM0367 Rev 8

3.7.2 Program and erase control register (FLASH_PECR)

Address offset: 0x04

Reset value: 0x0000 0007

This register can only be written after a good write sequence done in FLASH_PEKEYR,
resetting the PELOCK bit.

Bit 2 Reserved, must be kept at reset value

Bit 1 PRFTEN

This bit enables the prefetch. It is automatically reset every time the DISAB_BUF bit (in this
register) is set to 1. To know how the prefetch works, see the Fetch and prefetch section.

0: The prefetch is disabled.
1: The prefetch is enabled. The memory interface stores the last address fetched and tries to
read the next one when no other read or write operation is ongoing.

Bit 0 LATENCY

The value of this bit specifies if a 0 or 1 wait-state is necessary to read the NVM. The user must
write the correct value relative to the core frequency and the operation mode (power). The
correct value to use can be found in Table 13. No check is done to verify if the configuration is
correct.

To increase the clock frequency, the user has to change this bit to ‘1’, then to increase the
frequency. To reduce the clock frequency, the user has to decrease the frequency, then to
change this bit to ‘0’.

0: Zero wait state is used to read a word in the NVM.
1: One wait state is used to read a word in the NVM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res.

N
Z

D
IS

A
B

LE

Res. Res. Res. Res.

O
B

L
_

L
A

U
N

C
H

E
R

R
IE

E
O

P
IE

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
A

R
R

A
L

E
LB

A
N

K

Res. Res. Res. Res.

F
P

R
G

E
R

A
S

E

F
IX Res. Res. Res.

D
A

TA

P
R

O
G

O
P

T
_

LO
C

K

P
R

G
_

L
O

C
K

P
E

_
LO

C
K

rw rw rw rw rw rw rs rs rs

RM0367 Rev 8 109/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Bits 31:24 Reserved, must be kept at reset value

Bit 23 NZDISABLE: Non-Zero check notification disable

When this bit is set, the application software does not check if the previous NVM content is
zero before programming a word or an half-page in the program or boot area. As a result,
the NOTZEROERR flag will always remain at 0 and no interrupt will be generated if the
above condition is met. By default, NZDISABLE is set to 0. It can be modified only when
PELOCK is 0.
0: error interrupt disabled
1: error interrupt enabled
On category 3 devices, this bit is not available and the behavior corresponds to
NZDISABLE=0.

Bits 22:19 Reserved, must be kept at reset value

Bit 18 OBL_LAUNCH

Setting this bit, the software requests the reloading of Option byte. The Option byte reloading
does not stop an ongoing modify operation, but it blocks new ones. The Option byte reloading
generates a system reset.

0: Option byte loading completed.
1: Option byte loading to be done.

Note: This bit can only be modified when OPTLOCK is 0. Locking OPTLOCK (or other lock
bits) does not reset this bit.

Bit 17 ERRIE: Error interrupt enable

0: Error interrupt disable.
1: Error interrupt enable.

Note: This bit can only be modified when PELOCK is 0. Locking PELOCK does not reset this
bit; the interrupt remains enabled.

Bit 16 EOPIE: End of programming interrupt enable

0: End of program interrupt disable.
1: End of program interrupt enable.

Note: This bit can only be modified when PELOCK is 0. Locking PELOCK does not reset this
bit; the interrupt remains enabled.

Bit 15 PARALLELBANK: Parallel bank programming mode.

This bit can be set and cleared by software when no program or erase operation is ongoing.
When it is set, 2 half-pages can be programmed, the first one in Bank 1 and the second one
in Bank 2.
0: Parallel bank mode disabled
1: Parallel bank mode enabled
This bit is available only for category 5 devices.

Bits 14:11 Reserved, must be kept at reset value

Bit 10 FPRG: Half Page programming mode

0: Half Page programming disabled.
1: Half Page programming enabled.

Note: This bit can be modified when PELOCK is 0. It is reset when PELOCK is set.

Bit 9 ERASE

0: No erase operation requested.
1: Erase operation requested.

Note: This bit can be modified when PELOCK is 0. It is reset when PELOCK is set.

Flash program memory and data EEPROM (FLASH) RM0367

110/1040 RM0367 Rev 8

Bit 8 FIX

0: An erase phase is automatically performed, when necessary, before a program operation
in the data EEPROM and the Option bytes areas. The programming time can be:
Tprog (program operation) or 2 * Tprog (erase + program operations).
1: The program operation is always performed with a preliminary erase and the
programming time is: 2 * Tprog.

Note: This bit can be modified when PELOCK is 0. It is reset when PELOCK is set.

Bits 7:5 Reserved, must be kept at reset value

Bit 4 DATA

0: Data EEPROM not selected.
1: Data memory selected.

Note: This bit can be modified when PELOCK is 0. It is reset when PELOCK is set.This bit is
not very useful as the page and word have the same size in the data EEPROM, but it is
used to identify an erase operation (by page) from a word operation.

Bit 3 PROG

This bit is used for half-page program operations and for page erase operations in the Flash
program memory.

0: The Flash program memory is not selected.
1: The Flash program memory is selected.

Note: This bit can be modified when PELOCK is 0. It is reset when PELOCK is set.

RM0367 Rev 8 111/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Bit 2 OPTLOCK: Option bytes lock

This bit blocks the write/erase operations to the user Option bytes area and the
OBL_LAUNCH bit (in this register). It can only be written to 1 to re-lock. To reset to 0, a correct
sequence of unlock with OPTKEYR register is necessary (see Unlocking the Option bytes
area), with PELOCK bit at 0. If the sequence is not correct, the bit will be locked until the next
system reset and a hard fault is generated. If the sequence is executed when PELOCK = 1,
the bit remains locked and no hard fault is generated. The keys to unlock are:

– First key:0xFBEAD9C8

– Second key: 0x24252627

0: The write and erase operations in the Option bytes area are disabled.
1: The write and erase operations in the Option bytes area are enabled.

Note: This bit is set when PELOCK is set.

Bit 1 PRGLOCK: Program memory lock

This bit blocks the write/erase operations to the Flash program memory. It can only be written
to 1 to re-lock. To reset to 0, a correct sequence of unlock with PRGKEYR register is
necessary (see Unlocking the Flash program memory), with PELOCK bit at 0. If the sequence
is not correct, the bit will be locked until the next system reset and a hard fault is generated. If
the sequence is executed when PELOCK = 1, the bit remains locked and no hard fault is
generated. The keys to unlock are:

– First key:0x8C9DAEBF

– Second key: 0x13141516

0: The write and erase operations in the Flash program memory are disabled.
1: The write and erase operations in the Flash program memory are enabled.

Note: This bit is set when PELOCK is set.

Bit 0 PELOCK: FLASH_PECR lock

This bit locks the FLASH_PECR register. It can only be written to 1 to re-lock. To reset to 0, a
correct sequence of unlock with PEKEYR register (see Unlocking the data EEPROM and the
FLASH_PECR register) is necessary. If the sequence is not correct, the bit will be locked until
the next system reset and one hard fault is generated. The keys to unlock are:

– First key: 0x89ABCDEF

– Second key: 0x02030405

0: The FLASH_PECR register is unlocked; it can be modified and the other bits unlocked.
Data write/erase operations are enabled.
1: The FLASH_PECR register is locked and no write/erase operation can start.

Flash program memory and data EEPROM (FLASH) RM0367

112/1040 RM0367 Rev 8

3.7.3 Power-down key register (FLASH_PDKEYR)

Address offset: 0x08

Reset value: 0x0000 0000

3.7.4 PECR unlock key register (FLASH_PEKEYR)

Address offset: 0x0C

Reset value: 0x0000 0000

3.7.5 Program and erase key register (FLASH_PRGKEYR)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FLASH_PDKEYR[31:16]

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLASH_PDKEYR15:0]

w w w w w w w w w w w w w w w w

Bits 31:0 This is a write-only register. With a sequence of two write operations (the first one with
0x04152637 and the second one with 0xFAFBFCFD), the write size being that of a word, it is
possible to unlock the RUN_PD bit of the FLASH_ACR register. For more details, refer to
Section 3.6.4: Power-down.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FLASH_PEKEYR[31:16]

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLASH_PEKEYR15:0]

w w w w w w w w w w w w w w w w

Bits 31:0 This is a write-only register. With a sequence of two write operations (the first one with
0x89ABCDEF and the second one with 0x02030405), the write size being that of a word, it is
possible to unlock the FLASH_PECR register. For more details, refer to Unlocking the data
EEPROM and the FLASH_PECR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FLASH_PRGKEYR[31:16]

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLASH_PRGKEYR15:0]

w w w w w w w w w w w w w w w w

Bits 31:0 This is a write-only register. With a sequence of two write operations (the first one with
0x8C9DAEBF and the second one with 0x13141516), the write size being that of a word, it is
possible to unlock the Flash program memory. The sequence can only be executed when
PELOCK is already unlocked. For more details, refer to Unlocking the Flash program memory.

RM0367 Rev 8 113/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.7.6 Option bytes unlock key register (FLASH_OPTKEYR)

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FLASH_OPTKEYR[31:16]

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLASH_OPTKEYR[15:0]

w w w w w w w w w w w w w w w w

Bits 31:0 This is a write-only register. With a sequence of two write operations (the first one with
0xFBEAD9C8 and the second one with 0x24252627), the write size being that of a word, it is
possible to unlock the Option bytes area and the OBL_LAUNCH bit. The sequence can only be
executed when PELOCK is already unlocked. For more details, refer to Unlocking the Option
bytes area.

Flash program memory and data EEPROM (FLASH) RM0367

114/1040 RM0367 Rev 8

3.7.7 Status register (FLASH_SR)

Address offset: 0x018

Reset value: 0x0000 000C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

F
W

W
E

R

N
O

T
Z

E
R

O
E

R
R

rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.

R
D

E
R

R

Res.

O
P

T
V

E
R

R

S
IZ

E
R

R

P
G

A
E

R
R

W
R

P
E

R
R

Res. Res. Res. Res.

R
E

A
D

Y

E
N

D
H

V

E
O

P

B
S

Y

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 r r rc_w1 r

Bits 31:18 Reserved, must be kept at reset value

Bit 17 FWWERR

This bit is set by hardware when a write/erase operation is aborted to perform a fetch. This is
not a real error, but it is used to inform that the write/erase operation did not execute. To reset
this flag, write 1.

0: No write/erase operation aborted to perform a fetch.
1: A write/erase operation aborted to perform a fetch.

Bit 16 NOTZEROERR

This bit is set by hardware when a program in the Flash program or System Memory tries to
overwrite a not-zero area. In category 3 devices, this flag does not stop the program operation:
it is possible that the value found when reading back is not what the user wrote. To reset this
flag, write 1.

0: The write operation is done in an erased region or the memory interface can apply an
erase before a write.
1: The write operation is attempting to write to a not-erased region and the memory interface
cannot apply an erase before a write. Except for category 3 devices, the modify operation is
aborted. For category 3 devices a not-zero error does not abort the write/erase operation.

Bits 15:14 Reserved, must be kept at reset value

Bit 13 RDERR

This bit is set by hardware when the user tries to read an area protected by PcROP. It is
cleared by writing 1.

0: No read protection error happened.
1: One read protection error happened.

Bit 12 Reserved, must be kept at reset value

Bit 11 OPTVERR: Option valid error

This bit is set by hardware when, during an Option byte loading, there was a mismatch for one
or more configurations. It means that the configurations loaded may be different from what the
user wrote in the memory. It is cleared by writing 1.

If an error happens while loading the protections (WPRMOD, RDPROT, WRPROT), the source
code in the Flash program memory may not execute correctly.

0: No error happened during the Option bytes loading.
1: One or more errors happened during the Option bytes loading.

RM0367 Rev 8 115/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Bit 10 SIZERR: Size error

This bit is set by hardware when the size of data to program is not correct. It is cleared by
writing 1.

0: No size error happened.
1: One size error happened.

Bit 9 PGAERR: Programming alignment error

This bit is set by hardware when an alignment error has happened: the first word of a half-page
operation is not aligned to a half-page, or one of the following words in a half-page operation
does not belong to the same half-page as the first word. When this bit is set, it has to be
cleared before writing 1, and no half-page operation is accepted.

0: No alignment error happened.
1: One alignment error happened.

Bit 8 WRPERR: Write protection error

This bit is set by hardware when an address to be programmed or erased is write-protected. It
is cleared by writing 1.

0: No protection error happened.
1: One protection error happened.

Bits 7:4 Reserved, must be kept at reset value

Bit 3 READY

When this bit is set, the NVM is ready for read and write/erase operations.

0: The NVM is not ready. No read or write/erase operation can be done.
1: The NVM is ready.

Bit 2 ENDHV

This bit is set and reset by hardware.

0: High voltage is executing a write/erase operation in the NVM.
1: High voltage is off, no write/erase operation is ongoing.

Bit 1 EOP: End of program

This bit is set by hardware at the end of a write or erase operation when the operation has not
been aborted. It is reset by software (writing 1).

0: No EOP operation occurred
1: An EOP event occurred. An interrupt is generated if EOPIE bit is set.

Bit 0 BSY: Memory interface busy

Write/erase operations are in progress.

0: No write/erase operation is in progress.
1: A write/erase operation is in progress.

Flash program memory and data EEPROM (FLASH) RM0367

116/1040 RM0367 Rev 8

3.7.8 Option bytes register (FLASH_OPTR)

Address offset 0x1C

Reset value: 0xX0XX 0XXX. It depends on the value programmed in the option bytes.
During production, it is set to 0x8070 00AA.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

n
B

O
O

T
1

Res. Res. Res. Res. Res. Res. Res.

B
F

B
2

n
R

S
T

_
S

T
D

B
Y

n
R

T
S

_
S

T
O

P

W
D

G
_

S
W

B
O

R
_

L
E

V
[3

:0
]

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res.
W

P
R

M
O

D

R
D

P
R

O
T

r r r r r r r r r

Bit 31 nBOOT1

Together with BOOT0 input pad, this bit selects the boot source:

– If BOOT0 = 0 and nBOOT1 = X, then the boot is in the Flash program memory.

– If BOOT0 = 1 and nBOOT1 = 0, then the boot is in the RAM memory.

– If BOOT0 = 1 and nBOOT1 = 1, then the boot is in the System memory.

To change boot sources, an Option bytes reloading is necessary. If there is a mismatch on this
configuration during the Option bytes loading, it is loaded with 1.

If the device is protected at Level 2, BOOT0 and nBOOT1 lose their meaning: the boot is
always forced in the Flash program memory.

Bits 30:24 Reserved, must be kept at reset value

Bit 23 BFB2: Boot from Bank 2

This bit contains the user option byte loaded by the device OPTL. This bit is used to boot
from Bank 2. Actually this bit indicates whether a boot from System memory or from Flash
program memory has been selected. If boot from System memory is selected, the jump to
Bank 1 or Bank 2 is performed by software depending on the value of the first two words at
the beginning of each bank. When BFB2 is set, user Flash memory is not aliased at address
0. Instead, the System Flash memory is aliased at address 0 through MEM_MODE bits in
SYSCFG_CFGR1.
0: BOOT from Bank 1 (category 5 devices) or USER Flash memory (other categories)
1: BOOT from System memory

Note: This bit is available in category 5 devices only.

Bit 22 nRST_STDBY

If there is a mismatch on this configuration during the Option bytes loading, it is loaded with 1.

0: Reset generated when entering the Standby mode.
1: No reset generated.

Bit 21 nRST_STOP

If there is a mismatch on this configuration during the Option bytes loading, it is loaded with 1.

0: Reset generated when entering the Stop mode.
1: No reset generated.

RM0367 Rev 8 117/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

Bit 20 WDG_SW

If there is a mismatch on this configuration during the Option bytes loading, it is loaded with 1.

0: Hardware watchdog.
1: Software watchdog.

Bits 19:16 BOR_LEV: Brownout reset threshold level

These bits reset the threshold level for a 1.45 V to 1.55 V voltage range (power-down only). In
this particular case, VDD must have been above VBOR0 to start the device OBL sequence, in
order to disable the BOR. The power-down is then monitored by the PDR. If the BOR is
disabled, a “grey zone” exists between 1.65 V and the VPDR threshold (this means VDD can
be below the minimum operating voltage (1.65 V) without any reset until the VPDR threshold).

If there is a mismatch on this configuration during the Option bytes loading, it is loaded with
0x8.

0xxx: BOR OFF. This is the reset threshold level for the 1.45 V - 1.55 V voltage range
(power-down only).
In this particular case, VDD must have been above BOR LEVEL 1 to start the device OBL
sequence in order to disable the BOR. The power-down is then monitored by the PDR.

Note: If the BOR is disabled, a "grey zone" exists between 1.65 V and the VPDR threshold
(this means that VDD may be below the minimum operating voltage (1.65 V) without
causing a reset until it crosses the VPDR threshold)

1000: BOR LEVEL 1 is the reset threshold level for VBOR0 (around 1.8 V)
1001: BOR LEVEL 2 is the reset threshold level for VBOR1 (around 2.0 V)
1010: BOR LEVEL 3 is the reset threshold level for VBOR2 (around 2.5 V)
1011: BOR LEVEL 4 is the reset threshold level for VBOR3 (around 2.7 V).
1100: BOR LEVEL 5 is the reset threshold level for VBOR4 (around 3.0 V)

Note: Refer to the device datasheets for the exact definition of BOR levels.

Bits 15:9 Reserved, must be kept at reset value

Bit 8 WPRMOD

This bit selects between write and read protection of Flash program memory sectors. If there is
a mismatch on this configuration during the Option bytes loading, it is loaded with 1.

0: PCROP disabled. The WRPROT bits are used as a write protection on a sector.
1: PCROP enabled. The WRPROT bits are used as a read protection on a sector.

Bits 7:0 RDPROT: Read protection

These bits contain the protection level loaded during the Option byte loading. If there is a
mismatch on this configuration during the Option bytes loading, it is loaded with 0x00.

0xAA: Level 0
0xCC: Level 2
Others: Level 1

Flash program memory and data EEPROM (FLASH) RM0367

118/1040 RM0367 Rev 8

3.7.9 Write protection register 1 (FLASH_WRPROT1)

Address offset: 0x20

Reset value: 0xXXXX XXXX. It depends on the value programmed in the option bytes.
During production, it is set to 0x0000 0000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WRPROT1[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WRPROT1[15:0]

r r r r r r r r r r r r r r r r

Bits 31:0 WRPROT1: Write protection

– If WPRMOD = 0 in the FLASH_OPTR register, these bits contain the write protection
configuration for the Flash memory (every bit protects a 4-Kbyte sector: the first bit protects
the first sector, the second bit protects the second page and so on). In this case, 1 = sector
protected, 0 = no protection.

– If WPRMOD = 1, these bits are used to protect from reading as data (see Read as data and
pre-read), and then also from writing, with the same granularity and with the same
combination of bits and sectors. The read protection does not protect against a fetch. In this
case, 1 = no protection, 0 = sector protected.

When WPRMOD = 0, it is possible to set or reset these bits without any limitation changing
the relative Option bytes.

When WPRMOD = 1, it is only possible to increase the protection, which means that the user
can add zeros but cannot add ones.

The mass erase deletes the WPRMOD bits but does not delete the content of this register.
After a mass erase, the user must write the relative Option bytes with zeros to remove
completely the write protections.

If there is a mismatch on this configuration during the Option bytes loading, and the content of
WPRMOD in the FLASH_OPTR register is:

1, this configuration is loaded with 0x0000.
0, this configuration is loaded with 0xFFFF.

If there was a mismatch when WPRMOD was loaded in the FLASH_OPTR register (thus
loaded with ones), the register is loaded with 0x0000.

RM0367 Rev 8 119/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.7.10 Write protection register 2 (FLASH_WRPROT2)

Address offset: 0x80

Reset value: 0x 0000 XXXX. It depends on the value programmed in the option bytes.
During production, it is set to 0x0000 0000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WRPROT2 [15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 WRPROT2: Write protection

– If WPRMOD = 0 in the FLASH_OPTR register, these bits contain the write protection
configuration for the Flash memory (every bit protects a 4-Kbyte sector: the first bit protects
the first sector, the second bit protects the second page and so on). In this case, 1 = sector
protected, 0 = no protection.

– If WPRMOD = 1, these bits are used to protect from reading as data (see Read as data and
pre-read), and then also from writing, with the same granularity and with the same
combination of bits and sectors. The read protection does not protect against a fetch. In this
case, 1 = no protection, 0 = sector protected.

When WPRMOD = 0, it is possible to set or reset these bits without any limitation changing
the relative Option bytes.

When WPRMOD = 1, it is only possible to increase the protection, which means that the user
can add zeros but cannot add ones.

The mass erase deletes the WPRMOD bits but does not delete the content of this register.
After a mass erase, the user must write the relative Option bytes with zeros to remove
completely the write protections.

If there is a mismatch on this configuration during the Option bytes loading, and the content of
WPRMOD in the FLASH_OPTR register is:

1, this configuration is loaded with 0x0000.
0, this configuration is loaded with 0xFFFF.

If there was a mismatch when WPRMOD was loaded in the FLASH_OPTR register (thus
loaded with ones), the register is loaded with 0x0000.

Flash program memory and data EEPROM (FLASH) RM0367

120/1040 RM0367 Rev 8

3.7.11 Flash register map

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 23. Flash interface - register map and reset values

Off-
set

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
FLASH_ACR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
R

E
_

R
E

A
D

D
E

S
A

B
_

8
B

U
F

R
U

N
_P

D

S
L

E
E

P
_

P
D

R
es

.

P
R

F
T

E
N

LA
T

E
N

C
Y

0x00000000 0 0 0 0 0 0

0x004
FLASH_PECR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

N
Z

D
IS

A
B

LE

R
es

.

R
es

.

R
es

.

R
es

.

O
B

L
_

L
A

U
N

C
H

E
R

R
IE

E
O

P
IE

P
A

R
A

L
L

E
L

B
A

N
K

R
es

.

R
es

.

R
es

.

R
es

.

F
P

R
G

E
R

A
S

E

F
IX

R
es

.

R
es

.

R
es

.

D
A

TA

P
R

G

O
P

T
LO

C
K

P
R

G
L

O
C

K

P
E

LO
C

K

0x00000007 0 0 0 0 0 0 0 0 0 0 1 1 1

0x008

FLASH_
PDKEYR

PDKEYR[31:0]

0x00000000 0

0x00C

FLASH_
PKEYR

PKEYR[31:0]

0x00000000 0

0x010

FLASH_
PRGKEYR

PRGKEYR[31:0]

0x00000000 0

0x014

FLASH_
OPTKEYR

OPTKEYR[31:0]

0x00000000 0

0x018
FLASH_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

F
W

W
E

R
R

N
O

T
Z

E
R

O
E

R
R

R
es

.

R
es

.

R
D

E
R

R

R
es

.

O
P

T
V

E
R

R

S
IZ

E
R

R

P
G

A
E

R
R

W
R

P
E

R
R

R
es

.

R
es

.

R
es

.

R
es

.

R
E

A
D

Y

E
N

D
H

V

E
O

P

B
S

Y
0x0000000C 0 0 0 0 0 0 0 1 1 0 0

0x01C
FLASH_OPTR

n
B

O
O

T
1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

B
F

B
2

nR
S

T
_

S
T

B
Y

n
R

S
T

_
S

T
O

P

W
D

G
_

S
W

BOR_LEV:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
P

R
M

O
D

RDPROT[7:0]

0xX0XX0XXX X

0x020

FLASH_
WRPROT1

WRPROT1[31:0]

0x0000XXXX X

0x080

FLASH_
WRPROT2 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WRPROT2[15:0]

0xXXX 0000 X X X X X X X X X X X X X X X X

RM0367 Rev 8 121/1040

RM0367 Flash program memory and data EEPROM (FLASH)

122

3.8 Option bytes

On the NVM, an area is reserved to store a set of Option bytes which are used to configure
the product. Some option bytes are written in factory while others can be configured by the
end user.

The configuration managed by an end user is stored the Option bytes area (32 bytes). To be
taken into account, a boot sequence must be executed. This boot sequence occurs after a
power-on reset when exiting from Standby mode, or by reloading the option bytes by
software (Section 3.8.3: Reloading Option bytes by software). The Option bytes are
automatically loaded during the boot. They are used to set the content of the FLASH_OPTR
and FLASH_WRPROTx registers.

Every word, when read during the boot, is interpreted as explained in Table 24: the lower 16
bits contain the data to copy in the memory interface registers and the higher 16 bits contain
the complemented value used to check that the data read are correct. If there is an error
during loading operation (the higher part is not the complement of the lower one), the default
value is stored in the registers. The check is done by configuration. Section 3.8.2 explains
what happens when there is a mismatch on protection configurations.

During a write, no control is done to check if the higher part of a word is the complement of
the lower part: this check must be performed by the user application.

3.8.1 Option bytes description

The Option bytes can be read from the memory locations listed in Table 25.

Refer to Section 3.7.8: Option bytes register (FLASH_OPTR) and Section 3.7.9: Write
protection register 1 (FLASH_WRPROT1) for the meaning of each bit.

Table 24. Option byte format

31-24 23-16 15-8 7-0

Complemented
Option byte 1

Complemented
Option byte 0

Option byte 1 Option byte 0

Table 25. Option byte organization

Address [31:16] [15:0]

0x1FF8 0000 nFLASH_OPTR[15:0] FLASH_OPTR[15:0]

0x1FF8 0004 nFLASH_OPTR[31:16] FLASH_OPTR[31:16]

0x1FF8 0008 nFLASH_WRPROT1[15:0] FLASH_WRPROT1[15:0]

0x1FF8 000C nFLASH_WRPROT1[31:16] FLASH_WRPROT1[31:16]

0x1FF8 0010 nFLASH_WRPROT2[15:0] FLASH_WRPROT2[15:0]

Flash program memory and data EEPROM (FLASH) RM0367

122/1040 RM0367 Rev 8

3.8.2 Mismatch when loading protection flags

When there is a mismatch during an Option byte loading, the memory interface sets the
default value in registers.

In the Option byte area, there are three kinds of protection information:

• RDPROT
This configuration sets the Protection Level. As explained in the next section, changing
this level changes the possibility to access the NVM and the product. The default value
is Level 1. It is possible to return to Level 0 from Level 1 but all content of the data
EEPROM and Flash program memory will be deleted (mass erase). It is always
possible to move to Level 2, but not to change protection levels when Level 2 is loaded
(if the user writes in Option bytes a Level 2 but never reloads the Option bytes, the
memory interface continues to works in the previous level and it is possible to write
again a different protection level in the Option bytes area).

• WPRMOD
This flag is independent from RDPROT and set if the Flash program memory is
protected from read or write. When this flag is 1 (read protection), the only way to reset
it is to request a mass erase (also returning to Level 0). This means that there is no
way to remove the read protection when the device is in Level 2. The default value is 1
(read protection) and a mismatch on this bit also generates the default value for the
WRPROT configuration.

• WRPROT
This configuration sets which sectors of the Flash program memory are read- or write-
protected. If the read protection is disabled (WPRMOD = 0), 1 must be set in the right
bit to protect a sector. If the read protection is enabled (WPRMOD = 1), 0 must be in
the right bit to protect a sector. If during boot there is a mismatch on WPRMOD, this
configuration is loaded with zeros so that all sectors of the Flash program memory are
protected from read. If WPRMOD has been read correctly but there is a mismatch
reading WRPROT, the register will be loaded with zeros if WPRMOD = 1, and with
ones if WPRMOD = 0.

Thus, a mismatch on a protection can have a serious impact on the normal execution of
code (if it is in the Flash program memory): when there is a read protection, only a fetch is
possible. In the Flash program memory, some values are read as data (the constants, for
example) during a code execution; protecting all sectors from read prevents the execution of
the application code from the Flash program memory.

3.8.3 Reloading Option bytes by software

It is possible to request an Option byte reloading by setting the OBL_LAUNCH flag to 1 in
the FLASH_PECR register. This bit can be set only when OPTLOCK = 0 (and PELOCK =
0). Setting this bit, the ongoing write/erase is completed, but no new write/erase or read
operation is executed.

The reload of Option bytes generates a reset of the device but without a power-down. The
options must be reloaded after every change of the Option bytes in the NVM, so that the
changes can apply. It is possible to reload by setting OBL_LAUNCH, or with a power-on of
the V18 domain (i.e. after a power-on reset or after a standby).

RM0367 Rev 8 123/1040

RM0367 Cyclic redundancy check calculation unit (CRC)

129

4 Cyclic redundancy check calculation unit (CRC)

4.1 Introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16-
or 32-bit data word and a generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the functional safety standards, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.

4.2 CRC main features

• Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1

• Alternatively, uses fully programmable polynomial with programmable size (7, 8, 16, 32
bits)

• Handles 8-,16-, 32-bit data size

• Programmable CRC initial value

• Single input/output 32-bit data register

• Input buffer to avoid bus stall during calculation

• CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size

• General-purpose 8-bit register (can be used for temporary storage)

• Reversibility option on I/O data

• Accessed through AHB slave peripheral by 32-bit words only, with the exception of
CRC_DR register that can be accessed by words, right-aligned half-words and right-
aligned bytes

Cyclic redundancy check calculation unit (CRC) RM0367

124/1040 RM0367 Rev 8

4.3 CRC functional description

4.3.1 CRC block diagram

Figure 7. CRC calculation unit block diagram

4.3.2 CRC internal signals

4.3.3 CRC operation

The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to
input new data (write access), and holds the result of the previous CRC calculation (read
access).

Each write operation to the data register creates a combination of the previous CRC value
(stored in CRC_DR) and the new one. CRC computation is done on the whole 32-bit data
word or byte by byte depending on the format of the data being written.

The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned
byte. For the other registers only 32-bit access is allowed.

The duration of the computation depends on data width:

• 4 AHB clock cycles for 32 bits

• 2 AHB clock cycles for 16 bits

• 1 AHB clock cycles for 8 bits

An input buffer allows a second data to be immediately written without waiting for any wait
states due to the previous CRC calculation.

MS19882V3

Data register
(output)

read access

Data register
(input)

write access

32-bit AHB bus

crc_hclk

CRC computation

32-bit accesses

CRC_INIT

CRC_CR

CRC_POL

CRC_IDR

Table 26. CRC internal input/output signals

Signal name Signal type Description

crc_hclk Digital input AHB clock

RM0367 Rev 8 125/1040

RM0367 Cyclic redundancy check calculation unit (CRC)

129

The data size can be dynamically adjusted to minimize the number of write accesses for a
given number of bytes. For instance, a CRC for 5 bytes can be computed with a word write
followed by a byte write.

The input data can be reversed, to manage the various endianness schemes. The reversing
operation can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits
in the CRC_CR register.

For example: input data 0x1A2B3C4D is used for CRC calculation as:

• 0x58D43CB2 with bit-reversal done by byte

• 0xD458B23C with bit-reversal done by half-word

• 0xB23CD458 with bit-reversal done on the full word

The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register.

The operation is done at bit level: for example, output data 0x11223344 is converted into
0x22CC4488.

The CRC calculator can be initialized to a programmable value using the RESET control bit
in the CRC_CR register (the default value is 0xFFFFFFFF).

The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR
register is automatically initialized upon CRC_INIT register write access.

The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It
is not affected by the RESET bit in the CRC_CR register.

Polynomial programmability

The polynomial coefficients are fully programmable through the CRC_POL register, and the
polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the
POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported.

Note: The type of an even polynomial is X+X2+..+Xn, while the type of an odd polynomial is
1+X+X2+..+Xn.

If the CRC data is less than 32-bit, its value can be read from the least significant bits of the
CRC_DR register.

To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can
not be performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the
application must either reset it or perform a CRC_DR read before changing the polynomial.

The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11DB7.

Cyclic redundancy check calculation unit (CRC) RM0367

126/1040 RM0367 Rev 8

4.4 CRC registers

The CRC_DR register can be accessed by words, right-aligned half-words and right-aligned
bytes. For the other registers only 32-bit accesses are allowed.

4.4.1 CRC data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

4.4.2 CRC independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 DR[31:0]: Data register bits

This register is used to write new data to the CRC calculator.
It holds the previous CRC calculation result when it is read.
If the data size is less than 32 bits, the least significant bits are used to write/read the correct
value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. IDR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 IDR[7:0]: General-purpose 8-bit data register bits

These bits can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register

RM0367 Rev 8 127/1040

RM0367 Cyclic redundancy check calculation unit (CRC)

129

4.4.3 CRC control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
REV_
OUT

REV_IN[1:0] POLYSIZE[1:0] Res. Res. RESET

rw rw rw rw rw rs

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 REV_OUT: Reverse output data

This bit controls the reversal of the bit order of the output data.
0: Bit order not affected
1: Bit-reversed output format

Bits 6:5 REV_IN[1:0]: Reverse input data

These bits control the reversal of the bit order of the input data
00: Bit order not affected
01: Bit reversal done by byte
10: Bit reversal done by half-word
11: Bit reversal done by word

Bits 4:3 POLYSIZE[1:0]: Polynomial size

These bits control the size of the polynomial.
00: 32 bit polynomial
01: 16 bit polynomial
10: 8 bit polynomial
11: 7 bit polynomial

Bits 2:1 Reserved, must be kept at reset value.

Bit 0 RESET: RESET bit

This bit is set by software to reset the CRC calculation unit and set the data register to the
value stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by
hardware

Cyclic redundancy check calculation unit (CRC) RM0367

128/1040 RM0367 Rev 8

4.4.4 CRC initial value (CRC_INIT)

Address offset: 0x10

Reset value: 0xFFFF FFFF

4.4.5 CRC polynomial (CRC_POL)

Address offset: 0x14

Reset value: 0x04C1 1DB7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CRC_INIT[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRC_INIT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 CRC_INIT[31:0]: Programmable initial CRC value

This register is used to write the CRC initial value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

POL[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POL[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 POL[31:0]: Programmable polynomial

This register is used to write the coefficients of the polynomial to be used for CRC
calculation.
If the polynomial size is less than 32 bits, the least significant bits have to be used to program
the correct value.

RM0367 Rev 8 129/1040

RM0367 Cyclic redundancy check calculation unit (CRC)

129

4.4.6 CRC register map

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 27. CRC register map and reset values

Offset Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
CRC_DR DR[31:0]

Reset value 1

0x04
CRC_IDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IDR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x08
CRC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

V
_

O
U

T

R
E

V
_

IN
[1

:0
]

P
O

LY
S

IZ
E

[1
:0

]

R
es

.

R
es

.

R
E

S
E

T

Reset value 0 0 0 0 0 0

0x10
CRC_INIT CRC_INIT[31:0]

Reset value 1

0x14
CRC_POL POL[31:0]

Reset value 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1

Firewall (FW) RM0367

130/1040 RM0367 Rev 8

5 Firewall (FW)

5.1 Introduction

The Firewall is made to protect a specific part of code or data into the Non-Volatile Memory,
and/or to protect the Volatile data into the SRAM from the rest of the code executed outside
the protected area.

5.2 Firewall main features

• The code to protect by the Firewall (Code Segment) may be located in:

– The Flash program memory map

– The SRAM memory, if declared as an executable protected area during the
Firewall configuration step.

• The data to protect can be located either

– in the Flash program or the Data EEPROM memory (non-volatile data segment)

– in the SRAM memory (volatile data segment)

The software can access these protected areas once the Firewall is opened. The Firewall
can be opened or closed using a mechanism based on “call gate” (Refer to Opening the
Firewall).

The start address of each segment and its respective length must be configured before
enabling the Firewall (Refer to Section 5.3.5: Firewall initialization).

Each illegal access into these protected segments (if the Firewall is enabled) generates a
reset which immediately kills the detected intrusion.

Any DMA access to protected segments is forbidden whatever the Firewall state (opened or
closed). It is considered as an illegal access and generates a reset.

RM0367 Rev 8 131/1040

RM0367 Firewall (FW)

141

5.3 Firewall functional description

5.3.1 Firewall AMBA bus snoop

The Firewall peripheral is snooping the AMBA buses on which the memories (volatile and
non-volatile) are connected. A global architecture view is illustrated in Figure 8.

Figure 8. STM32L0x3 firewall connection schematics

5.3.2 Functional requirements

There are several requirements to guaranty the highest security level by the application
code/data which needs to be protected by the Firewall and to avoid unwanted Firewall alarm
(reset generation).

Debug consideration

In debug mode, if the Firewall is opened, the accesses by the debugger to the protected
segments are not blocked. For this reason, the Read out level 2 protection must be active in
conjunction with the Firewall implementation.

If the debug is needed, it is possible to proceed in the following way:

• A dummy code having the same API as the protected code may be developed during
the development phase of the final user code. This dummy code may send back
coherent answers (in terms of function and potentially timing if needed), as the
protected code should do in production phase.

• In the development phase, the protected code can be given to the customer-end under
NDA agreement and its software can be developed in level 0 protection. The customer-
end code needs to embed an IAP located in a write protected segment in order to allow
future code updates when the production parts will be Level 2 ROP.

MS32388V3

CORTEX M0+

DMA

Flash program
memory and data

EEPROM

I
N
T
E
R
F
A
C
E

B
U
S

M
A
T
R
I
X

FIREWALL

SRAM

AHB Master 1

AHB Master 2

AHB Slave

AHB Slave

Firewall (FW) RM0367

132/1040 RM0367 Rev 8

Write protection

In order to offer a maximum security level, the following points need to be respected:

• It is mandatory to keep a write protection on the part of the code enabling the Firewall.
This activation code should be located outside the segments protected by the Firewall.

• The write protection is also mandatory on the code segment protected by the Firewall.

• The page including the reset vector must be write-protected.

Interrupts management

The code protected by the Firewall must not be interruptible. It is up to the user code to
disable any interrupt source before executing the code protected by the Firewall. If this
constraint is not respected, if an interrupt comes while the protected code is executed
(Firewall opened), the Firewall will be closed as soon as the interrupt subroutine is
executed. When the code returns back to the protected code area, a Firewall alarm will raise
since the “call gate” sequence will not be applied and a reset will be generated.

Concerning the interrupt vectors and the first user page in the Flash program memory:

• If the first user page (including the reset vector) is protected by the Firewall, the NVIC
vector should be reprogrammed outside the protected segment.

• If the first user page is not protected by the Firewall, the interrupt vectors may be kept
at this location.

There is no interrupt generated by the Firewall.

5.3.3 Firewall segments

The Firewall has been designed to protect three different segment areas:

Code segment

This segment is located into the Flash program memory. It should contain the code to
execute which requires the Firewall protection. The segment must be reached using the
“call gate” entry sequence to open the Firewall. A system reset is generated if the “call gate”
entry sequence is not respected (refer to Opening the Firewall) and if the Firewall is enabled
using the FWDIS bit in the system configuration register. The length of the segment and the
segment base address must be configured before enabling the Firewall (refer to
Section 5.3.5: Firewall initialization).

Non-volatile data segment

This segment contains non-volatile data used by the protected code which must be
protected by the Firewall. The access to this segment is defined into Section 5.3.4: Segment
accesses and properties. The Firewall must be opened before accessing the data in this
area. The Non-Volatile data segment should be located into the Flash program or 2-Kbyte
Data EEPROM memory. The segment length and the base address of the segment must be
configured before enabling the Firewall (refer to Section 5.3.5: Firewall initialization).

RM0367 Rev 8 133/1040

RM0367 Firewall (FW)

141

Volatile data segment

Volatile data used by the protected code located into the code segment must be defined into
the SRAM memory. The access to this segment is defined into the Section 5.3.4: Segment
accesses and properties. Depending on the Volatile data segment configuration, the
Firewall must be opened or not before accessing this segment area. The segment length
and the base address of the segment as well as the segment options must be configured
before enabling the Firewall (refer to Section 5.3.5: Firewall initialization).

The Volatile data segment can also be defined as executable (for the code execution) or
shared using two bit of the Firewall configuration register (bit VDS for the volatile data
sharing option and bit VDE for the volatile data execution capability). For more details, refer
to Table 28.

5.3.4 Segment accesses and properties

All DMA accesses to the protected segments are forbidden, whatever the Firewall state, and
generate a system reset.

Segment access depending on the Firewall state

Each of the three segments has specific properties which are presented in Table 28.

Table 28. Segment accesses according to the Firewall state

Segment
Firewall opened
access allowed

Firewall closed
access allowed

Firewall disabled
access allowed

Code segment Read and execute

No access allowed.

Any access to the segment
(except the “call gate” entry)
generates a system reset

All accesses are allowed
(according to the EEPROM
protection properties in which
the code is located)

Non-volatile data
segment

Read and write No access allowed

All accesses are allowed
(according to the EEPROM
protection properties in which
the code is located)

Volatile data
segment

Read and Write

Execute if VDE = 1 and
VDS = 0 into the Firewall

configuration register

No access allowed if VDS = 0
and VDE = 0 into the Firewall
configuration register

Read/write/execute accesses
allowed if VDS = 1 (whatever
VDE bit value)

Execute if VDE = 1 and VDS = 0
but with a “call gate” entry to
open the Firewall at first.

All accesses are allowed

Firewall (FW) RM0367

134/1040 RM0367 Rev 8

The Volatile data segment is a bit different from the two others. The segment can be:

• Shared (VDS bit in the register)

It means that the area and the data located into this segment can be shared between
the protected code and the user code executed in a non-protected area. The access is
allowed whether the Firewall is opened or closed or disabled.

The VDS bit gets priority over the VDE bit, this last bit value being ignored in such a
case. It means that the Volatile data segment can execute parts of code located there
without any need to open the Firewall before executing the code.

• Execute

The VDE bit is considered as soon as the VDS bit = 0 in the FW_CR register. If the
VDS bit = 1, refer to the description above on the Volatile data segment sharing. If VDS
= 0 and VDE = 1, the Volatile data segment is executable. To avoid a system reset
generation from the Firewall, the “call gate” sequence should be applied on the Volatile
data segment to open the Firewall as an entry point for the code execution.

Segments properties

Each segment has a specific length register to define the segment size to be protected by
the Firewall: CSL register for the Code segment length register, NVDSL for the Non-volatile
data segment length register, and VDSL register for the Volatile data segment length
register. Granularity and area ranges for each of the segments are presented in Table 29.

5.3.5 Firewall initialization

The initialization phase should take place at the beginning of the user code execution (refer
to the Write protection).

The initialization phase consists of setting up the addresses and the lengths of each
segment which needs to be protected by the Firewall. It must be done before enabling the
Firewall, because the enabling bit can be written once. Thus, when the Firewall is enabled, it
cannot be disabled anymore until the next system reset.

Once the Firewall is enabled, the accesses to the address and length segments are no
longer possible. All write attempts are discarded.

A segment defined with a length equal to 0 is not considered as protected by the Firewall.
As a consequence, there is no reset generation from the Firewall when an access to the
base address of this segment is performed.

After a reset, the Firewall is disabled by default (FWDIS bit in the SYSCFG register is set). It
has to be cleared to enable the Firewall feature.

Table 29. Segment granularity and area ranges

Segment Granularity Area range

Code segment 256 byte up to 64 Kbytes - 256 bytes

Non-volatile data segment 256 byte up to 64 Kbytes - 256 bytes

Volatile data segment 64 byte 8 Kbytes - 64 bytes

RM0367 Rev 8 135/1040

RM0367 Firewall (FW)

141

Below is the initialization procedure to follow:

1. Configure the RCC to enable the clock to the Firewall module

2. Configure the RCC to enable the clock of the system configuration registers

3. Set the base address and length of each segment (CSSA, CSL, NVDSSA, NVDSL,
VDSSA, VDSL registers)

4. Set the configuration register of the Firewall (FW_CR register)

5. Enable the Firewall clearing the FWDIS bit in the system configuration register.

The Firewall configuration register (FW_CR register) is the only one which can be managed
in a dynamic way even if the Firewall is enabled:

• when the Non-Volatile data segment is undefined (meaning the NVDSL register is
equal to 0), the accesses to this register are possible whatever the Firewall state
(opened or closed).

• when the Non-Volatile data segment is defined (meaning the NVDSL register is
different from 0), the accesses to this register are only possible when the Firewall is
opened.

5.3.6 Firewall states

The Firewall has three different states as shown in Figure 9:

• Disabled: The FWDIS bit is set by default after the reset. The Firewall is not active.

• Closed: The Firewall protects the accesses to the three segments (Code, Non-volatile
data, and Volatile data segments).

• Opened: The Firewall allows access to the protected segments as defined in
Section 5.3.4: Segment accesses and properties.

Figure 9. Firewall functional states

MS32390V4

Firewall disable
(reset)

Firewall
 closed

Firewall
opened

Enable the firewall
(FWDIS = 0)

‘‘call gate’’ entry

Illegal accesses to
the protected

segments

Code protected jumps
 to unprotected

segments

Protected code jumps
to an unprotected

segment and FPA = 0

Firewall (FW) RM0367

136/1040 RM0367 Rev 8

Opening the Firewall

As soon as the Firewall is enabled, it is closed. It means that most of the accesses to the
protected segments are forbidden (refer to Section 5.3.4: Segment accesses and
properties). In order to open the Firewall to interact with the protected segments, it is
mandatory to apply the “call gate” sequence described hereafter.

“call gate” sequence

The “call gate” is composed of 3 words located on the first three 32-bit addresses of the
base address of the code segment and of the Volatile data segment if it is declared as
not shared (VDS = 0) and executable (VDE = 1).

– 1st word: Dummy 32-bit words always closed in order to protect the “call gate”
opening from an access due to a prefetch buffer.

– 2nd and 3rd words: 2 specific 32-bit words called “call gate” and always opened.

To open the Firewall, the code currently executed must jump to the 2nd word of the “call
gate” and execute the code from this point. The 2nd word and 3rd word execution must not
be interrupted by any intermediate instruction fetch; otherwise, the Firewall is not
considered open and comes back to a close state. Then, executing the 3rd word after
receiving the intermediate instruction fetch would generate a system reset as a
consequence.

As soon as the Firewall is opened, the protected segments can be accessed as described in
Section 5.3.4: Segment accesses and properties.

Closing the Firewall

The Firewall is closed immediately after it is enabled (clearing the FWDIS bit in the system
configuration register).

To close the Firewall, the protected code must:

• Write the correct value in the Firewall Pre Arm Flag into the FW_CR register.

• Jump to any executable location outside the Firewall segments.

If the Firewall Pre Arm Flag is not set when the protected code jumps to a non protected
segment, a reset is generated. This control bit is an additional protection to avoid an
undesired attempt to close the Firewall with the private information not yet cleaned (see the
note below).

For security reasons, following the application for which the Firewall is used, it is advised to
clean all private information from CPU registers and hardware cells.

RM0367 Rev 8 137/1040

RM0367 Firewall (FW)

141

5.4 Firewall registers

5.4.1 Code segment start address (FW_CSSA)

Address offset: 0x00

Reset value: 0x0000 0000

5.4.2 Code segment length (FW_CSL)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. ADD[23:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD[15:8] Res. Res. Res. Res. Res. Res. Res. Res.

rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:8 ADD[23:8]: code segment start address

The LSB bits of the start address (bit 7:0) are reserved and forced to 0 in order to allow a
256-byte granularity.

Note: These bits can be written only before enabling the Firewall. Refer to Section 5.3.5:
Firewall initialization.

Bits 7:0 Reserved, must be kept at the reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LENG[21:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LENG15:8] Res. Res. Res. Res. Res. Res. Res. Res.

rw

Bits 31:22 Reserved, must be kept at the reset value.

Bits 21:8 LENG[21:8]: code segment length

LENG[21:8] selects the size of the code segment expressed in bytes but is a multiple of
256 bytes.

The segment area is defined from {ADD[23:8],0x00} to {ADD[23:8]+LENG[21:8], 0x00} - 0x01

Note: If LENG[21:8] = 0 after enabling the Firewall, this segment is not defined, thus not
protected by the Firewall.

These bits can only be written before enabling the Firewall. Refer to Section 5.3.5:
Firewall initialization.

Bits 7:0 Reserved, must be kept at the reset value.

Firewall (FW) RM0367

138/1040 RM0367 Rev 8

5.4.3 Non-volatile data segment start address (FW_NVDSSA)

Address offset: 0x08

Reset value: 0x0000 0000

5.4.4 Non-volatile data segment length (FW_NVDSL)

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. ADD[23:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD[15:8] Res. Res. Res. Res. Res. Res. Res. Res.

rw

Bits 31:24 Reserved, must be kept at the reset value.

Bits 23:8 ADD[23:8]: Non-volatile data segment start address

The LSB bits of the start address (bit 7:0) are reserved and forced to 0 in order to allow a
256-byte granularity.

Note: These bits can only be written before enabling the Firewall. Refer to Section 5.3.5:
Firewall initialization.

Bits 7:0 Reserved, must be kept at the reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LENG[21:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LENG[15:8] Res. Res. Res. Res. Res. Res. Res. Res.

rw

Bits 31:22 Reserved, must be kept at the reset value.

Bits 21:8 LENG[21:8]: Non-volatile data segment length

LENG[21:8] selects the size of the Non-volatile data segment expressed in bytes but is a
multiple of 256 bytes.

The segment area is defined from {ADD[23:8],0x00} to {ADD[23:8]+LENG[21:8], 0x00} - 0x01

Note: If LENG[21:8] = 0 after enabling the Firewall, this segment is not defined, thus not
protected by the Firewall.

These bits can only be written before enabling the Firewall. Refer to Section 5.3.5:
Firewall initialization.

Bits 7:0 Reserved, must be kept at the reset value.

RM0367 Rev 8 139/1040

RM0367 Firewall (FW)

141

5.4.5 Volatile data segment start address (FW_VDSSA)

Address offset: 0x10

Reset value: 0x0000 0000

5.4.6 Volatile data segment length (FW_VDSL)

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD[15:6] Res. Res. Res. Res. Res. Res.

rw

Bits 31:16 Reserved, must be kept at the reset value.

Bits 15:6 ADD[15:6]: Volatile data segment start address

The LSB bit of the start address (bits 5:0) are reserved and forced to 0 in order to allow a
64-byte granularity.

Note: These bits can only be written before enabling the Firewall. Refer to Section 5.3.5:
Firewall initialization.

Bits 5:0 Reserved, must be kept at the reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LENG[15:6] Res. Res. Res. Res. Res. Res.

rw

Bits 31:16 Reserved, must be kept at the reset value.

Bits 15:6 LENG[15:6]: Volatile data segment length

LENG[15:6] selects the size of the volatile data segment expressed in bytes but is a multiple
of 64 bytes.

The segment area is defined from {ADD[15:6],0x00} to {ADD[15:6]+LENG[15:6], 0x00} - 0x01

Note: If LENG[15:6] = 0 after enabling the Firewall, this segment is not defined, thus not
protected by the Firewall.

These bits can only be written before enabling the Firewall. Refer to Section 5.3.5:
Firewall initialization.

Bits 5:0 Reserved, must be kept at the reset value.

Firewall (FW) RM0367

140/1040 RM0367 Rev 8

5.4.7 Configuration register (FW_CR)

Address offset: 0x20

Reset value: 0x0000 0000

This register is protected in the same way as the Non-volatile data segment (refer to
Section 5.3.5: Firewall initialization).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. VDE VDS FPA

rw rw rw

Bits 31:3 Reserved, must be kept at the reset value.

Bit 2 VDE: Volatile data execution

0: Volatile data segment cannot be executed if VDS = 0
1: Volatile data segment is declared executable whatever VDS bit value

When VDS = 1, this bit has no meaning. The Volatile data segment can be executed whatever
the VDE bit value.

If VDS = 1, the code can be executed whatever the Firewall state (opened or closed)

If VDS = 0, the code can only be executed if the Firewall is opened or applying the “call gate”
entry sequence if the Firewall is closed.

Refer to Segment access depending on the Firewall state.

Bit 1 VDS: Volatile data shared

0: Volatile data segment is not shared and cannot be hit by a non protected executable code
when the Firewall is closed. If it is accessed in such a condition, a system reset will be
generated by the Firewall.
1: Volatile data segment is shared with non protected application code. It can be accessed
whatever the Firewall state (opened or closed).

Refer to Segment access depending on the Firewall state.

Bit 0 FPA: Firewall prearm

0: any code executed outside the protected segment when the Firewall is opened will
generate a system reset.
1: any code executed outside the protected segment will close the Firewall.

Refer to Closing the Firewall.

RM0367 Rev 8 141/1040

RM0367 Firewall (FW)

141

5.4.8 Firewall register map

The table below provides the Firewall register map and reset values.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 30. Firewall register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x0
FW_CSSA

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ADD

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4
FW_CSL

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

LENG

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x8
FW_NVDSSA

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ADD

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0xC
FW_NVDSL

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

LENG

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
FW_VDSSA

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
ADD

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value 0 0 0 0 0 0 0 0 0 0

0x14 FW_VDSL

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

LE
N

G

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

0x18 R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value

0x1C R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset Value

0x20
FW_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

V
D

E

V
D

S

F
P

A
Reset Value 0 0 0

Power control (PWR) RM0367

142/1040 RM0367 Rev 8

6 Power control (PWR)

6.1 Power supplies

The device requires a 1.8-to-3.6 V VDD operating voltage supply (down to 1.65 V at power-
down) when the BOR is available. The device requires a 1.65-to-3.6 V VDD operating
voltage supply when the BOR is not available.

An embedded linear voltage regulator is used to supply the internal digital power, ranging
from 1.2 to 1.8 V.

• VDD = 1.8 V (at power-on) or 1.65 V (at power-down) to 3.6 V when the BOR is
available. VDD = 1.65 V to 3.6 V, when BOR is not available

VDD is the external power supply for I/Os and internal regulator. It is provided externally
through VDD pins

• VCORE = 1.2 to 1.8 V

VCORE is the power supply for digital peripherals, SRAM and Flash memory. It is
generated by a internal voltage regulator. Three VCORE ranges can be selected by
software depending on VDD (refer Figure 11).

• VSSA, VDDA = 1.8 V (at power-on) or 1.65 V (at power-down) to 3.6 V, when BOR is
available and VSSA, VDDA = 1.65 to 3.6 V, when BOR is not available.

VDDA is the external analog power supply for ADC, DAC, reset blocks, RC oscillators
and PLL. The minimum voltage to be applied to VDDA is 1.8 V when the DAC is used.

• VREF+

VREF+ is the input reference voltage. It is only available as an external pin on a few
packages, otherwise it is bonded to VDDA.

• VLCD = 2.5 to 3.6 V

The LCD controller can be powered either externally through VLCD pin, or internally
from an internal voltage generated by the embedded step-up converter.

• VDD_USB = 3.0 to 3.6 V

VDD_USB is a dedicated independent USB power supply for full speed transceivers. It is
available on PA11 and PA12 pins provided they are configured as USB alternate
function.

Note: VDD_USB value does not dependent on VDD and VDDA. However, VDD_USB must be the last
supply to be delivered to the device and the first to be switched off. When the three power
supplies are shut down, if VDD_USB remains active for a short period of time and VDDA/VDDIO
fall below the functional range, the device is not be damaged.

The device is still functional when VDD_USB is switched off.

RM0367 Rev 8 143/1040

RM0367 Power control (PWR)

172

Figure 10. Power supply overview

1. VDDA and VSSA must be connected to VDD and VSS, respectively.

2. Depending on the operating power supply range used, some peripherals may be used with limited features
or performance.

3. VREF+ is only available on TFBGA64 package.

6.1.1 Independent A/D and DAC converter supply and reference voltage

To improve conversion accuracy, the ADC and the DAC have an independent power supply
that can be filtered separately, and shielded from noise on the PCB.

• The ADC voltage supply input is available on a separate VDDA pin

• An isolated supply ground connection is provided on the VSSA pin

On packages with VREF+ pin

To ensure a better accuracy on low-voltage inputs and outputs, the user can connect to
VREF+ a separate external reference voltage lower than VDD. VREF+ is the highest voltage,
represented by the full scale value, for an analog input (ADC) or output (DAC) signal.

For DAC:

1.8 V ≤ VREF+ ≤ VDDA

For ADC:

1.65 V ≤ VREF+ < VDDA

On packages without VREF+ pin

VREF+ pin is not available. It is internally connected to the ADC voltage supply (VDDA).

MS32791V2

ADC

VDD

VLCD

VSS

IO supply

(VDD) VDDA

(from 1.65 V up to VDDA) VREF+

Temp. sensor
Reset block

Standby circuitry
(Wakeup logic,
IWDG, RTC,
LSE crystal
32K osc.,

RCC, CSR)

PLL

Voltage regulator
Dynamic voltage

scaling

VDDA domain

DAC

Flash memory

LCD

VDD domain
VCore domain

VDD_USB USB transceiver

Core
Memories

Digital
peripherals

(VSS) VSSA

Power control (PWR) RM0367

144/1040 RM0367 Rev 8

6.1.2 Independent LCD supply

The VLCD pin is provided to control the contrast of the glass LCD. This pin can be used in
two ways:

• It can receive from an external circuitry the desired maximum voltage that is provided
on segment and common lines to the glass LCD by the microcontroller.

• It can also be used to connect an external capacitor that is used by the microcontroller
for its voltage step-up converter. This step-up converter is controlled by software to
provide the desired voltage to segment and common lines of the glass LCD.

The voltage provided to segment and common lines defines the contrast of the glass LCD
pixels. This contrast can be reduced when you configure the dead time between frames.

• When an external power supply is provided to the VLCD pin, it should range from 2.5 V
to 3.6 V. It does not depend on VDD.

• When the LCD is based on the internal step-up converter, the VLCD pin should be
connected to a capacitor (see the product datasheets for further information).

6.1.3 RTC and RTC backup registers

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable
wakeup flag with interrupt capability. The RTC contains 5 backup data registers (20 bytes).
These backup registers are reset when a tamper detection event occurs. For more details
refer to Real-time clock (RTC) section.

RTC registers access

After reset, the RTC Registers (RTC registers and RTC backup registers) are protected
against possible stray write accesses. To enable access to the RTC Registers, proceed as
follows:

1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR
register.

2. Set the DBP bit in the PWR_CR register (see Section 6.4.1).

3. Select the RTC clock source through RTCSEL[1:0] bits in RCC_CSR register.

4. Enable the RTC clock by programming the RTCEN bit in the RCC_CSR register.

RM0367 Rev 8 145/1040

RM0367 Power control (PWR)

172

6.1.4 Voltage regulator

An embedded linear voltage regulator supplies all the digital circuitries except for the
Standby circuitry. The regulator output voltage (VCORE) can be programmed by software to
three different ranges within 1.2 - 1.8 V (typical) (see Section 6.1.5).

The voltage regulator is always enabled after Reset. It works in three different modes: main
(MR), low-power (LPR) and power-down, depending on the application modes.

• In Run mode, the regulator is main (MR) mode and supplies full power to the VCORE
domain (core, memories and digital peripherals).

• In Low-power run mode, the regulator is in low-power (LPR) mode and supplies low-
power to the VCORE domain, preserving the contents of the registers and internal
SRAM.

• In Sleep mode, the regulator is main (MR) mode and supplies full power to the VCORE
domain, preserving the contents of the registers and internal SRAM.

• In Low-power sleep mode, the regulator is in low-power (LPR) mode and supplies low-
power to the VCORE domain, preserving the contents of the registers and internal
SRAM.

• In Stop mode the regulator supplies low power to the VCORE domain, preserving the
content of registers and internal SRAM.

• In Standby mode, the regulator is powered off. The content of the registers and SRAM
are lost except for the Standby circuitry.

6.1.5 Dynamic voltage scaling management

The dynamic voltage scaling is a power management technique which consists in
increasing or decreasing the voltage used for the digital peripherals (VCORE), according to
the circumstances.

Dynamic voltage scaling to increase VCORE is known as overvolting. It allows improving the
device performance. Refer to Figure 11 for a description of the device operating conditions
versus CPU performance and to the datasheet electrical characteristics for ADC clock
frequency versus dynamic range.

Dynamic voltage scaling to decrease VCORE is known as undervolting. It is performed to
save power, particularly in laptops and other mobile devices where the energy comes from a
battery and is thus limited.

Range 1

Range 1 is the “high performance” range.

The voltage regulator outputs a 1.8 V voltage (typical) as long as the VDD input voltage is
above 1.71 V. Flash program and erase operations can be performed in this range.

The clock recovery system (CRS) is available only when the device operates in range 1
(see Section 8: Clock recovery system (CRS)).

When VDD is below 2.0 V, the CPU frequency changes from initial to final state must respect
the following conditions:

• fCPUfinal < 4xfCPUinitial.

• In addition, a 5 μs delay must be respected between two changes. For example to
switch from 4.2 to 32 MHz, switch from 4.2 to 16 MHz, wait for 5 μs, then switch from
16 to 32 MHz.

Power control (PWR) RM0367

146/1040 RM0367 Rev 8

Range 2 and 3

The regulator can also be programmed to output a regulated 1.5 V (typical, range 2) or a
1.2 V (typical, range 3) without any limitations on VDD (1.65 to 3.6 V).

• At 1.5 V, the Flash memory is still functional but with medium read access time. This is
the “medium performance” range. Program and erase operations on the Flash memory
are still possible.

• At 1.2 V, the Flash memory is still functional but with slow read access time. This is the
“low performance” range. Program and erase operations on the Flash memory are not
possible under these conditions.

Refer to Table 31 for details on the performance for each range.

Figure 11. Performance versus VDD and VCORE range

Table 31. Performance versus VCORE ranges

CPU
performance

Power
performance

VCORE
range

Typical
Value (V)

Max frequency
(MHz)

VDD range

1 WS 0 WS

High Low 1 1.8 32 16 1.71 - 3.6

Medium Medium 2 1.5 16 8
1.65 - 3.6

Low High 3 1.2 4.2 4.2

4.2 MHz
 0WS

16 MHz

MHz

32 MHz

1 .2 V 1.5 V 1.8 VVCORE

1.65 V - 3.6 V 1.71 V – 3.6 V

3 2 1

16 MHz

8 MHz

32

24

16

1 2

8

4

Rang e 1

Ra nge 2
Range 3

MS32792V1

VDD

FCPU> 8 MHz
1WS

0WS

FCPU > 16 MHz

1WS

0WS

RM0367 Rev 8 147/1040

RM0367 Power control (PWR)

172

6.1.6 Dynamic voltage scaling configuration

The following sequence is required to program the voltage regulator ranges:

1. Check VDD to identify which ranges are allowed (see Figure 11: Performance versus
VDD and VCORE range).

2. Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0.

3. Configure the voltage scaling range by setting the VOS[1:0] bits in the PWR_CR
register.

4. Poll VOSF bit of in PWR_CSR register. Wait until it is reset to 0.

Note: During voltage scaling configuration, the system clock is stopped until the regulator is
stabilized (VOSF=0). This must be taken into account during application development, in
case a critical reaction time to interrupt is needed, and depending on peripheral used (timer,
communication,...).

6.1.7 Voltage regulator and clock management when VDD drops
below 1.71 V

When VCORE range 1 is selected and VDD drops below 1.71 V, the application must
reconfigure the system.

A three-step sequence is required to reconfigure the system:

1. Detect that VDD drops below 1.71 V:

Use the PVD to monitor the VDD voltage and to generate an interrupt when the voltage
goes under the selected level. To detect the 1.71 V voltage limit, the application can
select by software PVD threshold 2 (2.26 V typical). For more details on the PVD, refer
to Section 6.2.3.

2. Adapt the clock frequency to the voltage range that will be selected at next step:

Below 1.71 V, the system clock frequency is limited to 16 MHz for range 2 and 4.2 MHz
for range 3.

3. Select the required voltage range:

Note that when VDD is below 1.71 V, only range 2 or range 3 can be selected.

Note: When VCORE range 2 or range 3 is selected and VDD drops below 1.71 V, no system
reconfiguration is required.

6.1.8 Voltage regulator and clock management when modifying the
VCORE range

When VDD is above 1.71 V, any of the 3 voltage ranges can be selected:

• When the voltage range is above the targeted voltage range (e.g. from range 1 to 2):

a) Adapt the clock frequency to the lower voltage range that will be selected at next
step.

b) Select the required voltage range.

• When the voltage range is below the targeted voltage range (e.g. from range 3 to 1):

a) Select the required voltage range.

b) Tune the clock frequency if needed.

Power control (PWR) RM0367

148/1040 RM0367 Rev 8

When VDD is below 1.71 V, only range 2 and 3 can be selected:

• From range 2 to range 3

a) Adapt the clock frequency to voltage range 3.

b) Select voltage range 3.

• From range 3 to range 2

a) Select the voltage range 2.

b) Tune the clock frequency if needed.

6.1.9 Voltage range and limitations when VDD ranges from 1.71 V to 2.0 V

The STM32L0x3 voltage regulator is based on an architecture designed for Ultra-low-power
a. It does not use any external capacitor. Such regulator is sensitive to fast changes of load.
In this case, the output voltage is reduced for a short period of time. Considering that the
core voltage must be higher than 1.65 V to ensure a 32 MHz operation, this phenomenon is
critical for very low VDD voltages (e.g. 1.71 V VDD minimum value).

To guarantee 32 MHz operation at VDD =1.8 V±5%, with 1 wait state, and VCORE range 1,
the CPU frequency in run mode must be managed to prevent any changes exceeding a
ratio of 4 in one shot. A delay of 5 μs must be respected between 2 changes. There is no
limitation when waking up from low-power mode.

6.2 Power supply supervisor

The device has an integrated zeropower power-on reset (POR)/power-down reset (PDR),
coupled with a brown out reset (BOR) circuitry. For devices operating between 1.8 and 3.6
V, the BOR is always active at power-on and ensures proper operation starting from 1.8 V.
After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to
confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD
min value at power-down is 1.65 V). For devices operating between 1.65 V and 3.6 V, the
BOR is permanently disabled. Consequently, the start-up time at power-on can be
decreased down to 1 ms typically.

Five BOR thresholds can be configured by option bytes, starting from 1.65 to 3 V. To reduce
the power consumption in Stop mode, the internal voltage reference, VREFINT, can be
automatically switch off. The device remains in reset mode when VDD is below a specified
threshold, VPOR, VPDR or VBOR, without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. 7 different PVD levels can
be selected by software between 1.85 and 3.05 V, with a 200 mV step. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine then generates a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.

The different power supply supervisor (POR, PDR, BOR, PVD) are illustrated in Figure 12.

RM0367 Rev 8 149/1040

RM0367 Power control (PWR)

172

Figure 12. Power supply supervisors

1. The PVD is available on all devices and it is enabled or disabled by software.

2. The BOR is available only on devices operating from 1.8 to 3.6 V, and unless disabled by option byte it will
mask the POR/PDR threshold.

3. When the BOR is disabled by option byte, the reset is asserted when VDD goes below PDR level

4. For devices operating from 1.65 to 3.6 V, there is no BOR and the reset is released when VDD goes above
POR level and asserted when VDD goes below PDR level

VDD /VDDA

PVD output

100 mV
hysteresis

VPVD

VBOR hysteresis
100 mV

IT enabled

BOR reset
(NRST)

POR/PDR reset
(NRST)

PVD
BOR always active

POR/PDR (BOR not available)

ai17211b

PORV / PDRV

BOR/PDR reset
 (NRST)

BOR disabled by option byte

Power control (PWR) RM0367

150/1040 RM0367 Rev 8

6.2.1 Power-on reset (POR)/power-down reset (PDR)

The device has an integrated POR/PDR circuitry that allows operation down to 1.5 V.

During power-on, the device remains in Reset mode when VDD/VDDA is below a specified
threshold, VPOR, without the need for an external reset circuit. The POR feature is always
enabled and the POR threshold is 1.5 V.

During power-down, the PDR keeps the device under reset when the supply voltage (VDD)
drops below the VPDR threshold. The PDR feature is always enabled and the PDR threshold
is 1.5 V.

The POR and PDR are used only when the BOR is disabled (see Section 6.2.2: Brown out
reset (BOR))). To insure the minimum operating voltage (1.65 V), the BOR should be
configured to BOR Level 1. When the BOR is disabled, a “gray zone” exist between the
minimum operating voltage (1.65 V) and the VPOR/VPDR threshold. This means that VDD
can be lower than 1.65 V without device reset until the VPDR threshold is reached.

For more details concerning the power-on/power-down reset threshold, refer to the
electrical characteristics of the datasheet.

Figure 13. Power-on reset/power-down reset waveform

6.2.2 Brown out reset (BOR)

During power-on, the Brown out reset (BOR) keeps the device under reset until the supply
voltage reaches the specified VBOR threshold.

For devices operating from 1.65 to 3.6 V, the BOR option is not available and the power
supply is monitored by the POR/PDR. As the POR/PDR thresholds are at 1.5 V, a “gray
zone” exists between the VPOR/VPDR thresholds and the minimum product operating
voltage 1.65 V.

For devices operating from 1.8 to 3.6 V, the BOR is always active at power-on and it's
threshold is 1.8 V.

Then when the system reset is released, the BOR level can be reconfigured or disabled by
option byte loading.

If the BOR level is kept at the lowest level, 1.8 V at power-on and 1.65 V at power-down, the
system reset is fully managed by the BOR and the product operating voltages are within
safe ranges.

MS32793V1

VDD/VDDA

Reset

POR

PDR

Temporization
tRSTTEMPO

RM0367 Rev 8 151/1040

RM0367 Power control (PWR)

172

And when the BOR option is disabled by option byte, the power-down reset is controlled by
the PDR and a “gray zone” exists between the 1.65 V and VPDR.

VBOR is configured through device option bytes. By default, the Level 4 threshold is
activated. 5 programmable VBOR thresholds can be selected.

• BOR Level 1 (VBOR0): reset threshold level for 1.69 to 1.80 V voltage range

• BOR Level 2 (VBOR1): reset threshold level for 1.94 to 2.1 V voltage range

• BOR Level 3 (VBOR2): reset threshold level for 2.3 to 2.49 V voltage range

• BOR Level 4 (VBOR3): reset threshold level for 2.54 to 2.74 V voltage range

• BOR Level 5 (VBOR4): reset threshold level for 2.77 to 3.0 V voltage range

When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is
generated. When the VDD is above the VBOR upper limit the device reset is released and the
system can start.

BOR can be disabled by programming the device option bytes. To disable the BOR function,
VDD must have been higher than VBOR0 to start the device option byte programming
sequence. The power-on and power-down is then monitored by the POR and PDR (see
Section 6.2.1: Power-on reset (POR)/power-down reset (PDR))

The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the
supply voltage).

Figure 14. BOR thresholds

6.2.3 Programmable voltage detector (PVD)

You can use the PVD to monitor the VDD power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the PWR_CR (see Section 6.4.1).

The PVD can use an external input analog voltage (PVD_IN) which is compared internally to
VREFINT. The PVD_IN (PB7) has to be configured in Analog mode when PLS[2:0] = 111.
The PVD is enabled by setting the PVDE bit.

A PVDO flag is available in the PWR_CSR register (see Section 6.4.2). It indicates if VDD is
higher or lower than the PVD threshold. This event is internally connected to EXTI line16
and can generate an interrupt if it has been enabled through the EXTI registers. The
rising/falling edge sensitivity of EXTI Line16 should be configured according to the PVD
output behavior: if EXTI line 16 is configured to rising edge sensitivity, the interrupt will be

MS32794V1

VDD/VDDA

Reset

BOR threshold
100mV

hysteresis

Power control (PWR) RM0367

152/1040 RM0367 Rev 8

generated when VDD drops below the PVD threshold. As an example the service routine
could perform emergency shutdown tasks.

Figure 15. PVD thresholds

6.2.4 Internal voltage reference (VREFINT)

The internal reference (VREFINT) provides stable voltage for analog peripherals. The
functions managed through the internal voltage reference (VREFINT) are BOR, PVD, ADC,
HSI48, LCD and comparators. The internal voltage reference (VREFINT) is always enabled
when one of these features is used.

The internal voltage reference consumption is not negligible, in particular in Stop and
Standby mode. To reduce power consumption, the ULP bit (ultra-low-power) in the
PWR_CR register can be set to disable the internal voltage reference. However, in this
case, when exiting from the Stop/Standby mode, the functions managed through the internal
voltage reference are not reliable during the internal voltage reference startup time (up to
3 ms).

To reduce the wakeup time, the device can exit from Stop/Standby mode without waiting for
the internal voltage reference startup time. This is performed by setting the FWU bit (Fast
wakeup) in the PWR_CR register before entering Stop/Standby mode.

If the ULP bit is set, the functions that were enabled before entering Stop/Standby mode will
be disabled during these modes, and enabled again only after the end of the internal voltage
reference startup time whatever FWU value. The VREFINTRDYF flag in the PWR_CSR
register indicates that the internal voltage reference is ready.

When the device exits from low-power mode on an NRST pulse, it does not wait for internal
voltage reference startup (even if ULP=1 and FWU=0). The application should check the
VREFINTRDYF flag if necessary.

Note: When the LCD is active (LCDEN bit of LCD_CR set), VREFINT is required. ULP bit must
consequently be reset.

MSv32795V2

VDD/VDDA

PVD output

PVD threshold
100mV

hysteresis

RM0367 Rev 8 153/1040

RM0367 Power control (PWR)

172

6.3 Low-power modes

By default, the microcontroller is in Run mode after a system or a power-on reset. In Run
mode the CPU is clocked by HCLK and the program code is executed. Several low-power
modes are available to save power when the CPU does not need to be kept running, for
example when waiting for an external event. It is up to the user to select the mode that gives
the best compromise between low-power consumption, performance, short startup time and
available wakeup sources.

The devices feature five low-power modes:

• Low-power run mode: regulator in low-power mode, limited clock frequency, limited
number of peripherals running (refer to Section 6.3.4)

• Sleep mode: Cortex®-M0+ core stopped, peripherals kept running (refer to
Section 6.3.7)

• Low-power sleep mode: Cortex®-M0+core stopped, limited clock frequency, limited
number of peripherals running, regulator in low-power mode, Flash stopped ((refer to
Section 6.3.8))

• Stop mode (all clocks are stopped, regulator running, regulator in low-power mode
(refer to Section 6.3.9)

• Standby mode: VCORE domain powered off ((refer to Section 6.3.10))

In addition, the power consumption in Run mode can be reduced by one of the following
means:

• Slowing down the system clocks

• Gating the clocks to the APBx and AHBx peripherals when they are unused.

Table 32. Summary of low-power modes

Mode name Entry Wakeup
Effect on VCORE
domain clocks

Effect on VDD
domain
clocks

Voltage regulator

Low-power
run

LPSDSR and
LPRUN bits +
Clock setting

The regulator is forced
in Main regulator (1.8

V)
None None

In low-power
mode

Sleep
(Sleep now or
Sleep-on-exit)

WFI or Return
from ISR

Any interrupt
CPU CLK OFF

no effect on other
clocks or analog

clock sources

None ON

WFE Wakeup event

Low-power
sleep (Sleep
now or Sleep-
on-exit)

 LPSDSR bits +
WFI or Return

from ISR
Any interrupt

CPU CLK OFF
no effect on other
clocks or analog
clock sources,

Flash CLK OFF

None
In low-power

mode
LPSDSR bits +

WFE
Wakeup event

Power control (PWR) RM0367

154/1040 RM0367 Rev 8

6.3.1 Behavior of clocks in low-power modes

APB peripheral and DMA clocks can be disabled by software.

Sleep and Low-power sleep modes

The CPU clock is stopped in Sleep and Low-power sleep mode. The memory interface
clocks (Flash memory and RAM interfaces) and all peripherals clocks can be stopped by
software during Sleep. The memory interface clock is stopped and the RAM is in power-
down when in Low-power sleep mode. The AHB to APB bridge clocks are disabled by
hardware during Sleep/Low-power sleep mode when all the clocks of the peripherals
connected to them are disabled.

Stop and Standby modes

The system clock and all high speed clocks are stopped in Stop and Standby modes:

• PLL is disabled

• Internal RC 16 MHz (HSI16) oscillator is disabled

• External 1-24 MHz (HSE) oscillator is disabled

• Internal 65 kHz - 4.2 MHz (MSI) oscillator is disabled

When exiting this mode by an interrupt (Stop mode), the internal MSI or HSI16 can be
selected as system clock. For both oscillators, their respective configuration (range and
trimming) value is kept on Stop mode exit.

When exiting this mode by a reset (Standby mode), the internal MSI oscillator is selected as
system clock. The range and the trimming value are reset to the default 2.1 MHz.

If a Flash program operation or an access to APB domain is ongoing, the Stop/Standby
mode entry is delayed until the Flash memory or the APB access has completed.

Stop

PDDS, LPSDSR
bits +

SLEEPDEEP bit +
WFI, Return from

ISR or WFE

Any EXTI line
(configured in the EXTI
registers, internal and

external lines)

All VCORE
domain clocks

OFF

HSI16(1), HSE
and MSI

oscillators
OFF

In low-power
mode

Standby

PDDS bit +
SLEEPDEEP bit +
WFI, Return from

ISR or WFE

WKUP pin rising edge,
RTC alarm (Alarm A or
Alarm B), RTC Wakeup

event, RTC tamper
event, RTC timestamp
event, external reset in
NRST pin, IWDG reset

OFF

1. HSI16 can run in Stop mode provided HSI16KERON is set in Clock control register (RCC_CR).

Table 32. Summary of low-power modes (continued)

Mode name Entry Wakeup
Effect on VCORE
domain clocks

Effect on VDD
domain
clocks

Voltage regulator

RM0367 Rev 8 155/1040

RM0367 Power control (PWR)

172

6.3.2 Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to slow
down peripherals before entering Sleep mode.

For more details refer to Section 7.3.4: Clock configuration register (RCC_CFGR).

6.3.3 Peripheral clock gating

In Run mode, the HCLK and PCLKx for individual peripherals and memories can be stopped
at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB peripheral clock enable register
(RCC_AHBENR), APB2 peripheral clock enable register (RCC_APB2ENR), APB1
peripheral clock enable register (RCC_APB1ENR) (see Section 7.3.13: AHB peripheral
clock enable register (RCC_AHBENR), Section 7.3.15: APB1 peripheral clock enable
register (RCC_APB1ENR) and Section 7.3.14: APB2 peripheral clock enable register
(RCC_APB2ENR)).

Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting
the corresponding bit in RCC_AHBLPENR and RCC_APBxLPENR registers (x can 1 or 2).

6.3.4 Low-power run mode (LP run)

To further reduce the consumption when the system is in Run mode, the regulator can be
configured in low-power mode. In this mode, the system frequency should not exceed
f_MSI range1.

Please refer to the product datasheet for more details on voltage regulator and peripherals
operating conditions.

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

Low-power run mode can only be entered when VCORE is in range 2. In addition, the
dynamic voltage scaling must not be used when Low-power run mode is selected. Only Stop
and Sleep modes with regulator configured in low-power mode is allowed when Low-power
run mode is selected.

Note: In Low-power run mode, all I/O pins keep the same state as in Run mode.

Entering Low-power run mode

To enter Low-power run mode proceed as follows:

1. Each digital IP clock must be enabled or disabled by using the RCC_APBxENR and
RCC_AHBENR registers.

2. The frequency of the system clock must be decreased to not exceed the frequency of
f_MSI range1.

3. The regulator is forced in low-power mode by software (LPRUN and LPSDSR bits set)

Power control (PWR) RM0367

156/1040 RM0367 Rev 8

Exiting Low-power run mode

To exit Low-power run mode proceed as follows:

1. The regulator is forced in Main regulator mode by software.

2. The Flash memory is switched on, if needed.

3. The frequency of the clock system can be increased.

6.3.5 Entering low-power mode

Low-power modes (except for Low-power run mode) are entered by executing the WFI
(Wait For Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit in
Cortex®-M0+ System Control register is set on Return from ISR.

Entering low-power mode through WFI or WFE will be executed only is no interrupt and no
event is pending.

6.3.6 Exiting low-power mode

The microcontroller exists from Sleep and Stop mode depending on the way the mode was
entered:

• If the WFI instruction or Return from ISR was used to enter the low-power mode, any
peripheral interrupt acknowledged by the NVIC can wake up the device. This includes
EXTI lines and any GPIO toggle.

• If the WFE instruction was used to enter low-power mode, the microcontroller exits the
low-power mode as soon as an event occurs. The wakeup event can be generated
either by:

– An NVIC IRQ interrupt:

This is done by enabling an interrupt in the peripheral control register but not in the
NVIC, and by enabling the SEVONPEND bit in the Cortex®-M0+ System Control
register. When the microcontroller resumes from WFE, the peripheral interrupt
pending bit and the peripheral NVIC IRQ channel pending bit (in the NVIC
interrupt clear pending register) have to be cleared.

– An event:

This is done by configuring an external or internal EXTI line in event mode. When
the CPU resumes from WFE, it is not necessary to clear the peripheral interrupt
pending bit or the NVIC IRQ channel pending bit as the pending bit corresponding
to the event line is not set.

RM0367 Rev 8 157/1040

RM0367 Power control (PWR)

172

6.3.7 Sleep mode

I/O states in Sleep mode

In Sleep mode, all I/O pins keep the same state as in Run mode.

Entering Sleep mode

The Sleep mode is entered according to Section 6.3.5: Entering low-power mode.

Refer to Table 33: Sleep-now and Table 34: Sleep-on-exit for details on how to enter Sleep
mode.

Exiting Sleep mode

The Sleep mode is exited according to Section 6.3.6: Exiting low-power mode.

Refer to Table 33: Sleep-now and Table 34: Sleep-on-exit for more details on how to exit
Sleep mode.

Table 33. Sleep-now

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0 and

– No interrupt (for WFI) or event (for WFE) is pending

Refer to the Cortex®-M0+ System Control register (see PM0223 programming
manual).

On return from ISR while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1 and

– No interrupt is pending

Refer to the Cortex®-M0+ System Control register (see PM0223 programming
manual).

Mode exit

If WFI or return from ISR was used for entry:

Interrupt: refer to Table 55: List of vectors

If WFE was used for entry and SVONPEND = 0

Wakeup event: refer to Section 13.3.2: Wakeup event management

If WFE was used for entry and SVONPEND = 1

Interrupt event when disabled in NVIC (refer to Table 55: List of vectors) or
wakeup event (refer to Section 13.3.2: Wakeup event management)

Wakeup latency None

Power control (PWR) RM0367

158/1040 RM0367 Rev 8

6.3.8 Low-power sleep mode (LP sleep)

I/O states in Low-power sleep mode

In Low-power sleep mode, all I/O pins keep the same state as in Run mode.

Entering Low-power sleep mode

To enter Low-power sleep mode, proceed as follows:

1. The Flash memory can be switched off by using the control bits (SLEEP_PD in the
FLASH_ACR register. This reduces power consumption but increases the wake-up
time.

2. Each digital IP clock must be enabled or disabled by using the RCC_APBxENR and
RCC_AHBENR registers.

3. The frequency of the system clock must be decreased.

4. The regulator is forced in low-power mode by software (LPSDSR bits set).

5. Follow the steps described in Section 6.3.5: Entering low-power mode.

Refer to Table 35: Sleep-now (Low-power sleep) and Table 36: Sleep-on-exit (Low-power
sleep) for details on how to enter Low-power sleep mode.

In Low-power sleep mode, the Flash memory can be switched off and the RAM memory
remains available.

In this mode, the system frequency should not exceed f_MSI range1.

Please refer to product datasheet for more details on voltage regulator and peripherals
operating conditions.

Low-power sleep mode can only be entered when VCORE is in range 2.

Table 34. Sleep-on-exit

Sleep-on-exit Description

Mode entry

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– No interrupt (for WFI) or event (for WFE) is pending

Refer to the Cortex®-M0+ System Control register (see PM0223
programming manual).

On return from ISR while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1 and

– No interrupt is pending

Refer to the Cortex®-M0+ System Control register (see PM0223
programming manual).

Mode exit Interrupt: refer to Table 55: List of vectors

Wakeup latency None

RM0367 Rev 8 159/1040

RM0367 Power control (PWR)

172

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

Exiting Low-power sleep mode

The Low-power sleep mode is exited according to Section 6.3.6: Exiting low-power mode.

When exiting Low-power sleep mode by issuing an interrupt or a wakeup event, the
regulator is configured in Main regulator mode, the Flash memory is switched on (if
necessary), and the system clock can be increased.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Low-power sleep mode.

Refer to Table 35: Sleep-now (Low-power sleep) and Table 36: Sleep-on-exit (Low-power
sleep) for more details on how to exit Sleep low-power mode.

Table 35. Sleep-now (Low-power sleep)

Sleep-now mode Description

Mode entry

Voltage regulator in low-power mode and the Flash memory switched off

WFI (Wait for Interrupt) or WFE (wait for event) while:

– SLEEPDEEP = 0 and

– No interrupt (for WFI) or event (for WFE) is pending

Refer to the Cortex®-M0+ System Control register (see PM0223 programming
manual).

On return from ISR while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1 and

– No interrupt is pending

Refer to the Cortex®-M0+ System Control register (see PM0223 programming
manual).

Mode exit

Voltage regulator in Main regulator mode and the Flash memory switched on

If WFI or Return from ISR was used for entry:

Interrupt: Refer to Table 55: List of vectors

If WFE was used for entry and SEVONPEND = 0

Wakeup event: Refer to Section 13.3.2: Wakeup event management

If WFE was used for entry and SVONPEND = 1

Interrupt event when disabled in NVIC (refer to Table 55: List of vectors) or
wakeup event (refer to Section 13.3.2: Wakeup event management)

Wakeup latency Regulator wakeup time from low-power mode

Power control (PWR) RM0367

160/1040 RM0367 Rev 8

6.3.9 Stop mode

The Stop mode is based on the Cortex®-M0+ Deepsleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.
In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI16 and
the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved.

To get the lowest consumption in Stop mode, the internal Flash memory also enters low-
power mode. When the Flash memory is in power-down mode, an additional startup delay is
incurred when waking up from Stop mode.

To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering Stop mode. This functionality is controlled by the
ULP bit in the PWR_CR register. If the ULP bit is set, the reference is switched off on Stop
mode entry and enabled again on wakeup. .

I/O states in Low-power sleep mode

In Stop mode, all I/O pins keep the same state as in Run mode.

Entering Stop mode

Refer to Section 6.3.5: Entering low-power mode and to Table 37 for details on how to enter
the Stop mode.

If the application needs to disable the external clock before entering Stop mode, the HSEON
bit must be first disabled and the system clock switched to HSI16.

Otherwise, if the HSEON bit is kept enabled while external clock (external oscillator) can be
removed before entering Stop mode, the clock security system (CSS) feature must be
enabled to detect any external oscillator failure and avoid a malfunction behavior when
entering Stop mode.

Table 36. Sleep-on-exit (Low-power sleep)

Sleep-on-exit Description

Mode entry

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– No interrupt (for WFI) or event (for WFE) is pending

Refer to the Cortex®-M0+ System Control register (see PM0223
programming manual).

On return from ISR while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1 and

– No interrupt is pending

Refer to the Cortex®-M0+ System Control register (see PM0223
programming manual).

Mode exit Interrupt: refer to Table 55: List of vectors.

Wakeup latency regulator wakeup time from low-power mode

RM0367 Rev 8 161/1040

RM0367 Power control (PWR)

172

To further reduce power consumption in Stop mode, the internal voltage regulator can be put
in low-power mode. This is configured by the LPSDSR bit in the PWR_CR register (see
Section 6.4.1). The internal voltage regulator can also be kept in Main mode but the
consumption will be much higher. As a result, it is always implicitly assumed that the
regulator is in low-power mode during Stop mode. The only advantage of keeping the
regulator in Main mode is that the wakeup time from Stop mode is shorter.

If Flash memory programming or an access to the APB domain is ongoing, the Stop mode
entry is delayed until the memory or APB access has completed.

In Stop mode, the following features can be selected by programming individual control bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. Refer to
Section 25.3: IWDG functional description in Section 25: Independent watchdog
(IWDG).

• Real-time clock (RTC): this is configured by the RTCEN bit in the RCC_CSR register
(see Section 7.3.21).

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC_CSR
register.

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
RCC_CSR register.

The ADC, DAC and LCD can also consume power in Stop mode, unless they are disabled
before entering it. To disable them, the ADDIS bit in the ADC_CR register must be set to 1
and the ENx bit in the DAC_CR register must be written to 0.

Exiting Stop mode

Refer to Section 6.3.6: Exiting low-power mode and to Table 37 for details on how to exit
Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the MSI or HSI16 RC
oscillator is selected as system clock depending the bit STOPWUCK in the RCC_CFGR
register.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

Power control (PWR) RM0367

162/1040 RM0367 Rev 8

Table 37. Stop mode

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– No interrupt (for WFI) or event (for WFE) is pending.

– SLEEPDEEP bit is set in Cortex®-M0+ System Control register

– PDDS bit = 0 in Power Control register (PWR_CR)

– WUF bit = 0 in Power Control/Status register (PWR_CSR)

– MSI or HSI16 RC oscillator are selected as system clock for Stop mode
exit by configuring the STOPWUCK bit in the RCC_CFGR register.

Note: To enter the Stop mode, all EXTI Line pending bits (in
Section 13.5.6: EXTI pending register (EXTI_PR)), all peripherals
interrupt pending bits, the RTC Alarm (Alarm A and Alarm B), RTC
wakeup, RTC tamper, and RTC time-stamp flags, must be reset.
Otherwise, the Stop mode entry procedure is ignored and program
execution continues.

On return from ISR while:

– No interrupt is pending.

– SLEEPDEEP bit is set in Cortex®-M0+ System Control register

– SLEEPONEXIT = 1

– PDDS bit = 0 in Power Control register (PWR_CR)

– WUF bit = 0 in Power Control/Status register (PWR_CSR)

– MSI or HSI16 RC oscillator are selected as system clock for Stop mode
exit by configuring the STOPWUCK bit in the RCC_CFGR register.

Note: To enter the Stop mode, all EXTI Line pending bits (in
Section 13.5.6: EXTI pending register (EXTI_PR)), all peripherals
interrupt pending bits, the RTC Alarm (Alarm A and Alarm B), RTC
wakeup, RTC tamper, and RTC time-stamp flags, must be reset.
Otherwise, the Stop mode entry procedure is ignored and program
execution continues.

Mode exit

If WFI or return from ISR was used for entry:

Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). Refer to Table 55: List of
vectors.

If WFE was used for entry and SEVONPEND = 0

Any EXTI Line configured in event mode. Refer to Section 13.3.2:
Wakeup event management on page 292

If WFE was used for entry and SEVONPEND = 1

– Any EXTI Line configured in event mode (even if the corresponding EXTI
interrupt is disabled in the NVIC). The interrupt source can be an external
interrupt or a peripheral with wakeup capability (refer to Table 55: List of
vectors).

– A wakeup event (refer to Section 13.3.2: Wakeup event management on
page 292)

Wakeup latency
MSI or HSI16 RC wakeup time + regulator wakeup time from Low-power
mode + FLASH wakeup time

RM0367 Rev 8 163/1040

RM0367 Power control (PWR)

172

6.3.10 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex®-M0+ Deepsleep mode, with the voltage regulator disabled. The VCORE domain is
consequently powered off. The PLL, the MSI, the HSI16 oscillator and the HSE oscillator
are also switched off. SRAM and register contents are lost except for the RTC registers,
RTC backup registers and Standby circuitry (see Figure 10).

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except for:

• Reset pad

• Wakeup pins (WKUP1, WKUP2, WKUP3)

• RTC functions (tamper, time-stamp, RTC Alarm out, RTC clock calibration out) on the
following I/Os:

– Category 3: PC13, PA0

– Category 5: PC13, PA0, PE6

Entering Standby mode

Refer to Section 6.3.5: Entering low-power mode and to Table 38 for details on how to enter
Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. Refer to
Section 25.3: IWDG functional description on page 634.

• Real-time clock (RTC): this is configured by the RTCEN bit in the RCC_CSR register
(see Section 7.3.21).

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC_CSR
register.

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
RCC_CSR register.

Exiting Standby mode

The microcontroller exits Standby mode when an external Reset (NRST pin), an IWDG
Reset, a rising edge on WKUP pins (WUKP1, WKUP2 or WKUP3), an RTC alarm, a tamper
event, or a time-stamp event is detected.

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pins sampling, vector reset is fetched, etc.). The SBF status flag in the
PWR_CSR register (see Section 6.4.2) indicates that the microcontroller was in Standby
mode. All registers are reset to their default value after a system reset except for the register
bits in the RTC domain (see Section 27.7: RTC registers, SBF status flag in the PWR power
control/status register (PWR_CSR), Control/status register (RCC_CSR) and Clock control
register (RCC_CR)).

Refer to Section 6.3.6: Exiting low-power mode and to Table 38 for more details on how to
exit Standby mode.

Power control (PWR) RM0367

164/1040 RM0367 Rev 8

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex®-M0+ core is
no longer clocked.

However, by setting some configuration bits in the DBG_CR register, the software can be
debugged even when using the low-power modes extensively. For more details, refer to
Section 33.9.1: Debug support for low-power modes.

6.3.11 Waking up the device from Stop and Standby modes using the RTC
and comparators

The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC Wakeup
event, a tamper event, a time-stamp event, or a comparator event, without depending on an
external interrupt (Auto-wakeup mode).

These RTC alternate functions can wake up the system from Stop and Standby low-power
modes while the comparator events can only wake up the system from Stop mode.

The system can also wake up from low-power modes without depending on an external
interrupt (Auto-wakeup mode) by using the RTC alarm or the RTC wakeup events.

Table 38. Standby mode

Standby mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 1 in Cortex®-M0+ System Control register

– PDDS = 1 bit in Power Control register (PWR_CR)

– No interrupt (for WFI) or event (for WFE) is pending.

– WUF = 0 bit in Power Control/Status register (PWR_CSR)

– the RTC flag corresponding to the chosen wakeup source (RTC Alarm A,
RTC Alarm B, RTC wakeup, Tamper or Time-stamp flags) is cleared

On return from ISR while:

– SLEEPDEEP = 1 in Cortex®-M0+ System Control register

– SLEEPONEXIT = 1

– PDDS bit = 1 in Power Control register (PWR_CR)

– No interrupt is pending.

– WUF bit = 0 in Power Control/Status register (PWR_CSR)

– the RTC flag corresponding to the chosen wakeup source (RTC Alarm A,
RTC Alarm B, RTC wakeup, Tamper or Time-stamp flags) is cleared.

Mode exit
WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.

Wakeup latency Reset phase

RM0367 Rev 8 165/1040

RM0367 Power control (PWR)

172

The RTC provides a programmable time base for waking up from Stop or Standby mode at
regular intervals. For this purpose, two of the three alternative RTC clock sources can be
selected by programming the RTCSEL[1:0] bits in the RCC_CSR register (see
Section 7.3.21):

• Low-power 32.768 kHz external crystal oscillator (LSE OSC).
This clock source provides a precise time base with very low-power consumption (less
than 1 µA added consumption in typical conditions)

• Low-power internal RC oscillator (LSI RC)

This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC Oscillator is designed to use minimum power consumption.

RTC auto-wakeup (AWU) from the Stop mode

• To wake up from the Stop mode with an RTC alarm event, it is necessary to:

a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Alarm interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC alarm

• To wake up from the Stop mode with an RTC Tamper or time stamp event, it is
necessary to:

a) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC TimeStamp Interrupt in the RTC_CR register or the RTC Tamper
Interrupt in the RTC_TCR register

c) Configure the RTC to detect the tamper or time stamp event

• To wake up from the Stop mode with an RTC Wakeup event, it is necessary to:

a) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Wakeup Interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC Wakeup event

RTC auto-wakeup (AWU) from the Standby mode

• To wake up from the Standby mode with an RTC alarm event, it is necessary to:

a) Enable the RTC Alarm interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC alarm

• To wake up from the Stop mode with an RTC Tamper or time stamp event, it is
necessary to:

a) Enable the RTC TimeStamp Interrupt in the RTC_CR register or the RTC Tamper
Interrupt in the RTC_TCR register

b) Configure the RTC to detect the tamper or time stamp event

• To wake up from the Stop mode with an RTC Wakeup event, it is necessary to:

a) Enable the RTC Wakeup Interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC Wakeup event

Power control (PWR) RM0367

166/1040 RM0367 Rev 8

Comparator auto-wakeup (AWU) from the Stop mode

• To wake up from the Stop mode with a comparator 1 or comparator 2 wakeup event, it
is necessary to:

a) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2
(Interrupt or Event mode) to be sensitive to the selected edges (falling, rising or
falling and rising)

b) Configure the comparator to generate the event.

RM0367 Rev 8 167/1040

RM0367 Power control (PWR)

172

6.4 Power control registers

The peripheral registers have to be accessed by half-words (16-bit) or words (32-bit).

6.4.1 PWR power control register (PWR_CR)

Address offset: 0x00

Reset value: 0x0000 1000 (reset by wakeup from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. LPRUN
DS_EE
_KOFF

VOS[1:0] FWU ULP DBP PLS[2:0] PVDE CSBF CWUF PDDS LPSDSR

rw rw rw rw rw rw rw rw rw rw rw rc_w1 rc_w1 rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 LPRUN: Low-power run mode

When LPRUN bit is set together with the LPSDSR bit, the regulator is switched from Main
mode to low-power mode. Otherwise, it remains in Main mode. The regulator goes back to
operate in Main mode when LPRUN is reset.
If this bit is set (with LPSDSR bit set) and the CPU enters sleep or Deepsleep mode (LP
sleep or Stop mode), then, when the CPU wakes up from these modes, it enters Run
mode but with LPRUN bit set. To enter again Low-power run mode, it is necessary to
perform a reset and set LPRUN bit again.
It is forbidden to reset LPSDSR when the MCU is in Low-power run mode. LPSDSR is
used as a prepositioning for the entry into low-power mode, indicating to the system which
configuration of the regulator will be selected when entering low-power mode. The
LPSDSR bit must be set before the LPRUN bit is set. LPSDSR can be reset only when
LPRUN bit=0.
0: Voltage regulator in Main mode in Low-power run mode
1: Voltage regulator in low-power mode in Low-power run mode

Bit 13 DS_EE_KOFF: Deepsleep mode with non-volatile memory kept off

When entering low-power mode (Stop or Standby only), if DS_EE_KOFF and RUN_PD
bits are both set in FLASH_ACR register (refer to Section 3.7.1: Access control register
(FLASH_ACR), the non-volatile memory (Flash program memory and data EEPROM) will
not be woken up when exiting from Deepsleep mode.
0: NVM woken up when exiting from Deepsleep mode even if the bit RUN_PD is set
1: NVM not woken up when exiting from low-power mode (if the bit RUN_PD is set)

Bits 12:11 VOS[1:0]: Voltage scaling range selection

These bits are used to select the internal regulator voltage range.
Before resetting the power interface by resetting the PWRRST bit in the RCC_APB1RSTR
register, these bits have to be set to ‘10’ and the frequency of the system has to be
configured accordingly.

00: forbidden (bits are unchanged and keep the previous value, no voltage change
occurs)
01: 1.8 V (range 1)
10: 1.5 V (range 2)
11: 1.2 V (range 3)

Power control (PWR) RM0367

168/1040 RM0367 Rev 8

Bit 10 FWU: Fast wakeup

This bit works in conjunction with ULP bit.

If ULP = 0, FWU is ignored

If ULP = 1 and FWU = 1: VREFINT startup time is ignored when exiting from low-power mode.
The VREFINTRDYF flag in the PWR_CSR register indicates when the VREFINT is ready
again.

If ULP=1 and FWU = 0: Exiting from low-power mode occurs only when the VREFINT is ready
(after its startup time). This bit is not reset by resetting the PWRRST bit in the
RCC_APB1RSTR register.

0: Low-power modes exit occurs only when VREFINT is ready
1: VREFINT start up time is ignored when exiting low-power modes

Bit 9 ULP: Ultra-low-power mode

When set, the VREFINT is switched off in low-power mode. The BOR, PVD, and temperature
sensor also rely on the voltage reference. This bit is not reset by resetting the PWRRST bit
in the RCC_APB1RSTR register. When this bit is set, the LCDEN bit of register LCD_CR
must not be set.

0: VREFINT is on in low-power mode
1: VREFINT is off in low-power mode

Bit 8 DBP: Disable backup write protection

In reset state, the RTC, RTC backup registers and RCC CSR register are protected against
parasitic write access. This bit must be set to enable write access to these registers.

0: Access to RTC, RTC Backup and RCC CSR registers disabled
1: Access to RTC, RTC Backup and RCC CSR registers enabled

Note: If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, this bit must remain set
to 1.

The DBP bit must remain set while LCD is in use.

Bits 7:5 PLS[2:0]: PVD level selection

These bits are written by software to select the voltage threshold detected by the
programmable voltage detector:

000: 1.9 V
001: 2.1 V
010: 2.3 V
011: 2.5 V
100: 2.7 V
101: 2.9 V
110: 3.1 V
111: External input analog voltage (Compare internally to VREFINT)

PVD_IN input (PB7) has to be configured as analog input when PLS[2:0] = 111.

Note: Refer to the electrical characteristics of the datasheet for more details.

Bit 4 PVDE: Programmable voltage detector enable

This bit is set and cleared by software.

0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag

This bit is always read as 0.

0: No effect
1: Clear the SBF Standby flag (write).

RM0367 Rev 8 169/1040

RM0367 Power control (PWR)

172

Bit 2 CWUF: Clear wakeup flag

This bit is always read as 0.

0: No effect
1: Clear the WUF Wakeup flag after 2 system clock cycles

Bit 1 PDDS: Power-down deepsleep

This bit is set and cleared by software.

0: Enter Stop mode when the CPU enters Deepsleep.
1: Enter Standby mode when the CPU enters Deepsleep.

Bit 0 LPSDSR: Low-power deepsleep/Sleep/Low-power run

– DeepSleep/Sleep modes

When this bit is set, the regulator switches in low-power mode when the CPU enters sleep
or Deepsleep mode. The regulator goes back to Main mode when the CPU exits from
these modes.

– Low-power run mode

When this bit is set, the regulator switches in low-power mode when the bit LPRUN is set.
The regulator goes back to Main mode when the bit LPRUN is reset.

This bit is set and cleared by software.

0: Voltage regulator on during Deepsleep/Sleep/Low-power run mode
1: Voltage regulator in low-power mode during Deepsleep/Sleep/Low-power run mode

Power control (PWR) RM0367

170/1040 RM0367 Rev 8

6.4.2 PWR power control/status register (PWR_CSR)

Address offset: 0x04

Reset value: 0x0000 0008 (not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res.
EWUP

3
EWUP

2
EWUP

1
Res. Res.

REG
LPF

VOSF
VREFIN
TRDYF

PVDO SBF WUF

rw rw rw r r r r r r

Bits 31:11 Reserved, must be kept at reset value.

Bit 10 EWUP3: Enable WKUP pin 3

This bit is set and cleared by software.

0: WKUP pin 3 is used for general purpose I/Os. An event on the WKUP pin 3 does not
wakeup the device from Standby mode.
1: WKUP pin 3 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 3wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 9 EWUP2: Enable WKUP pin 2

This bit is set and cleared by software.

0: WKUP pin 2 is used for general purpose I/Os. An event on the WKUP pin 2 does not
wakeup the device from Standby mode.
1: WKUP pin 2 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 2 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 8 EWUP1: Enable WKUP pin 1

This bit is set and cleared by software.

0: WKUP pin 1 is used for general purpose I/Os. An event on the WKUP pin 1 does not
wakeup the device from Standby mode.
1: WKUP pin 1 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 1 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 REGLPF: Regulator LP flag

This bit is set by hardware when the MCU is in Low-power run mode.

When the MCU exits from Low-power run mode, this bit stays at 1 until the regulator is ready in
Main mode. A polling on this bit is recommended to wait for the regulator Main mode. This bit is
reset by hardware when the regulator is ready.

0: Regulator is ready in Main mode
1: Regulator voltage is in low-power mode

RM0367 Rev 8 171/1040

RM0367 Power control (PWR)

172

Bit 4 VOSF: Voltage Scaling select flag

A delay is required for the internal regulator to be ready after the voltage range is changed.
The VOSF bit indicates that the regulator has reached the voltage level defined with bits VOS
of PWR_CR register.

This bit is set when VOS[1:0] in PWR_CR register change.
It is reset once the regulator is ready.

0: Regulator is ready in the selected voltage range
1: Regulator voltage output is changing to the required VOS level.

Bit 3 VREFINTRDYF: Internal voltage reference (VREFINT) ready flag

This bit indicates the state of the internal voltage reference, VREFINT.

0: VREFINT is OFF
1: VREFINT is ready

Bit 2 PVDO: PVD output

This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.

0: VDD is higher than the PVD threshold selected with the PLS[2:0] bits.
1: VDD is lower than the PVD threshold selected with the PLS[2:0] bits.

Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after
Standby or reset until the PVDE bit is set.

Bit 1 SBF: Standby flag

This bit is set by hardware and cleared only by a POR/PDR (power-on reset/power-down
reset) or by setting the CSBF bit in the PWR power control register (PWR_CR)

0: Device has not been in Standby mode
1: Device has been in Standby mode

Bit 0 WUF: Wakeup flag

This bit is set by hardware and cleared by a system reset or by setting the CWUF bit in the
PWR power control register (PWR_CR)

0: No wakeup event occurred
1: A wakeup event was received from the WKUP pin or from the RTC alarm (Alarm A or
Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup).

Note: An additional wakeup event is detected if the WKUP pins are enabled (by setting the
EWUPx (x=1, 2, 3) bits) when the WKUP pin levels are already high.

Power control (PWR) RM0367

172/1040 RM0367 Rev 8

6.4.3 PWR register map

The following table summarizes the PWR registers.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 39. PWR - register map and reset values

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
L

P
R

U
N

D
S

_E
E

_K
O

F
F
.

VOS
[1:0]

F
W

U

U
L

P

D
B

P PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

L
P

S
D

S
R

Reset value 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
E

W
U

P
3

E
W

U
P

2

E
W

U
P

1

R
es

.
R

es
.

R
E

G
L

P
F

V
O

S
F

V
R

E
F

IN
T

R
D

Y
F

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0 0 1 0 0 0

RM0367 Rev 8 173/1040

RM0367 Reset and clock control (RCC)

225

7 Reset and clock control (RCC)

7.1 Reset

There are three types of reset, defined as system reset, power reset and RTC domain reset.

7.1.1 System reset

A system reset sets all registers to their reset values unless specified otherwise in the
register description.

A system reset is generated when one of the following events occurs:

• A low level on the NRST pin (external reset)

• Window watchdog end-of-count condition (WWDG reset)

• Independent watchdog end-of-count condition (IWDG reset)

• A software reset (SW reset) (see Software reset)

• Low-power management reset (see Low-power management reset)

• Option byte loader reset (see Option byte loader reset)

• Exit from Standby mode

• Firewall protection (see Section 5: Firewall (FW))

The reset source can be identified by checking the reset flags in the control/status register,
RCC_CSR (see Section 7.3.21).

Software reset

The SYSRESETREQ bit in Cortex®-M0+ AIRCR register (Application Interrupt and Reset
Control Register) must be set to force a software reset on the device. Refer to Arm®
Cortex®-M0+ Technical Reference Manual for more details.

Low-power management reset

There are two ways to generate a low-power management reset:

• Reset generated when entering Standby mode:

This type of reset is enabled by resetting nRST_STDBY bit in user option bytes. In this
case, whenever a Standby mode entry sequence is successfully executed, the device
is reset instead of entering Standby mode.

• Reset when entering Stop mode:

This type of reset is enabled by resetting nRST_STOP bit in user option bytes. In this
case, whenever a Stop mode entry sequence is successfully executed, the device is
reset instead of entering Stop mode.

Option byte loader reset

The Option byte loader reset is generated when the OBL_LAUNCH bit (bit 18) is set in the
FLASH_PECR register. This bit is used to launch by software the option byte loading.

For further information on the user option bytes, refer to Section 3: Flash program memory
and data EEPROM (FLASH).

Reset and clock control (RCC) RM0367

174/1040 RM0367 Rev 8

7.1.2 Power reset

A power reset is generated when one of the following events occurs:

• Power-on/power-down reset (POR/PDR reset)

• BOR reset

A power reset sets all registers to their reset values including for the RTC domain (see
Figure 16)

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map. For
more details, refer to Table 55: List of vectors.

The system reset signal provided to the device is output on the NRST pin (except the Exit
from Standby reset which is not output on the NRST pin but generates system reset).

The pulse generator guarantees a minimum reset pulse duration of 20 µs for each internal
reset source. In case of an external reset, the reset pulse is generated while the NRST pin is
asserted low.

When an internal reset occurs, the internal pull-up resistor (RPU) is deactivated in order to
save the power consumption through the pull-up resistor.

Figure 16. Simplified diagram of the reset circuit

7.1.3 RTC and backup registers reset

The RTC peripheral, RTC clock source selection (in RCC_CSR) and the backup registers
are reset only when one of the following events occurs:

• A software reset, triggered by setting the RTCRST bit in the RCC_CSR register (see
Section 7.3.21)

• Power reset (BOR/POR/PDR).

MSv41924V2

External
reset

VDD

RPU

WWDG reset

Firewall reset
Software reset
Low-power manager reset

IWDG reset

Option byte loader reset
BOR reset

Pulse
generator

(min 20 μs)

NRST

System reset

Filter

RM0367 Rev 8 175/1040

RM0367 Reset and clock control (RCC)

225

7.2 Clocks

Four different clock sources can be used to drive the system clock (SYSCLK):

• HSI16 (high-speed internal) oscillator clock

• HSE (high-speed external) oscillator clock

• PLL clock

• MSI (multispeed internal) oscillator clock

The MSI at 2.1MHz is used as system clock source after startup from power reset,
system or RTC domain reset, and after wake-up from Standby mode.

The HSI16, HSI16 divided by 4, or the MSI at any of its possible frequency can be used
to wake up from Stop mode.

The devices have two secondary clock sources:

• 37 kHz low speed internal RC (LSI RC) which drives the independent watchdog and
optionally the RTC used for Auto-wakeup from Stop/Standby mode, the LCD and the
LPTIMER.

• 32.768 kHz low speed external crystal (LSE crystal) which optionally drives the real-
time clock (RTCCLK), the LPTIMER, the LCD and USARTs.

Each clock source can be switched on or off independently when it is not used to optimize
power consumption.

Several prescalers can be used to configure the AHB frequency and the two APBs (APB1
and APB2) domains. The maximum frequency of AHB, APB1 and the APB2 domains is
32 MHz. It depends on the device voltage range. For more details refer to Section 6.1.5:
Dynamic voltage scaling management.

All the peripheral clocks are derived from the system clock (SYSCLK) except:

• The 48 MHz USB and RNG clocks which are derived from one of the two following
source:

– PLL VCO clock.

– RC48 Clock (HSI48)

• The ADC can be derived either from the APB clock or the HSI16 clock.

• The LPUART1 and USART1/2 clock which is derived (selected by software) from one
of the four following sources:

– system clock

– HSI16 clock

– LSE clock

– APB clock (PCLK)

• The I2C1 clock which is derived (selected by software) from one of the three following
sources:

– system clock

– HSI16 clock

– APB clock (PCLK)

• The LPTIMER clock which is derived (selected by software) from one of the four
following sources:

– HSI16 clock

– LSE clock

Reset and clock control (RCC) RM0367

176/1040 RM0367 Rev 8

– LSI clock

– APB clock (PCLK)

• The RTC/LCD clock which is derived from the following clock sources:

– LSE clock,

– LSI clock,

– 4 MHz HSE_RTC (HSE divided by a programmable prescaler).

• IWDG clock which is always the LSI clock.

The system clock (SYSCLK) frequency must be higher or equal to the RTC/LCD clock
frequency.

The RCC feeds the Cortex® System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex® clock
(HCLK), configurable in the SysTick Control and Status Register.

RM0367 Rev 8 177/1040

RM0367 Reset and clock control (RCC)

225

Figure 17. Clock tree

1. For full details about the internal and external clock source characteristics, please refer to the “Electrical
characteristics” section in your device datasheet.

MS32912V2

Legend:
HSE = High-speed external clock signal
HSI = High-speed internal clock signal
LSI = Low-speed internal clock signal
LSE = Low-speed external clock signal
MSI = Multispeed internal clock signal

Watchdog LSLSI RC

LSE OSC RTC

LSI tempo
@V33

/ 1,2,4,8,16

HSI16 RC
Level shifters

HSE OSC
Level shifters

RC 48MHz
Level shifters

LSU

1 MHz Clock
Detector

LSD

Clock
Recovery
System

/ 8

LSE tempo

MSI RC
Level shifters

/ 2,4,8,16

/ 2,3,4
Level shifters

PLL
X

3,4,6,8,12,16,
24,32,48

APB1
PRESC

/ 1,2,4,8,16

AHB
PRESC

/ 1,2,…, 512

Clock
Source
Control

usb_en

@V33

@V33

@V33

@V33

@V33

@V18

@V18

@V18

@V18

@V18

rng_en

48MHz
USBCLK

48MHz RNG

I2C1CLK

LPUART/
UARTCLK

LPTIMCLK
LSE

HSI16

SYSCLK

PCLK

LSI

Peripheral
clock enable

PCLK1 to APB1
peripherals

not (sleep or
deepsleep)

not (sleep or
deepsleep)

not deepsleep

not deepsleep

HCLK

SysTick
Timer

CK_PWR

FCLK

PLLCLK
HSE

HSI16
MSI

LSE
LSI

Dedicated 48MHz PLL output

HSE present or not

@V33

@VDDCORE

ck_rchs
/ 1,4

HSI16

HSI48

MSI

1 MHz

ck_pllin

Enable Watchdog

RTC2 enable

LCD enable

ADC enable
ADCCLK

LCDCLK

LSU LSD LSD

MCO

MCOSEL

PLLSRC

HSI48MSEL

RTCSEL

System
Clock

32 MHz
max.

If (APB1 presc=1) x1
else x2)

to TIMx

Peripheral
clock enable

Peripheral
clock enable

Peripheral
clock enable

APB2
PRESC

/ 1,2,4,8,16
Peripheral

clock enable

PCLK2 to APB2
peripherals32 MHz

max.

If (APB2 presc=1) x1
else x2)

to TIMx

Peripheral
clock enable

LSD

4 MHz

Reset and clock control (RCC) RM0367

178/1040 RM0367 Rev 8

The timer clock frequencies are automatically fixed by hardware. There are two cases:

1. If the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected.

2. Otherwise, they are set to twice (×2) the frequency of the APB domain to which the
timers are connected.

fCLK acts as Cortex®-M0+ free running clock. For more details refer to the Section 33:
Debug support (DBG).

7.2.1 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

• HSE external crystal/ceramic resonator

• HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

Table 40. HSE/LSE clock sources

Clock source Hardware configuration

External clock for
category 3 and 5

devices

External clock

MSv31915V1

OSC_IN OSC_OUT

GPIO
External
source

External
source

CK_IN

GPIO

MSv36151V1

RM0367 Rev 8 179/1040

RM0367 Reset and clock control (RCC)

225

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
32 MHz. This mode is selected by setting the HSEBYP and HSEON bits in the RCC_CR
register (see Section 7.3.1: Clock control register (RCC_CR)). The external clock signal with
~50% duty cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left hi-Z
(see Figure 40). The external clock signal can be square, sinus or triangle. To minimize the
consumption, it is recommended to use the square signal.

External crystal/ceramic resonator (HSE crystal)

The 1 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.

The associated hardware configuration is shown in Figure 40. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag of the RCC_CR register (see Section 7.3.1) indicates whether the HSE
oscillator is stable or not. At startup, the HSE clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the RCC_CR register.

The HSE Crystal can be switched on and off using the HSEON bit in the RCC_CR register.

For code example, refer to A.4.1: HSE start sequence code example.

7.2.2 HSI16 clock

The HSI16 clock signal is generated from an internal 16 MHz RC oscillator. It can be used
directly as a system clock or as PLL input.

The HSI16 clock can be used after wake-up from the Stop low-power mode, this ensure a
smaller wake-up time than a wake-up using MSI clock.

The HSI16 RC oscillator has the advantage of providing a clock source at low cost (no
external components). It also has a faster startup time than the HSE crystal oscillator
however, even with calibration the frequency is less accurate than an external crystal
oscillator or ceramic resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at an ambient
temperature, TA, of 25 °C.

After reset, the factory calibration value is loaded in the HSI16CAL[7:0] bits in the Internal
Clock Sources Calibration Register (RCC_ICSCR) (see Section 7.3.2).

If the application is subject to voltage or temperature variations, this may affect the RC
oscillator speed. You can trim the HSI16 frequency in the application by using the
HSI16TRIM[4:0] bits in the RCC_ICSCR register. For more details on how to measure the
HSI16 frequency variation please refer to Section 7.2.15: Internal/external clock
measurement using TIM21.

The HSI16RDY flag in the RCC_CR register indicates whether the HSI16 oscillator is stable
or not. At startup, the HSI16 RC output clock is not released until this bit is set by hardware.

The HSI16 RC oscillator can be switched on and off using the HSI16ON bit in the RCC_CR
register.

Reset and clock control (RCC) RM0367

180/1040 RM0367 Rev 8

7.2.3 MSI clock

The MSI clock signal is generated from an internal RC oscillator. Its frequency range can be
adjusted by software by using the MSIRANGE[2:0] bits in the RCC_ICSCR register (see
Section 7.3.2: Internal clock sources calibration register (RCC_ICSCR)). Seven frequency
ranges are available: 65.536 kHz, 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz,
2.097 MHz (default value) and 4.194 MHz.

The MSI clock is always used as system clock after restart from Reset and wake-up from
Standby. After wake-up from Stop mode, the MSI clock can be selected as system clock
instead of HSI16 (or HSI16/4).

When the device restarts after a reset or a wake-up from Standby, the MSI frequency is set
to its default value. The MSI frequency does not change after waking up from Stop.

The MSI RC oscillator has the advantage of providing a low-cost (no external components)
low-power clock source. It is used as wake-up clock in low-power modes to reduce power
consumption.

The MSIRDY flag in the RCC_CR register indicates whether the MSI RC is stable or not. At
startup, the MSI RC output clock is not released until this bit is set by hardware.

The MSI RC can be switched on and off by using the MSION bit in the RCC_CR register
(see Section 7.3.1).

It can also be used as a backup clock source (auxiliary clock) if the HSE crystal oscillator
fails. Refer to Section 7.2.10: HSE clock security system (CSS) on page 183.

Calibration

The MSI RC oscillator frequency can vary from one chip to another due to manufacturing
process variations, this is why each device is factory calibrated by ST for 1% accuracy at an
ambient temperature, TA, of 25 °C.

After reset, the factory calibration value is loaded in the MSICAL[7:0] bits in the
RCC_ICSCR register. If the application is subject to voltage or temperature variations, this
may affect the RC oscillator speed. You can trim the MSI frequency in the application by
using the MSITRIM[7:0] bits in the RCC_ICSCR register. For more details on how to
measure the MSI frequency variation please refer to Section 7.2.15: Internal/external clock
measurement using TIM21.

7.2.4 HSI48 clock

The HSI48 clock signal is generated from an internal 48 MHz RC oscillator and can be used
directly for USB and for random number generator (RNG).

The internal 48MHz RC oscillator is mainly dedicated to provide a high precision clock to the
USB peripheral by means of a special Clock Recovery System (CRS) circuitry. The CRS
can use the USB SOF signal, the LSE or an external signal to automatically and quickly
adjust the oscillator frequency on-fly. It is disabled as soon as the system enters Stop or
Standby mode. When the CRS is not used, the HSI48 RC oscillator runs on its default
frequency which is subject to manufacturing process variations.

For more details on how to configure and use the CRS peripheral please refer to Section 8:
Clock recovery system (CRS).

The HSI48 requires VREFINT and its buffer with 48 MHz RC to be enabled (see

RM0367 Rev 8 181/1040

RM0367 Reset and clock control (RCC)

225

ENREF_HSI48 in Section 10.2.3: Reference control and status register
(SYSCFG_CFGR3))

The HSI48RDY flag in the Clock recovery RC register (RCC_CRRCR) indicates whether the
HSI48 RC is stable or not. At startup, the HSI48 RC output clock is not released until this bit
is set by hardware.

The HSI48 RC can be switched on and off using the HSI48ON bit in the Clock recovery RC
register (RCC_CRRCR).

7.2.5 PLL

The internal PLL can be clocked by the HSI16 RC or HSE clocks. It drives the system clock
and can be used to generate the 48 MHz clock for the USB peripheral (refer to Figure 17
and Section 7.3.1: Clock control register (RCC_CR).

The PLL input clock frequency must range between 2 and 24 MHz.

The desired frequency is obtained by using the multiplication factor and output division
embedded in the PLL:

• If the USB uses the PLL as clock source, the PLL VCO clock (defined by the PLL
multiplication factor) must be programmed to output a 96 MHz frequency (USBCLK =
PLLVCO/2).

• The system clock is derived from the PLL VCO divided by the output division factor.

Note: The application software must set correctly the PLL multiplication factor to avoid exceeding
96 MHz as PLLVCO when the product is in range 1,

48 MHz as PLLVCO when the product is in range 2,

24 MHz when the product is in range 3.

It must also set correctly the output division to avoid exceeding 32 MHz as SYSCLK.

The minimum input clock frequency for PLL is 2 MHz (when using HSE as PLL source).

The PLL configuration (selection of the source clock, multiplication factor and output division
factor) must be performed before enabling the PLL. Once the PLL is enabled, these
parameters cannot be changed.

To modify the PLL configuration, proceed as follows:

1. Disable the PLL by setting PLLON to 0.

2. Wait until PLLRDY is cleared. The PLL is now fully stopped.

3. Change the desired parameter.

4. Enable the PLL again by setting PLLON to 1.

An interrupt can be generated when the PLL is ready if enabled in the RCC_CIER register
(see Section 7.3.5).

For code example, refer to A.4.2: PLL configuration modification code example.

Reset and clock control (RCC) RM0367

182/1040 RM0367 Rev 8

7.2.6 LSE clock

The LSE crystal is a 32.768 kHz low speed external crystal or ceramic resonator. It has the
advantage of providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off through the LSEON bit in the RCC_CSR register
(see Section 7.3.21).

The crystal oscillator driving strength can be changed at runtime through the LSEDRV[1:0]
bits of the RCC_CSR register to obtain the best compromise between robustness and short
start-up time on one hand and low power consumption on the other hand. The driving
capability should be changed dynamically to determine the driving level that best matches
the used crystal. In the final application, it is then recommended to program this value in
LSEDRV[1:0] bits.

The LSERDY flag in the RCC_CSR register indicates whether the LSE crystal is stable or
not. At startup, the LSE crystal output clock signal is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the RCC_CIER register (see
Section 7.3.5).

External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
1 MHz. This mode is selected by setting the LSEBYP and LSEON bits in the RCC_CSR
(see Section 7.3.1). The external clock signal (square, sinus or triangle) with ~50% duty
cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be left Hi-Z (see
Figure 40).

7.2.7 LSI clock

The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG). The clock frequency is around
37 kHz.

The LSI RC oscillator can be switched on and off using the LSION bit in the RCC_CSR
register (see Section 7.3.21).

The LSIRDY flag in RCC_CSR indicates whether the low-speed internal oscillator is stable
or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can
be generated if enabled in the RCC_CIER (see Section 7.3.5).

Since the IWDG is activated, the LSI oscillator cannot be stopped by LSION=0. The LSI
oscillator is stopped by system reset (except if IWDG is enabled by hardware option through
WDG_SW option bit in FLASH_OPTR register). If the IWDG was enabled by software, then
the LSI oscillator must be enabled again after system reset to ensure correct IWDG and/or
RTC operation.

LSI measurement

The frequency dispersion of the LSI oscillator can be measured to have accurate RTC time
base and/or IWDG timeout (when LSI is used as clock source for these peripherals) with an
acceptable accuracy. For more details, refer to the electrical characteristics section of the
datasheets. For more details on how to measure the LSI frequency, please refer to
Section 7.2.15: Internal/external clock measurement using TIM21.

RM0367 Rev 8 183/1040

RM0367 Reset and clock control (RCC)

225

7.2.8 System clock (SYSCLK) selection

Four different clock sources can be used to drive the system clock (SYSCLK):

• The HSI16 oscillator

• The HSE oscillator

• The PLL

• The MSI oscillator clock (default after reset)

When a clock source is used directly or through the PLL as system clock, it is not possible to
stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source will be ready. Status bits in the
RCC_CR register indicate which clock(s) is (are) ready and which clock is currently used as
system clock.

7.2.9 System clock source frequency versus voltage range

The following table gives the different clock source maximum frequencies depending on the
product voltage range.

7.2.10 HSE clock security system (CSS)

The Clock security system can be activated on the HSE by software. In this case, the clock
detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is
stopped.

If an HSE clock failure is detected, this oscillator is automatically disabled and an CSSHSEI
interrupt (Clock Security System Interrupt) is generated to inform the software of the failure,
thus allowing the MCU to perform rescue operations. The CSSHSEI is linked to the
Cortex®-M0+ NMI (Non-Maskable Interrupt) exception vector.

Note: Once the CSSHSE is enabled, if the HSE clock fails, the CSSHSE interrupt occurs and an
NMI is automatically generated. The NMI is executed indefinitely unless the CSSHSE
interrupt pending bit is cleared. As a consequence, the NMI interrupt service routine (ISR)
must clear the CSSHSE interrupt by setting the CSSHSEC bit in the RCC_CICR register.

Table 41. System clock source frequency

Product voltage
range

Clock frequency

MSI HSI16 HSE PLL

Range 1 (1.8 V) 4.2 MHz 16 MHz
HSE 32 MHz (external clock)

or 24 MHz (crystal)
32 MHz

(PLLVCO max = 96 MHz)

Range 2 (1.5 V) 4.2 MHz 16 MHz 16 MHz
16 MHz

(PLLVCO max = 48 MHz)

Range 3 (1.2 V) 4.2 MHz NA 8 MHz
4 MHz

(PLLVCO max = 24 MHz)

Reset and clock control (RCC) RM0367

184/1040 RM0367 Rev 8

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock and the disabling of the HSE oscillator. If the HSE
oscillator clock is the clock entry of the PLL used as system clock when the failure occurs,
the PLL is disabled too.

When an HSE failure occurs, the system clock can be switched to the MSI or to the internal
16-MHz HSI clock depending on the value of STOPWUCK bit in the RCC_CFGR register.

7.2.11 LSE Clock Security System

Clock Security System can be activated on the LSE by software. This is done by writing the
CSSLSEON bit in the RCC_CSR register. This bit can be disabled by a hardware reset, an
RTC software reset, or after an LSE clock failure detection. CSSLSEON bit must be written
after the LSE and LSI clocks are enabled (LSEON and LSION set) and ready (LSERDY and
LSIRDY bits set by hardware), and after the RTC clock has been selected through the
RTCSEL bit.

The LSE CSS works in all modes: run, Sleep, Stop and Standby.

If a failure is detected on the external 32 kHz oscillator, the LSE clock is no longer supplied
to the RTC but the content of the registers does not change.

A wakeup is generated in Standby mode. In any other modes, an interrupt can be sent to
wake-up the software (see Section 7.3.5).

The software MUST then reset the CSSLSEON bit and stop the defective 32 kHz oscillator
by resetting LSEON bit. It can change the RTC clock source (LSI, HSE or no clock) through
the RTCSEL bit, or take any required action to secure the application.

The frequency of LSE oscillator must be higher than 30 kHz to avoid false positive CSS
detection.

7.2.12 RTC and LCD clock

The RTC and LCD have the same clock source which can be either the LSE, the LSI, or the
HSE 4 MHz clock (HSE divided by a programmable prescaler). It is selected by
programming the RTCSEL[1:0] bits in the RCC_CSR register (see Section 7.3.21) and the
RTCPRE[1:0] bits in the RCC_CR register (see Section 7.3.1).

Once the RTC and LCD clock source have been selected, the only possible way of
modifying the selection is to set the RTCRST bit in the RCC_CSR register, or by a POR.

If the LSE or LSI is used as RTC clock source, the RTC continues to work in Stop and
Standby low-power modes, and can be used as wakeup source. However, when the HSE is
the RTC clock source, the RTC cannot be used in the Stop and Standby low-power modes.
The LCD can however be used in the Stop low-power mode if the LSE or LSI is used as the
RTC clock source.

When the RTC is clocked by the LSE, the RTC remains clocked and functional under
system reset.

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

RM0367 Rev 8 185/1040

RM0367 Reset and clock control (RCC)

225

7.2.13 Watchdog clock

If the Independent watchdog (IWDG) is started by either hardware option or software
access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator
temporization, the clock is provided to the IWDG.

If the IWDG was enabled by software, the LSI clock is disabled after system reset. The LSI
oscillator must then be enabled again to ensure correct IWDG operation.

7.2.14 Clock-out capability

The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin using a configurable prescaler (1, 2, 4, 8, or 16). The configuration
registers of the corresponding GPIO port must be programmed in alternate function mode.
One of 7 clock signals can be selected as the MCO clock:

• SYSCLK

• HSI16

• HSI48

• MSI

• HSE

• PLL

• LSI

• LSE

The selection is controlled by the MCOSEL[3:0] bits of the RCC_CFGR register (see
Section 7.3.20).

For code example, refer to A.4.3: MCO selection code example.

7.2.15 Internal/external clock measurement using TIM21

It is possible to indirectly measure the frequency of all on-board clock source generators by
means of the TIM21 channel 1 input capture, as represented on Figure 18.

Figure 18. Using TIM21 channel 1 input capture to measure
frequencies

TIM21 has an input multiplexer that selects which of the I/O or the internal clock is to trigger
the input capture. This selection is performed through the TI1_RMP [2:0] bits in the
TIM21_OR register.

MS32913V1

GPIO

GPIO

TI1_RMP[2:0] TIM21

TI(1)

ETR

TI(2)

MSI
LSI

HSE_RTC
LSE

LSE

Reset and clock control (RCC) RM0367

186/1040 RM0367 Rev 8

The primary purpose of connecting the LSE to the channel 1 input capture is to be able to
accurately measure the HSI16 and MSI system clocks (for this, either the HSI16 or MSI
should be used as the system clock source). The number of HSI16 (MSI, respectively) clock
counts between consecutive edges of the LSE signal provides a measure of the internal
clock period. Taking advantage of the high precision of LSE crystals (typically a few tens of
ppm’s), it is possible to determine the internal clock frequency with the same resolution, and
trim the source to compensate for manufacturing-process- and/or temperature- and voltage-
related frequency deviations.

The MSI and HSI16 oscillators both have dedicated user-accessible calibration bits for this
purpose.

The basic concept consists in providing a relative measurement (e.g. the HSI16/LSE ratio):
the precision is therefore closely related to the ratio between the two clock sources. The
higher the ratio, the better the measurement.

It is however not possible to have a good enough resolution when the MSI clock is low
(typically below 1 MHz). In this case, it is advised to:

• accumulate the results of several captures in a row

• use the timer’s input capture prescaler (up to 1 capture every 8 periods)

• use the RTC_OUT signal at 512 Hz (when the RTC is clocked by the LSE) as the input
for the channel1 input capture. This improves the measurement precision

TIM21 can also be used to measure the LSI, MSI, or HSE_RTC: this is useful for
applications with no crystal. The ultra-low-power LSI oscillator has a wide manufacturing
process deviation: by measuring it as a function of the HSI16 clock source, its frequency
can be determined with the precision of the HSI16.The HSE_RTC frequency (HSE divided
by a programmable prescaler) being relatively high (4 MHz), the relative frequency
measurement is not very accurate. Its main purpose is consequently to obtain a rough
indication of the external crystal frequency. This can be useful to meet the requirements of
the IEC 60730/IEC 61335 standards, which require to be able to determine harmonic or
subharmonic frequencies (–50/+100% deviations).

7.2.16 Clock-independent system clock sources for TIM2/TIM21/TIM22

In a number of applications using the 32.768 kHz clock as RTC timebase, timebases
completely independently from the system clock are useful. This allows to schedule tasks
without having to take into account the processor state (the processor may be stopped or
executing at low, medium or full speed).

For this purpose, the LSE clock is internally redirected to the 3 timers’ ETR inputs, which are
used as additional clock sources. This gives up to three independent time bases (using the
auto-reload feature) with 1 or 2 compare additional channels for fractional events. For
instance, the TIM21 auto-reload interrupt can be programmed for a 1 second tick interrupt
with an additional interrupt occurring 250 ms after the main tick.

Note: In this configuration, make sure that you have at least a ratio of 2 between the external clock
(LSE) and the APB clock. If the application uses an APB clock frequency lower than twice
the LSE clock frequency (typically LSE = 32.768 kHz, so twice LSE = 65.536 kHz), it is
mandatory to use the external trigger prescaler feature of the timer: it can divide the ETR
clock by up to 8.

RM0367 Rev 8 187/1040

RM0367 Reset and clock control (RCC)

225

7.3 RCC registers

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

7.3.1 Clock control register (RCC_CR)

Address offset: 0x00

System Reset value: 0b0000 0000 00XX 0X00 0000 0011 0000 0000 where X is undefined

Power-on reset value: 0x0000 0300

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res.
PLL
RDY

PLLON Res. Res. RTCPRE[1:0]
CSSHS
EON.

HSE
BYP

HSE
RDY

HSE
ON

r rw rw rw rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res.
MSI
RDY

MSION Res. Res.
HSI16

OUTEN
HSI16
DIVF

HSI16
DIVEN

HSI16
RDYF

HSI16K
ERON

HSI16
ON

r rw rw r rw r rw rw

Bits 31:26 Reserved, must be kept at reset value.

Bit 25 PLLRDY: PLL clock ready flag

This bit is set by hardware to indicate that the PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: PLL enable bit

This bit is set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit can not be reset if the
PLL clock is used as system clock or is selected to become the system clock.
0: PLL OFF
1: PLL ON

Bits 23:22 Reserved, must be kept at reset value.

Bits 21:20 RTCPRE[1:0] RTC/LCD prescaler

These bits are set and reset by software to obtain a 4 MHz clock from HSE. This prescaler
cannot be modified if HSE is enabled (HSEON = 1).These bits are reset by a power -on
reset,. Their value is not modified by a system reset.
00: HSE is divided by 2 for RTC/LCD clock
01: HSE is divided by 4 for RTC/LCD clock
10: HSE is divided by 8 for RTC/LCD clock
11: HSE is divided by 16 for RTC/LCD clock

Bit 19 CSSHSEON: Clock security system on HSE enable bit

This bit is set by software to enable the clock security system (CSS) on HSE. This bit is "set
only" (disabled by system reset). When CSSHSEON is set, the clock detector is enabled by
hardware when the HSE oscillator is ready, and disabled by hardware if an oscillator failure
is detected.
0: Clock security system OFF (clock detector OFF)
1: Clock security system ON (clock detector ON if HSE oscillator is stable, OFF otherwise)

Reset and clock control (RCC) RM0367

188/1040 RM0367 Rev 8

Bit 18 HSEBYP: HSE clock bypass bit

This bit is set and cleared by software to bypass the oscillator with an external clock. The
external clock must be enabled with the HSEON bit, to be used by the device.
The HSEBYP bit can be written only if the HSE oscillator is disabled. This bit is reset by
power-on reset. Its value is not modified by system reset
0: HSE oscillator not bypassed
1: HSE oscillator bypassed with an external clock

Bit 17 HSERDY: HSE clock ready flag

This bit is set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is
cleared, HSERDY goes low after 6 HSE oscillator clock cycles.
0: HSE oscillator not ready
1: HSE oscillator ready

Bit 16 HSEON: HSE clock enable bit

This bit is set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This
bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 MSIRDY: MSI clock ready flag

This bit is set by hardware to indicate that the MSI oscillator is stable.
0: MSI oscillator not ready
1: MSI oscillator ready

Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles.

Bit 8 MSION: MSI clock enable bit

This bit is set and cleared by software.
Set by hardware to force the MSI oscillator ON when exiting from Stop or Standby mode, or
in case of a failure of the HSE oscillator used directly or indirectly as system clock. This bit
cannot be cleared if the MSI is used as system clock.
0: MSI oscillator OFF
1: MSI oscillator ON

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 HSI16OUTEN: 16 MHz high-speed internal clock output enable

This bit is set and cleared by software. When this bit is set, TIM2 ETR input is connected to
the 16 MHz HSI output clock (HSI16) provided ETR_RMP is set to 011 in TIM2 option
register (TIM2_OR). This bit can be written anytime by the application.
0: HSI16 output clock disabled
1: HSI16 output clock enabled

Bit 4 HSI16DIVF HSI16 divider flag

This bit is set and reset by hardware. As a write in HSI16DIVEN has not an immediate effect
on the frequency, this flag indicates the current status of the HSI16 divider.
0: 16 MHz HSI clock not divided
1: 16 MHz HSI clock divided by 4

Bit 3 HSI16DIVEN HSI16 divider enable bit

This bit is set and reset by software to enable/disable the 16 MHz HSI divider by 4. It can be
written anytime.
0: no 16 MHz HSI division requested
1: 16 MHz HSI division by 4 requested

RM0367 Rev 8 189/1040

RM0367 Reset and clock control (RCC)

225

Bit 2 HSI16RDYF: Internal high-speed clock ready flag

This bit is set by hardware to indicate that the HSI 16 MHz oscillator is stable. After the
HSI16ON bit is cleared, HSI16RDY goes low after 6 HSI16 clock cycles.
0: HSI 16 MHz oscillator not ready
1: HSI 16 MHz oscillator ready

Bit 1 HSI16KERON: High-speed internal clock enable bit for some IP kernels

This bit is set and reset by software to force the HSI 16 MHz oscillator ON, even in Stop
mode, so that it can be quickly available as kernel clock for USARTs or I2C1. This bit has no
effect on the value of HSI16ON.
0: HSI 16 MHz oscillator not forced ON
1: HSI 16 MHz oscillator forced ON even in Stop mode

Bit 0 HSI16ON: 16 MHz high-speed internal clock enable

This bit is set and cleared by software. It cannot be cleared if the 16 MHz HSI is used directly
or indirectly as system clock.
0: HSI16 oscillator OFF
1: HSI16 oscillator ON

Reset and clock control (RCC) RM0367

190/1040 RM0367 Rev 8

7.3.2 Internal clock sources calibration register (RCC_ICSCR)

Address offset: 0x04

Reset value: 0x00XX B0XX where X is undefined.

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSITRIM[7:0] MSICAL[7:0]

rw rw rw rw rw rw rw rw r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSIRANGE[2:0] HSI16TRIM[4:0] HSI16CAL[7:0]

rw rw rw rw rw rw rw rw r r r r r r r r

Bits 31:24 MSITRIM[7:0]: MSI clock trimming

These bits are set by software to adjust MSI calibration.
These bits provide an additional user-programmable trimming value that is added to the
MSICAL[7:0] bits. They can be programmed to compensate for the variations in voltage and
temperature that influence the frequency of the internal MSI RC.

Bits 23:16 MSICAL[7:0]: MSI clock calibration

These bits are automatically initialized at startup.

Bits 15:13 MSIRANGE[2:0]: MSI clock ranges

These bits are set by software to choose the frequency range of MSI.7 frequency ranges are
available:
000: range 0 around 65.536 kHz
001: range 1 around 131.072 kHz
010: range 2 around 262.144 kHz
011: range 3 around 524.288 kHz
100: range 4 around 1.048 MHz
101: range 5 around 2.097 MHz (reset value)
110: range 6 around 4.194 MHz
111: not allowed

Bits 12:8 HSI16TRIM[4:0]: High speed internal clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSI16CAL[7:0] bits. They can be programmed to compensated for the variations in voltage
and temperature that influence the frequency of the internal HSI16 RC.

Bits 7:0 HSI16CAL[7:0] Internal high speed clock calibration

These bits are initialized automatically at startup.

RM0367 Rev 8 191/1040

RM0367 Reset and clock control (RCC)

225

7.3.3 Clock recovery RC register (RCC_CRRCR)

Address: 0x08

Reset value: 0x0000 XX00

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSI48CAL[7:0] Res. Res. Res. Res. Res.
HSI48

DIV6EN
HSI48RDY HSI48ON

r r r r r r r r rw r rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 HSI48CAL[7:0]: 48 MHz HSI clock calibration

These bits are read-only. They are set by hardware by loading option bytes during system
reset.

Bits 7:3 Reserved, must be kept at reset value.

Bit 2 HSI48DIV6EN: 48 MHz HSI clock divided by 6 output enable

This bit is set and cleared by software. When it is set, HSI48/6 clock is delivered to TIM3.
0: Output delivering HSI48/6 not enabled
1:Output delivering HSI48/6 enabled

Bit 1 HSI48RDY: 48MHz HSI clock ready flag

This bit is set by hardware to indicate that the 48 MHz RC oscillator is stable. It requires 6
48 MHz RC oscillator clock cycles to fall down after HSION reset.
0: 48 MHz HSI clock not ready
1: 48 MHz HSI clock ready

Bit 0 HSI48ON: 48MHz HSI clock enable bit

This bit is set and cleared by software.
0: 48 MHz HSI clock OFF
1: 48 MHz HSI clock ON

Reset and clock control (RCC) RM0367

192/1040 RM0367 Rev 8

7.3.4 Clock configuration register (RCC_CFGR)

Address offset: 0x0C

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. MCOPRE[2:0] MCOSEL[3:0] PLLDIV[1:0] PLLMUL[3:0] Res.
PLL
SRC

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STOP
WUCK.

Res. PPRE2[2:0] PPRE1[2:0] HPRE[3:0] SWS[1:0] SW[1:0]

rw rw rw rw rw rw rw rw rw rw rw r r rw rw

Bit 31 Reserved, must be kept at reset value.

Bits 30:28 MCOPRE[2:0]: Microcontroller clock output prescaler

These bits are set and cleared by software.
It is highly recommended to change this prescaler before MCO output is enabled.
000: MCO is divided by 1
001: MCO is divided by 2
010: MCO is divided by 4
011: MCO is divided by 8
100: MCO is divided by 16
Others: not allowed

Bits 27:24 MCOSEL[3:0]: Microcontroller clock output selection

These bits are set and cleared by software.
0000: MCO output disabled, no clock on MCO
0001: SYSCLK clock selected
0010: HSI16 oscillator clock selected
0011: MSI oscillator clock selected
0100: HSE oscillator clock selected
0101: PLL clock selected
0110: LSI oscillator clock selected
0111: LSE oscillator clock selected
1000: HSI48 oscillator clock selected
Others: reserved

Note: This clock output may have some truncated cycles at startup or during MCO clock
source switching.

Bits 23:22 PLLDIV[1:0]: PLL output division

These bits are set and cleared by software to control PLL output clock division from PLL VCO
clock. These bits can be written only when the PLL is disabled.
00: not allowed
01: PLL clock output = PLLVCO / 2
10: PLL clock output = PLLVCO / 3
11: PLL clock output = PLLVCO / 4

RM0367 Rev 8 193/1040

RM0367 Reset and clock control (RCC)

225

Bits 21:18 PLLMUL[3:0]: PLL multiplication factor

These bits are written by software to define the PLL multiplication factor to generate the PLL
VCO clock. These bits can be written only when the PLL is disabled.
0000: PLLVCO = PLL clock entry x 3
0001: PLLVCO = PLL clock entry x 4
0010: PLLVCO = PLL clock entry x 6
0011: PLLVCO = PLL clock entry x 8
0100: PLLVCO = PLL clock entry x 12
0101: PLLVCO = PLL clock entry x 16
0110: PLLVCO = PLL clock entry x 24
0111: PLLVCO = PLL clock entry x 32
1000: PLLVCO = PLL clock entry x 48
others: not allowed

Caution: The PLL VCO clock frequency must not exceed 96 MHz when the product is in
Range 1, 48 MHz when the product is in Range 2 and 24 MHz when the product is in
Range 3.

Bit 17 Reserved, must be kept at reset value.

Bit 16 PLLSRC: PLL entry clock source

This bit is set and cleared by software to select PLL clock source. This bit can be written only
when PLL is disabled.
0: HSI16 oscillator clock selected as PLL input clock
1: HSE oscillator clock selected as PLL input clock

Note: The PLL minimum input clock frequency is 2 MHz.

Bit 15 STOPWUCK: Wake-up from Stop clock selection

This bit is set and cleared by software to select the wake-up from Stop clock.
0: internal 64 KHz to 4 MHz (MSI) oscillator selected as wake-up from Stop clock
1: internal 16 MHz (HSI16) oscillator selected as wake-up from Stop clock (or HSI16/4 if
HSI16DIVEN=1)

Bit 14 Reserved, must be kept at reset value.

Bits 13:11 PPRE2[2:0]: APB high-speed prescaler (APB2)

These bits are set and cleared by software to control the division factor of the APB high-
speed clock (PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 10:8 PPRE1[2:0]: APB low-speed prescaler (APB1)

These bits are set and cleared by software to control the division factor of the APB low-speed
clock (PCLK1).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Reset and clock control (RCC) RM0367

194/1040 RM0367 Rev 8

7.3.5 Clock interrupt enable register (RCC_CIER)

Address: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bits 7:4 HPRE[3:0]: AHB prescaler

These bits are set and cleared by software to control the division factor of the AHB clock.

Caution: Depending on the device voltage range, the software has to set correctly these bits
to ensure that the system frequency does not exceed the maximum allowed
frequency (for more details please refer to the Dynamic voltage scaling management
section in the PWR chapter.) After a write operation to these bits and before
decreasing the voltage range, this register must be read to be sure that the new
value has been taken into account.

0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512

Bits 3:2 SWS[1:0]: System clock switch status

These bits are set and cleared by hardware to indicate which clock source is used as system
clock.
00: MSI oscillator used as system clock
01: HSI16 oscillator used as system clock
10: HSE oscillator used as system clock
11: PLL used as system clock

Bits 1:0 SW[1:0]: System clock switch

These bits are set and cleared by software to select SYSCLK source.
Set by hardware to force MSI selection when leaving Standby mode or in case of failure of
the HSE oscillator used directly or indirectly as system clock (if the Clock Security System is
enabled).
00: MSI oscillator used as system clock
01: HSI16 oscillator used as system clock
10: HSE oscillator used as system clock
11: PLL used as system clock

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
CSS
LSE

 HSI48
RDYIE

MSI
RDYIE

PLL
RDYIE

HSE
RDYIE

HSI16
RDYIE

LSE
RDYIE

LSI
RDYIE

rw rw rw rw rw rw rw rw

RM0367 Rev 8 195/1040

RM0367 Reset and clock control (RCC)

225

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 CSSLSE: LSE CSS interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the Clock
Security System on external 32 kHz oscillator.
0: LSE CSS interrupt disabled
1: LSE CSS interrupt enabled

Bit 6 HSI48RDYIE: HSI48 ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the HSI48
oscillator stabilization.
0: HSI48 ready interrupt disabled
1: HSI48 ready interrupt enabled

Bit 5 MSIRDYIE: MSI ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the MSI
oscillator stabilization.
0: MSI ready interrupt disabled
1: MSI ready interrupt enabled

Bit 4 PLLRDYIE: PLL ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

Bit 3 HSERDYIE: HSE ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the HSE
oscillator stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

Bit 2 HSI16RDYIE: HSI16 ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the HSI16
oscillator stabilization.
0: HSI16 ready interrupt disabled
1: HSI16 ready interrupt enabled

Bit 1 LSERDYIE: LSE ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the LSE
oscillator stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

Bit 0 LSIRDYIE: LSI ready interrupt flag

This bit is set and reset by software to enable/disable the interrupt caused by the LSI
oscillator stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

Reset and clock control (RCC) RM0367

196/1040 RM0367 Rev 8

7.3.6 Clock interrupt flag register (RCC_CIFR)

Address: 0x14

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res.
CSS

HSEF
 CSS
LSEF

HSI48
RDYF

MSI
RDYF

PLL
RDYF

HSE
RDYF

HSI16
RDYF

LSE
RDYF

LSI
RDYF

r r r r r r r r r

Bits 31:9 Reserved, must be kept at reset value.

Bit 8 CSSHSEF: Clock Security System Interrupt flag

This bit is reset by software by writing the CSSHSEC bit. It is set by hardware in case of HSE
clock failure.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

Bit 7 CSSLSEF: LSE Clock Security System Interrupt flag

This bit is reset by software by writing the CSSLSEC bit. It is set by hardware in case of LSE
clock failure and the CSSLSE is set.
0: No failure detected on LSE clock failure
1: Failure detected on LSE clock failure

Bit 6 HSI48RDYF: HSI48 ready interrupt flag

This bit is reset by software by writing the HSI48RDYC bit. It is set by hardware when the
CSS becomes stable and the HSI48RDYIE is set.
0: No clock ready interrupt caused by HSI48 clock failure
1: Clock ready interrupt caused by HSI48 clock failure

Bit 5 MSIRDYF: MSI ready interrupt flag

This bit is reset by software by writing the MSIRDYC bit. It is set by hardware when the MSI
clock becomes stable and the MSIRDYIE is set.
0: No clock ready interrupt caused by MSI clock failure
1: Clock ready interrupt caused by MSI clock failure

Bit 4 PLLRDYF: PLL ready interrupt flag

This bit is reset by software by writing the PLLRDYC bit. It is set by hardware when the PLL
clock becomes stable and the PLLRDYIE is set.
0: No clock ready interrupt caused by PLL clock failure
1: Clock ready interrupt caused by PLL clock failure

Bit 3 HSERDYF: HSE ready interrupt flag

This bit is reset by software by writing the HSERDYC bit. It is set by hardware when the HSE
clock becomes stable and the HSERDYIE is set.
0: No clock ready interrupt caused by HSE clock failure
1: Clock ready interrupt caused by HSE clock failure

RM0367 Rev 8 197/1040

RM0367 Reset and clock control (RCC)

225

7.3.7 Clock interrupt clear register (RCC_CICR)

Address: 0x18

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 2 HSI16RDYF: HSI16 ready interrupt flag

This bit is reset by software by writing the HSI16RDYC bit. It is set by hardware when the
HSE clock becomes stable and the HSI16RDYIE is set.
0: No clock ready interrupt caused by HSI16 clock failure
1: Clock ready interrupt caused by HSI16 clock failure

Bit 1 LSERDYF: LSE ready interrupt flag

This bit is reset by software by writing the LSERDYC bit. It is set by hardware when the LSE
clock becomes stable and the LSERDYIE is set.
0: No clock ready interrupt caused by LSE clock failure
1: Clock ready interrupt caused by LSE clock failure

Bit 0 LSIRDYF: LSI ready interrupt flag

This bit is reset by software by writing the LSIRDYC bit. It is set by hardware when the LSI
clock becomes stable and the LSIRDYIE is set.
0: No clock ready interrupt caused by LSI clock failure
1: Clock ready interrupt caused by LSI clock failure

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res.
CSS

HSEC
 CSS
LSEC

HSI48
RDYC

MSI
RDYC

PLL
RDYC

HSE
RDYC

HSI16
RDYC

LSE
RDYIC

LSI
RDYC

w w w w w w w w w

Bits 31:9 Reserved, must be kept at reset value.

Bit 8 CSSHSEC: Clock Security System Interrupt clear

This bit is set by software to clear the CSSHSEF flag. It is reset by hardware.
0: No effect
1: CSSHSEF flag cleared

Bit 7 CSSLSEC: LSE Clock Security System Interrupt clear

This bit is set by software to clear the CSSLSEF flag. It is reset by hardware.
0: No effect
1: CSSLSEF flag cleared

Bit 6 HSI48RDYC: HSI48 ready Interrupt clear

This bit is set by software to clear the HSI48RDYF flag. It is reset by hardware.
0: No effect
1: HSI48RDYF flag cleared

Reset and clock control (RCC) RM0367

198/1040 RM0367 Rev 8

7.3.8 GPIO reset register (RCC_IOPRSTR)

Address: 0x1C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 5 MSIRDYC: MSI ready Interrupt clear

This bit is set by software to clear the MSIRDYF flag. It is reset by hardware.
0: No effect
1: MSIRDYF flag cleared

Bit 4 PLLRDYC: PLL ready Interrupt clear

This bit is set by software to clear the PLLRDYF flag. It is reset by hardware.
0: No effect
1: PLLRDYF flag cleared

Bit 3 HSERDYC: HSE ready Interrupt clear

This bit is set by software to clear the HSERDYF flag. It is reset by hardware.
0: No effect
1: HSERDYF flag cleared

Bit 2 HSI16RDYC: HSI16 ready Interrupt clear

This bit is set by software to clear the HSI16RDYF flag. It is reset by hardware.
0: No effect
1: HSI16RDYF flag cleared

Bit 1 LSERDYC: LSE ready Interrupt clear

This bit is set by software to clear the LSERDYF flag. It is reset by hardware.
0: No effect
1: LSERDYF flag cleared

Bit 0 LSIRDYC: LSI ready Interrupt clear

This bit is set by software to clear the LSIRDYF flag. It is reset by hardware.
0: No effect
1: LSIRDYF flag cleared

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
IOPH
RST

Res. Res.
IOPER

ST
IOPD
RST

IOPC
RST

IOPB
RST

IOPA
RST

rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 IOPHRST: I/O port H reset

This bit is set and cleared by software.
0: no effect
1: resets I/O port H

RM0367 Rev 8 199/1040

RM0367 Reset and clock control (RCC)

225

7.3.9 AHB peripheral reset register (RCC_AHBRSTR)

Address offset: 0x20

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 IOPERST: I/O port E reset

This bit is set and cleared by software.
0: no effect
1: resets I/O port E

Bit 3 IOPDRST: I/O port D reset

This bit is set and cleared by software.
0: no effect
1: resets I/O port D

Bit 2 IOPCRST: I/O port C reset

This bit is set and cleared by software.
0: no effect
1: resets I/O port C

Bit 1 IOPBRST: I/O port B reset

This bit is set and cleared by software.
0: no effect
1: resets I/O port B

Bit 0 IOPARST: I/O port A reset

This bit is set and cleared by software.
0: no effect
1: resets I/O port A

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res.
CRYP
RST

Res. Res. Res.
RNGR

ST
Res. Res. Res.

TSCRS
T

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
CRC
RST

Res. Res. Res.
MIF
RST

Res. Res. Res. Res. Res. Res. Res.
DMA
RST

rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 CRYPTRST: Crypto module reset

This bit is set and reset by software.
0: no effect
1: resets CRYPTO module

Bits 23:21 Reserved, must be kept at reset value.

Bit 20 RNGRST: Random Number Generator module reset

This bit is set and reset by software.
0: no effect
1: resets RNG module

Reset and clock control (RCC) RM0367

200/1040 RM0367 Rev 8

7.3.10 APB2 peripheral reset register (RCC_APB2RSTR)

Address offset: 0x24

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

Bits 19:17 Reserved, must be kept at reset value.

Bit 16 TSCRST: Touch Sensing reset
This bit is set and reset by software.
0: no effect
1: resets Touch sensing module

Bits 15: 13 Reserved, must be kept at reset value.

Bit 12 CRCRST: Test integration module reset

This bit is set and reset by software.
0: no effect
1: resets test integration module

Bits 11:9 Reserved, must be kept at reset value.

Bit 8 MIFRST: Memory interface reset

This bit is set and reset by software.
This reset can be activated only when the E2 is in IDDQ mode.
0: no effect
1: resets memory interface

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 DMARST: DMA reset

This bit is set and reset by software.
0: no effect
1: resets DMA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBG
RST

Res. Res. Res. Res. Res. Res.

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
USART1

RST
Res.

SPI1
RST

Res. Res.
ADC
RST

Res. Res. Res.
TIM22
RST

Res. Res.
TIM21
RST

Res.
SYSCF
GRST

rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DBGRST: DBG reset

This bit is set and cleared by software.
0: No effect
1: Resets DBG

Bits 21:15 Reserved, must be kept at reset value.

RM0367 Rev 8 201/1040

RM0367 Reset and clock control (RCC)

225

7.3.11 APB1 peripheral reset register (RCC_APB1RSTR)

Address offset: 0x28

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 14 USART1RST: USART1 reset

This bit is set and cleared by software.
0: No effect
1: Reset USART1

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1RST: SPI 1 reset

This bit is set and cleared by software.
0: No effect
1: Reset SPI 1

Bits 11:10 Reserved, must be kept at reset value.

Bit 9 ADCRST: ADC interface reset

This bit is set and cleared by software.
0: No effect
1: Reset ADC interface

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM22RST: TIM22 timer reset

This bit is set and cleared by software.
0: No effect
1: Reset TIM22 timer

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 TIM21RST: TIM21 timer reset

This bit is set and cleared by software.
0: No effect
1: Reset TIM21 timer

Bit 1 Reserved, must be kept at reset value.

Bit 0 SYSCFGRST: System configuration controller reset

This bit is set and cleared by software.
0: No effect
1: Reset System configuration controller

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPTIM1
RST

I2C3R
ST

DACR
ST

PWR
RST

CRSR
ST

Res. Res. Res. USBRST
I2C2R

ST
I2C1R

ST
USART5

RST
USART4

RST
LPUART1

RST
USART2

RST
Res.

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
SPI2R

ST
Res. Res.

WWDG
RST

Res. LCDRST Res. Res. Res.
TIM7R

ST
TIM6RS

T Res. Res.
TIM3RS

T
TIM2
RST

rw rw rw rw rw rw rw

Reset and clock control (RCC) RM0367

202/1040 RM0367 Rev 8

Bit 31 LPTIM1RST: Low-power timer reset

This bit is set and cleared by software.
0: No effect
1: Resets low-power timer

Bit 30 I2C3RST: I2C3 reset

This bit is set and cleared by software.
0: No effect
1: Resets I2C3

Bit 29 DACRST: DAC interface reset

This bit is set and cleared by software.
0: No effect
1: Resets DAC interface

Bit 28 PWRRST: Power interface reset

This bit is set and cleared by software.
0: No effect
1: Reset power interface

Bit 27 CRSRST: Clock recovery system reset

This bit is set and cleared by software.
0: No effect
1: Resets Clock recovery system

Bits 26:24 Reserved, must be kept at reset value.

Bit 23 USBRST: USB reset

This bit is set and cleared by software.
0: No effect
1: Reset USB

Bit 22 I2C2RST: I2C2 reset

This bit is set and cleared by software.
0: No effect
1: Resets I2C2

Bit 21 I2C1RST: I2C1 reset

This bit is set and cleared by software.
0: No effect
1: Resets I2C1

Bit 20 USART5RST: USART5 reset

This bit is set and cleared by software.
0: No effect
1: Resets USART5

Bit 19 USART4RST: USART4 reset

This bit is set and cleared by software.
0: No effect
1: Resets USART4

Bit 18 LPUART1RST: LPUART1 reset

This bit is set and cleared by software.
0: No effect
1: Resets LPUART1

RM0367 Rev 8 203/1040

RM0367 Reset and clock control (RCC)

225

Bit 17 USART2RST: USART2 reset

This bit is set and cleared by software.
0: No effect
1: Resets USART2

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2RST: SPI2 reset

This bit is set and cleared by software.
0: No effect
1: Resets SPI2

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGRST: Window watchdog reset

This bit is set and cleared by software.
0: No effect
1: Resets window watchdog

Bit 10 Reserved, must be kept at reset value.

Bit 9 LCDRST: LCD reset

This bit is set and cleared by software.
0: No effect
1: Resets LCD

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM7RST: Timer 7 reset

Set and cleared by software.
0: No effect
1: Resets timer7

Bit 4 TIM6RST: Timer 6 reset

Set and cleared by software.
0: No effect
1: Resets timer6

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 TIM3RST: Timer3 reset

Set and cleared by software.
0: No effect
1: Resets timer3

Bit 0 TIM2RST: Timer2 reset

Set and cleared by software.
0: No effect
1: Resets timer2

Reset and clock control (RCC) RM0367

204/1040 RM0367 Rev 8

7.3.12 GPIO clock enable register (RCC_IOPENR)

Address: 0x2C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
IOPH
EN

Res. Res.
IOPE
EN

IOPD
EN

IOPC
EN

IOPB
EN

IOPA
EN

rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 IOPHEN: I/O port H clock enable bit

This bit is set and cleared by software.
0: port H clock disabled
1: port H clock enabled

Bits 6:45 Reserved, must be kept at reset value.

Bit 4 IOPEEN: I/O port E clock enable bit

This bit is set and cleared by software.
0: port E clock disabled
1: port E clock enabled

Bit 3 IOPDEN: I/O port D clock enable bit

This bit is set and cleared by software.
0: port D clock disabled
1: port D clock enabled

Bit 2 IOPCEN: IO port C clock enable bit

This bit is set and cleared by software.
0: port C clock disabled
1: port C clock enabled

Bit 1 IOPBEN: IO port B clock enable bit

This bit is set and cleared by software.
0: port B clock disabled
1: port B clock enabled

Bit 0 IOPAEN: IO port A clock enable bit

This bit is set and cleared by software.
0: port A clock disabled
1: port A clock enabled

RM0367 Rev 8 205/1040

RM0367 Reset and clock control (RCC)

225

7.3.13 AHB peripheral clock enable register (RCC_AHBENR)

Address offset: 0x30

Reset value: 0x0000 0100

Access: no wait state, word, half-word and byte access

When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res.
CRYP

EN
Res. Res. Res.

RNGE
N

Res. Res. Res. TSCEN

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
CRC
EN

Res. Res. Res.
MIF
EN

Res. Res. Res. Res. Res. Res. Res.
DMA
EN

rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 CRYPEN: Crypto clock enable bit

This bit is set and reset by software.
0: Crypto clock disabled
1: Crypto clock enabled

Bits 23:21 Reserved, must be kept at reset value.

Bit 20 RNGEN: Random Number Generator clock enable bit

This bit is set and reset by software.
0: RNG clock disabled
1: RNG clock enabled

Bits 19:17 Reserved, must be kept at reset value.

Bit 16 TSCEN: Touch Sensing clock enable bit
This bit is set and reset by software.
0: Touch sensing clock disabled
1: Touch sensing clock enabled

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CRCEN: CRC clock enable bit

This bit is set and reset by software.
0: Test integration module clock disabled
1: Test integration module clock enabled

Bits 11:9 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0367

206/1040 RM0367 Rev 8

Bit 8 MIFEN: NVM interface clock enable bit

This bit is set and reset by software.
This reset can be activated only when the NVM is in power-down mode.
0: NVM interface clock disabled
1: NVM interface clock enabled

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 DMAEN: DMA clock enable bit

This bit is set and reset by software.
0: DMA clock disabled
1: DMA clock enabled

RM0367 Rev 8 207/1040

RM0367 Reset and clock control (RCC)

225

7.3.14 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x34

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2
domain is on going. In this case, wait states are inserted until the access to APB2 peripheral
is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBG
EN

Res. Res. Res. Res. Res. Res.

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
USART1

EN
Res.

SPI1
EN

Res. Res.
ADC
EN

Res. FWEN Res.
TIM22

EN
Res. Res.

TIM21
EN

Res.
SYSCF

EN

rw rw rw rs rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DBGEN: DBG clock enable bit

This bit is set and cleared by software.
0: DBG clock disabled
1: DBG clock enabled

Bits 21:15 Reserved, must be kept at reset value.

Bit 14 USART1EN: USART1 clock enable bit

This bit is set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1EN: SPI1 clock enable bit

This bit is set and cleared by software.
0: SPI1 clock disabled
1: SPI1 clock enabled

Bits 11:10 Reserved, must be kept at reset value.

Bit 9 ADCEN: ADC clock enable bit

This bit is set and cleared by software.
0: ADC clock disabled
1: ADC clock enabled

Bit 8 Reserved, must be kept at reset value.

Bit 7 FWEN: Firewall clock enable bit

This bit is set by software and reset by hardware. Software can only program this bit to 1.
Writing 0 has not effect.
0: Firewall disabled
1: Firewall clock enabled

Reset and clock control (RCC) RM0367

208/1040 RM0367 Rev 8

Bit 6 Reserved, must be kept at reset value.

Bit 5 TIM22EN: TIM22 timer clock enable bit

This bit is set and cleared by software.
0:TIM22 clock disabled
1: TIM22 clock enabled

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 TIM21EN: TIM21 timer clock enable bit

This bit is set and cleared by software.
0: TIM21 clock disabled
1: TIM21 clock enabled

Bit 1 Reserved, must be kept at reset value.

Bit 0 SYSCFGEN: System configuration controller clock enable bit

This bit is set and cleared by software.
0: System configuration controller clock disabled
1: System configuration controller clock enabled

RM0367 Rev 8 209/1040

RM0367 Reset and clock control (RCC)

225

7.3.15 APB1 peripheral clock enable register (RCC_APB1ENR)

Address: 0x38

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait state, except if the access occurs while an access to a peripheral on APB1 domain
is on going. In this case, wait states are inserted until this access to APB1 peripheral is
finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPTIM1
EN

I2C3E
N

DACE
N

PWRE
N

CRSE
N

Res. Res. Res. USBEN
I2C2E

N
I2C1E

N
USART5

EN
USART4

EN
LPUART1

EN
USART2

EN
Res.

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
SPI2E

N
Res. Res.

WWDG
EN

Res. LCDEN Res. Res. Res.
TIM7E

N
TIM6EN Res. Res. TIM3EN

TIM2E
N

rw rw rw rw rw rw rw

Bit 31 LPTIM1EN: Low-power timer clock enable bit

This bit is set and cleared by software.
0: Low-power timer clock disabled
1: Low-power timer clock enabled

Bit 30 I2C3EN: I2C3 clock enable bit

This bit is set and cleared by software.
0: I2C3 clock disabled
1: I2C3 clock enabled

Bit 29 DACEN: DAC interface clock enable bit

This bit is set and cleared by software.
0: DAC interface clock disabled
1: DAC interface clock enabled

Bit 28 PWREN: Power interface clock enable bit

This bit is set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enabled

Bit 27 CRSEN: Clock recovery system clock enable bit

This bit is set and cleared by software.
0: Clock recovery system clock disabled
1: Clock recovery system clock enabled

Bits 26:24 Reserved, must be kept at reset value.

Bit 23 USBEN: USB clock enable bit

This bit is set and cleared by software.
0: USB clock disabled
1: USB clock enabled

Reset and clock control (RCC) RM0367

210/1040 RM0367 Rev 8

Bit 22 I2C2EN: I2C2 clock enable bit

This bit is set and cleared by software.
0: I2C2 clock disabled
1: I2C2 clock enabled

Bit 21 I2C1EN: I2C1 clock enable bit

This bit is set and cleared by software.
0: I2C1 clock disabled
1: I2C1 clock enabled

Bit 20 USART5EN: USART5 clock enable bit

This bit is set and cleared by software.
0: USART5 clock disabled
1: USART5 clock enabled

Bit 19 USART4EN: USART4 clock enable bit

This bit is set and cleared by software.
0: USART4 clock disabled
1: USART4 clock enabled

Bit 18 LPUART1EN: LPUART1 clock enable bit

This bit is set and cleared by software.
0: LPUART1 clock disabled
1: LPUART1 clock enabled

Bit 17 USART2EN: USART2 clock enable bit

This bit is set and cleared by software.
0: USART2 clock disabled
1: USART2 clock enabled

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2EN: SPI2 clock enable bit

This bit is set and cleared by software.
0: SPI2 clock disabled
1: SPI2 clock enabled

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGEN: Window watchdog clock enable bit

This bit is set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bit 10 Reserved, must be kept at reset value.

Bit 9 LCDEN: LCD clock enable bit

This bit is set and cleared by software.
0: LCD clock disabled
1: LCD clock enabled

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM7EN: Timer 7 clock enable bit

Set and cleared by software.
0: Timer 7 clock disabled
1: Timer 7 clock enabled

RM0367 Rev 8 211/1040

RM0367 Reset and clock control (RCC)

225

Bit 4 TIM6EN: Timer 6 clock enable bit

Set and cleared by software.
0: Timer 6 clock disabled
1: Timer 6 clock enabled

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 TIM3EN: Timer3 clock enable bit

Set and cleared by software.
0: Timer3 clock disabled
1: Timer3 clock enabled

Bit 0 TIM2EN: Timer2 clock enable bit

Set and cleared by software.
0: Timer2 clock disabled
1: Timer2 clock enabled

Reset and clock control (RCC) RM0367

212/1040 RM0367 Rev 8

7.3.16 GPIO clock enable in Sleep mode register (RCC_IOPSMENR)

Address: 0x3C

Reset value: the bits corresponding to the available GPIO ports are set

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
IOPHS
MEN

Res. Res.
IOPES
MEN

IOPDS
MEN

IOPCS
MEN

IOPBS
MEN

IOPAS
MEN

rw rw rw rw rw rw

Bits 31: 8 Reserved, must be kept at reset value.

Bit 7 IOPHSMEN: Port H clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Port H clock is disabled in Sleep mode
1: Port H clock is enabled in Sleep mode (if enabled by IOPHEN)

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 IOPESMEN: Port E clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Port E clock is disabled in Sleep mode
1: Port E clock is enabled in Sleep mode (if enabled by IOPDEN)

Bit 3 IOPDSMEN: Port D clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Port D clock is disabled in Sleep mode
1: Port D clock is enabled in Sleep mode (if enabled by IOPDEN)

Bit 2 IOPCSMEN: Port C clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Port C clock is disabled in Sleep mode
1: Port C clock is enabled in Sleep mode (if enabled by IOPCEN)

Bit 1 IOPBSMEN: Port B clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Port B clock is disabled in Sleep mode
1: Port B clock is enabled in Sleep mode (if enabled by IOPBEN)

Bit 0 IOPASMEN: Port A clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Port A clock is disabled in Sleep mode
1: Port A clock is enabled in Sleep mode (if enabled by IOPAEN)

RM0367 Rev 8 213/1040

RM0367 Reset and clock control (RCC)

225

7.3.17 AHB peripheral clock enable in Sleep mode
register (RCC_AHBSMENR)

Address: 0x40

Reset value: the bits corresponding to the available peripherals are set

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res.
CRYP
SMEN

Res. Res. Res.
RNGS
MEN

Res. Res. Res.
TSCSM

EN

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
CRC

SMEN
Res. Res.

SRAM
SMEN

MIF
SMEN

Res. Res. Res. Res. Res. Res. Res.
DMA

SMEN

rw rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 CRYPSMEN: Crypto clock enable during Sleep mode bit

This bit is set and reset by software.
0: Crypto clock disabled in Sleep mode
1: Crypto clock enabled in Sleep mode

Bits 23:21 Reserved, must be kept at reset value.

Bit 20 RNGSMEN: Random Number Generator clock enable during Sleep mode bit

This bit is set and reset by software.
0: RNG clock disabled in Sleep mode
1: RNG clock enabled in Sleep mode (if enabled by RNGEN)

Bits 19:17 Reserved, must be kept at reset value.

Bit 16 TSCSMEN: Touch Sensing clock enable during Sleep mode bit
This bit is set and reset by software.
0: Touch Sensing clock disabled in Sleep mode
1: Touch sensing clock enabled in Sleep mode (if enabled by TSCEN)

Bits 15: 13 Reserved, must be kept at reset value.

Bit 12 CRCSMEN: CRC clock enable during Sleep mode bit

This bit is set and reset by software.
0: Test integration module clock disabled in Sleep mode
1: Test integration module clock enabled in Sleep mode (if enabled by CRCEN)

Bits 11:10 Reserved, must be kept at reset value.

Bit 9 SRAMSMEN: SRAM interface clock enable during Sleep mode bit

This bit is set and reset by software.
0: NVM interface clock disabled in Sleep mode
1: NVM interface clock enabled in Sleep mode

Reset and clock control (RCC) RM0367

214/1040 RM0367 Rev 8

7.3.18 APB2 peripheral clock enable in Sleep mode
register (RCC_APB2SMENR)

Address: 0x44

Reset value: the bits corresponding to the available peripherals are set.

Access: no wait state, word, half-word and byte access

Bit 8 MIFSMEN: NVM interface clock enable during Sleep mode bit

This bit is set and reset by software.
0: NVM interface clock disabled in Sleep mode
1: NVM interface clock enabled in Sleep mode

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 DMASMEN: DMA clock enable during Sleep mode bit

This bit is set and reset by software.
0: DMA clock disabled in Sleep mode
1: DMA clock enabled in Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBG

SMEN
Res. Res. Res. Res. Res. Res.

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
USART1
SMEN

Res.
SPI1

SMEN
Res. Res.

ADC
SMEN

Res. Res. Res.
TIM22
SMEN

Res. Res.
TIM21
SMEN

Res.
SYSCF
SMEN

rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DBGSMEN: DBG clock enable during Sleep mode bit

This bit is set and cleared by software.
0: DBG clock disabled in Sleep mode
1: DBG clock enabled in Sleep mode (if enabled by DBGEN)

Bits 21:15 Reserved, must be kept at reset value.

Bit 14 USART1SMEN: USART1 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: USART1 clock disabled in Sleep mode
1: USART1 clock enabled in Sleep mode (if enabled by USART1EN)

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1SMEN: SPI1 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: SPI1 clock disabled in Sleep mode
1: SPI1 clock enabled in Sleep mode (if enabled by SPI1EN)

Bits 11:10 Reserved, must be kept at reset value.

Bit 9 ADCSMEN: ADC clock enable during Sleep mode bit

This bit is set and cleared by software.
0: ADC clock disabled in Sleep mode
1: ADC clock enabled in Sleep mode (if enabled by ADCEN)

RM0367 Rev 8 215/1040

RM0367 Reset and clock control (RCC)

225

7.3.19 APB1 peripheral clock enable in Sleep mode
register (RCC_APB1SMENR)

Address: 0x48

Reset value: the bits corresponding to the available peripherals are set

Note: Access: no wait state, word, half-word and byte access

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM22SMEN: TIM22 timer clock enable during Sleep mode bit

This bit is set and cleared by software.
0:TIM22 clock disabled in Sleep mode
1: TIM22 clock enabled in Sleep mode (if enabled by TIM22EN)

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 TIM21SMEN: TIM21 timer clock enable during Sleep mode bit

This bit is set and cleared by software.
0: TIM21 clock disabled in Sleep mode
1: TIM21 clock enabled in Sleep mode (if enabled by TIM21EN)

Bit 1 Reserved, must be kept at reset value.

Bit 0 SYSCFGSMEN: System configuration controller clock enable during Sleep mode bit

This bit is set and cleared by software.
0: System configuration controller clock disabled in Sleep mode
1: System configuration controller clock enabled in Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPTIM1
SMEN

I2C3S
MEN

DACS
MEN

PWRS
MEN

CRSS
MEN

Res. Res. Res.
USBS
MEN

I2C2S
MEN

I2C1S
MEN

USART5
SMEN

USART4
SMEN

LPUART1
SMEN

USART2
SMEN

Res.

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
SPI2S
MEN

Res. Res.
WWDG
SMEN

Res.
LCDSM

EN
Res. Res.

TIM7S
MEN

TIM6SM
EN

Res. Res.
TIM3SM

EN
TIM2S
MEN

rw rw rw rw rw rw rw

Bit 31 LPTIM1SMEN: Low-power timer clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Low-power timer clock disabled in Sleep mode
1: Low-power timer clock enabled in Sleep mode (if enabled by LPTIM1EN)

Bit 30 I2C3SMEN: I2C3 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: I2C3 clock disabled in Sleep mode
1: I2C3 clock enabled in Sleep mode (if enabled by I2C3EN)

Bit 29 DACSMEN: DAC interface clock enable during Sleep mode bit

This bit is set and cleared by software.
0: DAC interface clock disabled in Sleep mode
1: DAC interface clock enabled in Sleep mode (if enabled by DACEN)

Reset and clock control (RCC) RM0367

216/1040 RM0367 Rev 8

Bit 28 PWRSMEN: Power interface clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Power interface clock disabled in Sleep mode
1: Power interface clock enabled in Sleep mode (if enabled by PWREN)

Bit 27 CRSSMEN: Clock recovery system clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Clock recovery system clock disabled in Sleep mode
1: Clock recovery system clock enabled in Sleep mode (if enabled by CRSEN)

Bits 26:24 Reserved, must be kept at reset value.

Bit 23 USBSMEN: USB clock enable during Sleep mode bit

This bit is set and cleared by software.
0: USB clock disabled in Sleep mode
1: USB clock enabled in Sleep mode (if enabled by USBEN)

Bit 22 I2C2SMEN: I2C2 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: I2C2 clock disabled in Sleep mode
1: I2C2 clock enabled in Sleep mode (if enabled by I2C2EN)

Bit 21 I2C1SMEN: I2C1 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: I2C1 clock disabled in Sleep mode
1: I2C1 clock enabled in Sleep mode (if enabled by I2C1EN)

Bit 20 USART5SMEN: USART5 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: USART5 clock disabled in Sleep mode
1: USART5 clock enabled in Sleep mode (if enabled by USART5EN)

Bit 19 USART4SMEN: USART4 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: USART4 clock disabled in Sleep mode
1: USART4 clock enabled in Sleep mode (if enabled by USART4EN)

Bit 18 LPUART1SMEN: LPUART1 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: LPUART1 clock disabled in Sleep mode
1: LPUART1 clock enabled in Sleep mode (if enabled by LPUART1EN)

Bit 17 USART2SMEN: USART2 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: USART2 clock disabled in Sleep mode
1: USART2 clock enabled in Sleep mode (if enabled by USART2EN)

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2SMEN: SPI2 clock enable during Sleep mode bit

This bit is set and cleared by software.
0: SPI2 clock disabled in Sleep mode
1: SPI2 clock enabled in Sleep mode (if enabled by SPI2SEN)

Bits 13:12 Reserved, must be kept at reset value.

RM0367 Rev 8 217/1040

RM0367 Reset and clock control (RCC)

225

7.3.20 Clock configuration register (RCC_CCIPR)

Address: 0x4C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 11 WWDGSMEN: Window watchdog clock enable during Sleep mode bit

This bit is set and cleared by software.
0: Window watchdog clock disabled in Sleep mode
1: Window watchdog clock enabled in Sleep mode (if enabled by WWDGEN)

Bit 10 Reserved, must be kept at reset value.

Bit 9 LCDSMEN: LCD clock enable during Sleep mode bit

This bit is set and cleared by software.
0: LCD clock disabled in Sleep mode
1: LCD clock enabled in Sleep mode (if enabled by LCDEN)

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM7SMEN: Timer 7 clock enable during Sleep mode bit

Set and cleared by software.
0: Timer 7 clock disabled in Sleep mode
1: Timer 7 clock enabled in Sleep mode (if enabled by TIM7EN)

Bit 4 TIM6SMEN: Timer 6 clock enable during Sleep mode bit

Set and cleared by software.
0: Timer 6 clock disabled in Sleep mode
1: Timer 6 clock enabled in Sleep mode (if enabled by TIM6EN)

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 TIM3SMEN: Timer3 clock enable during Sleep mode bit

Set and cleared by software.
0: Timer3 clock disabled in Sleep mode
1: Timer3 clock enabled in Sleep mode (if enabled by TIM3EN)

Bit 0 TIM2SMEN: Timer2 clock enable during Sleep mode bit

Set and cleared by software.
0: Timer2 clock disabled in Sleep mode
1: Timer2 clock enabled in Sleep mode (if enabled by TIM2EN)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res.
HSI48SE

L
Res. Res. Res. Res. Res. Res.

LPTIM1
SEL1

LPTIM1S
EL0

I2C3SE
L1

I2C3SE
L0

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.
I2C1
SEL1

I2C1
SEL0

LPUART1
SEL1

LPUART1
SEL0

Res. Res. Res. Res. Res. Res.
USART2

SEL1
USART2

SEL0
USART1

SEL1
USART1

SEL0

rw rw rw rw rw rw rw rw

Reset and clock control (RCC) RM0367

218/1040 RM0367 Rev 8

Bits 31:27 Reserved, must be kept at reset value.

Bit26 HSI48SEL: 48 MHz HSI48 clock source selection bit

This bit is set and cleared by software to select the HSI48 clock source for USB and RNG.
0: PLL USB clock selected as HSI48 clock
1: RC48 clock selected as HSI48 clock

Bits 25:20 Reserved, must be kept at reset value.

Bits 19:18 LPTIM1SEL: Low-power Timer clock source selection bits

This bit is set and cleared by software.
00: APB clock selected as LP Timer clock
01: LSI clock selected as LP Timer clock
10: HSI16 clock selected as LP Timer clock
11: LSE clock selected as LP Timer clock

Bits 17:16 I2C3SEL: I2C3 clock source selection bits
This bit is set and cleared by software.
00: APB clock selected as I2C3 clock
01: System clock selected as I2C3 clock
10: HSI16 clock selected as I2C3 clock
11: not used

Bits 15:14 Reserved, must be kept at reset value.

Bits 13:12 I2C1SEL: I2C1 clock source selection bits
This bit is set and cleared by software.
00: APB clock selected as I2C1 clock
01: System clock selected as I2C1 clock
10: HSI16 clock selected as I2C1 clock
11: not used

Bits 11:10 LPUART1SEL: LPUART1 clock source selection bits
This bit is set and cleared by software.
00: APB clock selected as LPUART1 clock
01: System clock selected as LPUART1 clock
10: HSI16 clock selected as LPUART1 clock
11: LSE clock selected as LPUART1 clock

Bits 9:4 Reserved, must be kept at reset value.

Bits 3:2 USART2SEL: USART2 clock source selection bits
This bit is set and cleared by software.

00: APB clock selected as USART2 clock
01: System clock selected as USART2 clock
10: HSI16 clock selected as USART2 clock
11: LSE clock selected as USART2 clock

Bits 1:0 USART1SEL: USART1 clock source selection bits
This bit is set and cleared by software.
00: APB clock selected as USART1 clock
01: System clock selected as USART1 clock
10: HSI16 clock selected as USART1 clock
11: LSE clock selected as USART1 clock

RM0367 Rev 8 219/1040

RM0367 Reset and clock control (RCC)

225

7.3.21 Control/status register (RCC_CSR)

Address: 0x50

Power-on reset value: 0x0C00 0000

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

Note: The LSEON, LSEBYP, RTCSEL,LSEDRV and RTCEN bits in the RCC control and status
register (RCC_CSR) are in the RTC domain. As these bits are write protected after reset,
the DBP bit in the Power control register (PWR_CR) has to be set to be able to modify them.
Refer to Section 6.1.3: RTC and RTC backup registers for further information. These bits
are only reset after a RTC domain reset (see Section 6.1.3). Any internal or external reset
does not have any effect on them.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPWR
RSTF

WWDG
RSTF

IWDG
RSTF

SFT
RSTF

POR
RSTF

PIN
RSTF

OBL
RS TF

FW
RSTF

RMVF Res. Res. Res.
RTC
RST.

RTC
EN

RTCSEL[1:0]

r r r r r r r r rt_w rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
CSSLS

ED
CSSLS

EON
LSEDRV[1:0]

LSE
BYP

LSERDY LSEON Res. Res. Res. Res. Res. Res.
LSI

RDY
LSION

r rw rw rw r rw r rw

Bit 31 LPWRRSTF: Low-power reset flag

This bit is set by hardware when a Low-power management reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No Low-power management reset occurred
1: Low-power management reset occurred
For further information on Low-power management reset, refer to Section : Low-power
management reset.

Bit 30 WWDGRSTF: Window watchdog reset flag

This bit is set by hardware when a window watchdog reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

Bit 29 IWDGRSTF: Independent watchdog reset flag

This bit is set by hardware when an independent watchdog reset from VDD domain occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No watchdog reset occurred
1: Watchdog reset occurred

Bit 28 SFTRSTF: Software reset flag

This bit is set by hardware when a software reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No software reset occurred
1: Software reset occurred

Bit 27 PORRSTF: POR/PDR reset flag

This bit is set by hardware when a POR/PDR reset occurs.
It is cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

Reset and clock control (RCC) RM0367

220/1040 RM0367 Rev 8

Bit 26 PINRSTF: PIN reset flag

This bit is set by hardware when a reset from the NRST pin occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

Bit 25 OBLRSTF Options bytes loading reset flag

This bit is set by hardware when an OBL reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No OBL reset occurred
1: OBL reset occurred

Bit 24 FWRSTF: Firewall reset flag

This bit is set by hardware when the firewall has generated a reset. It is cleared by writing to
the RMVF bit, or by a power-on reset.
0: No firewall reset occurred
1: firewall reset occurred

Bit 23 RMVF: Remove reset flag

This bit is set by software to clear the reset flags.
0: No effect
1: Clear the reset flags

Bits 22:20 Reserved, must be kept at reset value.

Bit 19 RTCRST: RTC software reset bit

This bit is set and cleared by software.
0: Reset not activated
1: Resets the RTC peripheral, its clock source selection and the backup registers.

Bit 18 RTCEN: RTC clock enable bit

This bit is set and cleared by software.
It is reset by setting the RTCRST bit or by a POR.
0: RTC clock disabled
1: RTC clock enabled

Bits 17:16 RTCSEL[1:0]: RTC and LCD clock source selection bits

These bits are set by software to select the clock source for the RTC.
Once the RTC and LCD clock source has been selected it cannot be switched until RTCRST
is set or a Power On Reset occurred. The only exception is if the LSE oscillator clock was
selected, if the LSE clock stops and it is detected by the CSSLSE, in that case the clock can
be switched.
00: No clock
01: LSE oscillator clock used as RTC/LCD clock
10: LSI oscillator clock used as RTC/LCD clock
11: HSE oscillator clock divided by a programmable prescaler (selection through the
RTCPRE[1:0] bits in the RCC clock control register (RCC_CR)) used as the RTC/LCD clock

If the LSE or LSI is used as RTC clock source, the RTC continues to work in Stop and
Standby low-power modes, and can be used as wake-up source. However, when the HSE
clock is used as RTC clock source, the RTC cannot be used in Stop and Standby low-power
modes.

Bit 15 Reserved, must be kept at reset value.

RM0367 Rev 8 221/1040

RM0367 Reset and clock control (RCC)

225

Bit 14 CSSLSED: CSS on LSE failure detection flag

This bit is set by hardware to indicate when a failure has been detected by the clock security
system on the external 32 kHz oscillator (LSE).
It is cleared by a power-on reset or by an RTC software reset (RTCRST bit).
0: No failure detected on LSE (32 kHz oscillator)
1: Failure detected on LSE (32 kHz oscillator)

Bit 13 CSSLSEON CSS on LSE enable bit

This bit is set by software to enable the Clock Security System on LSE (32 kHz oscillator).
CSSLSEON must be enabled after the LSE and LSI oscillators are enabled (LSEON and
LSION bits enabled) and ready (LSERDY and LSIRDY flags set by hardware), and after the
RTCSEL bit is selected.
Once enabled this bit cannot be disabled, except after an LSE failure detection (CSSLSED
=1). In that case the software MUST disable the CSSLSEON bit.
Reset by power on reset and RTC software reset (RTCRST bit).
0: CSS on LSE (32 kHz oscillator) OFF
1: CSS on LSE (32 kHz oscillator) ON

Bits 12-11 LSEDRV; LSE oscillator Driving capability bits
These bits are set by software to select the driving capability of the LSE oscillator.
They are cleared by a power-on reset or an RTC reset. Once “00” has been written, the
content of LSEDRV cannot be changed by software.
00: Lowest drive
01: Medium low drive
10: Medium high drive
11: Highest drive

Bit 10 LSEBYP: External low-speed oscillator bypass bit

This bit is set and cleared by software to bypass oscillator in debug mode. This bit can be
written only when the LSE oscillator is disabled.
It is reset by setting the RTCRST bit or by a POR.
0: LSE oscillator not bypassed
1: LSE oscillator bypassed

Bit 9 LSERDY: External low-speed oscillator ready bit

This bit is set and cleared by hardware to indicate when the LSE oscillator is stable. After the
LSEON bit is cleared, LSERDY goes low after 6 LSE oscillator clock cycles.
It is reset by setting the RTCRST bit or by a POR.
0: External 32 kHz oscillator not ready
1: External 32 kHz oscillator ready

Bit 8 LSEON: External low-speed oscillator enable bit

This bit is set and cleared by software.
It is reset by setting the RTCRST bit or by a POR.
0: LSE oscillator OFF
1:LSE oscillator ON

Reset and clock control (RCC) RM0367

222/1040 RM0367 Rev 8

Bits 7:3 Reserved, must be kept at reset value.

Bit 1 LSIRDY: Internal low-speed oscillator ready bit

This bit is set and cleared by hardware to indicate when the LSI oscillator is stable. After the
LSION bit is cleared, LSIRDY goes low after 3 LSI oscillator clock cycles.
This bit is reset by system reset.
0: LSI oscillator not ready
1: LSI oscillator ready

Bit 0 LSION: Internal low-speed oscillator enable bit

This bit is set and cleared by software.
It is reset by system reset.
0: LSI oscillator OFF
1: LSI oscillator ON

RM0367 Rev 8 223/1040

RM0367 Reset and clock control (RCC)

225

7.3.22 RCC register map

The following table gives the RCC register map and the reset values.

Table 42. RCC register map and reset values

Off-
set

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
RCC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
L

L
R

D
Y

P
L

L
O

N

R
es

.

R
es

. RTC
PRE
[1:0]

C
S

S
LS

E
O

N

H
S

E
B

Y
P

H
S

E
R

D
Y

H
S

E
O

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
S

IR
D

Y

M
S

IO
N

R
es

.

R
es

.

H
S

I1
6

O
U

T
E

N

H
S

I1
6D

IV
F

H
S

I1
6

D
IV

E
N

H
S

I1
6

R
D

Y
F

H
S

I1
6

K
E

R
O

N

H
S

I1
6

O
N

Reset value 0 0 X X 0 X 0 0 1 1 0 0 0 0 0 0

0x04
RCC_ICSCR MSITRIM[7:0] MSICAL[7:0]

MSIRAN
GE[2:0]

HSI16TRIM[4:0
]

HSI16CAL[7:0]

Reset value 0 0 0 0 0 0 0 0 x x x x x x x x 1 0 1 1 0 0 0 0 x x x x x x x x

0x08
RCC_CRRCR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

HSI48CAL[7:0]

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
H

S
I4

8D
IV

6
E

N

H
S

I4
8

R
D

Y

H
S

I4
8O

N

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x0C
RCC_CFGR

R
es

. MCOPR
E

[2:0] R
es

. MCOSE
L [3:0]

PLL
DIV
[1:0]

PLLMUL[3:
0] R

es
.

P
L

L
S

R
C

S
T

O
P

W
U

C
K

R
es

. PPRE2
[2:0]

PPRE1
[2:0]

HPRE[3:0]
SWS
[1:0]

SW
[1:0]

Reset value 0

0x10
RCC_CIER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
S

S
L

S
E

H
S

I4
8

R
D

Y
IE

M
S

IR
D

Y
IE

P
L

LR
D

Y
IE

H
S

E
R

D
Y

IE

H
S

I1
6

R
D

Y
IE

LS
E

R
D

Y
IE

LS
IR

D
Y

IE

Reset value 0 0 0 0 0 0 0 0

0x14
RCC_CIFR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
S

S
H

S
E

F.

C
S

S
L

S
E

F.

H
S

I4
8R

D
Y

F

M
S

IR
D

Y
F

P
LL

R
D

Y
F

H
S

E
R

D
Y

F

H
S

I1
6R

D
Y

F

L
S

E
R

D
Y

F

L
S

IR
D

Y
F

Reset value 0 0 0 0 0 0 0 0 0

0x18
RCC_CICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
S

S
H

S
E

C
.

C
S

S
L

S
E

C
.

H
S

I4
8

R
D

Y
C

M
S

IR
D

Y
C

P
L

LR
D

Y
C

H
S

E
R

D
Y

C

H
S

I1
6

R
D

Y
C

LS
E

R
D

Y
C

L
S

IR
D

Y
C

Reset value 0 0 0 0 0 0 0 0 0

0x1C
RCC_IOPRSTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IO
P

H
R

S

R
es

.

R
es

.

IO
P

E
R

S
T

IO
P

D
R

S

IO
P

C
R

S

IO
P

B
R

S
T

IO
P

A
R

S
T

Reset value 0 0 0 0 0 0

0x20
RCC_AHBRSTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
R

Y
P

R
S

T

R
es

.

R
es

.

R
es

.

R
N

G
R

S
T

R
es

.

R
es

.

R
es

.

T
S

C
R

S
T

R
es

.

R
es

.

R
es

.

C
R

C
R

S
T

R
es

.

R
es

.

R
es

.

M
IF

R
S

T

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
R

S
T

Reset value 0 0 0 0 0 0

Reset and clock control (RCC) RM0367

224/1040 RM0367 Rev 8

0x24
RCC_APB2RSTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
R

S
T

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
S

A
R

T
1

R
S

T

R
es

.

S
P

I1
R

S
T

R
es

.

R
es

.

A
D

C
R

S
T

R
es

.

R
es

.

R
es

.

T
M

1
2R

S
T

R
es

.

R
es

.

T
IM

2
1R

S
T

R
es

.

S
Y

S
C

F
G

R
S

T

Reset value 0 0 0 0 0 0 0

0x28
RCC_APB1RSTR

L
P

T
IM

1
R

S
T

I2
C

3
R

S
T

D
A

C
R

S
T

.

P
W

R
R

S
T

C
R

S
R

S
T

.

R
es

.

R
es

.

R
es

.

U
S

B
R

S
T

.

I2
C

2
R

S
T

I2
C

1
R

S
T

U
S

A
R

T
5R

S
T

U
S

A
R

T
4R

S
T

LP
U

A
R

T
1

R
S

T

U
S

A
R

T
2R

S
T

R
es

.

R
es

.

S
P

I2
R

S
T

R
es

.

R
es

.

W
W

D
R

S
T

R
es

.

L
C

D
R

S
T

.

R
es

.

R
es

.

R
es

.

T
IM

7R
S

T

T
IM

6R
S

T

R
es

.

R
es

.

T
IM

3R
S

T

T
IM

2R
S

T

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
RCC_IOPENR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IO
P

H
E

N

R
es

.

R
es

.

IO
P

E
E

N

IO
P

D
E

N

IO
P

C
E

N

IO
P

B
E

N

IO
P

A
E

N

Reset value 0 0 0 0 0 0

0x30
RCC_AHBENR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
R

Y
P

E
N

R
es

.

R
es

.

R
es

.

R
N

G
E

N

R
es

.

R
es

.

R
es

.

T
S

C
E

N

R
es

.

R
es

.

R
es

.

C
R

C
E

N

R
es

.

R
es

.

R
es

.

M
IF

E
N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
E

N

Reset value 0 0 0 0 1 0

0x34
RCC_APB2ENR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
E

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
S

A
R

T
1

E
N

R
es

.

S
P

I1
E

N

R
es

.

R
es

.

A
D

C
E

N

R
es

.

F
W

E
N

R
es

.

T
IM

2
2

E
N

R
es

.

R
es

.

T
IM

2
1

E
N

R
es

.

S
Y

S
C

F
G

E
N

Reset value 0 0 0 0 0 0 0 0

0x38
RCC_APB1ENR

LP
T

IM
1E

N

I2
C

3E
N

D
A

C
E

N
.

P
W

R
E

N

C
R

S
E

N
.

R
es

.

R
es

.

R
es

.

U
S

B
E

N

I2
C

2E
N

I2
C

1E
N

U
S

A
R

T
5

E
N

U
S

A
R

T
4

E
N

L
P

U
A

R
T

1
E

N

U
S

A
R

T
2

E
N

R
es

.

R
es

.

S
P

I2
E

N

R
es

.

R
es

.

W
W

D
G

E
N

R
es

.

L
C

D
E

N

R
es

.

R
es

.

R
es

.

T
IM

7
E

N

T
IM

6
E

N

R
es

.

R
es

.

T
IM

3
E

N

T
IM

2
E

N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
RCC_IOPSMEN

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IO
P

H
S

M
E

N

R
es

.

R
es

.

IO
P

E
S

M
E

N

IO
P

D
S

M
E

N

IO
P

C
S

M
E

N

IO
P

B
S

M
E

N

IO
P

A
S

M
E

N

Reset value 1 1 1 1 1 1

0x40
RCC_AHBSMENR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
R

Y
P

S
M

E
N

R
es

.

R
es

.

R
es

.

R
N

G
S

M
E

N

R
es

.

R
es

.

R
es

.

T
S

C
S

M
E

N

R
es

.

R
es

.

R
es

.

C
R

C
S

M
E

N

R
es

.

R
es

.

S
R

A
M

S
M

E
N

M
IF

S
M

E
N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
S

M
E

N

Reset value 1 1 1 1 1 1 1

0x44
RCC_APB2SMENR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
S

M
E

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
S

A
R

T
1

S
M

E
N

R
es

.

S
P

I1
S

M
E

N

R
es

.

R
es

.

A
D

C
S

M
E

N

R
es

.

R
es

.

R
es

.

T
IM

22
S

M
E

N

R
es

.

R
es

.

T
IM

21
S

M
E

N

R
es

.

S
Y

S
C

F
G

S
M

E
N

Reset value 1 1 1 1 1 1 1

Table 42. RCC register map and reset values (continued)

Off-
set

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 225/1040

RM0367 Reset and clock control (RCC)

225

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x48
RCC_APB1SMENR

L
P

T
IM

1
S

M
E

N

I2
C

3
S

M
E

N

D
A

C
S

M
E

N
.

P
W

R
S

M
E

N

C
R

S
S

M
E

N
.

R
es

.

R
es

.

R
es

.

U
S

B
S

M
E

N

I2
C

2
S

M
E

N

I2
C

1
S

M
E

N

U
S

A
R

T
5S

M
E

N

U
S

A
R

T
4S

M
E

N

LP
U

A
R

T
1

S
M

E
N

U
S

A
R

T
2S

M
E

N

R
es

.

R
es

.

S
P

I2
S

M
E

N

R
es

.

R
es

.

W
W

D
G

S
M

E
N

R
es

.

L
C

D
S

M
E

N

R
es

.

R
es

.

R
es

.

T
IM

7S
M

E
N

T
IM

6S
M

E
N

R
es

.

R
es

.

T
IM

3S
M

E
N

T
IM

2S
M

E
N

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x4C
RCC_CCIPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

H
S

I4
8

S
E

L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L
P

T
IM

1
S

E
L

1

L
P

T
IM

1
S

E
L

0

I2
C

3
S

E
L

1

I2
C

3
S

E
L

0

R
es

.

R
es

.

I2
C

1
S

E
L

1

I2
C

1
S

E
L

0

LP
U

A
R

T
1

S
E

L
1

LP
U

A
R

T
1

S
E

L
0

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
S

A
R

T
2S

E
L

1

U
S

A
R

T
2S

E
L

0

U
S

A
R

T
1S

E
L

1

U
S

A
R

T
1S

E
L

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
RCC_CSR

LP
W

R
S

T
F

W
W

D
G

R
S

T
F

IW
D

G
R

S
T

F

S
F

T
R

S
T

F

P
O

R
R

S
T

F

P
IN

R
S

T
F

O
B

LR
S

T
F

F
W

R
S

T
F

R
M

V
F

R
es

.

R
es

.

R
es

.

R
T

C
R

S
T

R
T

C
E

N RTC
SEL
[1:0] R

es
.

C
S

S
L

S
E

D

C
S

S
L

S
E

O
N

LSE
DRV
[1:0]

L
S

E
B

Y
P

L
S

E
R

D
Y

L
S

E
O

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L
S

IR
D

Y

L
S

IO
N

Reset value 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 42. RCC register map and reset values (continued)

Off-
set

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Clock recovery system (CRS) RM0367

226/1040 RM0367 Rev 8

8 Clock recovery system (CRS)

8.1 Introduction

The clock recovery system (CRS) is an advanced digital controller acting on the internal
fine-granularity trimmable RC oscillator HSI48. The CRS provides powerful means for
oscillator output frequency evaluation, based on comparison with a selectable
synchronization signal. It is capable of doing automatic adjustment of oscillator trimming
based on the measured frequency error value, while keeping the possibility of a manual
trimming.

The CRS is ideally suited to provide a precise clock to the USB peripheral. In such case, the
synchronization signal can be derived from the start-of-frame (SOF) packet signalization on
the USB bus, which is sent by a USB host at 1 ms intervals.

The synchronization signal can also be derived from the LSE oscillator output or it can be
generated by user software.

8.2 CRS main features

• Selectable synchronization source with programmable prescaler and polarity:

– External pin

– LSE oscillator output

– USB SOF packet reception

• Possibility to generate synchronization pulses by software

• Automatic oscillator trimming capability with no need of CPU action

• Manual control option for faster start-up convergence

• 16-bit frequency error counter with automatic error value capture and reload

• Programmable limit for automatic frequency error value evaluation and status reporting

• Maskable interrupts/events:

– Expected synchronization (ESYNC)

– Synchronization OK (SYNCOK)

– Synchronization warning (SYNCWARN)

– Synchronization or trimming error (ERR)

8.3 CRS implementation

Table 43. CRS features

Feature CRS1

TRIM width 6 bits

RM0367 Rev 8 227/1040

RM0367 Clock recovery system (CRS)

236

8.4 CRS functional description

8.4.1 CRS block diagram

Figure 19. CRS block diagram

8.4.2 Synchronization input

The CRS synchronization (SYNC) source, selectable through the CRS_CFGR register, can
be the signal from the LSE clock or the USB SOF signal. For a better robustness of the
SYNC input, a simple digital filter (2 out of 3 majority votes, sampled by the HSI48 clock) is
implemented to filter out any glitches. This source signal also has a configurable polarity
and can then be divided by a programmable binary prescaler to obtain a synchronization
signal in a suitable frequency range (usually around 1 kHz).

For more information on the CRS synchronization source configuration, refer to
Section 8.7.2: CRS configuration register (CRS_CFGR).

It is also possible to generate a synchronization event by software, by setting the SWSYNC
bit in the CRS_CR register.

MSv34708V1

LSE

USB

SYNCSRC

GPIO

OSC32_IN

OSC32_OUT

USB_DP

USB_DM

SYNC divider
(/1,/2,/4,…,/128)

SWSYNC

RELOAD

SYNC

16-bit counter

FECAP

RC 48 MHz

HSI48

RCC

CRS_SYNC

FELIM

TRIM FEDIR

To USB
To RNG

Clock recovery system (CRS) RM0367

228/1040 RM0367 Rev 8

8.4.3 Frequency error measurement

The frequency error counter is a 16-bit down/up counter which is reloaded with the RELOAD
value on each SYNC event. It starts counting down till it reaches the zero value, where the
ESYNC (expected synchronization) event is generated. Then it starts counting up to the
OUTRANGE limit where it eventually stops (if no SYNC event is received) and generates a
SYNCMISS event. The OUTRANGE limit is defined as the frequency error limit (FELIM field
of the CRS_CFGR register) multiplied by 128.

When the SYNC event is detected, the actual value of the frequency error counter and its
counting direction are stored in the FECAP (frequency error capture) field and in the FEDIR
(frequency error direction) bit of the CRS_ISR register. When the SYNC event is detected
during the downcounting phase (before reaching the zero value), it means that the actual
frequency is lower than the target (and so, that the TRIM value must be incremented), while
when it is detected during the upcounting phase it means that the actual frequency is higher
(and that the TRIM value must be decremented).

Figure 20. CRS counter behavior

8.4.4 Frequency error evaluation and automatic trimming

The measured frequency error is evaluated by comparing its value with a set of limits:

• TOLERANCE LIMIT, given directly in the FELIM field of the CRS_CFGR register

• WARNING LIMIT, defined as 3 × FELIM value

• OUTRANGE (error limit), defined as 128 × FELIM value

CRS counter value

RELOAD

OUTRANGE
(128 x FELIM)

WARNING LIMIT
(3 x FELIM)

TOLERANCE LIMIT
(FELIM)

SYNCERR SYNCWARN SYNCOK SYNCWARN

SYNCMISS

+2 +10 -1 -20

Down Up

Frequency
error counter
stopped

0Trimming action:

CRS event:

MSv32122V1

ESYNC

RM0367 Rev 8 229/1040

RM0367 Clock recovery system (CRS)

236

The result of this comparison is used to generate the status indication and also to control the
automatic trimming which is enabled by setting the AUTOTRIMEN bit in the CRS_CR
register:

• When the frequency error is below the tolerance limit, it means that the actual trimming
value in the TRIM field is the optimal one, hence no trimming action is needed.

– SYNCOK status indicated

– TRIM value not changed in AUTOTRIM mode

• When the frequency error is below the warning limit but above or equal to the tolerance
limit, it means that some trimming action is necessary but that adjustment by one
trimming step is enough to reach the optimal TRIM value.

– SYNCOK status indicated

– TRIM value adjusted by one trimming step in AUTOTRIM mode

• When the frequency error is above or equal to the warning limit but below the error
limit, it means that a stronger trimming action is necessary, and there is a risk that the
optimal TRIM value is not reached for the next period.

– SYNCWARN status indicated

– TRIM value adjusted by two trimming steps in AUTOTRIM mode

• When the frequency error is above or equal to the error limit, it means that the
frequency is out of the trimming range. This can also happen when the SYNC input is
not clean or when some SYNC pulse is missing (for example when one USB SOF is
corrupted).

– SYNCERR or SYNCMISS status indicated

– TRIM value not changed in AUTOTRIM mode

Note: If the actual value of the TRIM field is so close to its limits that the automatic trimming would
force it to overflow or underflow, then the TRIM value is set just to the limit and the
TRIMOVF status is indicated.

In AUTOTRIM mode (AUTOTRIMEN bit set in the CRS_CR register), the TRIM field of
CRS_CR is adjusted by hardware and is read-only.

8.4.5 CRS initialization and configuration

RELOAD value

The RELOAD value must be selected according to the ratio between the target frequency
and the frequency of the synchronization source after prescaling. It is then decreased by
one to reach the expected synchronization on the zero value. The formula is the following:

RELOAD = (fTARGET / fSYNC) - 1

The reset value of the RELOAD field corresponds to a target frequency of 48 MHz and a
synchronization signal frequency of 1 kHz (SOF signal from USB).

FELIM value

The selection of the FELIM value is closely coupled with the HSI48 oscillator characteristics
and its typical trimming step size. The optimal value corresponds to half of the trimming step
size, expressed as a number of HSI48 oscillator clock ticks. The following formula can be
used:

FELIM = (fTARGET / fSYNC) * STEP[%] / 100% / 2

Clock recovery system (CRS) RM0367

230/1040 RM0367 Rev 8

The result must be always rounded up to the nearest integer value to obtain the best
trimming response. If frequent trimming actions are not needed in the application, the
hysteresis can be increased by slightly increasing the FELIM value.

The reset value of the FELIM field corresponds to (fTARGET / fSYNC) = 48000 and to a typical
trimming step size of 0.14%.

Note: The trimming step size depends upon the product, check the datasheet for accurate setting.

Caution: There is no hardware protection from a wrong configuration of the RELOAD and FELIM
fields which can lead to an erratic trimming response. The expected operational mode
requires proper setup of the RELOAD value (according to the synchronization source
frequency), which is also greater than 128 * FELIM value (OUTRANGE limit).

8.5 CRS low-power modes

8.6 CRS interrupts

Table 44. Effect of low-power modes on CRS

Mode Description

Sleep No effect. CRS interrupts cause the device to exit the Sleep mode.

Stop
CRS registers are frozen. The CRS stops operating until the Stop mode is exited and the
HSI48 oscillator restarted.

Standby The CRS peripheral is powered down and must be reinitialized after exiting Standby mode.

Table 45. Interrupt control bits

Interrupt event Event flag
Enable

control bit
Clear

flag bit

Expected synchronization ESYNCF ESYNCIE ESYNCC

Synchronization OK SYNCOKF SYNCOKIE SYNCOKC

Synchronization warning SYNCWARNF SYNCWARNIE SYNCWARNC

Synchronization or trimming error
(TRIMOVF, SYNCMISS, SYNCERR)

ERRF ERRIE ERRC

RM0367 Rev 8 231/1040

RM0367 Clock recovery system (CRS)

236

8.7 CRS registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed only by words (32-bit).

8.7.1 CRS control register (CRS_CR)

Address offset: 0x00

Reset value: 0x0000 2000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. TRIM[5:0]
SW

SYNC
AUTO

TRIMEN
CEN Res.

ESYNCI
E

ERRIE
SYNC

WARNIE
SYNC
OKIE

rw rw rw rw rw rw rt_w1 rw rw rw rw rw rw

Bits 31:14 Reserved, must be kept at reset value.

Bits 13:8 TRIM[5:0]: HSI48 oscillator smooth trimming

These bits provide a user-programmable trimming value to the HSI48 oscillator. They can be
programmed to adjust to variations in voltage and temperature that influence the frequency
of the HSI48 oscillator.
The default value is 32, which corresponds to the middle of the trimming interval. The
trimming step is specified in the product datasheet. A higher TRIM value corresponds to a
higher output frequency.
When the AUTOTRIMEN bit is set, this field is controlled by hardware and is read-only.

Bit 7 SWSYNC: Generate software SYNC event

This bit is set by software in order to generate a software SYNC event. It is automatically
cleared by hardware.
0: No action
1: A software SYNC event is generated.

Bit 6 AUTOTRIMEN: Automatic trimming enable

This bit enables the automatic hardware adjustment of TRIM bits according to the measured
frequency error between two SYNC events. If this bit is set, the TRIM bits are read-only. The
TRIM value can be adjusted by hardware by one or two steps at a time, depending on the
measured frequency error value. Refer to Section 8.4.4 for more details.
0: Automatic trimming disabled, TRIM bits can be adjusted by the user.
1: Automatic trimming enabled, TRIM bits are read-only and under hardware control.

Bit 5 CEN: Frequency error counter enable

This bit enables the oscillator clock for the frequency error counter.
0: Frequency error counter disabled
1: Frequency error counter enabled
When this bit is set, the CRS_CFGR register is write-protected and cannot be modified.

Bit 4 Reserved, must be kept at reset value.

Bit 3 ESYNCIE: Expected SYNC interrupt enable

0: Expected SYNC (ESYNCF) interrupt disabled
1: Expected SYNC (ESYNCF) interrupt enabled

Clock recovery system (CRS) RM0367

232/1040 RM0367 Rev 8

8.7.2 CRS configuration register (CRS_CFGR)

This register can be written only when the frequency error counter is disabled (CEN bit is
cleared in CRS_CR). When the counter is enabled, this register is write-protected.

Address offset: 0x04

Reset value: 0x2022 BB7F

Bit 2 ERRIE: Synchronization or trimming error interrupt enable

0: Synchronization or trimming error (ERRF) interrupt disabled
1: Synchronization or trimming error (ERRF) interrupt enabled

Bit 1 SYNCWARNIE: SYNC warning interrupt enable

0: SYNC warning (SYNCWARNF) interrupt disabled
1: SYNC warning (SYNCWARNF) interrupt enabled

Bit 0 SYNCOKIE: SYNC event OK interrupt enable

0: SYNC event OK (SYNCOKF) interrupt disabled
1: SYNC event OK (SYNCOKF) interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SYNCPOL Res. SYNCSRC[1:0] Res. SYNCDIV[2:0] FELIM[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELOAD[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 SYNCPOL: SYNC polarity selection

This bit is set and cleared by software to select the input polarity for the SYNC signal source.
0: SYNC active on rising edge (default)
1: SYNC active on falling edge

Bit 30 Reserved, must be kept at reset value.

Bits 29:28 SYNCSRC[1:0]: SYNC signal source selection

These bits are set and cleared by software to select the SYNC signal source.
00: GPIO selected as SYNC signal source
01: LSE selected as SYNC signal source
10: USB SOF selected as SYNC signal source (default).
11: Reserved

Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
periodic USB SOF is not generated by the host. No SYNC signal is therefore provided
to the CRS to calibrate the HSI48 oscillator on the run. To guarantee the required clock
precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
should be used as SYNC signal.

Bit 27 Reserved, must be kept at reset value.

RM0367 Rev 8 233/1040

RM0367 Clock recovery system (CRS)

236

8.7.3 CRS interrupt and status register (CRS_ISR)

Address offset: 0x08

Reset value: 0x0000 0000

Bits 26:24 SYNCDIV[2:0]: SYNC divider

These bits are set and cleared by software to control the division factor of the SYNC signal.
000: SYNC not divided (default)
001: SYNC divided by 2
010: SYNC divided by 4
011: SYNC divided by 8
100: SYNC divided by 16
101: SYNC divided by 32
110: SYNC divided by 64
111: SYNC divided by 128

Bits 23:16 FELIM[7:0]: Frequency error limit

FELIM contains the value to be used to evaluate the captured frequency error value latched
in the FECAP[15:0] bits of the CRS_ISR register. Refer to Section 8.4.4 for more details
about FECAP evaluation.

Bits 15:0 RELOAD[15:0]: Counter reload value

RELOAD is the value to be loaded in the frequency error counter with each SYNC event.
Refer to Section 8.4.3 for more details about counter behavior.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FECAP[15:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FEDIR Res. Res. Res. Res.
TRIM
OVF

SYNC
MISS

SYNC
ERR

Res. Res. Res. Res. ESYNCF ERRF
SYNC

WARNF
SYNC
OKF

r r r r r r r r

Bits 31:16 FECAP[15:0]: Frequency error capture

FECAP is the frequency error counter value latched in the time of the last SYNC event.
Refer to Section 8.4.4 for more details about FECAP usage.

Bit 15 FEDIR: Frequency error direction

FEDIR is the counting direction of the frequency error counter latched in the time of the last
SYNC event. It shows whether the actual frequency is below or above the target.
0: Upcounting direction, the actual frequency is above the target.
1: Downcounting direction, the actual frequency is below the target.

Bits 14:11 Reserved, must be kept at reset value.

Bit 10 TRIMOVF: Trimming overflow or underflow

This flag is set by hardware when the automatic trimming tries to over- or under-flow the
TRIM value. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is
cleared by software by setting the ERRC bit in the CRS_ICR register.
0: No trimming error signalized
1: Trimming error signalized

Clock recovery system (CRS) RM0367

234/1040 RM0367 Rev 8

Bit 9 SYNCMISS: SYNC missed

This flag is set by hardware when the frequency error counter reached value FELIM * 128
and no SYNC was detected, meaning either that a SYNC pulse was missed or that the
frequency error is too big (internal frequency too high) to be compensated by adjusting the
TRIM value, and that some other action has to be taken. At this point, the frequency error
counter is stopped (waiting for a next SYNC) and an interrupt is generated if the ERRIE bit is
set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR
register.
0: No SYNC missed error signalized
1: SYNC missed error signalized

Bit 8 SYNCERR: SYNC error

This flag is set by hardware when the SYNC pulse arrives before the ESYNC event and the
measured frequency error is greater than or equal to FELIM * 128. This means that the
frequency error is too big (internal frequency too low) to be compensated by adjusting the
TRIM value, and that some other action has to be taken. An interrupt is generated if the
ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in
the CRS_ICR register.
0: No SYNC error signalized
1: SYNC error signalized

Bits 7:4 Reserved, must be kept at reset value.

Bit 3 ESYNCF: Expected SYNC flag

This flag is set by hardware when the frequency error counter reached a zero value. An
interrupt is generated if the ESYNCIE bit is set in the CRS_CR register. It is cleared by
software by setting the ESYNCC bit in the CRS_ICR register.
0: No expected SYNC signalized
1: Expected SYNC signalized

Bit 2 ERRF: Error flag

This flag is set by hardware in case of any synchronization or trimming error. It is the logical
OR of the TRIMOVF, SYNCMISS and SYNCERR bits. An interrupt is generated if the ERRIE
bit is set in the CRS_CR register. It is cleared by software in reaction to setting the ERRC bit
in the CRS_ICR register, which clears the TRIMOVF, SYNCMISS and SYNCERR bits.
0: No synchronization or trimming error signalized
1: Synchronization or trimming error signalized

Bit 1 SYNCWARNF: SYNC warning flag

This flag is set by hardware when the measured frequency error is greater than or equal to
FELIM * 3, but smaller than FELIM * 128. This means that to compensate the frequency
error, the TRIM value must be adjusted by two steps or more. An interrupt is generated if the
SYNCWARNIE bit is set in the CRS_CR register. It is cleared by software by setting the
SYNCWARNC bit in the CRS_ICR register.
0: No SYNC warning signalized
1: SYNC warning signalized

Bit 0 SYNCOKF: SYNC event OK flag

This flag is set by hardware when the measured frequency error is smaller than FELIM * 3.
This means that either no adjustment of the TRIM value is needed or that an adjustment by
one trimming step is enough to compensate the frequency error. An interrupt is generated if
the SYNCOKIE bit is set in the CRS_CR register. It is cleared by software by setting the
SYNCOKC bit in the CRS_ICR register.
0: No SYNC event OK signalized
1: SYNC event OK signalized

RM0367 Rev 8 235/1040

RM0367 Clock recovery system (CRS)

236

8.7.4 CRS interrupt flag clear register (CRS_ICR)

Address offset: 0x0C

Reset value: 0x0000 0000

8.7.5 CRS register map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ESYNCC ERRC
SYNC

WARNC
SYNC
OKC

rw rw rw rw

Bits 31:4 Reserved, must be kept at reset value.

Bit 3 ESYNCC: Expected SYNC clear flag

Writing 1 to this bit clears the ESYNCF flag in the CRS_ISR register.

Bit 2 ERRC: Error clear flag

Writing 1 to this bit clears TRIMOVF, SYNCMISS and SYNCERR bits and consequently also
the ERRF flag in the CRS_ISR register.

Bit 1 SYNCWARNC: SYNC warning clear flag

Writing 1 to this bit clears the SYNCWARNF flag in the CRS_ISR register.

Bit 0 SYNCOKC: SYNC event OK clear flag

Writing 1 to this bit clears the SYNCOKF flag in the CRS_ISR register.

Table 46. CRS register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
CRS_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TRIM[5:0]

S
W

S
Y

N
C

A
U

T
O

T
R

IM
E

N

C
E

N

R
es

.

E
S

Y
N

C
IE

E
R

R
IE

S
Y

N
C

W
A

R
N

IE

S
Y

N
C

O
K

IE

Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
CRS_CFGR

S
Y

N
C

P
O

L

R
es

. SYNC
SRC
[1:0] R

es
. SYNC

DIV
[2:0]

FELIM[7:0] RELOAD[15:0]

Reset value 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1

0x08
CRS_ISR FECAP[15:0]

F
E

D
IR

R
es

.

R
es

.

R
es

.

R
es

.

T
R

IM
O

V
F

S
Y

N
C

M
IS

S

S
Y

N
C

E
R

R

R
es

.

R
es

.

R
es

.

R
es

.

E
S

Y
N

C
F

E
R

R
F

S
Y

N
C

W
A

R
N

F

S
Y

N
C

O
K

F

Reset value 0

Clock recovery system (CRS) RM0367

236/1040 RM0367 Rev 8

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x0C
CRS_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
S

Y
N

C
C

E
R

R
C

S
Y

N
C

W
A

R
N

C

S
Y

N
C

O
K

C

Reset value 0 0 0 0

Table 46. CRS register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 237/1040

RM0367 General-purpose I/Os (GPIO)

253

9 General-purpose I/Os (GPIO)

9.1 Introduction

Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers
(GPIOx_IDR and GPIOx_ODR) and a 32-bit set/reset register (GPIOx_BSRR). In addition
all GPIOs have a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function
selection registers (GPIOx_AFRH and GPIOx_AFRL).

9.2 GPIO main features

• Output states: push-pull or open drain + pull-up/down

• Output data from output data register (GPIOx_ODR) or peripheral (alternate function
output)

• Speed selection for each I/O

• Input states: floating, pull-up/down, analog

• Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)

• Bit set and reset register (GPIOx_ BSRR) for bitwise write access to GPIOx_ODR

• Locking mechanism (GPIOx_LCKR) provided to freeze the I/O port configurations

• Analog function

• Alternate function selection registers

• Fast toggle capable of changing every two clock cycles

• Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several
peripheral functions

9.3 GPIO functional description

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in
several modes:

• Input floating

• Input pull-up

• Input-pull-down

• Analog

• Output open-drain with pull-up or pull-down capability

• Output push-pull with pull-up or pull-down capability

• Alternate function push-pull with pull-up or pull-down capability

• Alternate function open-drain with pull-up or pull-down capability

Each I/O port bit is freely programmable, however the I/O port registers have to be
accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is
to allow atomic read/modify accesses to any of the GPIOx_ODR registers. In this way, there
is no risk of an IRQ occurring between the read and the modify access.

General-purpose I/Os (GPIO) RM0367

238/1040 RM0367 Rev 8

Figure 21 and Figure 22 show the basic structures of a standard and a 5-Volt tolerant I/O
port bit, respectively. Table 47 gives the possible port bit configurations.

Figure 21. Basic structure of an I/O port bit

Figure 22. Basic structure of a 5-Volt tolerant I/O port bit

1. VDD_FT is a potential specific to 5-Volt tolerant I/Os and different from VDD.

Alternate function output

Alternate function input

Push-pull,
open-drain or
disabled

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

Analog

on/off
Pull

Pull
down

on/off

I/O pin

VDDIOx

VDDIOx

VSS

VSS

 trigger

VSS

VDDIOx

Protection
diode

Protection
diode

on/off

Input driver

Output driver

up

P-MOS

N-MOS

Read

Bi
t s

et
/re

se
t r

eg
is

te
rs

Write

Analog

MS31476V1

Alternate function output

Alternate function input

Push-pull,
open-drain or
disabled

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

on/off
Pull

Pullon/off

I/O pin

VDDIOx

VDDIOx

VSS

VSS

TTL Schmitt
 trigger

VSS

VDD_FT
(1)

Protection
diode

Protection
diode

on/off

Input driver

Output driver
down

up

P-MOS

N-MOS

Read

B
it

se
t/r

es
et

 re
gi

st
er

s

Write

In
pu

t d
at

a
re

gi
st

er

ai15939d

RM0367 Rev 8 239/1040

RM0367 General-purpose I/Os (GPIO)

253

9.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and most of the I/O ports
are configured in analog mode.

The debug pins are in AF pull-up/pull-down after reset:

• PA14: SWCLK in pull-down

• PA13: SWDIO in pull-up

Table 47. Port bit configuration table(1)

1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate
function.

MODE(i)
[1:0]

OTYPER(i)
OSPEED(i)

[1:0]
PUPD(i)

[1:0]
I/O configuration

01

0

SPEED

[1:0]

0 0 GP output PP

0 0 1 GP output PP + PU

0 1 0 GP output PP + PD

0 1 1 Reserved

1 0 0 GP output OD

1 0 1 GP output OD + PU

1 1 0 GP output OD + PD

1 1 1 Reserved (GP output OD)

10

0

SPEED

[1:0]

0 0 AF PP

0 0 1 AF PP + PU

0 1 0 AF PP + PD

0 1 1 Reserved

1 0 0 AF OD

1 0 1 AF OD + PU

1 1 0 AF OD + PD

1 1 1 Reserved

00

x x x 0 0 Input Floating

x x x 0 1 Input PU

x x x 1 0 Input PD

x x x 1 1 Reserved (input floating)

11

x x x 0 0 Input/output Analog

x x x 0 1

Reservedx x x 1 0

x x x 1 1

General-purpose I/Os (GPIO) RM0367

240/1040 RM0367 Rev 8

When the pin is configured as output, the value written to the output data register
(GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull
mode or open-drain mode (only the low level is driven, high level is HI-Z).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB
clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or
not depending on the value in the GPIOx_PUPDR register.

9.3.2 I/O pin alternate function multiplexer and mapping

The device I/O pins are connected to on-board peripherals/modules through a multiplexer
that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In
this way, there can be no conflict between peripherals available on the same I/O pin.

Each I/O pin has a multiplexer with up to sixteen alternate function inputs (AF0 to AF15) that
can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to
15) registers:

• After reset the multiplexer selection is alternate function 0 (AF0). The I/Os are
configured in alternate function mode through GPIOx_MODER register.

• The specific alternate function assignments for each pin are detailed in the device
datasheet.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate
functions mapped onto different I/O pins to optimize the number of peripherals available in
smaller packages.

To use an I/O in a given configuration, the user has to proceed as follows:

• Debug function: after each device reset these pins are assigned as alternate function
pins immediately usable by the debugger host

• GPIO: configure the desired I/O as output, input or analog in the GPIOx_MODER
register.

• Peripheral alternate function:

– Connect the I/O to the desired AFx in one of the GPIOx_AFRL or GPIOx_AFRH
register.

– Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER,
GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively.

– Configure the desired I/O as an alternate function in the GPIOx_MODER register.

• Additional functions:

– For the ADC, DAC and COMP, configure the desired I/O in analog mode in the
GPIOx_MODER register and configure the required function in the ADC, DAC and
COMP registers.

– For the additional functions like RTC, WKUPx and oscillators, configure the
required function in the related RTC, PWR and RCC registers. These functions
have priority over the configuration in the standard GPIO registers.

Refer to the “Alternate function mapping” table in the device datasheet for the detailed
mapping of the alternate function I/O pins.

RM0367 Rev 8 241/1040

RM0367 General-purpose I/Os (GPIO)

253

9.3.3 I/O port control registers

Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The
GPIOx_MODER register is used to select the I/O mode (input, output, AF, analog). The
GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (push-
pull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pull-
up/pull-down whatever the I/O direction.

9.3.4 I/O port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers
(GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write
accessible. The data input through the I/O are stored into the input data register
(GPIOx_IDR), a read-only register.

See Section 9.4.5: GPIO port input data register (GPIOx_IDR) (x = A to E and H) and
Section 9.4.6: GPIO port output data register (GPIOx_ODR) (x = A to E and H) for the
register descriptions.

9.3.5 I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to
set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset
register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i).
When written to 1, bit BS(i) sets the corresponding ODR(i) bit. When written to 1, bit BR(i)
resets the ODR(i) corresponding bit.

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in
GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set
action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a
“one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always
be accessed directly. The GPIOx_BSRR register provides a way of performing atomic
bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify one or more bits in a single atomic AHB write access.

9.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to
the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next MCU reset or peripheral reset. Each
GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

General-purpose I/Os (GPIO) RM0367

242/1040 RM0367 Rev 8

The LOCK sequence (refer to Section 9.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x = A to E and H)) can only be performed using a word (32-bit long)
access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set
at the same time as the [15:0] bits.

For code example, refer to A.5.1: Locking mechanism code example.

For more details refer to LCKR register description in Section 9.4.8: GPIO port configuration
lock register (GPIOx_LCKR) (x = A to E and H).

9.3.7 I/O alternate function input/output

Two registers are provided to select one of the alternate function inputs/outputs available for
each I/O. With these registers, the user can connect an alternate function to some other pin
as required by the application.

This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each I/O. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of a given I/O.

To know which functions are multiplexed on each GPIO pin refer to the device datasheet.

For code example, refer to A.5.2: Alternate function selection sequence code example.

9.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode.

Refer to Section 13: Extended interrupt and event controller (EXTI) and to Section 13.3.2:
Wakeup event management.

9.3.9 Input configuration

When the I/O port is programmed as input:

• The output buffer is disabled

• The Schmitt trigger input is activated

• The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register provides the I/O state

Figure 23 shows the input configuration of the I/O port bit.

RM0367 Rev 8 243/1040

RM0367 General-purpose I/Os (GPIO)

253

Figure 23. Input floating / pull up / pull down configurations

9.3.10 Output configuration

When the I/O port is programmed as output:

• The output buffer is enabled:

– Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1”
in the Output register leaves the port in Hi-Z (the P-MOS is never activated)

– Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in
the Output register activates the P-MOS

• The Schmitt trigger input is activated

• The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register gets the I/O state

• A read access to the output data register gets the last written value

on/off

pull

pull

on/off
I/O pin

VDDIOx

VSS

TTL Schmitt
 trigger

VSS

VDDIOx

protection
diode

protection
diode

on

input driver

output driver

down

up

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 re
gi

st
er

s

Write

MS31477V1

General-purpose I/Os (GPIO) RM0367

244/1040 RM0367 Rev 8

Figure 24 shows the output configuration of the I/O port bit.

Figure 24. Output configuration

9.3.11 Alternate function configuration

When the I/O port is programmed as alternate function:

• The output buffer can be configured in open-drain or push-pull mode

• The output buffer is driven by the signals coming from the peripheral (transmitter
enable and data)

• The Schmitt trigger input is activated

• The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register gets the I/O state

Note: The alternate function configuration described above is not applied when the selected
alternate function is a LCD function. In this case, the I/O, programmed as an alternate
function output, is configured as described in the analog configuration.

Push-pull or
Open-drain

Output
control

VDDIOx

VSS

TTL Schmitt
 trigger

on

Input driver

Output driver

P-MOS

N-MOS

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 re
gi

st
er

s

Write
on/off

pull

pull

on/off

VDDIOx

VSS VSS

VDDIOx

protection
diode

protection
diodedown

up
I/O pin

MS31478V1

RM0367 Rev 8 245/1040

RM0367 General-purpose I/Os (GPIO)

253

Figure 25 shows the alternate function configuration of the I/O port bit.

Figure 25. Alternate function configuration

9.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

• The output buffer is disabled

• The Schmitt trigger input is deactivated, providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).

• The weak pull-up and pull-down resistors are disabled by hardware

• Read access to the input data register gets the value “0”

For code example, refer to A.5.3: Analog GPIO configuration code example.

Figure 26 shows the high-impedance, analog-input configuration of the I/O port bits.

Figure 26. High impedance-analog configuration

MSv34756V1

Alternate function output

Alternate function input

push-pull or
open-drainFrom on-chip

peripheral

To on-chip
peripheral

Output
control

VDD

VSS

TTL Schmitt
trigger

on

Input driver

Output driver

P-MOS

N-MOS
In

pu
td

at
a

re
gi

st
er

O
ut

pu
td

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

re
gi

st
er

s
Write

on/off

on/off

VDDIOx

VSS VSS

protection
diode

protection
diode

Pull

Pull

I/O pin

down

up

VDDIOx

From on-chip
peripheral

To on-chip
peripheral

Analog

 trigger

off

Input driver

0

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

Read

B
it

se
t/r

es
et

 re
gi

st
er

s

Write

Analog

VSS

VDDIOx

protection
diode

protection
diode

I/O pin

MS31480V1

TTL Schmitt

General-purpose I/Os (GPIO) RM0367

246/1040 RM0367 Rev 8

9.3.13 Using the HSE or LSE oscillator pins as GPIOs

When the HSE or LSE oscillator is switched OFF (default state after reset), the related
oscillator pins can be used as normal GPIOs.

When the HSE or LSE oscillator is switched ON (by setting the HSEON or LSEON bit in the
RCC_CSR register) the oscillator takes control of its associated pins and the GPIO
configuration of these pins has no effect.

When the oscillator is configured in a user external clock mode, only the OSC_IN or
OSC32_IN pin is reserved for clock input and the OSC_OUT or OSC32_OUT pin can still be
used as normal GPIO.

9.3.14 Using the GPIO pins in the RTC supply domain

The PC13/PC14/PC15 GPIO functionality is lost when the core supply domain is powered
off (when the device enters Standby mode). In this case, if their GPIO configuration is not
bypassed by the RTC configuration, these pins are set in an analog input mode.

For details about I/O control by the RTC, refer to Section 27.4: RTC functional description.

9.4 GPIO registers

For a summary of register bits, register address offsets and reset values, refer to Table 48.

The peripheral registers can be written in word, half word or byte mode.

9.4.1 GPIO port mode register (GPIOx_MODER)
(x =A to E and H)

Address offset:0x00

Reset value: 0xEBFF FCFF for port A

Reset value: 0xFFFF FFFF for the other ports

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODE15[1:0] MODE14[1:0] MODE13[1:0] MODE12[1:0] MODE11[1:0] MODE10[1:0] MODE9[1:0] MODE8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODE7[1:0] MODE6[1:0] MODE5[1:0] MODE4[1:0] MODE3[1:0] MODE2[1:0] MODE1[1:0] MODE0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 MODE[15:0][1:0]: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O mode.

00: Input mode
01: General purpose output mode
10: Alternate function mode
11: Analog mode (reset state)

RM0367 Rev 8 247/1040

RM0367 General-purpose I/Os (GPIO)

253

9.4.2 GPIO port output type register (GPIOx_OTYPER)
(x = A to E and H)

Address offset: 0x04

Reset value: 0x0000 0000

9.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A to E and H)

Address offset: 0x08

Reset value: 0x0C00 0000 (for port A)

Reset value: 0x0000 0000 (for the other ports)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 OT[15:0]: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O output type.

0: Output push-pull (reset state)
1: Output open-drain

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OSPEED15
[1:0]

OSPEED14
[1:0]

OSPEED13
[1:0]

OSPEED12
[1:0]

OSPEED11
[1:0]

OSPEED10
[1:0]

OSPEED9
[1:0]

OSPEED8
[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSPEED7
[1:0]

OSPEED6
[1:0]

OSPEED5
[1:0]

OSPEED4
[1:0]

OSPEED3
[1:0]

OSPEED2
[1:0]

OSPEED1
[1:0]

OSPEED0
[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 OSPEED[15:0][1:0]: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O output speed.

00: Low speed
01: Medium speed
10: High speed
11: Very high speed

Note: Refer to the device datasheet for the frequency specifications and the power supply
and load conditions for each speed..

General-purpose I/Os (GPIO) RM0367

248/1040 RM0367 Rev 8

9.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A to E and H)

Address offset: 0x0C

Reset value: 0x2400 0000 (for port A)

Reset value: 0x0000 0000 (for the other ports)

9.4.5 GPIO port input data register (GPIOx_IDR)
(x = A to E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PUPD15[1:0] PUPD14[1:0] PUPD13[1:0] PUPD12[1:0] PUPD11[1:0] PUPD10[1:0] PUPD9[1:0] PUPD8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPD7[1:0] PUPD6[1:0] PUPD5[1:0] PUPD4[1:0] PUPD3[1:0] PUPD2[1:0] PUPD1[1:0] PUPD0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 PUPD[15:0][1:0]: Port x configuration I/O pin y (y = 15 to 0)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ID[15:0]: Port x input data I/O pin y (y = 15 to 0)

These bits are read-only. They contain the input value of the corresponding I/O port.

RM0367 Rev 8 249/1040

RM0367 General-purpose I/Os (GPIO)

253

9.4.6 GPIO port output data register (GPIOx_ODR)
(x = A to E and H)

Address offset: 0x14

Reset value: 0x0000 0000

9.4.7 GPIO port bit set/reset register (GPIOx_BSRR)
(x = A to E and H)

Address offset: 0x18

Reset value: 0x0000 0000

9.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A to E and H)

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OD15 OD14 OD13 OD12 OD11 OD10 OD9 OD8 OD7 OD6 OD5 OD4 OD3 OD2 OD1 OD0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 OD[15:0]: Port output data I/O pin y (y = 15 to 0)

These bits can be read and written by software.

Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the
GPIOx_BSRR register (x = A..E and H).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

Bits 31:16 BR[15:0]: Port x reset I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODx bit
1: Resets the corresponding ODx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BS[15:0]: Port x set I/O pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODx bit
1: Sets the corresponding ODx bit

General-purpose I/Os (GPIO) RM0367

250/1040 RM0367 Rev 8

LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next MCU reset or peripheral reset.

Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this locking sequence.

Each lock bit freezes a specific configuration register (control and alternate function
registers).

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU
reset or peripheral reset.
LOCK key write sequence:
WR LCKR[16] = 1 + LCKR[15:0]
WR LCKR[16] = 0 + LCKR[15:0]
WR LCKR[16] = 1 + LCKR[15:0]
RD LCKR
RD LCKR[16] = 1 (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit
returns 1 until the next MCU reset or peripheral reset.

Bits 15:0 LCK[15:0]: Port x lock I/O pin y (y = 15 to 0)

These bits are read/write but can only be written when the LCKK bit is 0.

0: Port configuration not locked
1: Port configuration locked

RM0367 Rev 8 251/1040

RM0367 General-purpose I/Os (GPIO)

253

9.4.9 GPIO alternate function low register (GPIOx_AFRL)
(x = A to E and H)

Address offset: 0x20

Reset value: 0x0000 0000

9.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A to E and H)

Address offset: 0x24

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFSEL7[3:0] AFSEL6[3:0] AFSEL5[3:0] AFSEL4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFSEL3[3:0] AFSEL2[3:0] AFSEL1[3:0] AFSEL0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFSEL[7:0][3:0]: Alternate function selection for port x I/O pin y (y = 7 to 0)

These bits are written by software to configure alternate function I/Os.
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7
Others: Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFSEL15[3:0] AFSEL14[3:0] AFSEL13[3:0] AFSEL12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFSEL11[3:0] AFSEL10[3:0] AFSEL9[3:0] AFSEL8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

General-purpose I/Os (GPIO) RM0367

252/1040 RM0367 Rev 8

9.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A to E and H)

Address offset: 0x28

Reset value: 0x0000 0000

9.4.12 GPIO register map

The following table gives the GPIO register map and reset values.

Bits 31:0 AFSEL[15:8][3:0]: Alternate function selection for port x I/O pin y (y = 15 to 8)

These bits are written by software to configure alternate function I/Os.
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7
Others: Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 BR[15:0]: Port x reset IO pin y (y = 15 to 0)

These bits are write-only. A read to these bits returns the value 0x0000.
0: No action on the corresponding ODx bit
1: Reset the corresponding ODx bit

Table 48. GPIO register map and reset values

Offset Register name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
GPIOA_MODER

M
O

D
E

1
5

[1
:0

]

M
O

D
E

1
4

[1
:0

]

M
O

D
E

1
3

[1
:0

]

M
O

D
E

1
2

[1
:0

]

M
O

D
E

11
[1

:0
]

M
O

D
E

1
0

[1
:0

]

M
O

D
E

9[
1:

0
]

M
O

D
E

8[
1:

0
]

M
O

D
E

7[
1:

0
]

M
O

D
E

6[
1:

0
]

M
O

D
E

5[
1:

0
]

M
O

D
E

4[
1:

0
]

M
O

D
E

3[
1:

0
]

M
O

D
E

2[
1:

0
]

M
O

D
E

1[
1:

0
]

M
O

D
E

0[
1:

0
]

Reset value 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

0x00
GPIOx_MODER

(where x = B..E, H)

M
O

D
E

1
5[

1:
0

]

M
O

D
E

1
4[

1:
0

]

M
O

D
E

1
3[

1:
0

]

M
O

D
E

1
2[

1:
0

]

M
O

D
E

11
[1

:0
]

M
O

D
E

1
0[

1:
0

]

M
O

D
E

9
[1

:0
]

M
O

D
E

8
[1

:0
]

M
O

D
E

7
[1

:0
]

M
O

D
E

6
[1

:0
]

M
O

D
E

5
[1

:0
]

M
O

D
E

4
[1

:0
]

M
O

D
E

3
[1

:0
]

M
O

D
E

2
[1

:0
]

M
O

D
E

1
[1

:0
]

M
O

D
E

0
[1

:0
]

Reset value 1

RM0367 Rev 8 253/1040

RM0367 General-purpose I/Os (GPIO)

253

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x00
GPIOx_MODER
(where x = C..K)

M
O

D
E

R
1

5
[1

:0
]

M
O

D
E

R
1

4
[1

:0
]

M
O

D
E

R
1

3
[1

:0
]

M
O

D
E

R
1

2
[1

:0
]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
1

0
[1

:0
]

M
O

D
E

R
9

[1
:0

]

M
O

D
E

R
8

[1
:0

]

M
O

D
E

R
7

[1
:0

]

M
O

D
E

R
6

[1
:0

]

M
O

D
E

R
5

[1
:0

]

M
O

D
E

R
4

[1
:0

]

M
O

D
E

R
3

[1
:0

]

M
O

D
E

R
2

[1
:0

]

M
O

D
E

R
[1

:0
]

M
O

D
E

R
0

[1
:0

]

Reset value 1

0x04

GPIOx_OTYPER
(where x = A..E,H) R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
T

15

O
T

14

O
T

13

O
T

12

O
T

11

O
T

10

O
T

9

O
T

8

O
T

7

O
T

6

O
T

5

O
T

4

O
T

3

O
T

2

O
T

1

O
T

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
GPIOA_OSPEEDR

O
S

P
E

E
D

15
[1

:0
]

O
S

P
E

E
D

14
[1

:0
]

O
S

P
E

E
D

13
[1

:0
]

O
S

P
E

E
D

12
[1

:0
]

O
S

P
E

E
D

11
[1

:0
]

O
S

P
E

E
D

10
[1

:0
]

O
S

P
E

E
D

9
[1

:0
]

O
S

P
E

E
D

8
[1

:0
]

O
S

P
E

E
D

7
[1

:0
]

O
S

P
E

E
D

6
[1

:0
]

O
S

P
E

E
D

5
[1

:0
]

O
S

P
E

E
D

4
[1

:0
]

O
S

P
E

E
D

3
[1

:0
]

O
S

P
E

E
D

2
[1

:0
]

O
S

P
E

E
D

1
[1

:0
]

O
S

P
E

E
D

0
[1

:0
]

Reset value 0 0 0 0 1 1 0

0x08
GPIOx_OSPEEDR
(where x = B..E,H)

O
S

P
E

E
D

1
5[

1
:0

]

O
S

P
E

E
D

1
4[

1
:0

]

O
S

P
E

E
D

1
3[

1
:0

]

O
S

P
E

E
D

1
2[

1
:0

]

O
S

P
E

E
D

11
[1

:0
]

O
S

P
E

E
D

1
0[

1
:0

]

O
S

P
E

E
D

9
[1

:0
]

O
S

P
E

E
D

8
[1

:0
]

O
S

P
E

E
D

7
[1

:0
]

O
S

P
E

E
D

6
[1

:0
]

O
S

P
E

E
D

5
[1

:0
]

O
S

P
E

E
D

4
[1

:0
]

O
S

P
E

E
D

3
[1

:0
]

O
S

P
E

E
D

2
[1

:0
]

O
S

P
E

E
D

1
[1

:0
]

O
S

P
E

E
D

0
[1

:0
]

Reset value 0

0x0C
GPIOA_PUPDR

P
U

P
D

15
[1

:0
]

P
U

P
D

14
[1

:0
]

P
U

P
D

13
[1

:0
]

P
U

P
D

12
[1

:0
]

P
U

P
D

11
[1

:0
]

P
U

P
D

10
[1

:0
]

P
U

P
D

9
[1

:0
]

P
U

P
D

8
[1

:0
]

P
U

P
D

7
[1

:0
]

P
U

P
D

6
[1

:0
]

P
U

P
D

5
[1

:0
]

P
U

P
D

4
[1

:0
]

P
U

P
D

3
[1

:0
]

P
U

P
D

2
[1

:0
]

P
U

P
D

1
[1

:0
]

P
U

P
D

0
[1

:0
]

Reset value 0 0 1 0 0 1 0

0x10

GPIOx_IDR
(where x = A..E,H) R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ID
15

ID
14

ID
13

ID
12

ID
11

ID
10

ID
9

ID
8

ID
7

ID
6

ID
5

ID
4

ID
3

ID
2

ID
1

ID
0

Reset value x x x x x x x x x x x x x x x x

0x14

GPIOx_ODR
(where x = A..E,H) R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
D

15

O
D

14

O
D

13

O
D

12

O
D

11

O
D

10

O
D

9

O
D

8

O
D

7

O
D

6

O
D

5

O
D

4

O
D

3

O
D

2

O
D

1

O
D

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
GPIOx_BSRR

(where x = A..E,H) B
R

1
5

B
R

1
4

B
R

1
3

B
R

1
2

B
R

11

B
R

1
0

B
R

9

B
R

8

B
R

7

B
R

6

B
R

5

B
R

4

B
R

3

B
R

2

B
R

1

B
R

0

B
S

1
5

B
S

1
4

B
S

1
3

B
S

1
2

B
S

11

B
S

1
0

B
S

9

B
S

8

B
S

7

B
S

6

B
S

5

B
S

4

B
S

3

B
S

2

B
S

1

B
S

0

Reset value 0

0x1C

GPIOx_LCKR
(where x = A..E,H) R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L
C

K
K

L
C

K
1

5

L
C

K
1

4

L
C

K
1

3

L
C

K
1

2

L
C

K
11

L
C

K
1

0

L
C

K
9

L
C

K
8

L
C

K
7

L
C

K
6

L
C

K
5

L
C

K
4

L
C

K
3

L
C

K
2

L
C

K
1

L
C

K
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
GPIOx_AFRL

(where x = A..E,H)
AFSEL7[3:0] AFSEL6[3:0] AFSEL5[3:0] AFSEL4[3:0] AFSEL3[3:0] AFSEL2[3:0] AFSEL1[3:0] AFSEL0[3:0]

Reset value 0

0x24
GPIOx_AFRH

(where x = A..E,H)
AFSEL15[3:0

]
AFSEL14[3:0

]
AFSEL13[3:0

]
AFSEL12[3:0

]
AFSEL11[3:0

]
AFSEL10[3:0] AFSEL9[3:0] AFSEL8[3:0]

Reset value 0

0x28

GPIOx_BRR
(where x = A..E,H) R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

B
R

1
5

B
R

1
4

B
R

1
3

B
R

1
2

B
R

11

B
R

1
0

B
R

9

B
R

8

B
R

7

B
R

6

B
R

5

B
R

4

B
R

3

B
R

2

B
R

1

B
R

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 48. GPIO register map and reset values (continued)

Offset Register name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

System configuration controller (SYSCFG) RM0367

254/1040 RM0367 Rev 8

10 System configuration controller (SYSCFG)

10.1 Introduction

The devices feature a set of configuration registers. The main purposes of the system
configuration controller are the following:

• Remapping memories

• Remapping some trigger sources to timer input capture channels

• Managing external interrupts line multiplexing to the internal edge detector

• Enabling dedicated functions such as input capture multiplexing or oscillator pin
remapping

• I2C Fm+ mode management

• LCD power rails decoupling

• Firewall management

• Temperature sensor and Internal voltage reference management (including for
Comparator, 48 MHz HSI and ADC purposes).

The Cortex®-M0+ can wake up from WFE (Wait For Event) when a transition occurs on the
eventin input signal. To support semaphore management in multiprocessor environment,
the core can also output events on the signal output EVENTOUT, during SEV instruction
execution.

In STM32L0x3 devices, an event input can be generated by an external interrupt line or by
an RTC alarm interrupt. It is also possible to select which output pin is connected to the
EVENTOUT signal of the Cortex®-M0+. The EVENTOUT multiplexing is managed by the
GPIO alternate function capability (see Section 9.4.9: GPIO alternate function low register
(GPIOx_AFRL) (x = A to E and H) and Section 9.4.10: GPIO alternate function high register
(GPIOx_AFRH) (x = A to E and H)).

Note: EVENTOUT is not mapped on all GPIOs (for example PC13, PC14, PC15).

RM0367 Rev 8 255/1040

RM0367 System configuration controller (SYSCFG)

263

10.2 SYSCFG registers

The peripheral registers have to be accessed by words (32-bit).

10.2.1 SYSCFG memory remap register (SYSCFG_CFGR1)

This register is used for specific configurations related to memory remap:

Note: This register is not reset through the SYSCFGRST bit in the RCC_APB2RSTR register.

Address offset: 0x00

Reset value: 0x000x 000x (X is the memory mode selected by the boot configuration).

)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. BOOT_MODE Res. Res. Res. Res. UFB Res. MEM_MODE

r r rw rw rw

Bits 31:10 Reserved, must be kept at reset value

Bits 9:8 BOOT_MODE: Boot mode selected by the boot pins status bits

These bits are read-only. They indicate the boot mode selected by the BOOT pins. Bit 9
corresponds to the complement of nBOOT1 bit in the FLASH_OPTR register. Its value is
defined in the option bytes. Bit 8 corresponds to the value sampled on BOOT0 pin (see
Section 2.4: Boot configuration on page 64).
00: Main Flash memory boot mode
01: System Flash memory boot mode
10: Reserved
11: Embedded SRAM boot mode

Bits 7:4 Reserved, must be kept at reset value

System configuration controller (SYSCFG) RM0367

256/1040 RM0367 Rev 8

Bit 3 UFB: User bank swapping

This bit is available only on category 5 devices and reserved on other categories.
It is set and cleared by software. It controls the Bank 1/2 mapping (see Table 8: NVM
organization for UFB = 0 (128 Kbyte category 5 devices) and Table 10: NVM organization
for UFB = 0 (64 Kbyte category 5 devices)).
0: Flash Program memory Bank 1 is mapped at 0x0800 0000 (and aliased at 0x0000 0000 if
MEM_MODE=00) and Data EEPROM Bank 1 at 0x0808 0000 (aliased at 0x0008 0000 if
MEM_MODE=00)
1: Flash Program memory Bank 2 is mapped at 0x0800 0000 (and aliased at 0x0000 0000 if
MEM_MODE=00) and Data EEPROM Bank 2 at 0x0808 0000 (and aliased at 0x0008 0000
if MEM_MODE=00)

Bit 2 Reserved, must be kept at reset value

Bits 1:0 MEM_MODE: Memory mapping selection bits

These bits are set and cleared by software. This bit controls the memory’s internal mapping
at address 0x0000 0000. After reset these bits take on the memory mapping selected by the
BOOT pins (see Section 2.4: Boot configuration on page 64).
00: Main Flash memory mapped at 0x0000 0000
01: System Flash memory mapped at 0x0000 0000
10: reserved
11: SRAM mapped at 0x0000 0000.

RM0367 Rev 8 257/1040

RM0367 System configuration controller (SYSCFG)

263

10.2.2 SYSCFG peripheral mode configuration register (SYSCFG_CFGR2)

Address offset: 0x04

Reset value: 0x0000 0001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
I2C3_
FMP

I2C2_FMP I2C1_FMP
I2C_PB9

_FMP
I2C_PB8

_FMP
I2C_PB7

_FMP
I2C_PB6

_FMP
Res. Res. LCD_CAPA[4:0] FWDIS

rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value

Bit 14 I2C3 FMP: I2C3 Fm+ drive capability enable bit

This bit is set and cleared by software. When it is set, Fm+ mode is enabled on I2C3 pins
PC0, PC1, PA8 and PB4 selected through the IOPORT control registers AF selection bits.

Bit 13 I2C2 FMP: I2C2 Fm+ drive capability enable bit

This bit is set and cleared by software. When it is set, Fm+ mode is enabled on I2C2 pins
PB13 and PB14 selected through the IOPORT control registers AF selection bits.

Bit 12 I2C1 FMP: I2C1 Fm+ drive capability enable bit

This bit is set and cleared by software. When it is set, Fm+ mode is enabled on I2C1 pins
selected through the IOPORT control registers AF selection bits. This bit is bit is OR-ed with
I2C_PBx_FMP bits.

Bit 11 I2C PB9 FMP: Fm+ drive capability on PB9 enable bit

This bit is set and cleared by software. When it is set, it forces Fm+ drive capability on PB9.

Bit 10 I2C PB8 FMP: Fm+ drive capability on PB8 enable bit

This bit is set and cleared by software. When it is set, it forces Fm+ drive capability on PB8.

Bit 9 I2C PB7 FMP: Fm+ drive capability on PB7 enable bit

This bit is set and cleared by software. When it is set, it forces Fm+ drive capability on PB7.

Bit 8 I2C PB6 FMP: Fm+ drive capability on PB6 enable bit

This bit is set and cleared by software. When it is set, it forces Fm+ drive capability on PB6.

System configuration controller (SYSCFG) RM0367

258/1040 RM0367 Rev 8

10.2.3 Reference control and status register (SYSCFG_CFGR3)

The SYSCFG_CFGR3 register is the reference control/status register. It contains all the
bits/flags related to VREFINT and temperature sensor.

Address offset: 0x20

System reset value: 0x0000 0000

Bits 7:4 Reserved, must be kept at reset value

Bits 5:1 LCD_CAPA[4:0]: Decoupling capacitance connection (refer to the datasheet for details on
the device capability)

These bits are set and cleared by software. They control the connection of the internal VLCD
rails supply voltage to a dedicated I/O (LCD_VLCD1, LCD_VLCD2, LCD_VLCD3) to
perform an optional decoupling.
Bit 1 controls the connection of VLCDrail2 on PB2/LCD_VLCD2
0: VLCDrail2 not connected to PB2/LCD_VLCD2
1: VLCDrail2 connected to PB2/LCD_VLCD2
Bit 2 controls the connection of VLCDrail1 on PB12
Bit 3 controls the connection of VLCDrail3 on PB0
Bit 4 controls the connection of VLCDrail1 on PE11
Bit 5 controls the connection of VLCDrail3 on PE12
Refers to Section : External decoupling for details.

Bit 0 FWDIS: Firewall disable bit

This bit is set by default (after reset). It is cleared by software to protect the access to the
memory segments according to the Firewall configuration.Once cleared it cannot be set by
software. Only a system reset set the bit.
0: Firewall access enabled
1: Firewall access disabled

Note: This bit cannot be set by an APB reset. A system reset is required to set it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REF_
LOCK

VREFINT
_RDYF

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rs r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.
ENREF_

HSI48

ENBUF_
VREFINT_

COMP2
Res. Res.

ENBUF_
SENSOR

_ADC

ENBUF_
VREFINT

_ ADC
Res. Res.

SEL_VREF
_OUT

Res. Res. Res.
EN_VR
EFINT

rw rw rw rw rw rw rw

RM0367 Rev 8 259/1040

RM0367 System configuration controller (SYSCFG)

263

Bit 31 REF_LOCK: SYSCFG_CFGR3 lock bit

This bit is set by software and cleared by a hardware system reset. It locks the whole
content of the reference control/Status register, SYSCFG_CFGR3[31:0].
0: SYSCFG_CFGR3[31:0] bits are read/write
1: SYSCFG_CFGR3[31:0] bits are read-only

Bit 30 VREFINT_RDYF: VREFINT ready flag

This bit is read-only. It shows the state of the internal voltage reference, VREFINT. When
set, it indicates that VREFINT is available for BOR, PVD and LCD.
0: VREFINT OFF
1: VREFINT ready

Bits 29:14 Reserved, must be kept at reset value

Bit 13 ENREF_HSI48: VREFINT reference for HSI48 oscillator enable bit

This bit is set and cleared by software (only if REF_LOCK not set).
0: Buffer used to generate VREFINT reference for the HSI48 oscillator switched OFF.
1: Buffer used to generate VREFINT reference for the HSI48oscillator switched ON.

Bit 12 ENBUF_VREFINT_COMP2: VREFINT reference for COMP2 scaler enable bit

This bit is set and cleared by software (only if REF_LOCK not set).
0: Disables the buffer used to generate VREFINT references for COMP2.
1: Enables the buffer used to generate VREFINT references for COMP2.

Bits 11:10 Reserved, must be kept at reset value

Bit 9 ENBUF_SENSOR_ADC: Temperature sensor reference for ADC enable bit

This bit is set and cleared by software (only if REF_LOCK not set). When this bit is set, the
VREFINT is automatically enabled.
0: Disables the buffer used to generate VREFINT reference for the temperature sensor.
1: Enables the buffer used to generate VREFINT reference for the temperature sensor.

Bit 8 ENBUF_VREFINT_ADC: VREFINT reference for ADC enable bit

This bit is set and cleared by software (only if REF_LOCK not set).
0: Disables the buffer used to generate VREFINT reference for the ADC.
1: Enables the buffer used to generate VREFINT reference for the ADC.

Bits 7:6 Reserved, must be kept at reset value

System configuration controller (SYSCFG) RM0367

260/1040 RM0367 Rev 8

10.2.4 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)

Address offset: 0x08

Reset value: 0x0000

Bits 5:4 SEL_VREF_OUT: VREFINT_ADC connection bit

These bits are set and cleared by software (only if REF_LOCK not set). These bits select
which pad is connected to VREFINT_ADC when ENBUF_VREFINT_ADC is set.
00: no pad connected
01: PB0 connected
10: PB1 connected
11: PB0 and PB1 connected

Bits 3:1 Reserved, must be kept at reset value

Bit 0 EN_VREFINT: VREFINT enable and scaler control for COMP2 enable bit

This bit is set and cleared by software (only if REF_LOCK not set). It switches on VREFINT
internal reference voltage and enables the scaler for COMP2.
0: VREFINT voltage disabled in low-power mode (if ULP=1) and scaler for COMP2 disabled
1: VREFINT voltage enabled in low-power mode and scaler for COMP2 enabled

Note: It is forbidden to configure both EN_VREFINT = 1 and ULP = 1 if the device is in Stop
mode or in Sleep/Low-power sleep mode (refer to Section 6.4.1: PWR power control
register (PWR_CR) for a description of the ULP bit). If the device is not in low-power
mode, VREFINT is always enabled whatever the state of EN_VREFINT and ULP.
EN_VREFINT controls only COMP2 scaler. The Scaler must be enabled to provide
VREFINT voltage or its fraction to COMP2 (scaler performs VREFINT buffering and
scaling).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PH[x] (only PH[1:0] and PH[10:9])
Other configurations are reserved

RM0367 Rev 8 261/1040

RM0367 System configuration controller (SYSCFG)

263

10.2.5 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000

10.2.6 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3)

Address offset: 0x10

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
Other configurations are reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PH[x] (only PH[1:0] and PH[10:9])
Other configurations are reserved.

System configuration controller (SYSCFG) RM0367

262/1040 RM0367 Rev 8

10.2.7 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4)

Address offset: 0x14

Reset value: 0x0000

10.2.8 SYSCFG register map

The following table gives the SYSCFG register map and the reset values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
Other configurations are reserved.

Table 49. SYSCFG register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x00

SYSCFG_CFGR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

B
O

O
T

_M
O

D
E

R
es

.

R
es

.

R
es

.

R
es

.

U
F

B
.

R
es

.

M
E

M
_

M
O

D
E

Reset value x x x x x

0x04 SYSCFG_CFGR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

I2
C

3
_F

M
P

I2
C

2
_F

M
P

I2
C

1
_F

M
P

I2
C

_
P

B
9

_F
M

P

I2
C

_
P

B
8

_F
M

P

I2
C

_
P

B
7

_F
M

P

I2
C

_
P

B
6

_F
M

P

R
es

.

R
es

.

C
A

P
A

[4
:0

]

F
W

D
IS

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 1

0x08

SYSCFG_
EXTICR1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C

SYSCFG_
EXTICR2 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0367 Rev 8 263/1040

RM0367 System configuration controller (SYSCFG)

263

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x10

SYSCFG_
EXTICR3 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14

SYSCFG_
EXTICR4 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18 COMP1_CTRL
Refer to Section 16: Comparator (COMP)

0x1C COMP2_CTRL

0x20
SYSCFG_CFGR3

R
E

F
_L

O
C

K

V
R

E
F

IN
T

_
R

D
Y

F

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
N

R
E

F
_

H
S

I4
8

E
N

B
U

F
_V

R
E

F
IN

T
_C

O
M

P
2

R
es

.

R
es

.

E
N

B
U

F
_

S
E

N
S

O
R

_A
D

C

E
N

B
U

F
_V

R
E

F
IN

T
_

A
D

C

R
es

.

R
es

.

S
E

L
_

V
R

E
F

_O
U

T

R
es

.

R
es

.

R
es

.

E
N

_V
R

E
F

IN
T

Reset value 0 0 0 0 0 0 0 0 0

Table 49. SYSCFG register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Direct memory access controller (DMA) RM0367

264/1040 RM0367 Rev 8

11 Direct memory access controller (DMA)

11.1 Introduction

The direct memory access (DMA) controller is a bus master and system peripheral.

The DMA is used to perform programmable data transfers between memory-mapped
peripherals and/or memories, upon the control of an off-loaded CPU.

The DMA controller features a single AHB master architecture.

There is one instance of DMA with 7 channels.

Each channel is dedicated to managing memory access requests from one or more
peripherals. The DMA includes an arbiter for handling the priority between DMA requests.

11.2 DMA main features

• Single AHB master

• Peripheral-to-memory, memory-to-peripheral, memory-to-memory and peripheral-to-
peripheral data transfers

• Access, as source and destination, to on-chip memory-mapped devices such as Flash
memory, SRAM, and AHB and APB peripherals

• All DMA channels independently configurable:

– Each channel is associated either with a DMA request signal coming from a
peripheral, or with a software trigger in memory-to-memory transfers. This
configuration is done by software.

– Priority between the requests is programmable by software (4 levels per channel:
very high, high, medium, low) and by hardware in case of equality (such as
request to channel 1 has priority over request to channel 2).

– Transfer size of source and destination are independent (byte, half-word, word),
emulating packing and unpacking. Source and destination addresses must be
aligned on the data size.

– Support of transfers from/to peripherals to/from memory with circular buffer
management

– Programmable number of data to be transferred: 0 to 216 - 1

• Generation of an interrupt request per channel. Each interrupt request is caused from
any of the three DMA events: transfer complete, half transfer, or transfer error.

RM0367 Rev 8 265/1040

RM0367 Direct memory access controller (DMA)

287

11.3 DMA implementation

11.3.1 DMA

DMA is implemented with the hardware configuration parameters shown in the table below.

11.3.2 DMA request mapping

DMA controller

The hardware requests from the peripherals (TIM2/6, ADC, DAC, SPI1/2, I2C1/2, AES
(available only on category 3 and 5 devices, with AES), USART1/2 and LPUART1) are
mapped to the DMA channels through the DMA_CSELR channel selection registers (see
Figure 27).

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Caution: A same peripheral request can be assigned to two different channels only if the application
ensures that these channels are not requested to be served at the same time. In other
words, if two different channels receive a same asserted peripheral request at the same
time, an unpredictable DMA hardware behavior occurs.

Table 51 lists the DMA requests for each channel.

Table 50. DMA implementation

Feature DMA

Number of channels 7

Direct memory access controller (DMA) RM0367

266/1040 RM0367 Rev 8

Figure 27. DMA request mapping

Peripheral request signals

Internal
DMA request

Fixed hardware priority

High priority

Low priority

DMA

SW trigger 1
(MEM2MEM bit)

SW trigger 2
(MEM2MEM bit)

SW trigger 3
(MEM2MEM bit)

SW trigger 5
(MEM2MEM bit)

SW trigger 6
(MEM2MEM bit)

SW trigger 7
(MEM2MEM bit)

ADC, TIM2_CH3,AES_IN

ADC,SPI1_RX,USART1_TX,
LPUART1_TX,I2C1_TX,I2C3_TX,
TIM2_UP,TIM6_UP/DAC chan. 1,

AES_OUT,TIM3_CH3,
USART4_RX, USART5_RX

SPI1_TX, USART1_RX,I2C3_RX
LPUART1_RX, I2C1_RX,

TIM2_CH2, TIM3_CH4,TIM3_UP,
USART4_TX,USART5_TX,

AES_OUT

SPI2_RX, USART1_TX,
USART2_TX, I2C2_TX, I2C3_TX,
TIM2_CH4,TIM7_UP/DAC chan. 2

SPI2_TX, USART1_RX,
USART2_RX, I2C2_RX,

TIM2_CH1, TIM3_CH1, AES_IN,
I2C3_RX

SPI2_RX, USART2_RX,
LPUART1_RX, I2C1_TX,

TIM3_TRIG, USART4_RX,
USART5_RX

SPI2_TX, USART2_TX,
USART4_TX, USART5_TX,

LPUART1_TX, I2C1_RX,
TIM2_CH2, TIM2_CH4

SW trigger 4
(MEM2MEM bit)

MS33701V3

DMA_CSELR

C7S
4

C6S

4

C5S

4

C4S

4

C3S
4

C2S

4

C1S

4

Table 51. DMA requests for each channel

CxS[3:0] Peripheral Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

0000 ADC ADC ADC - - - - -

0001 SPI1 - SPI1_RX SPI1_TX - - - -

0010 SPI2 - - - SPI2_RX SPI2_TX SPI2_RX SPI2_TX

0011 USART1 -
USART1_

TX
USART1_

RX
USART1_

TX
USART1_

RX
- -

0100 USART2 - - -
USART2_

TX
USART2_

RX
USART2_

RX
USART2_

TX

0101 LPUART1 -
LPUART1_

TX
LPUART1_

RX
- -

LPUART1
_RX

LPUART1_
TX

0110 I2C1 - I2C1_TX I2C1_RX - - I2C1_TX I2C1_RX

RM0367 Rev 8 267/1040

RM0367 Direct memory access controller (DMA)

287

11.4 DMA functional description

11.4.1 DMA block diagram

0111 I2C2 - - - I2C2_TX I2C2_RX - -

1000 TIM2
TIM2_
CH3

TIM2_UP TIM2_CH2 TIM2_CH4 TIM2_CH1 -
TIM2_CH2
TIM2_CH4

1001
TIM6_UP/

DAC_
channel1

-
TIM6_UP/

DAC_
channel1

- - - - -

1010 TIM3 - TIM3_CH3
TIM3_CH4
TIM3_UP

- TIM3_CH1
TIM3_
TRIG

-

1011 AES(1) AES_IN AES_OUT AES_OUT - AES_IN - -

1100 USART4 -
USART4_

RX
USART4_

TX
- -

USART4_
RX

USART4_
TX

1101 USART5 -
USART5_

RX
USART5_

TX
- -

USART5_
RX

USART5_
TX

1110 I2C3 - I2C3_TX I2C3_RX I2C3_TX I2C3_RX - -

1111
TIM7_UP/

DAC_
channel2

- - -
TIM7_UP/

DAC_
channel2

- - -

1. Available only on category 3 and 5 with AES.

Table 51. DMA requests for each channel (continued)

CxS[3:0] Peripheral Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

Direct memory access controller (DMA) RM0367

268/1040 RM0367 Rev 8

The DMA block diagram is shown in the figure below.

Figure 28. DMA block diagram

The DMA controller performs direct memory transfer by sharing the AHB system bus with
other system masters. The bus matrix implements round-robin scheduling. DMA requests
may stop the CPU access to the system bus for a number of bus cycles, when CPU and
DMA target the same destination (memory or peripheral).

According to its configuration through the AHB slave interface, the DMA controller arbitrates
between the DMA channels and their associated received requests. The DMA controller
also schedules the DMA data transfers over the single AHB port master.

The DMA controller generates an interrupt per channel to the interrupt controller.

11.4.2 DMA transfers

The software configures the DMA controller at channel level, in order to perform a block
transfer, composed of a sequence of AHB bus transfers.

A DMA block transfer may be requested from a peripheral, or triggered by the software in
case of memory-to-memory transfer.

MS32796V3

SRAM

Ch.1

Ch.2

Arbiter

Cortex-
M0+

AHB Slave

DMA

System

DMA request

APB

B
us

 m
at

rix
DMA

Reset &
Clock control

(RCC)

FLITF Flash

up to
Ch.7

ADC
SPI1/SPI2

USART1/2/4/5
LPUART1
I2C1/2/3

TIM2/3/6/7
DAC2

CRC

Bridge

AES

RM0367 Rev 8 269/1040

RM0367 Direct memory access controller (DMA)

287

After an event, the following steps of a single DMA transfer occur:

1. The peripheral sends a single DMA request signal to the DMA controller.

2. The DMA controller serves the request, depending on the priority of the channel
associated to this peripheral request.

3. As soon as the DMA controller grants the peripheral, an acknowledge is sent to the
peripheral by the DMA controller.

4. The peripheral releases its request as soon as it gets the acknowledge from the DMA
controller.

5. Once the request is de-asserted by the peripheral, the DMA controller releases the
acknowledge.

The peripheral may order a further single request and initiate another single DMA transfer.

The request/acknowledge protocol is used when a peripheral is either the source or the
destination of the transfer. For example, in case of memory-to-peripheral transfer, the
peripheral initiates the transfer by driving its single request signal to the DMA controller. The
DMA controller reads then a single data in the memory and writes this data to the peripheral.

For a given channel x, a DMA block transfer consists of a repeated sequence of:

• a single DMA transfer, encapsulating two AHB transfers of a single data, over the DMA
AHB bus master:

– a single data read (byte, half-word or word) from the peripheral data register or a
location in the memory, addressed through an internal current peripheral/memory
address register.
The start address used for the first single transfer is the base address of the
peripheral or memory, and is programmed in the DMA_CPARx or DMA_CMARx
register.

– a single data write (byte, half-word or word) to the peripheral data register or a
location in the memory, addressed through an internal current peripheral/memory
address register.
The start address used for the first transfer is the base address of the peripheral or
memory, and is programmed in the DMA_CPARx or DMA_CMARx register.

• post-decrementing of the programmed DMA_CNDTRx register
This register contains the remaining number of data items to transfer (number of AHB
‘read followed by write’ transfers).

This sequence is repeated until DMA_CNDTRx is null.

Note: The AHB master bus source/destination address must be aligned with the programmed size
of the transferred single data to the source/destination.

11.4.3 DMA arbitration

The DMA arbiter manages the priority between the different channels.

When an active channel x is granted by the arbiter (hardware requested or software
triggered), a single DMA transfer is issued (such as a AHB ‘read followed by write’ transfer
of a single data). Then, the arbiter considers again the set of active channels and selects the
one with the highest priority.

Direct memory access controller (DMA) RM0367

270/1040 RM0367 Rev 8

The priorities are managed in two stages:

• software: priority of each channel is configured in the DMA_CCRx register, to one of
the four different levels:

– very high

– high

– medium

– low

• hardware: if two requests have the same software priority level, the channel with the
lowest index gets priority. For example, channel 2 gets priority over channel 4.

When a channel x is programmed for a block transfer in memory-to-memory mode,
re arbitration is considered between each single DMA transfer of this channel x. Whenever
there is another concurrent active requested channel, the DMA arbiter automatically
alternates and grants the other highest-priority requested channel, which may be of lower
priority than the memory-to-memory channel.

11.4.4 DMA channels

Each channel may handle a DMA transfer between a peripheral register located at a fixed
address, and a memory address. The amount of data items to transfer is programmable.
The register that contains the amount of data items to transfer is decremented after each
transfer.

A DMA channel is programmed at block transfer level.

Programmable data sizes

The transfer sizes of a single data (byte, half-word, or word) to the peripheral and memory
are programmable through, respectively, the PSIZE[1:0] and MSIZE[1:0] fields of the
DMA_CCRx register.

Pointer incrementation

The peripheral and memory pointers may be automatically incremented after each transfer,
depending on the PINC and MINC bits of the DMA_CCRx register.

If the incremented mode is enabled (PINC or MINC set to 1), the address of the next
transfer is the address of the previous one incremented by 1, 2 or 4, depending on the data
size defined in PSIZE[1:0] or MSIZE[1:0]. The first transfer address is the one programmed
in the DMA_CPARx or DMA_CMARx register. During transfers, these registers keep the
initially programmed value. The current transfer addresses (in the current internal
peripheral/memory address register) are not accessible by software.

If the channel x is configured in non-circular mode, no DMA request is served after the last
data transfer (once the number of single data to transfer reaches zero). The DMA channel
must be disabled in order to reload a new number of data items into the DMA_CNDTRx
register.

Note: If the channel x is disabled, the DMA registers are not reset. The DMA channel registers
(DMA_CCRx, DMA_CPARx and DMA_CMARx) retain the initial values programmed during
the channel configuration phase.

In circular mode, after the last data transfer, the DMA_CNDTRx register is automatically
reloaded with the initially programmed value. The current internal address registers are
reloaded with the base address values from the DMA_CPARx and DMA_CMARx registers.

RM0367 Rev 8 271/1040

RM0367 Direct memory access controller (DMA)

287

Channel configuration procedure

The following sequence is needed to configure a DMA channel x:

1. Set the peripheral register address in the DMA_CPARx register.
The data is moved from/to this address to/from the memory after the peripheral event,
or after the channel is enabled in memory-to-memory mode.

2. Set the memory address in the DMA_CMARx register.
The data is written to/read from the memory after the peripheral event or after the
channel is enabled in memory-to-memory mode.

3. Configure the total number of data to transfer in the DMA_CNDTRx register.
After each data transfer, this value is decremented.

4. Configure the parameters listed below in the DMA_CCRx register:

– the channel priority

– the data transfer direction

– the circular mode

– the peripheral and memory incremented mode

– the peripheral and memory data size

– the interrupt enable at half and/or full transfer and/or transfer error

5. Activate the channel by setting the EN bit in the DMA_CCRx register.

A channel, as soon as enabled, may serve any DMA request from the peripheral connected
to this channel, or may start a memory-to-memory block transfer.

Note: The two last steps of the channel configuration procedure may be merged into a single
access to the DMA_CCRx register, to configure and enable the channel.

Channel state and disabling a channel

A channel x in active state is an enabled channel (read DMA_CCRx.EN = 1). An active
channel x is a channel that must have been enabled by the software (DMA_CCRx.EN set
to 1) and afterwards with no occurred transfer error (DMA_ISR.TEIFx = 0). In case there is a
transfer error, the channel is automatically disabled by hardware (DMA_CCRx.EN = 0).

The three following use cases may happen:

• Suspend and resume a channel

This corresponds to the two following actions:

– An active channel is disabled by software (writing DMA_CCRx.EN = 0 whereas
DMA_CCRx.EN = 1).

– The software enables the channel again (DMA_CCRx.EN set to 1) without
reconfiguring the other channel registers (such as DMA_CNDTRx, DMA_CPARx
and DMA_CMARx).

This case is not supported by the DMA hardware, that does not guarantee that the
remaining data transfers are performed correctly.

• Stop and abort a channel

If the application does not need any more the channel, this active channel can be
disabled by software. The channel is stopped and aborted but the DMA_CNDTRx

Direct memory access controller (DMA) RM0367

272/1040 RM0367 Rev 8

register content may not correctly reflect the remaining data transfers versus the
aborted source and destination buffer/register.

• Abort and restart a channel

This corresponds to the software sequence: disable an active channel, then
reconfigure the channel and enable it again.

This is supported by the hardware if the following conditions are met:

– The application guarantees that, when the software is disabling the channel, a
DMA data transfer is not occurring at the same time over its master port. For
example, the application can first disable the peripheral in DMA mode, in order to
ensure that there is no pending hardware DMA request from this peripheral.

– The software must operate separated write accesses to the same DMA_CCRx
register: First disable the channel. Second reconfigure the channel for a next block
transfer including the DMA_CCRx if a configuration change is needed. There are
read-only DMA_CCRx register fields when DMA_CCRx.EN=1. Finally enable
again the channel.

When a channel transfer error occurs, the EN bit of the DMA_CCRx register is cleared by
hardware. This EN bit can not be set again by software to re-activate the channel x, until the
TEIFx bit of the DMA_ISR register is set.

Circular mode (in memory-to-peripheral/peripheral-to-memory transfers)

The circular mode is available to handle circular buffers and continuous data flows (such as
ADC scan mode). This feature is enabled using the CIRC bit in the DMA_CCRx register.

Note: The circular mode must not be used in memory-to-memory mode. Before enabling a
channel in circular mode (CIRC = 1), the software must clear the MEM2MEM bit of the
DMA_CCRx register. When the circular mode is activated, the amount of data to transfer is
automatically reloaded with the initial value programmed during the channel configuration
phase, and the DMA requests continue to be served.

In order to stop a circular transfer, the software needs to stop the peripheral from generating
DMA requests (such as quit the ADC scan mode), before disabling the DMA channel.
The software must explicitly program the DMA_CNDTRx value before starting/enabling a
transfer, and after having stopped a circular transfer.

Memory-to-memory mode

The DMA channels may operate without being triggered by a request from a peripheral. This
mode is called memory-to-memory mode, and is initiated by software.

If the MEM2MEM bit in the DMA_CCRx register is set, the channel, if enabled, initiates
transfers. The transfer stops once the DMA_CNDTRx register reaches zero.

Note: The memory-to-memory mode must not be used in circular mode. Before enabling a
channel in memory-to-memory mode (MEM2MEM = 1), the software must clear the CIRC
bit of the DMA_CCRx register.

RM0367 Rev 8 273/1040

RM0367 Direct memory access controller (DMA)

287

Peripheral-to-peripheral mode

Any DMA channel can operate in peripheral-to-peripheral mode:

• when the hardware request from a peripheral is selected to trigger the DMA channel

This peripheral is the DMA initiator and paces the data transfer from/to this peripheral
to/from a register belonging to another memory-mapped peripheral (this one being not
configured in DMA mode).

• when no peripheral request is selected and connected to the DMA channel

The software configures a register-to-register transfer by setting the MEM2MEM bit of
the DMA_CCRx register.

Programming transfer direction, assigning source/destination

The value of the DIR bit of the DMA_CCRx register sets the direction of the transfer, and
consequently, it identifies the source and the destination, regardless the source/destination
type (peripheral or memory):

• DIR = 1 defines typically a memory-to-peripheral transfer. More generally, if DIR = 1:

– The source attributes are defined by the DMA_MARx register, the MSIZE[1:0]
field and MINC bit of the DMA_CCRx register.
Regardless of their usual naming, these ‘memory’ register, field and bit are used to
define the source peripheral in peripheral-to-peripheral mode.

– The destination attributes are defined by the DMA_PARx register, the PSIZE[1:0]
field and PINC bit of the DMA_CCRx register.
Regardless of their usual naming, these ‘peripheral’ register, field and bit are used
to define the destination memory in memory-to-memory mode.

• DIR = 0 defines typically a peripheral-to-memory transfer. More generally, if DIR = 0:

– The source attributes are defined by the DMA_PARx register, the PSIZE[1:0] field
and PINC bit of the DMA_CCRx register.
Regardless of their usual naming, these ‘peripheral’ register, field and bit are used
to define the source memory in memory-to-memory mode

– The destination attributes are defined by the DMA_MARx register, the
MSIZE[1:0] field and MINC bit of the DMA_CCRx register.
Regardless of their usual naming, these ‘memory’ register, field and bit are used to
define the destination peripheral in peripheral-to-peripheral mode.

11.4.5 DMA data width, alignment and endianness

When PSIZE[1:0] and MSIZE[1:0] are not equal, the DMA controller performs some data
alignments as described in the table below.

Direct memory access controller (DMA) RM0367

274/1040 RM0367 Rev 8

Addressing AHB peripherals not supporting byte/half-word write transfers

When the DMA controller initiates an AHB byte or half-word write transfer, the data are
duplicated on the unused lanes of the AHB master 32-bit data bus (HWDATA[31:0]).

When the AHB slave peripheral does not support byte or half-word write transfers and does
not generate any error, the DMA controller writes the 32 HWDATA bits as shown in the two
examples below:

• To write the half-word 0xABCD, the DMA controller sets the HWDATA bus to
0xABCDABCD with a half-word data size (HSIZE = HalfWord in AHB master bus).

• To write the byte 0xAB, the DMA controller sets the HWDATA bus to 0xABABABAB
with a byte data size (HSIZE = Byte in the AHB master bus).

Table 52. Programmable data width and endian behavior (when PINC = MINC = 1)

Source
port

width
(MSIZE

if
DIR = 1,

else
PSIZE)

Destinat
ion port
width

(PSIZE
if

DIR = 1,
else

MSIZE)

Number
of data
items to
transfer
(NDT)

Source content:
address / data

(DMA_CMARx if
DIR = 1, else

DMA_CPARx)

DMA transfers

Destination
content:

address / data
(DMA_CPARx if

DIR = 1, else
DMA_CMARx)

8 8 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: read B0[7:0] @0x0 then write B0[7:0] @0x0
2: read B1[7:0] @0x1 then write B1[7:0] @0x1
3: read B2[7:0] @0x2 then write B2[7:0] @0x2
4: read B3[7:0] @0x3 then write B3[7:0] @0x3

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

8 16 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: read B0[7:0] @0x0 then write 00B0[15:0] @0x0
2: read B1[7:0] @0x1 then write 00B1[15:0] @0x2
3: read B2[7:0] @0x2 then write 00B2[15:0] @0x4
4: read B3[7:0] @0x3 then write 00B3[15:0] @0x6

@0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3

8 32 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: read B0[7:0] @0x0 then write 000000B0[31:0] @0x0
2: read B1[7:0] @0x1 then write 000000B1[31:0] @0x4
3: read B2[7:0] @0x2 then write 000000B2[31:0] @0x8
4: read B3[7:0] @0x3 then write 000000B3[31:0] @0xC

@0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3

16 8 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: read B1B0[15:0] @0x0 then write B0[7:0] @0x0
2: read B3B2[15:0] @0x2 then write B2[7:0] @0x1
3: read B5B4[15:0] @0x4 then write B4[7:0] @0x2
4: read B7B6[15:0] @0x6 then write B6[7:0] @0x3

@0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6

16 16 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: read B1B0[15:0] @0x0 then write B1B0[15:0] @0x0
2: read B3B2[15:0] @0x2 then write B3B2[15:0] @0x2
3: read B5B4[15:0] @0x4 then write B5B4[15:0] @0x4
4: read B7B6[15:0] @0x6 then write B7B6[15:0] @0x6

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

16 32 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: read B1B0[15:0] @0x0 then write 0000B1B0[31:0] @0x0
2: read B3B2[15:0] @0x2 then write 0000B3B2[31:0] @0x4
3: read B5B4[15:0] @0x4 then write 0000B5B4[31:0] @0x8
4: read B7B6[15:0] @0x6 then write 0000B7B6[31:0] @0xC

@0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6

32 8 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: read B3B2B1B0[31:0] @0x0 then write B0[7:0] @0x0
2: read B7B6B5B4[31:0] @0x4 then write B4[7:0] @0x1
3: read BBBAB9B8[31:0] @0x8 then write B8[7:0] @0x2
4: read BFBEBDBC[31:0] @0xC then write BC[7:0] @0x3

@0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC

32 16 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: read B3B2B1B0[31:0] @0x0 then write B1B0[15:0] @0x0
2: read B7B6B5B4[31:0] @0x4 then write B5B4[15:0] @0x2
3: read BBBAB9B8[31:0] @0x8 then write B9B8[15:0] @0x4
4: read BFBEBDBC[31:0] @0xC then write BDBC[15:0] @0x6

@0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC

32 32 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: read B3B2B1B0[31:0] @0x0 then write B3B2B1B0[31:0] @0x0
2: read B7B6B5B4[31:0] @0x4 then write B7B6B5B4[31:0] @0x4
3: read BBBAB9B8[31:0] @0x8 then write BBBAB9B8[31:0] @0x8
4: read BFBEBDBC[31:0] @0xC then write BFBEBDBC[31:0] @0xC

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

RM0367 Rev 8 275/1040

RM0367 Direct memory access controller (DMA)

287

Assuming the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take into
account the HSIZE data, any AHB byte or half-word transfer is changed into a 32-bit APB
transfer as described below:

• An AHB byte write transfer of 0xB0 to one of the 0x0, 0x1, 0x2 or 0x3 addresses, is
converted to an APB word write transfer of 0xB0B0B0B0 to the 0x0 address.

• An AHB half-word write transfer of 0xB1B0 to the 0x0 or 0x2 addresses, is converted to
an APB word write transfer of 0xB1B0B1B0 to the 0x0 address.

11.4.6 DMA error management

A DMA transfer error is generated when reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or write access, the faulty
channel x is automatically disabled through a hardware clear of its EN bit in the
corresponding DMA_CCRx register.

The TEIFx bit of the DMA_ISR register is set. An interrupt is then generated if the TEIE bit of
the DMA_CCRx register is set.

The EN bit of the DMA_CCRx register can not be set again by software (channel x re-
activated) until the TEIFx bit of the DMA_ISR register is cleared (by setting the CTEIFx bit of
the DMA_IFCR register).

When the software is notified with a transfer error over a channel which involves a
peripheral, the software has first to stop this peripheral in DMA mode, in order to disable any
pending or future DMA request. Then software may normally reconfigure both DMA and the
peripheral in DMA mode for a new transfer.

11.5 DMA interrupts

An interrupt can be generated on a half transfer, transfer complete or transfer error for each
DMA channel x. Separate interrupt enable bits are available for flexibility.

11.6 DMA registers

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

The DMA registers have to be accessed by words (32-bit).

Table 53. DMA interrupt requests

Interrupt request Interrupt event Event flag
Interrupt

enable bit

Channel x interrupt

Half transfer on channel x HTIFx HTIEx

Transfer complete on channel x TCIFx TCIEx

Transfer error on channel x TEIFx TEIEx

Half transfer or transfer complete or transfer error on channel x GIFx -

Direct memory access controller (DMA) RM0367

276/1040 RM0367 Rev 8

11.6.1 DMA interrupt status register (DMA_ISR)

Address offset: 0x00

Reset value: 0x0000 0000

Every status bit is cleared by hardware when the software sets the corresponding clear bit
or the corresponding global clear bit CGIFx, in the DMA_IFCR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. TEIF7 HTIF7 TCIF7 GIF7 TEIF6 HTIF6 TCIF6 GIF6 TEIF5 HTIF5 TCIF5 GIF5

r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEIF4 HTIF4 TCIF4 GIF4 TEIF3 HTIF3 TCIF3 GIF3 TEIF2 HTIF2 TCIF2 GIF2 TEIF1 HTIF1 TCIF1 GIF1

r r r r r r r r r r r r r r r r

Bits 31:28 Reserved, must be kept at reset value.

Bit 27 TEIF7: transfer error (TE) flag for channel 7

0: no TE event
1: a TE event occurred

Bit 26 HTIF7: half transfer (HT) flag for channel 7

0: no HT event
1: a HT event occurred

Bit 25 TCIF7: transfer complete (TC) flag for channel 7

0: no TC event
1: a TC event occurred

Bit 24 GIF7: global interrupt flag for channel 7

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 23 TEIF6: transfer error (TE) flag for channel 6

0: no TE event
1: a TE event occurred

Bit 22 HTIF6: half transfer (HT) flag for channel 6

0: no HT event
1: a HT event occurred

Bit 21 TCIF6: transfer complete (TC) flag for channel 6

0: no TC event
1: a TC event occurred

Bit 20 GIF6: global interrupt flag for channel 6

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 19 TEIF5: transfer error (TE) flag for channel 5

0: no TE event
1: a TE event occurred

Bit 18 HTIF5: half transfer (HT) flag for channel 5

0: no HT event
1: a HT event occurred

RM0367 Rev 8 277/1040

RM0367 Direct memory access controller (DMA)

287

Bit 17 TCIF5: transfer complete (TC) flag for channel 5

0: no TC event
1: a TC event occurred

Bit 16 GIF5: global interrupt flag for channel 5

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 15 TEIF4: transfer error (TE) flag for channel 4

0: no TE event
1: a TE event occurred

Bit 14 HTIF4: half transfer (HT) flag for channel 4

0: no HT event
1: a HT event occurred

Bit 13 TCIF4: transfer complete (TC) flag for channel 4

0: no TC event
1: a TC event occurred

Bit 12 GIF4: global interrupt flag for channel 4

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 11 TEIF3: transfer error (TE) flag for channel 3

0: no TE event
1: a TE event occurred

Bit 10 HTIF3: half transfer (HT) flag for channel 3

0: no HT event
1: a HT event occurred

Bit 9 TCIF3: transfer complete (TC) flag for channel 3

0: no TC event
1: a TC event occurred

Bit 8 GIF3: global interrupt flag for channel 3

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 7 TEIF2: transfer error (TE) flag for channel 2

0: no TE event
1: a TE event occurred

Bit 6 HTIF2: half transfer (HT) flag for channel 2

0: no HT event
1: a HT event occurred

Bit 5 TCIF2: transfer complete (TC) flag for channel 2

0: no TC event
1: a TC event occurred

Bit 4 GIF2: global interrupt flag for channel 2

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

Bit 3 TEIF1: transfer error (TE) flag for channel 1

0: no TE event
1: a TE event occurred

Direct memory access controller (DMA) RM0367

278/1040 RM0367 Rev 8

11.6.2 DMA interrupt flag clear register (DMA_IFCR)

Address offset: 0x04

Reset value: 0x0000 0000

Setting the global clear bit CGIFx of the channel x in this DMA_IFCR register, causes the
DMA hardware to clear the corresponding GIFx bit and any individual flag among TEIFx,
HTIFx, TCIFx, in the DMA_ISR register.

Setting any individual clear bit among CTEIFx, CHTIFx, CTCIFx in this DMA_IFCR register,
causes the DMA hardware to clear the corresponding individual flag and the global flag
GIFx in the DMA_ISR register, provided that none of the two other individual flags is set.

Writing 0 into any flag clear bit has no effect.

Bit 2 HTIF1: half transfer (HT) flag for channel 1

0: no HT event
1: a HT event occurred

Bit 1 TCIF1: transfer complete (TC) flag for channel 1

0: no TC event
1: a TC event occurred

Bit 0 GIF1: global interrupt flag for channel 1

0: no TE, HT or TC event
1: a TE, HT or TC event occurred

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res.

C
T

E
IF

7

C
H

T
IF

7

C
T

C
IF

7

C
G

IF
7

C
T

E
IF

6

C
H

T
IF

6

C
T

C
IF

6

C
G

IF
6

C
T

E
IF

5

C
H

T
IF

5

C
T

C
IF

5

C
G

IF
5

w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
T

E
IF

4

C
H

T
IF

4

C
T

C
IF

4

C
G

IF
4

C
T

E
IF

3

C
H

T
IF

3

C
T

C
IF

3

C
G

IF
3

C
T

E
IF

2

C
H

T
IF

2

C
T

C
IF

2

C
G

IF
2

C
T

E
IF

1

C
H

T
IF

1

C
T

C
IF

1

C
G

IF
1

w w w w w w w w w w w w w w w w

Bits 31:28 Reserved, must be kept at reset value.

Bit 27 CTEIF7: transfer error flag clear for channel 7

Bit 26 CHTIF7: half transfer flag clear for channel 7

Bit 25 CTCIF7: transfer complete flag clear for channel 7

Bit 24 CGIF7: global interrupt flag clear for channel 7

Bit 23 CTEIF6: transfer error flag clear for channel 6

Bit 22 CHTIF6: half transfer flag clear for channel 6

Bit 21 CTCIF6: transfer complete flag clear for channel 6

Bit 20 CGIF6: global interrupt flag clear for channel 6

Bit 19 CTEIF5: transfer error flag clear for channel 5

Bit 18 CHTIF5: half transfer flag clear for channel 5

RM0367 Rev 8 279/1040

RM0367 Direct memory access controller (DMA)

287

11.6.3 DMA channel x configuration register (DMA_CCRx)

Address offset: 0x08 + 0x14 * (x - 1), (x = 1 to 7)

Reset value: 0x0000 0000

The register fields/bits MEM2MEM, PL[1:0], MSIZE[1:0], PSIZE[1:0], MINC, PINC, and DIR
are read-only when EN = 1.

The states of MEM2MEM and CIRC bits must not be both high at the same time.

Bit 17 CTCIF5: transfer complete flag clear for channel 5

Bit 16 CGIF5: global interrupt flag clear for channel 5

Bit 15 CTEIF4: transfer error flag clear for channel 4

Bit 14 CHTIF4: half transfer flag clear for channel 4

Bit 13 CTCIF4: transfer complete flag clear for channel 4

Bit 12 CGIF4: global interrupt flag clear for channel 4

Bit 11 CTEIF3: transfer error flag clear for channel 3

Bit 10 CHTIF3: half transfer flag clear for channel 3

Bit 9 CTCIF3: transfer complete flag clear for channel 3

Bit 8 CGIF3: global interrupt flag clear for channel 3

Bit 7 CTEIF2: transfer error flag clear for channel 2

Bit 6 CHTIF2: half transfer flag clear for channel 2

Bit 5 CTCIF2: transfer complete flag clear for channel 2

Bit 4 CGIF2: global interrupt flag clear for channel 2

Bit 3 CTEIF1: transfer error flag clear for channel 1

Bit 2 CHTIF1: half transfer flag clear for channel 1

Bit 1 CTCIF1: transfer complete flag clear for channel 1

Bit 0 CGIF1: global interrupt flag clear for channel 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
MEM2
MEM

PL[1:0] MSIZE[1:0] PSIZE[1:0] MINC PINC CIRC DIR TEIE HTIE TCIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Direct memory access controller (DMA) RM0367

280/1040 RM0367 Rev 8

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 MEM2MEM: memory-to-memory mode

0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bits 13:12 PL[1:0]: priority level

00: low
01: medium
10: high
11: very high

Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bits 11:10 MSIZE[1:0]: memory size

Defines the data size of each DMA transfer to the identified memory.
In memory-to-memory mode, this field identifies the memory source if DIR = 1 and the
memory destination if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral source if DIR = 1 and the
peripheral destination if DIR = 0.
00: 8 bits
01: 16 bits
10: 32 bits
11: reserved

Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bits 9:8 PSIZE[1:0]: peripheral size

Defines the data size of each DMA transfer to the identified peripheral.
In memory-to-memory mode, this field identifies the memory destination if DIR = 1 and the
memory source if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral destination if DIR = 1 and
the peripheral source if DIR = 0.
00: 8 bits
01: 16 bits
10: 32 bits
11: reserved

Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

RM0367 Rev 8 281/1040

RM0367 Direct memory access controller (DMA)

287

Bit 7 MINC: memory increment mode

Defines the increment mode for each DMA transfer to the identified memory.
In memory-to-memory mode, this field identifies the memory source if DIR = 1 and the
memory destination if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral source if DIR = 1 and the
peripheral destination if DIR = 0.
0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bit 6 PINC: peripheral increment mode

Defines the increment mode for each DMA transfer to the identified peripheral.
n memory-to-memory mode, this field identifies the memory destination if DIR = 1 and the
memory source if DIR = 0.
In peripheral-to-peripheral mode, this field identifies the peripheral destination if DIR = 1 and
the peripheral source if DIR = 0.
0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bit 5 CIRC: circular mode

0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Bit 4 DIR: data transfer direction

This bit must be set only in memory-to-peripheral and peripheral-to-memory modes.
0: read from peripheral

– Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register.
This is still valid in a memory-to-memory mode.

– Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx
register. This is still valid in a peripheral-to-peripheral mode.

1: read from memory

– Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx
register. This is still valid in a memory-to-memory mode.

– Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register.
This is still valid in a peripheral-to-peripheral mode.

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

Bit 3 TEIE: transfer error interrupt enable

0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Direct memory access controller (DMA) RM0367

282/1040 RM0367 Rev 8

11.6.4 DMA channel x number of data to transfer register (DMA_CNDTRx)

Address offset: 0x0C + 0x14 * (x - 1), (x = 1 to 7)

Reset value: 0x0000 0000

Bit 2 HTIE: half transfer interrupt enable

0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Bit 1 TCIE: transfer complete interrupt enable

0: disabled
1: enabled

Note: this bit is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

Bit 0 EN: channel enable

When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again
by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by
setting the CTEIFx bit of the DMA_IFCR register).
0: disabled
1: enabled

Note: this bit is set and cleared by software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: number of data to transfer (0 to 216 - 1)

This field is updated by hardware when the channel is enabled:

– It is decremented after each single DMA ‘read followed by write’ transfer, indicating
the remaining amount of data items to transfer.

– It is kept at zero when the programmed amount of data to transfer is reached, if the
channel is not in circular mode (CIRC = 0 in the DMA_CCRx register).

– It is reloaded automatically by the previously programmed value, when the transfer
is complete, if the channel is in circular mode (CIRC = 1).

If this field is zero, no transfer can be served whatever the channel status (enabled or not).

Note: this field is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is read-only when the channel is enabled (EN = 1).

RM0367 Rev 8 283/1040

RM0367 Direct memory access controller (DMA)

287

11.6.5 DMA channel x peripheral address register (DMA_CPARx)

Address offset: 0x10 + 0x14 * (x - 1), (x = 1 to 7)

Reset value: 0x0000 0000

11.6.6 DMA channel x memory address register (DMA_CMARx)

Address offset: 0x14 + 0x14 * (x - 1), (x = 1 to 7)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PA[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 PA[31:0]: peripheral address

It contains the base address of the peripheral data register from/to which the data will be
read/written.
When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned
to a half-word address.
When PSIZE = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically
aligned to a word address.
In memory-to-memory mode, this register identifies the memory destination address if
DIR = 1 and the memory source address if DIR = 0.
In peripheral-to-peripheral mode, this register identifies the peripheral destination address
DIR = 1 and the peripheral source address if DIR = 0.

Note: this register is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MA[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Direct memory access controller (DMA) RM0367

284/1040 RM0367 Rev 8

Bits 31:0 MA[31:0]: peripheral address

It contains the base address of the memory from/to which the data will be read/written.
When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned
to a half-word address.
When MSIZE = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically
aligned to a word address.
In memory-to-memory mode, this register identifies the memory source address if DIR = 1
and the memory destination address if DIR = 0.
In peripheral-to-peripheral mode, this register identifies the peripheral source address
DIR = 1 and the peripheral destination address if DIR = 0.

Note: this register is set and cleared by software.
It must not be written when the channel is enabled (EN = 1).
It is not read-only when the channel is enabled (EN = 1).

RM0367 Rev 8 285/1040

RM0367 Direct memory access controller (DMA)

287

11.6.7 DMA channel selection register (DMA_CSELR)

Address offset: 0xA8

Reset value: 0x0000 0000

This register is used to manage the mapping of DMA channels as detailed in Section 11.3.2:
DMA request mapping.

11.6.8 DMA register map

The table below gives the DMA register map and reset values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. C7S[3:0] C6S[3:0] C5S[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C4S[3:0] C3S[3:0] C2S[3:0] C1S[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:24 C7S[3:0]: DMA channel 7 selection

Details available in Section 11.3.2: DMA request mapping

Bits 23:20 C6S[3:0]: DMA channel 6 selection

Details available in Section 11.3.2: DMA request mapping

Bits 19:16 C5S[3:0]: DMA channel 5 selection

Details available in Section 11.3.2: DMA request mapping

Bits 15:12 C4S[3:0]: DMA channel 4 selection

Details available in Section 11.3.2: DMA request mapping

Bits 11:8 C3S[3:0]: DMA channel 3 selection

Details available in Section 11.3.2: DMA request mapping

Bits 7:4 C2S[3:0]: DMA channel 2 selection

Details available in Section 11.3.2: DMA request mapping

Bits 3:0 C1S[3:0]: DMA channel 1 selection

Details available in Section 11.3.2: DMA request mapping

Table 54. DMA register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
DMA_ISR

R
es

.

R
es

.

R
es

.

R
es

.

T
E

IF
7

H
T

IF
7

T
C

IF
7

G
IF

7

T
E

IF
6

H
T

IF
6

T
C

IF
6

G
IF

6

T
E

IF
5

H
T

IF
5

T
C

IF
5

G
IF

5

T
E

IF
4

H
T

IF
4

T
C

IF
4

G
IF

4

T
E

IF
3

H
T

IF
3

T
C

IF
3

G
IF

3

T
E

IF
2

H
T

IF
2

T
C

IF
2

G
IF

2

T
E

IF
1

H
T

IF
1

T
C

IF
1

G
IF

1

Reset value 0

0x004
DMA_IFCR

R
es

.

R
es

.

R
es

.

R
es

.

C
T

E
IF

7

C
H

T
IF

7

C
T

C
IF

7

C
G

IF
7

C
T

E
IF

6

C
H

T
IF

6

C
T

C
IF

6

C
G

IF
6

C
T

E
IF

5

C
H

T
IF

5

C
T

C
IF

5

C
G

IF
5

C
T

E
IF

4

C
H

T
IF

4

C
T

C
IF

4

C
G

IF
4

C
T

E
IF

3

C
H

T
IF

3

C
T

C
IF

3

C
G

IF
3

C
T

E
IF

2

C
H

T
IF

2

C
T

C
IF

2

C
G

IF
2

C
T

E
IF

1

C
H

T
IF

1

C
T

C
IF

1

C
G

IF
1

Reset value 0

0x008
DMA_CCR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2

M
E

M

P
L

[1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Direct memory access controller (DMA) RM0367

286/1040 RM0367 Rev 8

0x00C
DMA_CNDTR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
DMA_CPAR1 PA[31:0]

Reset value 0

0x014
DMA_CMAR1 MA[31:0]

Reset value 0

0x018 Reserved Reserved.

0x01C
DMA_CCR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2M

E
M

P
L

[1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
DMA_CNDTR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x024
DMA_CPAR2 PA[31:0]

Reset value 0

0x028
DMA_CMAR2 MA[31:0]

Reset value 0

0x02C Reserved Reserved.

0x030
DMA_CCR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2

M
E

M

P
L

[1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x034
DMA_CNDTR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x038
DMA_CPAR3 PA[31:0]

Reset value 0

0x03C
DMA_CMAR3 MA[31:0]

Reset value 0

0x040 Reserved Reserved.

0x044
DMA_CCR4

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2

M
E

M

P
L[

1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x048
DMA_CNDTR4

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04C
DMA_CPAR4 PA[31:0]

Reset value 0

0x050
DMA_CMAR4 MA[31:0]

Reset value 0

0x054 Reserved Reserved.

0x058
DMA_CCR5

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2

M
E

M

P
L

[1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x05C
DMA_CNDTR5

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x060
DMA_CPAR5 PA[31:0]

Reset value 0

Table 54. DMA register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 287/1040

RM0367 Direct memory access controller (DMA)

287

Refer to Section 2.2 for the register boundary addresses.

0x064
DMA_CMAR5 MA[31:0]

Reset value 0

0x068 Reserved Reserved.

0x06C
DMA_CCR6

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2

M
E

M

P
L[

1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x070
DMA_CNDTR6

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x074
DMA_CPAR6 PA[31:0]

Reset value 0

0x078
DMA_CMAR6 MA[31:0]

Reset value 0

0x07C Reserved Reserved.

0x080
DMA_CCR7

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
2

M
E

M

P
L

[1
:0

]

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x084
DMA_CNDTR7

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

NDTR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x088
DMA_CPAR7 PA[31:0]

Reset value 0

0x08C
DMA_CMAR7 MA[31:0]

Reset value 0

0x090 to
0x0A4

Reserved Reserved.

0x0A8
DMA_CSELR

R
es

.

R
es

.

R
es

.

R
es

.

C7S[3:0] C6S[3:0] C5S[3:0] C4S[3:0] C3S[3:0] C2S[3:0] C1S[3:0]

Reset value 0

Table 54. DMA register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nested vectored interrupt controller (NVIC) RM0367

288/1040 RM0367 Rev 8

12 Nested vectored interrupt controller (NVIC)

12.1 Main features

• Up to 39 maskable interrupt channels (see Table 55), These do not include the 16
interrupt lines of Cortex®-M0+.

• 4 programmable priority levels (2 bits of interrupt priority are used)

• Low-latency exception and interrupt handling

• Power management control

• Implementation of system control registers

The NVIC and the processor core interface are closely coupled, which enables low-latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming, refer to the STM32L0 Series Cortex®-M0+
programming manual (PM0223).

For code example, refer to A.7.1: NVIC initialization example.

12.2 SysTick calibration value register

The SysTick calibration value is fixed to 4000, which gives a reference time base of 1 ms
with the SysTick clock set to 4 MHz (max HCLK/8).

12.3 Interrupt and exception vectors

Table 55 is the vector table for STM32L0x3 devices.

Table 55. List of vectors(1)(2)

Position Priority
Type of
priority

Acronym Description Address

- - - Reserved 0x0000_0000

-3 fixed Reset Reset 0x0000_0004

-2 fixed NMI_Handler
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

-1 fixed HardFault_Handler All class of fault 0x0000_000C

- - - Reserved
0x0000_0010 -
0x0000_002B

3 settable SVC_Handler
System service call via SWI
instruction

0x0000_002C

- - - Reserved
0x0000_0030 -
0x0000_0037

5 settable PendSV_Handler Pendable request for system service 0x0000_0038

6 settable SysTick_Handler System tick timer 0x0000_003C

RM0367 Rev 8 289/1040

RM0367 Nested vectored interrupt controller (NVIC)

300

0 7 settable WWDG Window Watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line detection
interrupt

0x0000_0044

2 9 settable RTC
RTC global interrupt through
EXTI17/19/20 line and LSE CSS
interrupt through EXTI 19 line

0x0000_0048

3 10 settable FLASH
Flash memory and data EEPROM
global interrupt

0x0000_004C

4 11 settable RCC_CRS RCC and CRS global interrupt 0x0000_0050

5 12 settable EXTI[1:0] EXTI Line0 and 1 interrupts 0x0000_0054

6 13 settable EXTI[3:2] EXTI Line2 and 3 interrupts 0x0000_0058

7 14 settable EXTI[15:4] EXTI Line4 to 15 interrupts 0x0000_005C

8 15 settable TSC Touch sense controller interrupt 0x0000_0060

9 16 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_0064

10 17 settable DMA1_Channel[3:2] DMA1 Channel2 and 3 interrupts 0x0000_0068

11 18 settable DMA1_Channel[7:4] DMA1 Channel4 to 7 interrupts 0x0000_006C

12 19 settable ADC_COMP
ADC and comparator interrupts
through EXTI21 and 22

0x0000_0070

13 20 settable LPTIM1 LPTIMER1 interrupt through EXTI29 0x0000_0074

14 21 settable USART4/USART5 USART4/USART5 global interrupt 0x0000_0078

15 22 settable TIM2 TIMER2 global interrupt 0x0000_007C

16 23 settable TIM3 TIMER3 global interrupt 0x0000_0080

17 24 settable TIM6_DAC
TIMER6 global interrupt and DAC
interrupt

0x0000_0084

18 25 settable TIM7 TIMER7 global interrupt 0x0000_0088

19 26 settable - reserved 0x0000_008C

20 27 settable TIM21 TIMER21 global interrupt 0x0000_0090

21 28 settable I2C3 I2C3 global interrupt 0x0000_0094

22 29 settable TIM22 TIMER22 global interrupt 0x0000_0098

23 30 settable I2C1 I2C1 global interrupt through EXTI23 0x0000_009C

24 31 settable I2C2 I2C2 global interrupt 0x0000_00A0

25 32 settable SPI1 SPI1 global interrupt 0x0000_00A4

26 33 settable SPI2 SPI2 global interrupt 0x0000_00A8

27 34 settable USART1
USART1 global interrupt through
EXTI25

0x0000_00AC

28 35 settable USART2
USART2 global interrupt through
EXTI26

0x0000_00B0

Table 55. List of vectors(1)(2) (continued)

Position Priority
Type of
priority

Acronym Description Address

Nested vectored interrupt controller (NVIC) RM0367

290/1040 RM0367 Rev 8

29 36 settable
LPUART1 + AES
+RNG

LPUART1 global interrupt through
EXTI28 + AES global interrupt +
RNG global interrupt

0x0000_00B4

30 37 settable LCD LCD global interrupt 0x0000_00B8

31 38 settable USB USB event interrupt through EXTI18 0x0000_00BC

1. The grayed cells correspond to the Cortex®-M0+ interrupts.

2. Refer to Table 1: STM32L0x3 memory density, to Table 2: Overview of features per category and to the device datasheets
for the GPIO ports and peripherals available on your device. The memory area corresponding to unavailable GPIO ports or
peripherals are reserved.

Table 55. List of vectors(1)(2) (continued)

Position Priority
Type of
priority

Acronym Description Address

RM0367 Rev 8 291/1040

RM0367 Extended interrupt and event controller (EXTI)

300

13 Extended interrupt and event controller (EXTI)

13.1 Introduction

The extended interrupts and events controller (EXTI) manages the external and internal
asynchronous events/interrupts and generates the event request to the CPU/interrupt
controller plus a wake-up request to the power controller.

The EXTI allows the management of up to 30 event lines which can wake up the device
from Stop mode.

Some of the lines are configurable: in this case the active edge can be chosen
independently, and a status flag indicates the source of the interrupt. The configurable lines
are used by the I/Os external interrupts, and by few peripherals. Some of the lines are
direct: they are used by some peripherals to generate a wakeup from Stop event or
interrupt. In this case the status flag is provided by the peripheral.

Each line can be masked independently for interrupt or event generation.

Te EXTI controller also allows to emulate, by programming to a dedicated register, events or
interrupts by software multiplexed with the corresponding hardware event line.

13.2 EXTI main features

The EXTI main features are the following:

• Generation of up to 30 event/interrupt requests

– 22 configurable lines

– 7 direct lines

• Independent mask on each event/interrupt line

• Configurable rising or falling edge (configurable lines only)

• Dedicated status bit (configurable lines only)

• Emulation of event/interrupt requests (configurable lines only)

13.3 EXTI functional description

For the configurable interrupt lines, the interrupt line should be configured and enabled in
order to generate an interrupt. This is done by programming the two trigger registers with
the desired edge detection and by enabling the interrupt request by writing a ‘1’ to the
corresponding bit in the interrupt mask register. When the selected edge occurs on the
interrupt line, an interrupt request is generated. The pending bit corresponding to the
interrupt line is also set. This request is cleared by writing a ‘1’ in the pending register.

For the direct interrupt lines: the interrupt is enabled by default in the interrupt mask register
and there is no corresponding pending bit in the pending register.

To generate an event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1’ to the corresponding bit in the event mask register. When the
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set.

Extended interrupt and event controller (EXTI) RM0367

292/1040 RM0367 Rev 8

For the configurable lines, an interrupt/event request can also be generated by software by
writing a ‘1’ in the software interrupt/event register.

Note: The interrupts or events associated to the direct lines are triggered only when the system is
in Stop mode. If the system is still running, no interrupt/event is generated by the EXTI.

13.3.1 EXTI block diagram

The block diagram is shown in Figure 29.

Figure 29. Extended interrupts and events controller (EXTI) block diagram

13.3.2 Wakeup event management

The STM32L0x3 microcontrollers are able to handle external or internal events in order to
wake up the core (WFE). The wakeup event can be generated by either:

• enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M0+ system control register (see STM32L0 Series
Cortex®-M0+ programming manual (PM0223)). When the MCU resumes from WFE,
the peripheral interrupt pending bit and the peripheral NVIC IRQ channel pending bit (in
the NVIC interrupt clear pending register) have to be cleared.

• or configuring an EXTI line in event mode. When the CPU resumes from WFE, it is not
necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel
pending bit as the pending bit corresponding to the event line is not set.

MSv32798V1

APB bus

Peripheral interface

Edge detect
circuit

PCLK

Interrupts

Software
interrupt
event

register

Rising
trigger

selection
register

Pending
request
register

Interrupt
mask

register

Falling
trigger

selection
register

Event
mask

register

Rising
edge

detect.

Stop mode
Direct
events

Configurable
events

Events

Wakeup

RM0367 Rev 8 293/1040

RM0367 Extended interrupt and event controller (EXTI)

300

13.3.3 Peripherals asynchronous interrupts

Some peripherals can generate events when the system is in Run mode or in Stop mode,
thus allowing to wake up the system from Stop mode.

To accomplish this, the peripheral generates both a synchronized (to the system clock, e.g.
APB clock) and an asynchronous version of the event. This asynchronous event is
connected to an EXTI direct line.

Note: Few peripherals with wakeup from Stop capability are connected to an EXTI configurable
line. In this case the EXTI configuration is required to allow the wakeup from Stop mode.

13.3.4 Hardware interrupt selection

To configure a line as an interrupt source, use the following procedure:

1. Configure the mask bits of the Interrupt lines (EXTI_IMR)

2. Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and
EXTI_FTSR)

3. Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
extended interrupt controller (EXTI) so that an interrupt coming from any one of the
lines can be correctly acknowledged.

The direct lines do not require any EXTI configuration.

For code example, refer to A.7.2: Extended interrupt selection code example.

13.3.5 Hardware event selection

To configure a line as an event source, use the following procedure:

1. Configure the mask bits of the Event lines (EXTI_EMR)

2. Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR).

13.3.6 Software interrupt/event selection

Any of the configurable lines can be configured as software interrupt/event lines. The
procedure below must be followed to generate a software interrupt.

1. Configure the mask bits of the Interrupt/Event lines (EXTI_IMR, EXTI_EMR)

2. Set the required bit in the software interrupt register (EXTI_SWIER).

Extended interrupt and event controller (EXTI) RM0367

294/1040 RM0367 Rev 8

13.4 EXTI interrupt/event line mapping

In the STM32L0x3, 30 interrupt/event lines are available.The GPIOs are connected to 16
configurable interrupt/event lines as shown in Figure 30.

Figure 30. Extended interrupt/event GPIO mapping

Note: Refer to the datasheet for the list of available I/O ports.

EXTI0

EXTI1

EXTI15

PA15
PB15
PC15

MS32799V1

EXTI2

PA2
PB2
PC2

PA1
PB1

PH1

PA0
PB0
PC0

PH0

EXTI15[3:0] bits in SYSCFG_EXTICR4 register

EXTI2[3:0] bits in SYSCFG_EXTICR1 register

EXTI1[3:0] bits in SYSCFG_EXTICR1 register

EXTI0[3:0] bits in SYSCFG_EXTICR1 register

PD2

PC1

RM0367 Rev 8 295/1040

RM0367 Extended interrupt and event controller (EXTI)

300

The 30 lines are connected as shown in Table 56: EXTI lines connections:

Table 56. EXTI lines connections

EXTI line Line source Line type

0-15 GPIO configurable

16 PVD configurable

17 RTC alarm configurable

18 USB wakeup event direct

19
RTC tamper or timestamp or

CSS_LSE
configurable

20 RTC wakeup timer configurable

21 COMP1 output configurable

22 COMP2 output configurable

23 I2C1 wakeup direct

24 I2C3 wakeup direct

25 USART 1 wakeup direct

26 USART2 wakeup direct

27 Reserved

28 LPUART1 wakeup direct

29 LPTIM1 wakeup direct

Extended interrupt and event controller (EXTI) RM0367

296/1040 RM0367 Rev 8

13.5 EXTI registers

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

13.5.1 EXTI interrupt mask register (EXTI_IMR)

Address offset: 0x00
Reset value: 0x3F84 0000

13.5.2 EXTI event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. IM29 IM28 Res. IM26 IM25 IM24 IM23 IM22 IM21 IM20 IM19 Res. IM17 IM16

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IM15 IM14 IM13 IM12 IM11 IM10 IM9 IM8 IM7 IM6 IM5 IM4 IM3 IM2 IM1 IM0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:28 IMx: Interrupt mask on line x (x = 29 to 28)

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

Bit 27 Reserved, must be kept at reset value.

Bits 26:19 IMx: Interrupt mask on line x (x = 26 to 19)

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 IMx: Interrupt mask on line x (x = 17 to 0)

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. EM29 EM28 Res. EM26 EM25 EM24 EM23 EM22 EM21 EM20 EM19 Res. EM17 EM16

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EM15 EM14 EM13 EM12 EM11 EM10 EM9 EM8 EM7 EM6 EM5 EM4 EM3 EM2 EM1 EM0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0367 Rev 8 297/1040

RM0367 Extended interrupt and event controller (EXTI)

300

13.5.3 EXTI rising edge trigger selection register (EXTI_RTSR)

Address offset: 0x08
Reset value: 0x0000 0000

Note: The configurable wakeup lines are edge triggered, no glitch must be generated on these
lines.

If a rising edge on the configurable interrupt line occurs while writing to the EXTI_RTSR
register, the pending bit will not be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:28 EMx: Event mask on line x (x = 29 to 28)

0: Event request from Line x is masked
1: Event request from Line x is not masked

Bit 27 Reserved, must be kept at reset value.

Bits 26:19 EMx: Event mask on line x (x = 26 to 19)

0: Event request from Line x is masked
1: Event request from Line x is not masked

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 EMx: Event mask on line x (x = 17 to 0)

0: Event request from Line x is masked
1: Event request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. RT22 RT21 RT20 RT19 Res. RT17 RT16

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 RT16 2 1 0

RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:19 RTx: Rising trigger event configuration bit of line x (x = 22 to 19)

0: Rising trigger disabled (for Event and Interrupt) for input line x
1: Rising trigger enabled (for Event and Interrupt) for input line x

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 RTx: Rising trigger event configuration bit of line x (x = 17 to 0)

0: Rising trigger disabled (for Event and Interrupt) for input line x
1: Rising trigger enabled (for Event and Interrupt) for input line x

Extended interrupt and event controller (EXTI) RM0367

298/1040 RM0367 Rev 8

13.5.4 Falling edge trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

Note: The configurable wakeup lines are edge triggered, no glitch must be generated on these
lines.

If a falling edge on the configurable interrupt line occurs while writing to the EXTI_FTSR
register, the pending bit will not be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

13.5.5 EXTI software interrupt event register (EXTI_SWIER)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. FT22 FT21 FT20 FT19 Res. FT17 FT16

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FT15 FT14 FT13 FT12 FT11 FT10 FT9 FT8 FT7 FT6 FT5 FT4 FT3 FT2 FT1 FT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:19 FTx: Falling trigger event configuration bit of line x (x = 22 to 19)

0: Falling trigger disabled (for Event and Interrupt) for input line x
1: Falling trigger enabled (for Event and Interrupt) for input line x

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 FTx: Falling trigger event configuration bit of line x (x = 17 to 0)

0: Falling trigger disabled (for Event and Interrupt) for input line x
1: Falling trigger enabled (for Event and Interrupt) for input line x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. SWI22 SWI21 SWI20 SWI19 Res. SWI17 SWI16

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWI15 SWI14 SWI13 SWI12 SWI11 SWI10 SWI9 SWI8 SWI7 SWI6 SWI5 SWI4 SWI3 SWI2 SWI1 SWI0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0367 Rev 8 299/1040

RM0367 Extended interrupt and event controller (EXTI)

300

13.5.6 EXTI pending register (EXTI_PR)

Address offset: 0x14

Reset value: 0x0000 0000

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:19 SWIx: Software interrupt on line x (x = 22 to 19)

Writing a 1 to this bit when it is at 0 sets the corresponding pending bit in EXTI_PR. If the
interrupt is enabled on this line in EXTI_IMR and EXTI_EMR, an interrupt request is
generated.
This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to this bit).

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 SWIx: Software interrupt on line x (x = 17 to 0)

Writing a 1 to this bit when it is at 0 sets the corresponding pending bit in EXTI_PR. If the
interrupt is enabled on this line in EXTI_IMR and EXTI_EMR, an interrupt request is
generated.
This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to this bit).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PIF22 PIF21 PIF20 PIF19 Res. PIF17 PIF16

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIF15 PIF14 PIF13 PIF12 PIF11 PIF10 PIF9 PIF8 PIF7 PIF6 PIF5 PIF4 PIF3 PIF2 PIF1 PIF0

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:19 PIFx: Pending interrupt flag on line x (x = 22 to 19)

0: No trigger request occurred
1: The selected trigger request occurred
This bit is set when the selected edge event arrives on the interrupt line. This bit is cleared
by writing it to 1 or by changing the sensitivity of the edge detector.

Bit 18 Reserved, must be kept at reset value.

Bits 17:0 PIFx: Pending interrupt flag on line x (x = 17 to 0)

0: No trigger request occurred
1: The selected trigger request occurred
This bit is set when the selected edge event arrives on the interrupt line. This bit is cleared
by writing it to 1 or by changing the sensitivity of the edge detector.

Extended interrupt and event controller (EXTI) RM0367

300/1040 RM0367 Rev 8

13.5.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 57. Extended interrupt/event controller register map and reset values

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
EXTI_IMR

R
es

.
R

es
.

IM
[2

9:
28

]

R
es

.

IM[26:19]

R
es

.

IM[17:0]

Reset value 1 1 1 1 1 1 0

0x04
EXTI_EMR

R
e

s.
R

e
s.

E
M

[2
9

:2
8]

R
e

s. EM[26:19]

R
e

s. EM[17:0]

Reset value 0

0x08
EXTI_RTSR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s. RT[22:19]

R
e

s. RT[17:0]

Reset value 0

0x0C
EXTI_FTSR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.

FT[22:19]

R
es

.

FT[17:0]

Reset value 0

0x10
EXTI_SWIER

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s. SWI
[22:19] R

e
s. SWI[17:0]

Reset value 0

0x14
EXTI_PR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

. PIF
[22:19] R

es
.

PIF[17:0]

Reset value 0

RM0367 Rev 8 301/1040

RM0367 Analog-to-digital converter (ADC)

351

14 Analog-to-digital converter (ADC)

14.1 Introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19
multiplexed channels allowing it to measure signals from 16 external and 3 internal sources.
A/D conversion of the various channels can be performed in single, continuous, scan or
discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit
data register.

The analog watchdog feature allows the application to detect if the input voltage goes
outside the user-defined higher or lower thresholds.

An efficient low-power mode is implemented to allow very low consumption at low
frequency.

A built-in hardware oversampler allows analog performances to be improved while off-
loading the related computational burden from the CPU.

Analog-to-digital converter (ADC) RM0367

302/1040 RM0367 Rev 8

14.2 ADC main features

• High performance

– 12-bit, 10-bit, 8-bit or 6-bit configurable resolution

– ADC conversion time: 0.87 µs for 12-bit resolution (1.14 MHz), 0.81 µs conversion
time for 10-bit resolution, faster conversion times can be obtained by lowering
resolution.

– Self-calibration

– Programmable sampling time

– Data alignment with built-in data coherency

– DMA support

• Low-power

– The application can reduce PCLK frequency for low-power operation while still
keeping optimum ADC performance. For example, 0.87 µs conversion time is
kept, whatever the PCLK frequency

– Wait mode: prevents ADC overrun in applications with low PCLK frequency

– Auto off mode: ADC is automatically powered off except during the active
conversion phase. This dramatically reduces the power consumption of the ADC.

• Analog input channels

– 16 external analog inputs

– 1 channel for internal temperature sensor (VSENSE)

– 1 channel for internal reference voltage (VREFINT)

– 1 channel for monitoring VLCD derived voltage (LCD_VLCD1 signal)

• Start-of-conversion can be initiated:

– By software

– By hardware triggers with configurable polarity (timer events or GPIO input
events)

• Conversion modes

– Can convert a single channel or can scan a sequence of channels.

– Single mode converts selected inputs once per trigger

– Continuous mode converts selected inputs continuously

– Discontinuous mode

• Interrupt generation at the end of sampling, end of conversion, end of sequence
conversion, and in case of analog watchdog or overrun events

• Analog watchdog

• Oversampler

– 16-bit data register

– Oversampling ratio adjustable from 2 to 256x

– Programmable data shift up to 8-bits

• ADC input range: VSSA ≤ VIN ≤ VDDA

RM0367 Rev 8 303/1040

RM0367 Analog-to-digital converter (ADC)

351

14.3 ADC functional description

Figure 31 shows the ADC block diagram and Table 58 gives the ADC pin description.

Figure 31. ADC block diagram

1. TRGi are mapped at product level. Refer to Table External triggers in Section 14.3.1: ADC pins and internal signals.

14.3.1 ADC pins and internal signals

MSv33702V7

AHB
to

APB

DMA

CPU

VREFINT

VSENSE

LCD_
VLCD1

TRG0
TRG1
TRG2
TRG3
TRG4

SAR ADC

start

master

A
H

B

ADC VREF+
1.65 to 3.6 V

SCANDIR up/
down

CH_SEL[18:0]

CONT single/
cont.

ADC_IN[15:0]
VIN[x]

Input
selection
& scan
control

SMP[2:0]
sampling time

AUTDLY
Auto-delayed conv.

ADSTP
ADSTART
S/W trigger

ADCAL self-
calibration

H/W
trigger DISCEN

discontinuous
modeEXTEN[1:0]

trigger enable
and edge selection

EXTSEL[2:0]
trigger selection

RSE[1:0]
12, 10, 8, 6 bits

OVRMOD
overrun mode

ALIGN left/right

Converted data

VIN

Supply and
reference

ADEN/ADDIS

Analog supply
1.8 to 3.6 V

AUTOFF auto-off
mode

AREADY
EOSMP

EOS
EOC
OVR
AWD

DMAEN
DMACFG

DMA request

ADC interrupt

slave

master

IRQ

APB
interface

AWDCHx[4:0]
LTx[11:0]
HTx[11:0]

AWDxSGL
AWDxEN

Analog
watchdog

AWDx

DATA[15:0]

TRG5
TRG6
TRG7

Start & Stop
control

Over-
sampler

TOVS

OVSS[3:0]

OVSR[2:0]

OVSE

Table 58. ADC input/output pins

Name Signal type Remarks

VDDA
Input, analog power
supply

Analog power supply and positive reference voltage
for the ADC

VSSA
Input, analog supply
ground

Ground for analog power supply

ADC_INx Analog input signals 16 external analog input channels

Analog-to-digital converter (ADC) RM0367

304/1040 RM0367 Rev 8

14.3.2 ADC voltage regulator (ADVREGEN)

The ADC has a specific internal voltage regulator which must be enabled and stable before
using the ADC.

The ADC voltage regulator stabilization time is entirely managed by the hardware and
software does not need to care about it.

After ADC operations are complete, the ADC can be disabled (ADEN = 0). To keep power
consumption low, it is important to disable the ADC voltage regulator before entering low-
power mode (LPRun, LPSleep or Stop mode). Refer to Section : ADVREG disable
sequence.

Note: When the internal voltage regulator is disabled, the internal analog calibration is kept.

Analog reference for the ADC internal voltage regulator

The internal ADC voltage regulator uses a buffered copy of the internal voltage reference.
This buffer is always enabled when the main voltage regulator is in normal Run mode (MR
mode, with the device operating either in Run or Sleep mode). When the main voltage

Table 59. ADC internal input/output signals

Internal signal
name

Signal type Description

VIN[x]
Analog Input
channels

Connected either to internal channels or to ADC_INi
external channels

TRGx Input ADC conversion triggers

VSENSE Input Internal temperature sensor output voltage

VREFINT Input Internal voltage reference output voltage

LCD_VLCD1 Input
1/3 VLCD when the LCD is configured to 1/3Bias

1/4 VLCD when the LCD is configured to 1/4Bias or
1/2Bias

ADC_AWDx_OUT Output
Internal analog watchdog output signal connected to on-
chip timers (x = Analog watchdog number = 1)

Table 60. External triggers

Name Source EXTSEL[2:0]

TRG0 TIM6_TRGO 000

TRG1 TIM21_CH2 001

TRG2 TIM2_TRGO 010

TRG3 TIM2_CH4 011

TRG4 TIM22_TRGO 100

TRG5(1)

1. Available on all categories except category 3.

TIM2_CH3 101

TRG6 TIM3_TRGO 110

TRG7 EXTI11 111

RM0367 Rev 8 305/1040

RM0367 Analog-to-digital converter (ADC)

351

regulator is in low-power mode (with the device operating in LPRun, LPSleep or Stop
mode), the voltage reference is disabled and the ADC cannot be used anymore.

The software must follow the procedure described below to manage the ADC in low-power
mode:

1. Make sure that the ADC is disabled (ADEN = 0).

2. Write ADVREGEN = 0.

3. Enter low-power mode.

4. Resume from low-power mode.

5. Check that REGLPF = 0.

6. Enable the ADC voltage regulator by using the sequence described in Section :
ADVREG enable sequence (ADVREGEN = 1 in ADC_CR).

7. Write ADC_CR ADEN = 1 and wait until ADC_CR ADRDY = 1.

8. Write ADRDY = 1 to clear it.

ADVREG enable sequence

There are three ways to enable the voltage regulator:

• by writing ADVREGEN = 1.

• by launching the calibration by writing by ADCAL = 1 (the ADVREGEN bit is
automatically set).

• by enabling the ADC by writing ADEN = 1.

ADVREG disable sequence

To disable the ADC voltage regulator, perform the sequence below:

1. Ensure that the ADC is disabled (ADEN = 0).

2. Write ADVREGEN = 0.

14.3.3 Calibration (ADCAL)

The ADC has a calibration feature. During the procedure, the ADC calculates a calibration
factor which is internally applied to the ADC until the next ADC power-off. The application
must not use the ADC during calibration and must wait until it is complete.

Calibration should be performed before starting A/D conversion. It removes the offset error
which may vary from chip to chip due to process variation.

The calibration is initiated by software by setting bit ADCAL = 1. Calibration can only be
initiated when the ADC is disabled (when ADEN = 0). ADCAL bit stays at 1 during all the
calibration sequence. It is then cleared by hardware as soon the calibration completes. After
this, the calibration factor can be read from the ADC_DR register (from bits 6 to 0).

The internal analog calibration is kept if the ADC is disabled (ADEN = 0) or if the ADC
voltage reference is disabled (ADVREGEN = 0). When the ADC operating conditions
change (VDDA changes are the main contributor to ADC offset variations and temperature
change to a lesser extend), it is recommended to re-run a calibration cycle.

The calibration factor is lost in the following cases:

• The product is in Standby mode (power supply removed from the ADC)

• The ADC peripheral is reset.

Analog-to-digital converter (ADC) RM0367

306/1040 RM0367 Rev 8

The calibration factor is maintained in the following low-power modes: LPRun, LPSleep and
Stop.

It is still possible to save and restore the calibration factor by software to save time when
re-starting the ADC (as long as temperature and voltage are stable during the ADC power
down).

The calibration factor can be written if the ADC is enabled but not converting (ADEN = 1 and
ADSTART = 0). Then, at the next start of conversion, the calibration factor is automatically
injected into the analog ADC. This loading is transparent and does not add any cycle
latency to the start of the conversion.

Software calibration procedure

1. Ensure that ADEN = 0 and DMAEN = 0.

2. Set ADCAL = 1.

3. Wait until ADCAL = 0 (or until EOCAL = 1). This can be handled by interrupt if the
interrupt is enabled by setting the EOCALIE bit in the ADC_IER register. The ADCAL
bit can remain set for some time even after EOCAL has been set. As a result, the
software must wait for ADCAL = 0 after EOCAL = 1 to be able to set ADEN = 1 for next
ADC conversions.

4. The calibration factor can be read from bits 6:0 of ADC_DR or ADC_CALFACT
registers.

For code example, refer to A.8.1: Calibration code example.

Figure 32. ADC calibration

If the ADC voltage regulator was not previously set, it is automatically enabled when setting
ADCAL = 1 (bit ADVREGEN is automatically set by hardware). In this case, the ADC
calibration time is longer to take into account the stabilization time of the ADC voltage
regulator.

At the end of the calibration, the ADC voltage regulator remains enabled.

tCAB

ADCAL

ADC State

ADC_DR[6:0] 0x00

MS33703V1

CALIBRATE OFFStartupOFF

by S/W by H/W

CALIBRATION
FACTOR

ADC_CALFACT[6:0]

RM0367 Rev 8 307/1040

RM0367 Analog-to-digital converter (ADC)

351

Calibration factor forcing software procedure

1. Ensure that ADEN= 1 and ADSTART = 0 (ADC started with no conversion ongoing)

2. Write ADC_CALFACT with the saved calibration factor

3. The calibration factor is used as soon as a new conversion is launched.

Figure 33. Calibration factor forcing

14.3.4 ADC on-off control (ADEN, ADDIS, ADRDY)

At power-up, the ADC is disabled and put in power-down mode (ADEN = 0).

As shown in Figure 34, the ADC needs a stabilization time of tSTAB before it starts
converting accurately.

Two control bits are used to enable or disable the ADC:

• Set ADEN = 1 to enable the ADC. The ADRDY flag is set as soon as the ADC is ready
for operation.

• Set ADDIS = 1 to disable the ADC and put the ADC in power down mode. The ADEN
and ADDIS bits are then automatically cleared by hardware as soon as the ADC is fully
disabled.

If the ADC voltage regulator was not previously set, it is automatically enabled when setting
ADEN=1 (bit ADVREGEN is automatically set by hardware). In this case, the ADC
stabilization time tSTAB is longer to take into account the stabilization time of the ADC
voltage regulator.

Conversion can then start either by setting ADSTART to 1 (refer to Section 14.4: Conversion
on external trigger and trigger polarity (EXTSEL, EXTEN) on page 315) or when an external
trigger event occurs if triggers are enabled.

Follow this procedure to enable the ADC:

1. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1.

2. Set ADEN = 1 in the ADC_CR register.

3. Wait until ADRDY = 1 in the ADC_ISR register (ADRDY is set after the ADC startup
time). This can be handled by interrupt if the interrupt is enabled by setting the
ADRDYIE bit in the ADC_IER register.

For code example, refer to A.8.2: ADC enable sequence code example.

ADC state

F2

F1 F2

Ready (not converting) Converting channel Ready Converting channel
(Single ended) (Single ended)Updating

calibration

MS31925V1

by S/W

Internal
calibration factor[6:0]

Start conversion
(hardware or software)

WRITE ADC_CALFACT

CALFACT[6:0]

by H/W

Analog-to-digital converter (ADC) RM0367

308/1040 RM0367 Rev 8

Follow this procedure to disable the ADC:

1. Check that ADSTART = 0 in the ADC_CR register to ensure that no conversion is
ongoing. If required, stop any ongoing conversion by writing 1 to the ADSTP bit in the
ADC_CR register and waiting until this bit is read at 0.

2. Set ADDIS = 1 in the ADC_CR register.

3. If required by the application, wait until ADEN = 0 in the ADC_CR register, indicating
that the ADC is fully disabled (ADDIS is automatically reset once ADEN = 0).

4. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1 (optional).

For code example, refer to A.8.3: ADC disable sequence code example.

Figure 34. Enabling/disabling the ADC

Note: In Auto-off mode (AUTOFF = 1) the power-on/off phases are performed automatically, by
hardware and the ADRDY flag is not set.

14.3.5 ADC clock (CKMODE, PRESC[3:0], LFMEN)

The ADC has a dual clock-domain architecture, so that the ADC can be fed with a clock
(ADC asynchronous clock) independent from the APB clock (PCLK).

Figure 35. ADC clock scheme

1. Refer to Section Reset and clock control (RCC) for how the PCLK clock and ADC asynchronous clock are
enabled.

MS30264V2

tSTAB
ADEN

ADRDY

ADDIS

ADC
OFF Startup RDY CONVERTING CH RDY OFF

by H/Wby S/W

REQ
-OFstat

MSv31926V2

ADITF

Analog
ADC

RCC
 (Reset & Clock Controller)

PCLK

ADC
asynchronous
clock

APB interface

Analog ADC_CK/1 or /2 or /4 Others

00

Bits CKMODE[1:0]
of ADC_CFGR2

Bits CKMODE[1:0]
of ADC_CFGR2

/1,2,4,6,8,10,12
16,32,64,128,256

Bits PRESC[3:0]
of ADC_CCR

RM0367 Rev 8 309/1040

RM0367 Analog-to-digital converter (ADC)

351

The input clock of the analog ADC can be selected between two different clock sources (see
Figure 35: ADC clock scheme to see how the PCLK clock and the ADC asynchronous clock
are enabled):

a) The ADC clock can be a specific clock source, named “ADC asynchronous clock“
which is independent and asynchronous with the APB clock.

Refer to RCC Section for more information on generating this clock source.

To select this scheme, bits CKMODE[1:0] of the ADC_CFGR2 register must be
reset.

b) The ADC clock can be derived from the APB clock of the ADC bus interface,
divided by a programmable factor (1, 2 or 4) according to bits CKMODE[1:0].

To select this scheme, bits CKMODE[1:0] of the ADC_CFGR2 register must be
different from “00”.

For code example, refer to A.8.4: ADC clock selection code example.

In option a), the generated ADC clock can eventually be divided by a prescaler (1, 2, 4, 6, 8,
10, 12, 16, 32, 64, 128, 256) when programming the bits PRESC[3:0] in the ADC_CCR
register).

Option a) has the advantage of reaching the maximum ADC clock frequency whatever the
APB clock scheme selected.

Option b) has the advantage of bypassing the clock domain resynchronizations. This can be
useful when the ADC is triggered by a timer and if the application requires that the ADC is
precisely triggered without any uncertainty (otherwise, an uncertainty of the trigger instant is
added by the resynchronizations between the two clock domains).

Caution: When selecting CKMODE[1:0] = 11 (PCLK divided by 1), the user must ensure that the
PCLK has a 50% duty cycle. This is done by selecting a system clock with a 50% duty cycle
and configuring the APB prescaler in bypass modes in the RCC (refer to there Reset and
clock controller section). If an internal source clock is selected, the AHB and APB prescalers
do not divide the clock.

Low frequency

When selecting an analog ADC clock frequency lower than 3.5 MHz, it is mandatory to first
enable the Low Frequency Mode by setting bit LFMEN = 1 into the ADC_CCR register

Table 61. Latency between trigger and start of conversion(1)

1. Refer to the device datasheet for the maximum ADC_CLK frequency.

ADC clock source CKMODE[1:0]
Latency between the trigger event

and the start of conversion

HSI16 MHz clock 00 Latency is not deterministic (jitter)

PCLK divided by 2 01
Latency is deterministic (no jitter) and equal to
4.25 ADC clock cycles

PCLK divided by 4 10
Latency is deterministic (no jitter) and equal to
4.125 ADC clock cycles

PCLK divided by 1 11
Latency is deterministic (no jitter) and equal to
4.5 ADC clock cycles

Analog-to-digital converter (ADC) RM0367

310/1040 RM0367 Rev 8

14.3.6 ADC connectivity

ADC inputs are connected to the external channels as well as internal sources as described
in Figure 36.

Figure 36. ADC connectivity

MSv68736V1

SAR
ADC1

ADC

ADC_IN1

ADC_IN2

ADC_IN3

ADC_IN4

ADC_IN5

ADC_IN6

VIN[1]

VIN[2]

STM32L0x3

VIN[0]

VIN[3]

VIN[4]

VIN[5]

VIN[6]

VIN[8]

VIN[9]

VIN[7]

VIN[10]

VIN[11]

VIN[12]

VIN[13]

VIN[14]

VIN[15]

VIN[16]

VIN[17]

VIN[18]

VREF+ADC_IN7

ADC_IN8

ADC_IN9

VIN

VREF-

Channel selection

ADC_IN0

ADC_IN10

ADC_IN11

ADC_IN15

Fast channel

Fast channel

Fast channel

ADC_IN12

ADC_IN13

ADC_IN14

LCD_VLCD1

VSENSE

VREFINT

RM0367 Rev 8 311/1040

RM0367 Analog-to-digital converter (ADC)

351

14.3.7 Configuring the ADC

The software must write the ADCAL and ADEN bits in the ADC_CR register and configure
the ADC_CFGR1 and ADC_CFGR2 registers only when the ADC is disabled (ADEN must
be cleared).

The software must only write to the ADSTART and ADDIS bits in the ADC_CR register only
if the ADC is enabled and there is no pending request to disable the ADC (ADEN = 1 and
ADDIS = 0).

For all the other control bits in the ADC_IER, ADC_SMPR, ADC_TR, ADC_CHSELR and
ADC_CCR registers, refer to the description of the corresponding control bit in
Section 14.12: ADC registers.

The software must only write to the ADSTP bit in the ADC_CR register if the ADC is enabled
(and possibly converting) and there is no pending request to disable the ADC (ADSTART =
1 and ADDIS = 0).

Note: There is no hardware protection preventing software from making write operations forbidden
by the above rules. If such a forbidden write access occurs, the ADC may enter an
undefined state. To recover correct operation in this case, the ADC must be disabled (clear
ADEN = 0 and all the bits in the ADC_CR register).

14.3.8 Channel selection (CHSEL, SCANDIR)

There are up to 19 multiplexed channels:

• 16 analog inputs from GPIO pins (ADC_INx)

• 3 internal analog inputs (Temperature Sensor, Internal Reference Voltage,
LCD_VLCD1 channel)

It is possible to convert a single channel or a sequence of channels.

The sequence of the channels to be converted can be programmed in the ADC_CHSELR
channel selection register: each analog input channel has a dedicated selection bit
(CHSELx).

The order in which the channels is scanned can be configured by programming the bit
SCANDIR bit in the ADC_CFGR1 register:

• SCANDIR = 0: forward scan Channel 0 to Channel 18

• SCANDIR = 1: backward scan Channel 18 to Channel 0

Temperature sensor, VREFINT and LCD_VLCD1 internal channels

The temperature sensor is connected to channel ADC VIN[18].

The internal voltage reference VREFINT is connected to channel ADC VIN[17].

LCD_VLCD1 channel is connected to ADC VIN[16] channel.

Analog-to-digital converter (ADC) RM0367

312/1040 RM0367 Rev 8

14.3.9 Programmable sampling time (SMP)

Before starting a conversion, the ADC needs to establish a direct connection between the
voltage source to be measured and the embedded sampling capacitor of the ADC. This
sampling time must be enough for the input voltage source to charge the sample and hold
capacitor to the input voltage level.

Having a programmable sampling time allows the conversion speed to be trimmed
according to the input resistance of the input voltage source.

The ADC samples the input voltage for a number of ADC clock cycles that can be modified
using the SMP[2:0] bits in the ADC_SMPR register.

This programmable sampling time is common to all channels. If required by the application,
the software can change and adapt this sampling time between each conversions.

The total conversion time is calculated as follows:

tCONV = Sampling time + 12.5 x ADC clock cycles

Example:

With ADC_CLK = 16 MHz and a sampling time of 1.5 ADC clock cycles:

tCONV = 1.5 + 12.5 = 14 ADC clock cycles = 0.875 µs

The ADC indicates the end of the sampling phase by setting the EOSMP flag.

14.3.10 Single conversion mode (CONT = 0)

In Single conversion mode, the ADC performs a single sequence of conversions, converting
all the channels once. This mode is selected when CONT = 0 in the ADC_CFGR1 register.
Conversion is started by either:

• Setting the ADSTART bit in the ADC_CR register

• Hardware trigger event

Inside the sequence, after each conversion is complete:

• The converted data are stored in the 16-bit ADC_DR register

• The EOC (end of conversion) flag is set

• An interrupt is generated if the EOCIE bit is set

After the sequence of conversions is complete:

• The EOS (end of sequence) flag is set

• An interrupt is generated if the EOSIE bit is set

Then the ADC stops until a new external trigger event occurs or the ADSTART bit is set
again.

Note: To convert a single channel, program a sequence with a length of 1.

RM0367 Rev 8 313/1040

RM0367 Analog-to-digital converter (ADC)

351

14.3.11 Continuous conversion mode (CONT = 1)

In continuous conversion mode, when a software or hardware trigger event occurs, the ADC
performs a sequence of conversions, converting all the channels once and then
automatically re-starts and continuously performs the same sequence of conversions. This
mode is selected when CONT = 1 in the ADC_CFGR1 register. Conversion is started by
either:

• Setting the ADSTART bit in the ADC_CR register

• Hardware trigger event

Inside the sequence, after each conversion is complete:

• The converted data are stored in the 16-bit ADC_DR register

• The EOC (end of conversion) flag is set

• An interrupt is generated if the EOCIE bit is set

After the sequence of conversions is complete:

• The EOS (end of sequence) flag is set

• An interrupt is generated if the EOSIE bit is set

Then, a new sequence restarts immediately and the ADC continuously repeats the
conversion sequence.

Note: To convert a single channel, program a sequence with a length of 1.

It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

14.3.12 Starting conversions (ADSTART)

Software starts ADC conversions by setting ADSTART = 1.

When ADSTART is set, the conversion:

• Starts immediately if EXTEN = 00 (software trigger)

• At the next active edge of the selected hardware trigger if EXTEN ≠ 00

The ADSTART bit is also used to indicate whether an ADC operation is currently ongoing. It
is possible to re-configure the ADC while ADSTART = 0, indicating that the ADC is idle.

The ADSTART bit is cleared by hardware:

• In single mode with software trigger (CONT = 0, EXTEN = 00)

– At any end of conversion sequence (EOS = 1)

• In discontinuous mode with software trigger (CONT = 0, DISCEN = 1, EXTEN = 00)

– At end of conversion (EOC = 1)

• In all cases (CONT = x, EXTEN = XX)

– After execution of the ADSTP procedure invoked by software (see
Section 14.3.14: Stopping an ongoing conversion (ADSTP) on page 315)

Note: In continuous mode (CONT = 1), the ADSTART bit is not cleared by hardware when the
EOS flag is set because the sequence is automatically relaunched.

When hardware trigger is selected in single mode (CONT = 0 and EXTEN = 01), ADSTART
is not cleared by hardware when the EOS flag is set (except if DMAEN = 1 and
DMACFG = 0 in which case ADSTART is cleared at end of the DMA transfer). This avoids

Analog-to-digital converter (ADC) RM0367

314/1040 RM0367 Rev 8

the need for software having to set the ADSTART bit again and ensures the next trigger
event is not missed.

14.3.13 Timings

The elapsed time between the start of a conversion and the end of conversion is the sum of
the configured sampling time plus the successive approximation time depending on data
resolution:

Figure 37. Analog to digital conversion time

Figure 38. ADC conversion timings

1. EXTEN = 00 or EXTEN ≠ 00

2. Trigger latency (refer to datasheet for more details)

3. ADC_DR register write latency (refer to datasheet for more details)

tCONV = tSMPL + tSAR = [1.5 |min + 12.5 |12bit] x tADC_CLK

tCONV = tSMPL + tSAR = 93.8 ns |min + 781.3 ns |12bit = 0.875 µs |min (for fADC_CLK = 16 MHz)

Analog
channel

Internal S/H
t t

depends on SMP[2:0]

set
by SW

EOSMP
cleared by SW

MS30336V1

DATA N-1 DATA N

CH(N) CH(N+1)

ADC state

ADSTART

ADC_DR
EOC

SMPL

RDY SAMPLING CH(N) CONVERTING CH(N) SAMPLING CH(N+1)

Sample AIN(N+1)Hold AIN(N)Sample AIN(N+1)

SAR(1) (2)

set by HW
cleared
by SW

set
by HW

(1) tSMPL
depends on RES[2:0](2) tSAR

MSv33174V1

Ready S0 Conversion 0

tLATENCY
 (2)ADSTART(1)

ADC state

ADC_DR

S1 Conversion 1 S2 Conversion 2 S3 Conversion 3

WLATENCY
 (3) WLATENCY

 (3) WLATENCY
 (3)

Data 1Data 0 Data 2

RM0367 Rev 8 315/1040

RM0367 Analog-to-digital converter (ADC)

351

14.3.14 Stopping an ongoing conversion (ADSTP)

The software can decide to stop any ongoing conversions by setting ADSTP = 1 in the
ADC_CR register.

This resets the ADC operation and the ADC is idle, ready for a new operation.

When the ADSTP bit is set by software, any ongoing conversion is aborted and the result is
discarded (ADC_DR register is not updated with the current conversion).

The scan sequence is also aborted and reset (meaning that restarting the ADC would re-
start a new sequence).

Once this procedure is complete, the ADSTP and ADSTART bits are both cleared by
hardware and the software must wait until ADSTART=0 before starting new conversions.

Figure 39. Stopping an ongoing conversion

14.4 Conversion on external trigger and trigger polarity (EXTSEL,
EXTEN)

A conversion or a sequence of conversion can be triggered either by software or by an
external event (for example timer capture). If the EXTEN[1:0] control bits are not equal to
“0b00”, then external events are able to trigger a conversion with the selected polarity. The
trigger selection is effective once software has set bit ADSTART = 1.

Any hardware triggers which occur while a conversion is ongoing are ignored.

If bit ADSTART = 0, any hardware triggers which occur are ignored.

Table 62 provides the correspondence between the EXTEN[1:0] values and the trigger
polarity.

Note: The polarity of the external trigger can be changed only when the ADC is not converting
(ADSTART = 0).

The EXTSEL[2:0] control bits are used to select which of 8 possible events can trigger
conversions.

DATA N-1

ADC state

ADSTART set by SW

RDY SAMPLING CH(N)

ADC_DR

cleared by HW

MS30337V1

CONVERTING CH(N) RDY

ADSTOP cleared by HWset by SW

Table 62. Configuring the trigger polarity

Source EXTEN[1:0]

Trigger detection disabled 00

Detection on rising edge 01

Detection on falling edge 10

Detection on both rising and falling edges 11

Analog-to-digital converter (ADC) RM0367

316/1040 RM0367 Rev 8

Refer to Table 60: External triggers in Section 14.3.1: ADC pins and internal signals for the
list of all the external triggers that can be used for regular conversion.

The software source trigger events can be generated by setting the ADSTART bit in the
ADC_CR register.

Note: The trigger selection can be changed only when the ADC is not converting (ADSTART = 0).

14.4.1 Discontinuous mode (DISCEN)

This mode is enabled by setting the DISCEN bit in the ADC_CFGR1 register.

In this mode (DISCEN = 1), a hardware or software trigger event is required to start each
conversion defined in the sequence. On the contrary, if DISCEN = 0, a single hardware or
software trigger event successively starts all the conversions defined in the sequence.

Example:

• DISCEN = 1, channels to be converted = 0, 3, 7, 10

– 1st trigger: channel 0 is converted and an EOC event is generated

– 2nd trigger: channel 3 is converted and an EOC event is generated

– 3rd trigger: channel 7 is converted and an EOC event is generated

– 4th trigger: channel 10 is converted and both EOC and EOS events are
generated.

– 5th trigger: channel 0 is converted an EOC event is generated

– 6th trigger: channel 3 is converted and an EOC event is generated

– ...

• DISCEN = 0, channels to be converted = 0, 3, 7, 10

– 1st trigger: the complete sequence is converted: channel 0, then 3, 7 and 10. Each
conversion generates an EOC event and the last one also generates an EOS
event.

– Any subsequent trigger events restarts the complete sequence.

Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

14.4.2 Programmable resolution (RES) - Fast conversion mode

It is possible to obtain faster conversion times (tSAR) by reducing the ADC resolution.

The resolution can be configured to be either 12, 10, 8, or 6 bits by programming the
RES[1:0] bits in the ADC_CFGR1 register. Lower resolution allows faster conversion times
for applications where high data precision is not required.

Note: The RES[1:0] bit must only be changed when the ADEN bit is reset.

The result of the conversion is always 12 bits wide and any unused LSB bits are read as
zeros.

Lower resolution reduces the conversion time needed for the successive approximation
steps as shown in Table 63.

RM0367 Rev 8 317/1040

RM0367 Analog-to-digital converter (ADC)

351

14.4.3 End of conversion, end of sampling phase (EOC, EOSMP flags)

The ADC indicates each end of conversion (EOC) event.

The ADC sets the EOC flag in the ADC_ISR register as soon as a new conversion data
result is available in the ADC_DR register. An interrupt can be generated if the EOCIE bit is
set in the ADC_IER register. The EOC flag is cleared by software either by writing 1 to it, or
by reading the ADC_DR register.

The ADC also indicates the end of sampling phase by setting the EOSMP flag in the
ADC_ISR register. The EOSMP flag is cleared by software by writing1 to it. An interrupt can
be generated if the EOSMPIE bit is set in the ADC_IER register.

The aim of this interrupt is to allow the processing to be synchronized with the conversions.
Typically, an analog multiplexer can be accessed in hidden time during the conversion
phase, so that the multiplexer is positioned when the next sampling starts.

Note: As there is only a very short time left between the end of the sampling and the end of the
conversion, it is recommenced to use polling or a WFE instruction rather than an interrupt
and a WFI instruction.

14.4.4 End of conversion sequence (EOS flag)

The ADC notifies the application of each end of sequence (EOS) event.

The ADC sets the EOS flag in the ADC_ISR register as soon as the last data result of a
conversion sequence is available in the ADC_DR register. An interrupt can be generated if
the EOSIE bit is set in the ADC_IER register. The EOS flag is cleared by software by writing
1 to it.

Table 63. tSAR timings depending on resolution

RES[1:0]
bits

tSAR

(ADC clock
cycles)

tSAR (ns) at
fADC = 16 MHz

tSMPL (min)

(ADC clock
cycles)

tCONV

(ADC clock cycles)

(with min. tSMPL)

tCONV (ns) at
fADC = 16 MHz

12 12.5 781 ns 1.5 14 875 ns

10 11.5 719 ns 1.5 13 812 ns

8 9.5 594 ns 1.5 11 688 ns

6 7.5 469 ns 1.5 9 562 ns

Analog-to-digital converter (ADC) RM0367

318/1040 RM0367 Rev 8

14.4.5 Example timing diagrams (single/continuous modes
hardware/software triggers)

Figure 40. Single conversions of a sequence, software trigger

1. EXTEN = 00, CONT = 0

2. CHSEL = 0x20601, WAIT = 0, AUTOFF = 0

For code example, refer to A.8.5: Single conversion sequence code example - Software
trigger.

Figure 41. Continuous conversion of a sequence, software trigger

1. EXTEN = 00, CONT = 1,

2. CHSEL = 0x20601, WAIT = 0, AUTOFF = 0

For code example, refer to A.8.6: Continuous conversion sequence code example -
Software trigger.

MSv30338V3

RDY

EOC

SCANDIR

CH9 CH17 CH9

ADC_DR D0 D10 D17 D10 D9 D0

ADC state(2)

ADSTART(1)

EOS

D9 D17

RDYCH0CH10RDY CH17CH10CH0

by S/W by H/W

MSv30339V2

ADSTP

CH9 CH17 STP

D0 D10

CH9

D0 D9

CH10

D17

EOC

SCANDIR

ADC_DR

ADC state(2)

ADSTART(1)

EOS

RDY CH17CH10CH0

by S/W by H/W

RDY CH0 CH10

D9 D17

RM0367 Rev 8 319/1040

RM0367 Analog-to-digital converter (ADC)

351

Figure 42. Single conversions of a sequence, hardware trigger

1. EXTSEL = TRGx (over-frequency), EXTEN = 01 (rising edge), CONT = 0

2. CHSEL = 0xF, SCANDIR = 0, WAIT = 0, AUTOFF = 0

For code example, refer to A.8.7: Single conversion sequence code example - Hardware
trigger.

Figure 43. Continuous conversions of a sequence, hardware trigger

1. EXTSEL = TRGx, EXTEN = 10 (falling edge), CONT = 1

2. CHSEL = 0xF, SCANDIR = 0, WAIT = 0, AUTOFF = 0

For code example, refer to A.8.8: Continuous conversion sequence code example -
Hardware trigger.

MSv30340V2

CH1 CH1CH3 CH0 CH2

D0 D1 D2 D1 D2 D3D3

CH2

EOC

ADC_DR

ADC state(2)

ADSTART(1)

EOS

RDYRDY CH0 CH3

TRGx(1)

RDY

D0

by H/W

ignored

by S/W

triggered

MSv30341V2

CH1 CH2

D0 D1 D2

CH0 CH2 CH0

D3 D0 D1 D2 D3

STOP

ADC_DR

ADSTP

by H/W

CH1 CH3

ignored

EOC

ADC state(2)

ADSTART(1)

EOS

RDYCH0 CH3

TRGx(1)

RDY

by S/W

triggered

Analog-to-digital converter (ADC) RM0367

320/1040 RM0367 Rev 8

14.5 Data management

14.5.1 Data register and data alignment (ADC_DR, ALIGN)

At the end of each conversion (when an EOC event occurs), the result of the converted data
is stored in the ADC_DR data register which is 16-bit wide.

The format of the ADC_DR depends on the configured data alignment and resolution.

The ALIGN bit in the ADC_CFGR1 register selects the alignment of the data stored after
conversion. Data can be right-aligned (ALIGN = 0) or left-aligned (ALIGN = 1) as shown in
Figure 44.

Figure 44. Data alignment and resolution (oversampling disabled: OVSE = 0)

14.5.2 ADC overrun (OVR, OVRMOD)

The overrun flag (OVR) indicates a data overrun event, when the converted data was not
read in time by the CPU or the DMA, before the data from a new conversion is available.

The OVR flag is set in the ADC_ISR register if the EOC flag is still at ‘1’ at the time when a
new conversion completes. An interrupt can be generated if the OVRIE bit is set in the
ADC_IER register.

When an overrun condition occurs, the ADC keeps operating and can continue to convert
unless the software decides to stop and reset the sequence by setting the ADSTP bit in the
ADC_CR register.

The OVR flag is cleared by software by writing 1 to it.

It is possible to configure if the data is preserved or overwritten when an overrun event
occurs by programming the OVRMOD bit in the ADC_CFGR1 register:

• OVRMOD = 0

– An overrun event preserves the data register from being overwritten: the old data
is maintained and the new conversion is discarded. If OVR remains at 1, further
conversions can be performed but the resulting data is discarded.

• OVRMOD = 1

– The data register is overwritten with the last conversion result and the previous
unread data is lost. If OVR remains at 1, further conversions can be performed
and the ADC_DR register always contains the data from the latest conversion.

0x0

0x00

0x00

0x00

DR[11:0]

DR[9:0]

DR[7:0]

0x00

DR[11:0]

DR[9:0]

DR[7:0]

DR[5:0]

DR[5:0]

0x0

0x00

0x00

0x0

ALIGN RES

0 0x0

1

0x1

0x2

0x3

0x0

0x1

0x2

0x3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MS30342V1

RM0367 Rev 8 321/1040

RM0367 Analog-to-digital converter (ADC)

351

Figure 45. Example of overrun (OVR)

14.5.3 Managing a sequence of data converted without using the DMA

If the conversions are slow enough, the conversion sequence can be handled by software.
In this case the software must use the EOC flag and its associated interrupt to handle each
data result. Each time a conversion is complete, the EOC bit is set in the ADC_ISR register
and the ADC_DR register can be read. The OVRMOD bit in the ADC_CFGR1 register
should be configured to 0 to manage overrun events as an error.

14.5.4 Managing converted data without using the DMA without overrun

It may be useful to let the ADC convert one or more channels without reading the data after
each conversion. In this case, the OVRMOD bit must be configured at 1 and the OVR flag
should be ignored by the software. When OVRMOD = 1, an overrun event does not prevent
the ADC from continuing to convert and the ADC_DR register always contains the latest
conversion data.

14.5.5 Managing converted data using the DMA

Since all converted channel values are stored in a single data register, it is efficient to use
DMA when converting more than one channel. This avoids losing the conversion data
results stored in the ADC_DR register.

MSv30343V3

RDY

EOC

EOS

CH0 CH1 CH2 CH0

D0 D1 D2

CH1 CH2 CH0 STOP

D0

OVR

RDY

D0 D1 D2 D0 D1 D2

ADC_DR read
access

OVERRUN

by S/W by H/W

triggered

ADC_DR
(OVRMOD=0)

ADSTP

ADC state(2)

ADSTART(1)

TRGx(1)

ADC_DR
(OVRMOD=1)

Analog-to-digital converter (ADC) RM0367

322/1040 RM0367 Rev 8

When DMA mode is enabled (DMAEN bit set in the ADC_CFGR1 register), a DMA request
is generated after the conversion of each channel. This allows the transfer of the converted
data from the ADC_DR register to the destination location selected by the software.

Note: The DMAEN bit in the ADC_CFGR1 register must be set after the ADC calibration phase.

Despite this, if an overrun occurs (OVR = 1) because the DMA could not serve the DMA
transfer request in time, the ADC stops generating DMA requests and the data
corresponding to the new conversion is not transferred by the DMA. Which means that all
the data transferred to the RAM can be considered as valid.

Depending on the configuration of OVRMOD bit, the data is either preserved or overwritten
(refer to Section 14.5.2: ADC overrun (OVR, OVRMOD) on page 320).

The DMA transfer requests are blocked until the software clears the OVR bit.

Two different DMA modes are proposed depending on the application use and are
configured with bit DMACFG in the ADC_CFGR1 register:

• DMA one shot mode (DMACFG = 0).
This mode should be selected when the DMA is programmed to transfer a fixed
number of data words.

• DMA circular mode (DMACFG = 1)
This mode should be selected when programming the DMA in circular mode.

DMA one shot mode (DMACFG = 0)

In this mode, the ADC generates a DMA transfer request each time a new conversion data
word is available and stops generating DMA requests once the DMA has reached the last
DMA transfer (when a DMA_EOT interrupt occurs, see Section 11: Direct memory access
controller (DMA) on page 264) even if a conversion has been started again.

For code example, refer to A.8.9: DMA one shot mode sequence code example.

When the DMA transfer is complete (all the transfers configured in the DMA controller have
been done):

• The content of the ADC data register is frozen.

• Any ongoing conversion is aborted and its partial result discarded

• No new DMA request is issued to the DMA controller. This avoids generating an
overrun error if there are still conversions which are started.

• The scan sequence is stopped and reset

• The DMA is stopped

DMA circular mode (DMACFG = 1)

In this mode, the ADC generates a DMA transfer request each time a new conversion data
word is available in the data register, even if the DMA has reached the last DMA transfer.
This allows the DMA to be configured in circular mode to handle a continuous analog input
data stream.

For code example, refer to A.8.10: DMA circular mode sequence code example.

RM0367 Rev 8 323/1040

RM0367 Analog-to-digital converter (ADC)

351

14.6 Low-power features

14.6.1 Wait mode conversion

Wait mode conversion can be used to simplify the software as well as optimizing the
performance of applications clocked at low frequency where there might be a risk of ADC
overrun occurring.

When the WAIT bit is set in the ADC_CFGR1 register, a new conversion can start only if the
previous data has been treated, once the ADC_DR register has been read or if the EOC bit
has been cleared.

This is a way to automatically adapt the speed of the ADC to the speed of the system that
reads the data.

Note: Any hardware triggers which occur while a conversion is ongoing or during the wait time
preceding the read access are ignored.

Figure 46. Wait mode conversion (continuous mode, software trigger)

1. EXTEN = 00, CONT = 1

2. CHSEL = 0x3, SCANDIR = 0, WAIT = 1, AUTOFF = 0

For code example, refer to A.8.11: Wait mode sequence code example.

MSv30344V2

ADC_DR

by S/W

ADSTP

EOC

ADC state

ADSTART

EOS

CH1 CH2 STOPCH1CH3 RDYDLYRDY DLY

ADC_DR Read access

DLY DLY

D1 D3 D1D2

by H/W

Analog-to-digital converter (ADC) RM0367

324/1040 RM0367 Rev 8

14.6.2 Auto-off mode (AUTOFF)

The ADC has an automatic power management feature which is called auto-off mode, and
is enabled by setting AUTOFF = 1 in the ADC_CFGR1 register.

When AUTOFF = 1, the ADC is always powered off when not converting and automatically
wakes-up when a conversion is started (by software or hardware trigger). A startup-time is
automatically inserted between the trigger event which starts the conversion and the
sampling time of the ADC. The ADC is then automatically disabled once the sequence of
conversions is complete.

Auto-off mode can cause a dramatic reduction in the power consumption of applications
which need relatively few conversions or when conversion requests are timed far enough
apart (for example with a low frequency hardware trigger) to justify the extra power and
extra time used for switching the ADC on and off.

Auto-off mode can be combined with the wait mode conversion (WAIT = 1) for applications
clocked at low frequency. This combination can provide significant power savings if the ADC
is automatically powered-off during the wait phase and restarted as soon as the ADC_DR
register is read by the application (see Figure 48: Behavior with WAIT = 1, AUTOFF = 1).

Note: Refer to the Section Reset and clock control (RCC) for the description of how to manage
the dedicated 14 MHz internal oscillator. The ADC interface can automatically switch
ON/OFF the 14 MHz internal oscillator to save power.

Figure 47. Behavior with WAIT = 0, AUTOFF = 1

1. EXTSEL = TRGx, EXTEN = 01 (rising edge), CONT = x, ADSTART = 1, CHSEL = 0xF, SCANDIR = 0, WAIT = 1,
AUTOFF = 1

For code example, refer to A.8.12: Auto off and no wait mode sequence code example.

MSv30345V2

TRGx

EOC

EOS

ADC_DR Read
access

ADC state

ADC_DR

by H/Wby S/W

triggered

D1 D3D2 D4

RDY CH1 CH2Startup CH4CH3 OFF Startup

RM0367 Rev 8 325/1040

RM0367 Analog-to-digital converter (ADC)

351

Figure 48. Behavior with WAIT = 1, AUTOFF = 1

1. EXTSEL = TRGx, EXTEN = 01 (rising edge), CONT = x, ADSTART = 1, CHSEL = 0xF, SCANDIR = 0, WAIT = 1,
AUTOFF = 1

For code example, refer to A.8.13: Auto off and wait mode sequence code example.

14.7 Analog window watchdog (AWDEN, AWDSGL, AWDCH,
ADC_TR)

14.7.1 Description of the analog watchdog

The AWD analog watchdog is enabled by setting the AWDEN bit in the ADC_CFGR1
register. It is used to monitor that either one selected channel or all enabled channels (see
Table 65: Analog watchdog channel selection) remain within a configured voltage range
(window) as shown in Figure 49.

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a lower threshold or above a higher threshold. These thresholds are programmed in
HT[11:0] and LT[11:0] bit of ADC_TR register. An interrupt can be enabled by setting the
AWDIE bit in the ADC_IER register.

The AWD flag is cleared by software by programming it to it.

When converting data with a resolution of less than 12-bit (according to bits RES[1:0]), the
LSB of the programmed thresholds must be kept cleared because the internal comparison
is always performed on the full 12-bit raw converted data (left aligned).

For code example, refer to A.8.14: Analog watchdog code example.

Table 64 describes how the comparison is performed for all the possible resolutions.

MSv30346V2

D1 D2 D3 D4

TRGx

EOC

EOS

ADC_DR Read
access

ADC state

ADC_DR

RDY CH1 OFFStartup CH2 O
FF Startup

DLY

Startup CH3 OFF

DLY DLY

Startup CH1 O
FF CH2

DLY

by H/Wby S/W

triggered

Analog-to-digital converter (ADC) RM0367

326/1040 RM0367 Rev 8

Table 65 shows how to configure the AWDSGL and AWDEN bits in the ADC_CFGR1
register to enable the analog watchdog on one or more channels.

Figure 49. Analog watchdog guarded area

14.7.2 ADC_AWD1_OUT output signal generation

The analog watchdog is associated to an internal hardware signal, ADC_AWD1_OUT that is
directly connected to the ETR input (external trigger) of some on-chip timers (refer to the
timers section for details on how to select the ADC_AWD1_OUT signal as ETR).

Table 64. Analog watchdog comparison

Resolution
bits

RES[1:0]

Analog Watchdog comparison between:

Comments
Raw converted

data, left aligned(1)
Thresholds

00: 12-bit DATA[11:0] LT[11:0] and HT[11:0] -

01: 10-bit DATA[11:2],00 LT[11:0] and HT[11:0] The user must configure LT1[1:0] and HT1[1:0] to “00”

10: 8-bit DATA[11:4],0000 LT[11:0] and HT[11:0]
The user must configure LT1[3:0] and HT1[3:0] to
“0000”

11: 6-bit DATA[11:6],000000 LT[11:0] and HT[11:0]
The user must configure LT1[5:0] and HT1[5:0] to
“000000”

1. The watchdog comparison is performed on the raw converted data before any alignment calculation.

Table 65. Analog watchdog channel selection

Channels guarded by the analog watchdog AWDSGL bit AWDEN bit

None x 0

All channels 0 1

Single(1) channel

1. Selected by the AWDCH[4:0] bits

1 1

MS45396V1

 Analog voltage

Higher threshold

Lower threshold
Guarded area

HTx

LTx

RM0367 Rev 8 327/1040

RM0367 Analog-to-digital converter (ADC)

351

ADC_AWD1_OUT is activated when the analog watchdog is enabled:

• ADC_AWD1_OUT is set when a guarded conversion is outside the programmed
thresholds.

• ADC_AWD1_OUT is reset after the end of the next guarded conversion which is inside
the programmed thresholds. It remains at 1 if the next guarded conversions are still
outside the programmed thresholds.

• ADC_AWD1_OUT is also reset when disabling the ADC (when setting ADDIS to 1).
Note that stopping conversions (ADSTP set), might clear the ADC_AWD1_OUT state.

• ADC_AWD1_OUT state does not change when the ADC converts the none-guarded
channel (see Figure 50)

AWD flag is set by hardware and reset by software: AWD flag has no influence on the
generation of ADC_AWD1_OUT (as an example, ADC_AWD1_OUT can toggle while AWD
flag remains at 1 if the software has not cleared the flag).

The ADC_AWD1_OUT signal is generated by the ADC_CLK domain. This signal can be
generated even the APB clock is stopped.

The AWD comparison is performed at the end of each ADC conversion. The
ADC_AWD1_OUT rising edge and falling edge occurs two ADC_CLK clock cycles after the
comparison.

As ADC_AWD1_OUT is generated by the ADC_CLK domain and AWD flag is generated by
the APB clock domain, the rising edges of these signals are not synchronized.

Figure 50. ADC_AWD1_OUT signal generation

MSv65326V1

EOC FLAG

ADC STATE RDY

AWD FLAG

Conversion1

outside

ADC_AWD1_OUT

inside

Cleared
by SW

Conversion2 Conversion3 Conversion4 Conversion5 Conversion6 Conversion7

outsideinside outside outside inside

- Converted channels: 1,2,3,4,5,6,7
- Guarded converted channels: 1,2,3,4,5,6,7

Cleared
by SW

Cleared
by SW

Cleared
by SW

Analog-to-digital converter (ADC) RM0367

328/1040 RM0367 Rev 8

Figure 51. ADC_AWD1_OUT signal generation (AWD flag not cleared by software)

Figure 52. ADC1_AWD_OUT signal generation (on a single channel)

14.7.3 Analog watchdog threshold control

LT[11:0] and HT[11:0] can be changed during an analog-to-digital conversion (that is
between the start of the conversion and the end of conversion of the ADC internal state). If
LT and HT bits are programmed during the ADC guarded channel conversion, the watchdog
function is masked for this conversion. This mask is cleared when starting a new
conversion, and the resulting new AWD threshold is applied starting the next ADC
conversion result. AWD comparison is performed at each end of conversion. If the current
ADC data are out of the new threshold interval, this does not generated any interrupt or an
ADC_AWD1_OUT signal. The Interrupt and the ADC_AWD1_OUT generation only occurs
at the end of the ADC conversion that started after the threshold update. If
ADC_AWD1_OUT is already asserted, programming the new threshold does not deassert
the ADC_AWD1_OUT signal.

MSv65327V1

EOC FLAG

ADC STATE RDY

AWD FLAG

Conversion1

outside

ADC_AWD1_OUT

inside

not cleared by SW

Conversion2 Conversion3 Conversion4 Conversion5 Conversion6 Conversion7

outsideinside outside outside inside

- Converted channels: 1,2,3,4,5,6,7
- Guarded converted channels: 1,2,3,4,5,6,7

MSv65328V1

EOC FLAG

ADC STATE

AWD FLAG

Conversion1

outside

ADCy_AWD1_OUT

Cleared
by SW

Conversion2 Conversion1 Conversion2 Conversion1 Conversion2 Conversion1

inside outside outside

Conversion2

EOS FLAG
Cleared
by SW

- Converted channels: 1 and 2
- Only channel 1 is guarded

RM0367 Rev 8 329/1040

RM0367 Analog-to-digital converter (ADC)

351

Figure 53. Analog watchdog threshold update

14.8 Oversampler

The oversampling unit performs data preprocessing to offload the CPU. It can handle
multiple conversions and average them into a single data with increased data width, up to
16-bit.

It provides a result with the following form, where N and M can be adjusted:

It allows the following functions to be performed by hardware: averaging, data rate
reduction, SNR improvement, basic filtering.

The oversampling ratio N is defined using the OVFS[2:0] bits in the ADC_CFGR2 register. It
can range from 2x to 256x. The division coefficient M consists of a right bit shift up to 8 bits.
It is configured through the OVSS[3:0] bits in the ADC_CFGR2 register.

For code example, refer to A.8.15: Oversampling code example.

The summation unit can yield a result up to 20 bits (256 x 12-bit), which is first shifted right.
The upper bits of the result are then truncated, keeping only the 16 least significant bits
rounded to the nearest value using the least significant bits left apart by the shifting, before
being finally transferred into the ADC_DR data register.

Note: If the intermediate result after the shifting exceeds 16 bits, the upper bits of the result are
simply truncated.

MSv65329V1

ADC state Conversion Conversion

LT, HT XXXX

Comparison Active

XXXY

Masked

Threshould updated

Conversion

Active

XXXZ

Conversion

Result
1
M
----- Conversion tn()

n 0=

n N 1–=

×=

Analog-to-digital converter (ADC) RM0367

330/1040 RM0367 Rev 8

Figure 54. 20-bit to 16-bit result truncation

The Figure 55 gives a numerical example of the processing, from a raw 20-bit accumulated
data to the final 16-bit result.

Figure 55. Numerical example with 5-bits shift and rounding

The Table 66 below gives the data format for the various N and M combination, for a raw
conversion data equal to 0xFFF.

The conversion timings in oversampled mode do not change compared to standard
conversion mode: the sample time is maintained equal during the whole oversampling

037111519
Raw 20-bit data

Truncation
and rounding

Shifting

015

MS31928V2

0

37111519
Raw 20-bit data:

B F

15

B 73 7D

1 D

MS31929V1

Final result after 5-bits shift
and rounding to nearest

Table 66. Maximum output results vs N and M. Grayed values indicates truncation

Oversa
mpling
ratio

Max

Raw data

No-shift

OVSS =
0000

1-bit
shift

OVSS =
0001

2-bit
shift

OVSS =
0010

3-bit
shift

OVSS =
0011

4-bit
shift

OVSS =
0100

5-bit
shift

OVSS =
0101

6-bit
shift

OVSS =
0110

7-bit
shift

OVSS =
0111

8-bit
shift

OVSS =
1000

2x 0x1FFE 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040 0x0020

4x 0x3FFC 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040

8x 0x7FF8 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100 0x0080

16x 0xFFF0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100

32x 0x1FFE0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200

64x 0x3FFC0 0xFFC0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400

128x 0x7FF80 0xFF80 0xFFC0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800

256x 0xFFF00 0xFF00 0xFF80 0xFFC0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF

RM0367 Rev 8 331/1040

RM0367 Analog-to-digital converter (ADC)

351

sequence. New data are provided every N conversion, with an equivalent delay equal to N x
tCONV = N x (tSMPL + tSAR). The flags features are raised as following:

• the end of the sampling phase (EOSMP) is set after each sampling phase

• the end of conversion (EOC) occurs once every N conversions, when the oversampled
result is available

• the end of sequence (EOCSEQ) occurs once the sequence of oversampled data is
completed (i.e. after N x sequence length conversions total)

14.8.1 ADC operating modes supported when oversampling

In oversampling mode, most of the ADC operating modes are available:

• Single or continuous mode conversions, forward or backward scanned sequences

• ADC conversions start either by software or with triggers

• ADC stop during a conversion (abort)

• Data read via CPU or DMA with overrun detection

• Low-power modes (WAIT, AUTOFF)

• Programmable resolution: in this case, the reduced conversion values (as per RES[1:0]
bits in ADC_CFGR1 register) are accumulated, truncated, rounded and shifted in the
same way as 12-bit conversions are

Note: The alignment mode is not available when working with oversampled data. The ALIGN bit in
ADC_CFGR1 is ignored and the data are always provided right-aligned.

14.8.2 Analog watchdog

The analog watchdog functionality is available (AWDSGL, AWDEN bits), with the following
differences:

• the RES[1:0] bits are ignored, comparison is always done on using the full 12-bits
values HT[11:0] and LT[11:0]

• the comparison is performed on the most significant 12 bits of the 16 bits oversampled
results ADC_DR[15:4]

Note: Care must be taken when using high shifting values. This reduces the comparison range.
For instance, if the oversampled result is shifted by 4 bits thus yielding a 12-bit data right-
aligned, the affective analog watchdog comparison can only be performed on 8 bits. The
comparison is done between ADC_DR[11:4] and HT[7:0] / LT[[7:0], and HT[11:8] / LT[11:8]
must be kept reset.

14.8.3 Triggered mode

The averager can also be used for basic filtering purposes. Although not a very efficient filter
(slow roll-off and limited stop band attenuation), it can be used as a notch filter to reject
constant parasitic frequencies (typically coming from the mains or from a switched mode
power supply). For this purpose, a specific discontinuous mode can be enabled with TOVS
bit in ADC_CFGR2, to be able to have an oversampling frequency defined by a user and
independent from the conversion time itself.

Figure 56 below shows how conversions are started in response to triggers in discontinuous
mode.

If the TOVS bit is set, the content of the DISCEN bit is ignored and considered as 1.

Analog-to-digital converter (ADC) RM0367

332/1040 RM0367 Rev 8

Figure 56. Triggered oversampling mode (TOVS bit = 1)

14.9 Temperature sensor and internal reference voltage

The temperature sensor can be used to measure the junction temperature (TJ) of the
device. The temperature sensor is internally connected to the ADC VIN[18] input channel
which is used to convert the sensor’s output voltage to a digital value. The sampling time for
the temperature sensor analog pin must be greater than the minimum TS_temp value
specified in the datasheet. When not in use, the sensor can be put in power down mode.

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to the ADC VIN[17] input channel.
The precise voltage of VREFINT is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.

Figure 57 shows the block diagram of connections between the temperature sensor, the
internal voltage reference and the ADC.

The TSEN bit must be set to enable the conversion of ADC VIN[18] (temperature sensor)
and the VREFEN bit must be set to enable the conversion of ADC VIN[17] (VREFINT).

The temperature sensor output voltage changes linearly with temperature. The offset of this
line varies from chip to chip due to process variation (up to 45 °C from one chip to another).

The uncalibrated internal temperature sensor is more suited for applications that detect
temperature variations instead of absolute temperatures. To improve the accuracy of the
temperature sensor measurement, calibration values are stored in system memory for each
device by ST during production.

During the manufacturing process, the calibration data of the temperature sensor and the
internal voltage reference are stored in the system memory area. The user application can
then read them and use them to improve the accuracy of the temperature sensor or the
internal reference. Refer to the datasheet for additional information.

MS33700V1

Ch(N)
0

Ch(N)
1

Ch(N)
2

Ch(N)
3

Trigger Trigger

CONT = 0
(DISCEN = 1)*

TOVS = 0

(DISCEN = 1)*: DISCEN bit is forced to 1 by software when TOVS bit is set

EOC flag set

EOC flag set

CONT = 0
(DISCEN = 1)*

TOVS = 1

Trigger

Ch(N)
0

Ch(N)
1

Ch(N)
2

Ch(N)
3

Trigger

Ch(N)
2

Trigger

Ch(N)
3

Trigger

Ch(N)
2

Trigger

Ch(N)
0

Trigger

Ch(N)
1

Trigger

Ch(N)
1

Ch(N)
0

RM0367 Rev 8 333/1040

RM0367 Analog-to-digital converter (ADC)

351

Main features

• Linearity: ±2 °C max., precision depending on calibration

Figure 57. Temperature sensor and VREFINT channel block diagram

Reading the temperature

1. Select the ADC VIN[18] input channel.

2. Select an appropriate sampling time specified in the device datasheet (TS_temp).

3. Set the TSEN bit in the ADC_CCR register to wake up the temperature sensor from
power down mode and wait for its stabilization time (tSTART).

For code example, refer to A.8.16: Temperature configuration code example.

4. Start the ADC conversion by setting the ADSTART bit in the ADC_CR register (or by
external trigger).

5. Read the resulting VSENSE data in the ADC_DR register.

6. Calculate the temperature using the following formula

Where:

• TS_CAL2 is the temperature sensor calibration value acquired at TS_CAL2_TEMP
(refer to the datasheet for TS_CAL2 value)

• TS_CAL1 is the temperature sensor calibration value acquired at TS_CAL1_TEMP
(refer to the datasheet for TS_CAL1 value)

• TS_DATA is the actual temperature sensor output value converted by ADC

Refer to the specific device datasheet for more information about TS_CAL1 and
TS_CAL2 calibration points.

For code example, refer to A.8.17: Temperature computation code example.

Note: The sensor has a startup time after waking from power down mode before it can output
VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADEN and TSEN bits should be set at the same time.

MS34765V2

VSENSE

TSEN control bit

A
dd

re
ss

/d
at

a
bu

s

converted
data

VREFINT

ADC VIN[18]Temperature
sensor

Internal
power block

ADC

VREFEN control bit

ADC VIN[17]

Temperature in °C() TS_CAL2_TEMP TS_CAL1_TEMP–
TS_CAL2 TS_CAL1–

-- TS_DATA TS_CAL1–() TS_CAL1_TEMP+×=

Analog-to-digital converter (ADC) RM0367

334/1040 RM0367 Rev 8

Calculating the actual VDDA voltage using the internal reference voltage

The VDDA power supply voltage applied to the device may be subject to variation or not
precisely known. The embedded internal voltage reference (VREFINT) and its calibration
data, acquired by the ADC during the manufacturing process at VDDA_Charac, can be used to
evaluate the actual VDDA voltage level.

The following formula gives the actual VDDA voltage supplying the device:

VDDA = VDDA_Charac x VREFINT_CAL / VREFINT_DATA

Where:

• VDDA_Charac is the value of VDDA voltage characterized at VREFINT during the
manufacturing process. It is specified in the device datasheet.

• VREFINT_CAL is the VREFINT calibration value

• VREFINT_DATA is the actual VREFINT output value converted by ADC

Converting a supply-relative ADC measurement to an absolute voltage value

The ADC is designed to deliver a digital value corresponding to the ratio between the analog
power supply and the voltage applied on the converted channel. For most application use
cases, it is necessary to convert this ratio into a voltage independent of VDDA. For
applications where VDDA is known and ADC converted values are right-aligned you can use
the following formula to get this absolute value:

For applications where VDDA value is not known, you must use the internal voltage
reference and VDDA can be replaced by the expression provided in Section : Calculating the
actual VDDA voltage using the internal reference voltage, resulting in the following formula:

Where:

• VDDA_Charac is the value of VDDA voltage characterized at VREFINT during the
manufacturing process. It is specified in the device datasheet.

• VREFINT_CAL is the VREFINT calibration value

• ADC_DATAx is the value measured by the ADC on channelx (right-aligned)

• VREFINT_DATA is the actual VREFINT output value converted by the ADC

• full_SCALE is the maximum digital value of the ADC output. For example with 12-bit
resolution, it is 212 - 1 = 4095 or with 8-bit resolution, 28 - 1 = 255.

Note: If ADC measurements are done using an output format other than 12 bit right-aligned, all the
parameters must first be converted to a compatible format before the calculation is done.

14.10 VLCD voltage monitoring

The VLCDEN bit in the ADC_CCR register allows to measure the LCD supply voltage on
the VLCD pin. As the VLCD voltage can be higher than VDDA, to ensure the correct operation
of the ADC, the VLCD pin is internally connected to a bridge divider. This bridge is
automatically enabled when VLCDEN bit is set, to connect LCD_VLCD1 to the ADC1_IN16
input channel. As a consequence, the converted digital value is either one third of VLCD

VCHANNELx

VDDA

FULL_SCALE
------------------------------------- ADC_DATAx×=

VCHANNELx

VDDA_Charac VREFINT_CAL ADC_DATAx××
VREFINT_DATA FULL_SCALE×

---=

RM0367 Rev 8 335/1040

RM0367 Analog-to-digital converter (ADC)

351

voltage when the LCD is configured to 1/3Bias or a quarter of VLCD voltage when the LCD is
configured to 1/4Bias or 1/2Bias. To prevent any unwanted consumption on the battery, it is
recommended to enable the bridge divider only when needed, that is to perform ADC
conversions.

14.11 ADC interrupts

An interrupt can be generated by any of the following events:

• End Of Calibration (EOCAL flag)

• ADC power-up, when the ADC is ready (ADRDY flag)

• End of any conversion (EOC flag)

• End of a sequence of conversions (EOS flag)

• When an analog watchdog detection occurs (AWD flag)

• When the end of sampling phase occurs (EOSMP flag)

• when a data overrun occurs (OVR flag)

Separate interrupt enable bits are available for flexibility.

Table 67. ADC interrupts

Interrupt event Event flag Enable control bit

End Of Calibration EOCAL EOCALIE

ADC ready ADRDY ADRDYIE

End of conversion EOC EOCIE

End of sequence of conversions EOS EOSIE

Analog watchdog status bit is set AWD AWDIE

End of sampling phase EOSMP EOSMPIE

Overrun OVR OVRIE

Analog-to-digital converter (ADC) RM0367

336/1040 RM0367 Rev 8

14.12 ADC registers

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

14.12.1 ADC interrupt and status register (ADC_ISR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. EOCAL Res. Res. Res. AWD Res. Res. OVR EOS EOC EOSMP ADRDY

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:13 Reserved, must be kept at reset value.

Bit 12 Reserved, must be kept at reset value.

Bit 11 EOCAL: End Of Calibration flag

This bit is set by hardware when calibration is complete. It is cleared by software writing 1 to it.
0: Calibration is not complete
1: Calibration is complete

Bit 10 Reserved, must be kept at reset value.

Bits 9:8 Reserved, must be kept at reset value.

Bit 7 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in ADC_TR
register. It is cleared by software by programming it to 1.
0: No analog watchdog event occurred (or the flag event was already acknowledged and cleared by
software)
1: Analog watchdog event occurred

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 OVR: ADC overrun

This bit is set by hardware when an overrun occurs, meaning that a new conversion has complete
while the EOC flag was already set. It is cleared by software writing 1 to it.
0: No overrun occurred (or the flag event was already acknowledged and cleared by software)
1: Overrun has occurred

Bit 3 EOS: End of sequence flag

This bit is set by hardware at the end of the conversion of a sequence of channels selected by the
CHSEL bits. It is cleared by software writing 1 to it.
0: Conversion sequence not complete (or the flag event was already acknowledged and cleared by
software)
1: Conversion sequence complete

RM0367 Rev 8 337/1040

RM0367 Analog-to-digital converter (ADC)

351

14.12.2 ADC interrupt enable register (ADC_IER)

Address offset: 0x04

Reset value: 0x0000 0000

Bit 2 EOC: End of conversion flag

This bit is set by hardware at the end of each conversion of a channel when a new data result is
available in the ADC_DR register. It is cleared by software writing 1 to it or by reading the ADC_DR
register.
0: Channel conversion not complete (or the flag event was already acknowledged and cleared by
software)
1: Channel conversion complete

Bit 1 EOSMP: End of sampling flag

This bit is set by hardware during the conversion, at the end of the sampling phase.It is cleared by
software by programming it to ‘1’.
0: Not at the end of the sampling phase (or the flag event was already acknowledged and cleared by
software)
1: End of sampling phase reached

Bit 0 ADRDY: ADC ready

This bit is set by hardware after the ADC has been enabled (ADEN = 1) and when the ADC reaches
a state where it is ready to accept conversion requests.

It is cleared by software writing 1 to it.

0: ADC not yet ready to start conversion (or the flag event was already acknowledged and cleared
by software)
1: ADC is ready to start conversion

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res.
EOCAL

IE
Res. Res. Res. AWDIE Res. Res. OVRIE EOSIE EOCIE

EOSMP
IE

ADRDY
IE

rw rw rw rw rw rw rw

Bits 31:13 Reserved, must be kept at reset value.

Bit 12 Reserved, must be kept at reset value.

Bit 11 EOCALIE: End of calibration interrupt enable

This bit is set and cleared by software to enable/disable the end of calibration interrupt.
0: End of calibration interrupt disabled
1: End of calibration interrupt enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Bit 10 Reserved, must be kept at reset value.

Bits 9:8 Reserved, must be kept at reset value.

Analog-to-digital converter (ADC) RM0367

338/1040 RM0367 Rev 8

Bit 7 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Note: The Software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 OVRIE: Overrun interrupt enable

This bit is set and cleared by software to enable/disable the overrun interrupt.
0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Bit 3 EOSIE: End of conversion sequence interrupt enable

This bit is set and cleared by software to enable/disable the end of sequence of conversions
interrupt.
0: EOS interrupt disabled
1: EOS interrupt enabled. An interrupt is generated when the EOS bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Bit 2 EOCIE: End of conversion interrupt enable

This bit is set and cleared by software to enable/disable the end of conversion interrupt.

0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Bit 1 EOSMPIE: End of sampling flag interrupt enable

This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt.

0: EOSMP interrupt disabled.
1: EOSMP interrupt enabled. An interrupt is generated when the EOSMP bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

Bit 0 ADRDYIE: ADC ready interrupt enable

This bit is set and cleared by software to enable/disable the ADC Ready interrupt.

0: ADRDY interrupt disabled.
1: ADRDY interrupt enabled. An interrupt is generated when the ADRDY bit is set.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).

RM0367 Rev 8 339/1040

RM0367 Analog-to-digital converter (ADC)

351

14.12.3 ADC control register (ADC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADCAL Res. Res.
ADVR
EGEN

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rs rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADSTP Res.
ADSTA

RT
ADDIS ADEN

rs rs rs rs

Bit 31 ADCAL: ADC calibration

This bit is set by software to start the calibration of the ADC.
It is cleared by hardware after calibration is complete.
0: Calibration complete
1: Write 1 to calibrate the ADC. Read at 1 means that a calibration is in progress.

Note: The software is allowed to set ADCAL only when the ADC is disabled (ADCAL = 0,
ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0).

The software is allowed to update the calibration factor by writing ADC_CALFACT only when
ADEN = 1 and ADSTART = 0 (ADC enabled and no conversion is ongoing).

Bits 30:29 Reserved, must be kept at reset value.

Bit 28 ADVREGEN: ADC Voltage Regulator Enable

This bit can be set:

– by software, to enable the ADC internal voltage regulator.

– by hardware, when launching the calibration (setting ADCAL = 1) or when enabling the ADC (setting
ADEN = 1)

It is cleared by software to disable the voltage regulator. It can be cleared only if ADEN is cleared.
0: ADC voltage regulator disabled
1: ADC voltage regulator enabled

Note: The software can program this bit field only when the ADC is disabled (ADCAL = 0,
ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0).

Bits 27:5 Reserved, must be kept at reset value.

Bit 4 ADSTP: ADC stop conversion command

This bit is set by software to stop and discard an ongoing conversion (ADSTP Command).
It is cleared by hardware when the conversion is effectively discarded and the ADC is ready to
accept a new start conversion command.
0: No ADC stop conversion command ongoing
1: Write 1 to stop the ADC. Read 1 means that an ADSTP command is in progress.

Note: Setting ADSTP to ‘1’ is only effective when ADSTART = 1 and ADDIS = 0 (ADC is enabled and
may be converting and there is no pending request to disable the ADC)

Bit 3 Reserved, must be kept at reset value.

Analog-to-digital converter (ADC) RM0367

340/1040 RM0367 Rev 8

Bit 2 ADSTART: ADC start conversion command

This bit is set by software to start ADC conversion. Depending on the EXTEN [1:0] configuration bits,
a conversion either starts immediately (software trigger configuration) or once a hardware trigger
event occurs (hardware trigger configuration).
It is cleared by hardware:

– In single conversion mode (CONT = 0, DISCEN = 0), when software trigger is selected
(EXTEN = 00): at the assertion of the end of Conversion Sequence (EOS) flag.

– In discontinuous conversion mode(CONT = 0, DISCEN = 1), when the software trigger is selected
(EXTEN = 00): at the assertion of the end of Conversion (EOC) flag.

– In all other cases: after the execution of the ADSTP command, at the same time as the ADSTP bit is
cleared by hardware.

0: No ADC conversion is ongoing.
1: Write 1 to start the ADC. Read 1 means that the ADC is operating and may be converting.

Note: The software is allowed to set ADSTART only when ADEN = 1 and ADDIS = 0 (ADC is enabled
and there is no pending request to disable the ADC).

Bit 1 ADDIS: ADC disable command

This bit is set by software to disable the ADC (ADDIS command) and put it into power-down state
(OFF state).
It is cleared by hardware once the ADC is effectively disabled (ADEN is also cleared by hardware at
this time).
0: No ADDIS command ongoing
1: Write 1 to disable the ADC. Read 1 means that an ADDIS command is in progress.

Note: Setting ADDIS to ‘1’ is only effective when ADEN = 1 and ADSTART = 0 (which ensures that no
conversion is ongoing)

Bit 0 ADEN: ADC enable command

This bit is set by software to enable the ADC. The ADC is effectively ready to operate once the
ADRDY flag has been set.
It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command.
0: ADC is disabled (OFF state)
1: Write 1 to enable the ADC.

Note: The software is allowed to set ADEN only when all bits of ADC_CR registers are 0 (ADCAL = 0,
ADSTP = 0, ADSTART = 0, ADDIS = 0 and ADEN = 0)

RM0367 Rev 8 341/1040

RM0367 Analog-to-digital converter (ADC)

351

14.12.4 ADC configuration register 1 (ADC_CFGR1)

Address offset: 0x0C

Reset value: 0x0000 0000

The software is allowed to program ADC_CFGR1 only when ADEN is cleared in ADC_CR.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. AWDCH[4:0] Res. Res. AWDEN AWDSGL Res. Res. Res. Res. Res. DISCEN

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AUTOFF WAIT CONT OVRMOD EXTEN[1:0] Res. EXTSEL[2:0] ALIGN RES[1:0]
SCAND

IR
DMAC

FG
DMAEN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, must be kept at reset value.

Bits 30:26 AWDCH[4:0]: Analog watchdog channel selection

These bits are set and cleared by software. They select the input channel to be guarded by
the analog watchdog.
00000: ADC analog input Channel 0 monitored by AWD
00001: ADC analog input Channel 1 monitored by AWD
.....
10001: ADC analog input Channel 17 monitored by AWD
10010: ADC analog input Channel 18 monitored by AWD
Others: Reserved

Note: The channel selected by the AWDCH[4:0] bits must be also set into the CHSELR
register.

The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bits 25:24 Reserved, must be kept at reset value.

Bit 23 AWDEN: Analog watchdog enable

This bit is set and cleared by software.
0: Analog watchdog disabled
1: Analog watchdog enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 22 AWDSGL: Enable the watchdog on a single channel or on all channels

This bit is set and cleared by software to enable the analog watchdog on the channel
identified by the AWDCH[4:0] bits or on all the channels
0: Analog watchdog enabled on all channels
1: Analog watchdog enabled on a single channel

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bits 21:17 Reserved, must be kept at reset value.

Analog-to-digital converter (ADC) RM0367

342/1040 RM0367 Rev 8

Bit 16 DISCEN: Discontinuous mode

This bit is set and cleared by software to enable/disable discontinuous mode.
0: Discontinuous mode disabled
1: Discontinuous mode enabled

Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 15 AUTOFF: Auto-off mode

This bit is set and cleared by software to enable/disable auto-off mode..

0: Auto-off mode disabled
1: Auto-off mode enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 14 WAIT: Wait conversion mode

This bit is set and cleared by software to enable/disable wait conversion mode..

0: Wait conversion mode off
1: Wait conversion mode on

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 13 CONT: Single / continuous conversion mode

This bit is set and cleared by software. If it is set, conversion takes place continuously until it
is cleared.
0: Single conversion mode
1: Continuous conversion mode

Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both bits DISCEN = 1 and CONT = 1.

The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 12 OVRMOD: Overrun management mode

This bit is set and cleared by software and configure the way data overruns are managed.
0: ADC_DR register is preserved with the old data when an overrun is detected.
1: ADC_DR register is overwritten with the last conversion result when an overrun is
detected.

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

RM0367 Rev 8 343/1040

RM0367 Analog-to-digital converter (ADC)

351

Bits 11:10 EXTEN[1:0]: External trigger enable and polarity selection

These bits are set and cleared by software to select the external trigger polarity and enable
the trigger.
00: Hardware trigger detection disabled (conversions can be started by software)
01: Hardware trigger detection on the rising edge
10: Hardware trigger detection on the falling edge
11: Hardware trigger detection on both the rising and falling edges

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 9 Reserved, must be kept at reset value.

Bits 8:6 EXTSEL[2:0]: External trigger selection

These bits select the external event used to trigger the start of conversion (refer to Table 60:
External triggers for details):
000: TRG0
001: TRG1
010: TRG2
011: TRG3
100: TRG4
101: TRG5
110: TRG6
111: TRG7

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 5 ALIGN: Data alignment

This bit is set and cleared by software to select right or left alignment. Refer to Figure 44:
Data alignment and resolution (oversampling disabled: OVSE = 0) on page 320
0: Right alignment
1: Left alignment

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bits 4:3 RES[1:0]: Data resolution

These bits are written by software to select the resolution of the conversion.
00: 12 bits
01: 10 bits
10: 8 bits
11: 6 bits

Note: The software is allowed to write these bits only when ADEN is cleared.

Analog-to-digital converter (ADC) RM0367

344/1040 RM0367 Rev 8

Bit 2 SCANDIR: Scan sequence direction

This bit is set and cleared by software to select the direction in which the channels is scanned
in the sequence.
0: Upward scan (from CHSEL0 to CHSEL18)
1: Backward scan (from CHSEL18 to CHSEL0)

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 1 DMACFG: Direct memory access configuration

This bit is set and cleared by software to select between two DMA modes of operation and is
effective only when DMAEN = 1.
0: DMA one shot mode selected
1: DMA circular mode selected
For more details, refer to Section 14.5.5: Managing converted data using the DMA on
page 321

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

Bit 0 DMAEN: Direct memory access enable

This bit is set and cleared by software to enable the generation of DMA requests. This allows
the DMA controller to be used to manage automatically the converted data. For more details,
refer to Section 14.5.5: Managing converted data using the DMA on page 321.
0: DMA disabled
1: DMA enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures
that no conversion is ongoing).The software is allowed to write this bit only when ADEN
bit is cleared.

RM0367 Rev 8 345/1040

RM0367 Analog-to-digital converter (ADC)

351

14.12.5 ADC configuration register 2 (ADC_CFGR2)

Address offset: 0x10

Reset value: 0x0000 0000

The software is allowed to program ADC_CFGR2 only when ADEN is cleared in ADC_CR.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CKMODE[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. TOVS OVSS[3:0] OVSR[2:0] Res. OVSE

rw rw rw rw rw rw rw rw rw

Bits 31:30 CKMODE[1:0]: ADC clock mode

These bits are set and cleared by software to define how the analog ADC is clocked:
00: ADCCLK (Asynchronous clock mode), generated at product level (refer to RCC section)
01: PCLK/2 (Synchronous clock mode)
10: PCLK/4 (Synchronous clock mode)
11: PCLK (Synchronous clock mode). This configuration must be enabled only if PCLK has a 50%
duty clock cycle (APB prescaler configured inside the RCC must be bypassed and the system clock
must by 50% duty cycle)
In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a
conversion.

Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL = 0,
ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0).

Bits 29:10 Reserved, must be kept at reset value.

Bit 9 TOVS: Triggered Oversampling

This bit is set and cleared by software.
0: All oversampled conversions for a channel are done consecutively after a trigger
1: Each oversampled conversion for a channel needs a trigger

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).The software is allowed to write this bit only when ADEN bit is cleared.

Bits 8:5 OVSS[3:0]: Oversampling shift

This bit is set and cleared by software.
0000: No shift
0001: Shift 1-bit
0010: Shift 2-bits
0011: Shift 3-bits
0100: Shift 4-bits
0101: Shift 5-bits
0110: Shift 6-bits
0111: Shift 7-bits
1000: Shift 8-bits
Others: Reserved

Note: he software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).The software is allowed to write this bit only when ADEN bit is cleared.

Analog-to-digital converter (ADC) RM0367

346/1040 RM0367 Rev 8

14.12.6 ADC sampling time register (ADC_SMPR)

Address offset: 0x14

Reset value: 0x0000 0000

Bits 4:2 OVSR[2:0]: Oversampling ratio

This bit filed defines the number of oversampling ratio.
000: 2x
001: 4x
010: 8x
011: 16x
100: 32x
101: 64x
110: 128x
111: 256x

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).The software is allowed to write this bit only when ADEN bit is cleared.

Bit 1 Reserved, must be kept at reset value.

Bit 0 OVSE: Oversampler Enable

This bit is set and cleared by software.
0: Oversampler disabled
1: Oversampler enabled

Note: The software is allowed to write this bit only when ADSTART bit is cleared (this ensures that no
conversion is ongoing).The software is allowed to write this bit only when ADEN bit is cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SMP[2:0]

rw rw rw

Bits 31:3 Reserved, must be kept at reset value.

Bits 2:0 SMP[2:0]: Sampling time selection

These bits are written by software to select the sampling time that applies to all channels.
000: 1.5 ADC clock cycles
001: 3.5 ADC clock cycles
010: 7.5 ADC clock cycles
011: 12.5 ADC clock cycles
100: 19.5 ADC clock cycles
101: 39.5 ADC clock cycles
110: 79.5 ADC clock cycles
111: 160.5 ADC clock cycles

Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).

RM0367 Rev 8 347/1040

RM0367 Analog-to-digital converter (ADC)

351

14.12.7 ADC watchdog threshold register (ADC_TR)

Address offset: 0x20

Reset value: 0x0FFF 0000

14.12.8 ADC channel selection register (ADC_CHSELR)

Address offset: 0x28

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. HT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. LT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:16 HT[11:0]: Analog watchdog higher threshold

These bits are written by software to define the higher threshold for the analog watchdog. Refer to
Section 14.7: Analog window watchdog (AWDEN, AWDSGL, AWDCH, ADC_TR) on page 325

Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 LT[11:0]: Analog watchdog lower threshold

These bits are written by software to define the lower threshold for the analog watchdog.
Refer to Section 14.7: Analog window watchdog (AWDEN, AWDSGL, AWDCH, ADC_TR) on
page 325.

Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
CHSEL

18
CHSEL

17
CHSEL

16

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHSEL
15

CHSEL
14

CHSEL
13

CHSEL
12

CHSEL
11

CHSEL
10

CHSEL
9

CHSEL
8

CHSEL
7

CHSEL
6

CHSEL
5

CHSEL
4

CHSEL
3

CHSEL
2

CHSEL
1

CHSEL
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Analog-to-digital converter (ADC) RM0367

348/1040 RM0367 Rev 8

14.12.9 ADC data register (ADC_DR)

Address offset: 0x40

Reset value: 0x0000 0000

14.12.10 ADC Calibration factor (ADC_CALFACT)

Address offset: 0xB4

Reset value: 0x0000 0000

Bits 31:19 Reserved, must be kept at reset value.

Bits 18:0 CHSELx: Channel-x selection

These bits are written by software and define which channels are part of the sequence of channels
to be converted. Refer to Figure 36: ADC connectivity for ADC inputs connected to external
channels and internal sources.
0: Input Channel-x is not selected for conversion
1: Input Channel-x is selected for conversion

Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 DATA[15:0]: Converted data

These bits are read-only. They contain the conversion result from the last converted channel. The data
are left- or right-aligned as shown in Figure 44: Data alignment and resolution (oversampling disabled:
OVSE = 0) on page 320.

Just after a calibration is complete, DATA[6:0] contains the calibration factor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. CALFACT[6:0]

rw rw rw rw rw rw rw

RM0367 Rev 8 349/1040

RM0367 Analog-to-digital converter (ADC)

351

14.12.11 ADC common configuration register (ADC_CCR)

Address offset: 0x308

Reset value: 0x0000 0000

Bits 31:7 Reserved, must be kept at reset value.

Bits 6:0 CALFACT[6:0]: Calibration factor

These bits are written by hardware or by software.

– Once a single-ended inputs calibration is complete, they are updated by hardware with the
calibration factors.

– Software can write these bits with a new calibration factor. If the new calibration factor is different
from the current one stored into the analog ADC, it is then applied once a new single-ended
conversion is launched.

– Just after a calibration is complete, DATA[6:0] contains the calibration factor.

Note: Software can write these bits only when ADEN=1 and ADSTART=0 (ADC is enabled and no
calibration is ongoing and no conversion is ongoing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. LFMEN
VLCD

EN
TSEN

VREF
EN

PRESC[3:0] Res. Res.

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:26 Reserved, must be kept at reset value.

Bit 25 LFMEN: Low Frequency Mode enable

This bit is set and cleared by software to enable/disable the Low Frequency Mode.

It is mandatory to enable this mode the user selects an ADC clock frequency lower than 3.5 MHz

0: Low Frequency Mode disabled
1: Low Frequency Mode enabled

Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no
conversion is ongoing.

Bit 24 VLCDEN: VLCD enable

This bit is set and cleared by software to enable/disable the VLCD reading circuitry.

0: VLCD reading circuitry disabled
1: VLCD reading circuitry enabled

Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion
is ongoing).

Bit 23 TSEN: Temperature sensor enable

This bit is set and cleared by software to enable/disable the temperature sensor.

0: Temperature sensor disabled
1: Temperature sensor enabled

Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion
is ongoing).

Analog-to-digital converter (ADC) RM0367

350/1040 RM0367 Rev 8

14.13 ADC register map

The following table summarizes the ADC registers.

Bit 22 VREFEN: VREFINT enable

This bit is set and cleared by software to enable/disable the VREFINT.

0: VREFINT disabled
1: VREFINT enabled

Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion
is ongoing).

Bits 21:18 PRESC[3:0]: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC. The clock is common for
all the ADCs.
0000: input ADC clock not divided
0001: input ADC clock divided by 2
0010: input ADC clock divided by 4
0011: input ADC clock divided by 6
0100: input ADC clock divided by 8
0101: input ADC clock divided by 10
0110: input ADC clock divided by 12
0111: input ADC clock divided by 16
1000: input ADC clock divided by 32
1001: input ADC clock divided by 64
1010: input ADC clock divided by 128
1011: input ADC clock divided by 256
Other: Reserved

Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL = 0,
ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0).

Bits 17:0 Reserved, must be kept at reset value.

Table 68. ADC register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x00

ADC_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
O

C
A

L

R
es

.

R
es

.

R
es

.

A
W

D

R
es

.

R
es

.

O
V

R

E
O

S

E
O

C

E
O

S
M

P

A
D

R
D

Y

Reset value 0 0 0 0 0 0 0

0x04
ADC_IER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
O

C
A

LI
E

R
es

.

R
es

.

R
es

.

A
W

D
IE

R
es

.

R
es

.

O
V

R
IE

E
O

S
IE

E
O

C
IE

E
O

S
M

P
IE

A
D

R
D

Y
IE

Reset value 0 0 0 0 0 0 0

0x08
ADC_CR

A
D

C
A

L

R
es

.

R
es

.

A
D

V
R

E
G

E
N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
D

S
T

P

R
es

.

A
D

S
TA

R
T

A
D

D
IS

A
D

E
N

Reset value 0 0 0 0 0 0

0x0C
ADC_CFGR1

R
es

.

AWDCH[4:0]

R
es

.

R
es

.

A
W

D
E

N

A
W

D
S

G
L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
IS

C
E

N

A
U

T
O

F
F

W
A

IT

C
O

N
T

O
V

R
M

O
D

E
X

T
E

N
[1

:0
]

R
es

. EXTSEL
[2:0]

A
LI

G
N RES

[1:0]

S
C

A
N

D
IR

D
M

A
C

F
G

D
M

A
E

N

Reset value 0

RM0367 Rev 8 351/1040

RM0367 Analog-to-digital converter (ADC)

351

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x10
ADC_CFGR2

C
K

M
O

D
E

[1
:0

]

R
e

s

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
O

V
S

O
V

S
S

[3
:0

]

O
V

S
R

[2
:0

]

R
es

.

O
V

S
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x14
ADC_SMPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. SMP
[2:0]

Reset value 0 0 0
0x18 Reserved Reserved
0x1C Reserved Reserved

0x20
ADC_TR

R
es

.

R
es

.

R
es

.

R
es

.

HT[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

LT[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0x24 Reserved Reserved

0x28
ADC_CHSELR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
H

S
E

L
1

8

C
H

S
E

L
1

7

C
H

S
E

L
1

6

C
H

S
E

L
1

5

C
H

S
E

L
1

4

C
H

S
E

L
1

3

C
H

S
E

L
1

2

C
H

S
E

L
11

C
H

S
E

L
1

0

C
H

S
E

L
9

C
H

S
E

L
8

C
H

S
E

L
7

C
H

S
E

L
6

C
H

S
E

L
5

C
H

S
E

L
4

C
H

S
E

L
3

C
H

S
E

L
2

C
H

S
E

L
1

C
H

S
E

L
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x2C
0x30
0x34
0x38
0x3C

Reserved Reserved

0x40
ADC_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
... Reserved Reserved
... Reserved Reserved

0xB4
ADC_CALFACT

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CALFACT[6:0]

Reset value 0 0 0 0 0 0 0
... Reserved Reserved

0x308
ADC_CCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

LF
M

E
N

V
L

C
D

E
N

T
S

E
N

V
R

E
F

E
N

P
R

E
S

C
3

P
R

E
S

C
2

P
R

E
S

C
1

P
R

E
S

C
0

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0

Table 68. ADC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Digital-to-analog converter (DAC) RM0367

352/1040 RM0367 Rev 8

15 Digital-to-analog converter (DAC)

15.1 Introduction

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. An input reference voltage,
VREF+(shared with ADC), is available. The output can optionally be buffered for higher
current drive.

15.2 DAC1 main features

The devices integrate two DAC converters, featuring one output channel each: DAC_OUT1
and DAC_OUT2.

DAC1 main features are the following:

• One data holding register

• Left or right data alignment in 12-bit mode

• Synchronized update capability

• Noise-wave generation

• Triangular-wave generation

• Dual DAC channels with independent or simultaneous conversions

• DMA capability (including underrun detection)

• External triggers for conversion

• Input voltage reference, VREF+

Figure 58 shows the block diagram of a DAC channel and Table 69 gives the pin
description.

RM0367 Rev 8 353/1040

RM0367 Digital-to-analog converter (DAC)

375

Figure 58. DAC block diagram

Note: Once DAC_Channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is automatically
connected to the analog converter output (DAC_OUTx). In order to avoid parasitic
consumption, PA4/PA5 pin should first be configured to analog (AIN).

Table 69. DAC pins

Name Signal type Remarks

VDDA Input, analog supply Analog power supply

VSSA Input, analog supply ground Ground for analog power supply

VREF+
Input, analog positive
reference

The higher/positive reference voltage for the DAC1

DAC_OUT1/2 Analog output signal DAC channelx analog output

MS33718V3

VDDA

VREF+

DAC_OUT1/2

Control logicDHRx

12-bit

12-bit

DM A requestx

TSELx[2:0] bits

EXTI_9

DMAENx

TENx

DORx

Digital-to-analog
converterx

12-bit

DAC control register

Tr
ig

ge
r s

el
ec

to
r

BOFF

TIM6_TRGO

TIM21_TRGO
TIM2_TRGO

SWTRIGx

VSSA

TIM3_TRGO
TIM7_TRGO

TIM3_CH3

Digital-to-analog converter (DAC) RM0367

354/1040 RM0367 Rev 8

15.3 DAC output buffer enable

The DAC integrates two output buffers that can be used to reduce the output impedance
and to drive external loads directly without having to add an external operational amplifier.

The DAC channel output buffer can be enabled and disabled through the BOFF1 bit in the
DAC_CR register.

15.4 DAC channel enable

Each DAC channel can be powered on by setting the corresponding ENx bit in the DAC_CR
register. Each DAC channel is then enabled after a startup time tWAKEUP.

Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital
interface is enabled even if the ENx bit is reset.

15.5 Single mode functional description

15.5.1 DAC data format

There are three possibilities:

• 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0] bits
(stored into the DHRx[11:4] bits)

• 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits
(stored into the DHRx[11:0] bits)

• 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits
(stored into the DHRx[11:0] bits)

Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-memory-
mapped registers). The DHRx register is then loaded into the DORx register either
automatically, by software trigger or by an external event trigger.

Figure 59. Data registers in single DAC channel mode

15.5.2 DAC channel conversion

The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx).

Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14710b

RM0367 Rev 8 355/1040

RM0367 Digital-to-analog converter (DAC)

375

register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three PCLK1 clock cycles
later.

When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time tSETTLING that depends on the power supply voltage and the
analog output load.

Figure 60. Timing diagram for conversion with trigger disabled TEN = 0

Independent trigger with single LFSR generation

To configure the DAC in this conversion mode (see Section 15.7: Noise generation), the
following sequence is required:

1. Set the DAC channel trigger enable bit TENx.

2. Configure the trigger source by setting TSELx[2:0] bits.

3. Configure the DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in
the MAMPx[3:0] bits

4. Load the DAC channel data into the desired DAC_DHRx register (DHR12RD,
DHR12LD or DHR8RD).

When a DAC channelx trigger arrives, the LFSRx counter, with the same mask, is added to
the DHRx register and the sum is transferred into DAC_DORx (three APB clock cycles
later). Then the LFSRx counter is updated.

For code example, refer to A.9.1: Independent trigger without wave generation code
example.

Independent trigger with single triangle generation

To configure the DAC in this conversion mode (see Section 15.8: Triangle-wave generation),
the following sequence is required:

1. Set the DAC channelx trigger enable TENx bits.

2. Configure the trigger source by setting TSELx[2:0] bits.

3. Configure the DAC channelx WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRx register. (DHR12RD,
DHR12LD or DHR8RD).

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with the same
triangle amplitude, is added to the DHRx register and the sum is transferred into
DAC_DORx (three APB clock cycles later). The DAC channelx triangle counter is then
updated.

APB1_CLK

0x1AC

0x1AC

tSETTLING

DHR

DOR
Output voltage
available on DAC_OUT pin

ai14711b

Digital-to-analog converter (DAC) RM0367

356/1040 RM0367 Rev 8

For code example, refer to A.9.2: Independent trigger with single triangle generation code
example.

15.5.3 DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following
equation:

15.5.4 DAC trigger selection

If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which possible
events will trigger conversion as shown in Table 70.

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register are
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.

Note: TSELx[2:0] bit cannot be changed when the ENx bit is set. When software trigger is
selected, the transfer from the DAC_DHRx register to the DAC_DORx register takes only
one APB1 clock cycle.

DACoutput VREF+
DOR
4096
--------------×=

Table 70. External triggers

Source Type TSEL[2:0]

TIM6 TRGO event

Internal signal from on-chip
timers

000

TIM3 TRGO event 001

TIM3 CH3 event 010

TIM21 TRGO event 011

TIM2 TRGO event 100

TIM7 TRGO event 101

EXTI line9 External pin 110

SWTRIG Software control bit 111

RM0367 Rev 8 357/1040

RM0367 Digital-to-analog converter (DAC)

375

15.6 Dual-mode functional description

15.6.1 DAC data format

In Dual DAC channel mode, there are three possibilities:

• 8-bit right alignment: data for DAC channel1 to be loaded in the DAC_DHR8RD [7:0]
bits (stored in the DHR1[11:4] bits) and data for DAC channel2 to be loaded in the
DAC_DHR8RD [15:8] bits (stored in the DHR2[11:4] bits)

• 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD
[15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded
into the DAC_DHR12LD [31:20] bits (stored in the DHR2[11:0] bits)

• 12-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR12RD
[11:0] bits (stored in the DHR1[11:0] bits) and data for DAC channel2 to be loaded into
the DAC_DHR12LD [27:16] bits (stored in the DHR2[11:0] bits)

Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted
and stored in DHR1 and DHR2 (data holding registers, which are internal non-memory-
mapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and
DOR2 registers, respectively, either automatically, by software trigger or by an external
event trigger.

Figure 61. Data registers in dual DAC channel mode

15.6.2 DAC channel conversion in dual mode

The DAC channel conversion in dual mode is performed in the same way as in single mode
(refer to Section 15.5.2) except that the data have to be loaded by writing to DAC_DHR8Rx,
DAC_DHR12Lx, DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12RD.

15.6.3 Description of dual conversion modes

To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.

Eleven conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.

All modes are described in the paragraphs below.

Refer to Section 15.5.2: DAC channel conversion for details on the APB bus (APB or APB1)
that clocks the DAC conversions.

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709b

Digital-to-analog converter (DAC) RM0367

358/1040 RM0367 Rev 8

Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

3. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB clock cycles later).

When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2
(three APB clock cycles later).

Independent trigger with single LFSR generation

To configure the DAC in this conversion mode (refer to Section 15.7: Noise generation), the
following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

3. Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

4. Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB clock cycles
later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB clock cycles
later). Then the LFSR2 counter is updated.

Independent trigger with different LFSR generation

To configure the DAC in this conversion mode (refer to Section 15.7: Noise generation), the
following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

3. Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits

4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB clock cycles later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB clock cycles later). Then the LFSR2 counter is updated.

RM0367 Rev 8 359/1040

RM0367 Digital-to-analog converter (DAC)

375

Independent trigger with single triangle generation

To configure the DAC in this conversion mode (refer to Section 15.8: Triangle-wave
generation), the following sequence is required:

1. Set the DAC channelx trigger enable TENx bits.

2. Configure different trigger sources by setting different values in the TSELx[2:0] bits

3. Configure the DAC channelx WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRx register.

Refer to Section 15.5.2: DAC channel conversion for details on the APB bus (APB or APB1)
that clocks the DAC conversions.

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with the same
triangle amplitude, is added to the DHRx register and the sum is transferred into
DAC_DORx (three APB clock cycles later). The DAC channelx triangle counter is then
updated.

Independent trigger with different triangle generation

To configure the DAC in this conversion mode (refer to Section 15.8: Triangle-wave
generation), the following sequence is required:

1. Set the DAC channelx trigger enable TENx bits.

2. Configure different trigger sources by setting different values in the TSELx[2:0] bits

3. Configure the DAC channelx WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMPx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRx register.

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with a triangle
amplitude configured by MAMPx[3:0], is added to the DHRx register and the sum is
transferred into DAC_DORx (three APB clock cycles later). The DAC channelx triangle
counter is then updated.

Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

1. Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

In this configuration, one APB clock cycles).

Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

3. Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB clock cycles).

Digital-to-analog converter (DAC) RM0367

360/1040 RM0367 Rev 8

Simultaneous trigger with single LFSR generation

To configure the DAC in this conversion mode (refer to Section 15.7: Noise generation), the
following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

3. Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

4. Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)

When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB clock
cycles later). The LFSR2 counter is then updated.

Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode (refer to Section 15.7: Noise generation), the
following sequence is required:

1. Set the two DAC channel trigger enable bits TEN1 and TEN2

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

3. Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask
values using the MAMP1[3:0] and MAMP2[3:0] bits

4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB clock
cycles later). The LFSR1 counter is then updated.

At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB clock cycles
later). The LFSR2 counter is then updated.

Simultaneous trigger with single triangle generation

To configure the DAC in this conversion mode (refer to Section 15.8: Triangle-wave
generation), the following sequence is required:

1. Set the DAC channelx trigger enable TEN1x bits.

2. Configure the same trigger source for both DAC channels by setting the same value in
the TSELx[2:0] bits.

3. Configure the DAC channelx WAVEx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRx registers.

When a trigger arrives, the DAC channelx triangle counter, with the same triangle amplitude,
is added to the DHRx register and the sum is transferred into DAC_DORx (three APB clock
cycles later). The DAC channelx triangle counter is then updated.

RM0367 Rev 8 361/1040

RM0367 Digital-to-analog converter (DAC)

375

Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode ‘refer to Section 15.8: Triangle-wave
generation), the following sequence is required:

1. Set the DAC channelx trigger enable TENx bits.

2. Configure the same trigger source for DAC channelx by setting the same value in the
TSELx[2:0] bits

3. Configure the DAC channelx WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMPx[3:0] bits.

4. Load the DAC channelx data into the desired DAC_DHRx registers.

When a trigger arrives, the DAC channelx triangle counter, with a triangle amplitude
configured by MAMPx[3:0], is added to the DHRx register and the sum is transferred into
DAC_DORx (three APB clock cycles later). Then the DAC channelx triangle counter is
updated.

15.6.4 DAC output voltage

Refer to Section 15.5.3: DAC output voltage.

15.6.5 DAC trigger selection

Refer to Section 15.5.4: DAC trigger selection

15.7 Noise generation

In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in LFSR is 0xAAA. This register is updated three APB clock cycles after
each trigger event, following a specific calculation algorithm.

Figure 62. DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).

11 10 9 8 7 6 5 4 3 2 1 0

12

NOR

X12
X0XX4X6

XOR

ai14713c

Digital-to-analog converter (DAC) RM0367

362/1040 RM0367 Rev 8

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

Figure 63. DAC conversion (SW trigger enabled) with LFSR wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

15.8 Triangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.

It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits.

Figure 64. DAC triangle wave generation

APB1_CLK

0x00

0xAAA

DHR

DOR

ai14714b

0xD55

SWTRIG

MAMPx[3:0] max amplitude
+ DAC_DHRx base value

DAC_DHRx base value

Inc
rem

en
tat

ion

ai14715c

Decrementation

0

RM0367 Rev 8 363/1040

RM0367 Digital-to-analog converter (DAC)

375

Figure 65. DAC conversion (SW trigger enabled) with triangle wave generation

Note: The DAC trigger must be enabled for triangle generation by setting the TENx bit in the
DAC_CR register.

The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.

15.9 DMA request

Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
to the DAC_DORx register.

In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one
DMA request is needed, user should set only the corresponding DMAENx bit. In this way,
the application can manage both DAC channels in dual mode by using one DMA request
and a unique DMA channel.

DMA underrun

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgment for the first external trigger is received (first request), then no new request
is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set,
reporting the error condition. DMA data transfers are then disabled and no further DMA
request is treated. The DAC channelx continues to convert old data.

The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA. Finally, the DAC conversion can be resumed by
enabling both DMA data transfer and conversion trigger.

For each DAC channel, an interrupt is also generated if the corresponding DMAUDRIEx bit
in the DAC_CR register is enabled.

For code example, refer to A.9.3: DMA initialization code example.

APB1_CLK

0xABE

0xABE

DHR

DOR

ai14716b

0xABF

SWTRIG

0xAC0

Digital-to-analog converter (DAC) RM0367

364/1040 RM0367 Rev 8

15.10 DAC registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

15.10.1 DAC control register (DAC_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res.
DMAU
DRIE2

DMA
EN2

MAMP2[3:0] WAVE2[1:0] TSEL2[2:0] TEN2 BOFF2 EN2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.
DMAU
DRIE1

DMA
EN1

MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 BOFF1 EN1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable

This bit is set and cleared by software.

0: DAC channel2 DMA underrun interrupt disabled
1: DAC channel2 DMA underrun interrupt enabled

Note: This bit is available in dual mode only. It is reserved in single mode.

Bit 28 DMAEN2: DAC channel2 DMA enable

This bit is set and cleared by software.

0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled

Note: This bit is available in dual mode only. It is reserved in single mode.

Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.

0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Note: These bits are available only in dual mode when wave generation is supported.
Otherwise, they are reserved and must be kept at reset value.

RM0367 Rev 8 365/1040

RM0367 Digital-to-analog converter (DAC)

375

Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable

These bits are set/reset by software.

00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled)

These bits are available only in dual mode when wave generation is supported.
Otherwise, they are reserved and must be kept at reset value.

Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection

These bits select the external event used to trigger DAC channel2

000: Timer 6 TRGO event
001: Timer 3 TRGO event
010: Timer 3 CH3 event
011: Timer 21 TRGO event
100: Timer 2 TRGO event
101: Timer 7 TRGO event
110: EXTI line9
111: Software trigger

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled).

These bits are available in dual mode only. They are reserved in single mode.

Bit 18 TEN2: DAC channel2 trigger enable

This bit is set and cleared by software to enable/disable DAC channel2 trigger

0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1clock cycle later to the DAC_DOR2 register
1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR2 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR2 register takes only one APB1 clock cycle.

Note: This bit is available in dual mode only. It is reserved in single mode.

Bit 17 BOFF2: DAC channel2 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel2 output buffer.

0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

Note: This bit is available in dual mode only. It is reserved in single mode.

Bit 16 EN2: DAC channel2 enable

This bit is set and cleared by software to enable/disable DAC channel2.

0: DAC channel2 disabled
1: DAC channel2 enabled

Note: This bit is available in dual mode only. It is reserved in single mode.

Bits 15:14 Reserved, must be kept at reset value.

Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable

This bit is set and cleared by software.

0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled

Digital-to-analog converter (DAC) RM0367

366/1040 RM0367 Rev 8

Bit 12 DMAEN1: DAC channel1 DMA enable

This bit is set and cleared by software.

0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.

0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable

These bits are set and cleared by software.

00: Wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1.

000: Timer 6 TRGO event
001: Timer 3 TRGO event
010: Timer 3 CH3 event
011: Timer 21 TRGO event
100: Timer 2 TRGO event
101: Timer 7 TRGO event
110: EXTI line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

RM0367 Rev 8 367/1040

RM0367 Digital-to-analog converter (DAC)

375

Bit 2 TEN1: DAC channel1 trigger enable

This bit is set and cleared by software to enable/disable DAC channel1 trigger.

0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.

Bit 1 BOFF1: DAC channel1 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel1 output buffer.

0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable

This bit is set and cleared by software to enable/disable DAC channel1.

0: DAC channel1 disabled
1: DAC channel1 enabled

Digital-to-analog converter (DAC) RM0367

368/1040 RM0367 Rev 8

15.10.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04

Reset value: 0x0000 0000

15.10.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWTRIG2 SWTRIG1

w w

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 SWTRIG2: DAC channel2 software trigger

This bit is set and cleared by software to enable/disable the software trigger.

0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2
register value has been loaded into the DAC_DOR2 register.

This bit is available in dual mode only. It is reserved in single mode.

Bit 0 SWTRIG1: DAC channel1 software trigger

This bit is set and cleared by software to enable/disable the software trigger.

0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DOR1 register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

RM0367 Rev 8 369/1040

RM0367 Digital-to-analog converter (DAC)

375

15.10.4 DAC channel1 12-bit left-aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C

Reset value: 0x0000 0000

15.10.5 DAC channel1 8-bit right-aligned data holding register
(DAC_DHR8R1)

Address offset: 0x10

Reset value: 0x0000 0000

15.10.6 DAC channel2 12-bit right-aligned data holding register
(DAC_DHR12R2)

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0] v Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. DACC1DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Digital-to-analog converter (DAC) RM0367

370/1040 RM0367 Rev 8

15.10.7 DAC channel2 12-bit left-aligned data holding register
(DAC_DHR12L2)

Address offset: 0x18

Reset value: 0x0000 0000

15.10.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)

Address offset: 0x1C

Reset value: 0x0000 0000

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[11:0] Res. Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. DACC2DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

RM0367 Rev 8 371/1040

RM0367 Digital-to-analog converter (DAC)

375

15.10.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)

Address offset: 0x20

Reset value: 0x0000 0000

15.10.10 Dual DAC 12-bit left-aligned data holding register
(DAC_DHR12LD)

Address offset: 0x24

Reset value: 0x0000 0000

15.10.11 Dual DAC 8-bit right-aligned data holding register
(DAC_DHR8RD)

Address offset: 0x28

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0] Res. Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0] Res. Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 19:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Digital-to-analog converter (DAC) RM0367

372/1040 RM0367 Rev 8

15.10.12 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C

Reset value: 0x0000 0000

15.10.13 DAC channel2 data output register (DAC_DOR2)

Address offset: 0x30
Reset value: 0x0000 0000

15.10.14 DAC status register (DAC_SR)

Address offset: 0x34

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[7:0] DACC1DHR[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC1DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output

These bits are read-only, they contain data output for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC2DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output

These bits are read-only, they contain data output for DAC channel2.

RM0367 Rev 8 373/1040

RM0367 Digital-to-analog converter (DAC)

375

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. DMAUDR2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. DMAUDR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rc_w1

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DMAUDR2: DAC channel2 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).

0: No DMA underrun error condition occurred for DAC channel2
1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is
driving DAC channel2 conversion at a frequency higher than the DMA service capability rate)

Note: This bit is available in dual mode only. It is reserved in single mode.

Bits 28:14 Reserved, must be kept at reset value.

Bit 13 DMAUDR1: DAC channel1 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).

0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)

Bits 12:0 Reserved, must be kept at reset value.

Digital-to-analog converter (DAC) RM0367

374/1040 RM0367 Rev 8

15.10.15 DAC register map

Table 71 summarizes the DAC registers.

Table 71. DAC register map and reset values

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
DAC_CR

R
es

.

R
es

.

D
M

A
U

D
R

IE
2

D
M

A
E

N
2

M
A

M
P

2
[3

:0
]

W
A

V
E

2
[1

:0
]

T
S

E
L2

[2
:0

]

T
E

N
2

B
O

F
F

2

E
N

2

R
es

.

R
es

.

D
M

A
U

D
R

IE
1

D
M

A
E

N
1

M
A

M
P

1
[3

:0
].

W
A

V
E

1
[1

:0
]

T
S

E
L1

[2
:0

]

T
E

N
1

B
O

F
F

1

E
N

1

Reset value 0

0x04

DAC_
SWTRIGR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
W

T
R

IG
2

S
W

T
R

IG
1

Reset value 0 0

0x08

DAC_
DHR12R1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DHR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x0C

DAC_
DHR12L1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
DACC1DHR[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x10

DAC_
DHR8R1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DHR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14

DAC_
DHR12R2 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC2DHR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18

DAC_
DHR12L2 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC2DHR[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

DAC_
DHR8R2 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC2DHR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x20

DAC_
DHR12RD R

es
.

R
es

.

R
es

.

R
es

.

DACC2DHR[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DHR[11:0]

Reset value 0

0x24

DAC_
DHR12LD

DACC2DHR[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DHR[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0

0x28

DAC_
DHR8RD R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC2DHR[7:0] DACC1DHR[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
DAC_DOR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DOR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x30
DAC_DOR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC2DOR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

RM0367 Rev 8 375/1040

RM0367 Digital-to-analog converter (DAC)

375

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x34
DAC_SR

R
es

.

R
es

.

D
M

A
U

D
R

2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
U

D
R

1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0

Table 71. DAC register map (continued)and reset values (continued)

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

Comparator (COMP) RM0367

376/1040 RM0367 Rev 8

16 Comparator (COMP)

16.1 Introduction

STM32L0x3 devices embed two ultra-low-power comparators COMP1, and COMP2 that
can be used either as standalone devices (all terminal are available on I/Os) or combined
with the timers.

The comparators can be used for a variety of functions including:

• Wakeup from low-power mode triggered by an analog signal,

• Analog signal conditioning,

• Cycle-by-cycle current control loop when combined with the DAC and a PWM output
from a timer.

16.2 COMP main features

• COMP1 comparator with ultra low consumption

• COMP2 comparator with rail-to-rail inputs, fast or slow mode

• Each comparator has positive and configurable negative inputs used for flexible voltage
selection:

– I/O pins

– DAC

– Internal reference voltage and three submultiple values (1/4, 1/2, 3/4) provided by
scaler (buffered voltage divider)

• Programmable speed / consumption (COMP2 only)

• The outputs can be redirected to an I/O or to timer inputs for triggering:

– Capture events

• COMP1, and COMP2 can be combined in a window comparator. Each comparator has
interrupt generation capability with wakeup from Sleep and Stop modes (through the
EXTI controller)

RM0367 Rev 8 377/1040

RM0367 Comparator (COMP)

382

16.3 COMP functional description

16.3.1 COMP block diagram

The block diagram of the comparators is shown in Figure 66: Comparator 1 and 2 block
diagrams.

Figure 66. Comparator 1 and 2 block diagrams

16.3.2 COMP pins and internal signals

The I/Os used as comparators inputs must be configured in analog mode in the GPIOs
registers.

The comparator output can be connected to the I/Os using the alternate function channel
given in “Alternate function mapping” table in the datasheet.

The output can also be internally redirected to a variety of timer input for the following
purposes:

• Input capture for timing measures

It is possible to have the comparator output simultaneously redirected internally and
externally.

-

+

-

+

COMP1POLARITY

COMP1VALUE

COMP1INNSEL

PA1

COMP1WM

COMP2INPSEL

PA3
PB4

PB6
PB7

VREFINT

¼ VREFINT
½ VREFINT
¾ VREFINT

PA2
PA4 (DAC1)
PA5 (DAC2)

PB3

COMP2INNSEL

COMP2VALUE

TIM2_ETR
TIM2_CH4
TIM21_ETR
TIM21_CH2
TIM22_ETR
TIM22_CH1
LPTIM_ETR
LPTIM_CH2

TIM2_ETR
TIM2_CH4
TIM21_ETR
TIM21_CH2
TIM22_ETR
TIM22_CH1
LPTIM_ETR
LPTIM_CH2

VREFINT
PA0

PA4 (DAC1)
PA5 (DAC2)

Wakeup
EXTI line 21

Wakeup
EXTI line 22

COMP1

COMP2

MSv33715V5

-

+

GPIOx

GPIOx

COMP2POLARITY
PB5

ScalerVREFINT

ENBUF_
VREFINT
_COMP2

Comparator (COMP) RM0367

378/1040 RM0367 Rev 8

16.3.3 COMP reset and clocks

The COMP clock provided by the clock controller is synchronous with the PCLK (APB
clock).

There is no clock enable control bit provided in the RCC controller. Reset and clock enable
bits are common for COMP and SYSCFG.

Important: The polarity selection logic and the output redirection to the port works
independently from the PCLK clock. This allows the comparator to work even in Stop mode.

16.3.4 Comparator LOCK mechanism

The comparators can be used for safety purposes, such as over-current or thermal
protection. For applications having specific functional safety requirements, it is necessary to
insure that the comparator programming cannot be altered in case of spurious register
access or program counter corruption.

For this purpose, the comparator control and status registers can be write-protected (read-
only).

Once the programming is completed, the COMPx LOCK bit can be set to 1. This causes the
whole COMPx_CSR register to become read-only, including the COMPx LOCK bit.

The write protection can only be reset by a MCU reset.

16.3.5 Power mode

COMP2 power consumption versus propagation delay can be adjusted to have the optimum
trade-off for a given application.

COMP2_SPEED bit in the COMP2_CSR register can be programmed to provide either
higher speed/consumption or lower speed/consumption.

16.4 COMP interrupts

The comparator outputs are internally connected to the Extended interrupts and events
controller. Each comparator has its own EXTI line and can generate either interrupts or
events. The same mechanism is used to exit from low-power modes.

Refer to Interrupt and events section for more details.

16.5 COMP registers

16.5.1 Comparator 1 control and status register (COMP1_CSR)

The COMP1_CSR is the Comparator1 control/status register. It contains all the bits /flags
related to comparator1.

Address offset: 0x18

System reset value: 0x0000 0000

RM0367 Rev 8 379/1040

RM0367 Comparator (COMP)

382

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP1
LOCK

COMP1
VALUE

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rs r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMP1
POLARITY

Res. Res.
COMP1

LPTIMIN1
Res. Res. Res.

COMP1
WM

Res. Res.
COMP1INN

SEL
Res. Res. Res.

COMP1
EN

rw rw rw rw rw rw

Bit 31 COMP1LOCK: COMP1_CSR register lock bit

This bit is set by software and cleared by a hardware system reset. It locks the whole
content of the comparator 1 control register, COMP1_CSR[31:0]
0: COMP1_CSR[31:0] for comparator 1 are read/write
1: COMP1_CSR[31:0] for comparator 1 are read-only

Bit 30 COMP1VALUE: Comparator 1 output status bit

This bit is read-only. It reflects the current comparator 1 output taking into account
COMP1POLARITY bit effect.

Bits 29:16 Reserved, must be kept at reset value

Bit 15 COMP1POLARITY: Comparator 1 polarity selection bit

This bit is set and cleared by software (only if COMP1LOCK not set). It inverts Comparator
1 polarity.
0: Comparator 1 output value not inverted
1: Comparator 1output value inverted

Bits 14:13 Reserved, must be kept at reset value

Bit 12 COMP1LPTIMIN1: Comparator 1 LPTIM input propagation bit

This bit is set and cleared by software (assuming COMP1LOCK not set). It sends
COMP1VALUE to LPTIM input 1.
0: Comparator 1 output gated
1: Comparator 1 output sent to LPTIM input 1

Bits 11:9 Reserved, must be kept at reset value

Bit 8 COMP1WM: Comparator 1 window mode selection bit

This bit is set and cleared by software (only if COMP1LOCK not set). It selects comparator
1 window mode where the Plus inputs of both comparators are connected together.
0: Plus input of comparator 1 connected to PA1.
1: Plus input of comparator 1 shorted with Plus input of comparator 2 (see COMP1_CSR).

Bits 7:6 Reserved, must be kept at reset value

Comparator (COMP) RM0367

380/1040 RM0367 Rev 8

16.5.2 Comparator 2 control and status register (COMP2_CSR)

The COMP2_CSR is the Comparator2 control/status register. It contains all the bits /flags
related to comparator2.

Address offset: 0x1C

System reset value: 0x0000 0000

Bits 5:4 COMP1INNSEL: Comparator 1 Input Minus connection configuration bit

These bits are set and cleared by software (only if COMP1LOCK not set). They select which
input is connected with the Input Minus of comparator 1
00: VREFINT
01: PA0
10: DAC1/PA4
11: DAC2/PA5

Bits 3:1 Reserved, must be kept at reset value

Bit 0 COMP1EN: Comparator 1 enable bit

This bit is set and cleared by software (only if COMP1LOCK not set). It switches
oncomparator1
0: Comparator 1 switched OFF.
1: Comparator 1 switched ON.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP2
LOCK

COMP2
VALUE

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rs r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMP2
POLARITY

Res.
COMP2

LPTIMIN1
COMP2

LPTIMIN2
Res. COMP2INPSEL Res. COMP2INNSEL

COMP2
SPEED

Res. Res.
COMP2

EN

rw rw rw rw rw rw rw rw rw rw rw

Bit 31 COMP2LOCK: COMP2_CSR register lock bit

This bit is set by software and cleared by a hardware system reset. It locks the whole
content of the comparator 2 control register, COMP2_CSR[31:0]
0: COMP2_CSR[31:0] for comparator 1 are read/write
1: COMP2_CSR[31:0] for comparator 1 are read-only

Bit 30 COMP2VALUE: Comparator 2 output status bit

This bit is read-only. It reflects the current comparator 2 output taking into account
COMP2POLARITY bit effect.

Bits 29:16 Reserved, must be kept at reset value

Bit 15 COMP2POLARITY: Comparator 2 polarity selection bit

This bit is set and cleared by software (only if COMP2LOCK not set). It inverts Comparator
1 polarity.
0: Comparator 2 output value not inverted
1: Comparator 2 output value inverted

Bit 14 Reserved, must be kept at reset value

RM0367 Rev 8 381/1040

RM0367 Comparator (COMP)

382

Bit 13 COMP2LPTIMIN1: Comparator 2 LPTIM input 1 propagation bit

This bit is set and cleared by software (assuming COMP2LOCK not set). It sends
COMP2VALUE to LPTIM input 1.
0: Comparator 2 output gated
1: Comparator 2 output sent to LPTIM input 1

Note: COMP2LPTIMIN1 and COMP2LPTIMIN2 cannot both be set to ‘1’.

Bit 12 COMP2LPTIMIN2: Comparator 2 LPTIM input 2 propagation bit

This bit is set and cleared by software (assuming COMP2LOCK not set). It sends
COMP2VALUE to LPTIM input 2.
0: Comparator 2 output gated
1: Comparator 2 output sent to LPTIM input 2

Note: COMP2LPTIMIN1 and COMP2LPTIMIN2 cannot both be set to ‘1’.

Bit 11 Reserved, must be kept at reset value

Bits 10:8 COMP2INPSEL: Comparator 2 Input Plus connection configuration bit

These bits are set and cleared by software (only if COMP2LOCK not set). They select which
input is connected with the Input Plus of comparator 2
000: PA3
001: PB4
010: PB5
011: PB6
100: PB7
Others: Reserved.

Bit 7 Reserved, must be kept at reset value

Bits 6:4 COMP2INNSEL: Comparator 2 Input Minus connection configuration bit

These bits are set and cleared by software (only if COMP2LOCK not set). They select which
input is connected with the Input Minus of comparator 2.
000: VREFINT
001: PA2
010: DAC /PA4
011: DAC2/PA5
100: 1/4 VREFINT
101: 1/2 VREFINT
110: 3/4 VREFINT
111: PB3

Note: If VREFINT or a fraction of VREFINT (using the scaler) is selected, then EN_VREFINT
bit must be set in the SYSCFG_CFGR3 register (see Section 10.2.3: Reference
control and status register (SYSCFG_CFGR3)).

Bit 3 COMP2SPEED: Comparator 2 power mode selection bit

This bit is set and cleared by software (only if COMP2LOCK not set). It selects comparator
2 power mode.
0: slow speed
1: fast speed

Bits 2:1 Reserved, must be kept at reset value

Bit 0 COMP2EN: Comparator 2 enable bit

This bit is set and cleared by software (only if COMP2LOCK not set). It switches
oncomparator2.
0: Comparator 2 switched off.
1: Comparator 2 switched ON.

Comparator (COMP) RM0367

382/1040 RM0367 Rev 8

16.5.3 COMP register map

The following table summarizes the comparator registers.

The comparator registers share SYSCFG peripheral register base addresses.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 72. COMP register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x18
COMP1_CSR

C
O

M
P

1L
O

C
K

C
O

M
P

1
V

A
LU

E

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
O

M
P

1P
O

L
A

R
IT

Y

R
es

.

R
es

.

C
O

M
P

1L
P

T
IM

IN
1

R
es

.

R
es

.

R
es

.

C
O

M
P

1
W

M

R
es

.

R
es

.

C
O

M
P

1
IN

N
S

E
L

R
es

.

R
es

.

R
es

.

C
O

M
P

1
E

N

Reset value 0 0 0 0 0 0 0 0

0x1C
COMP2_CSR

C
O

M
P

2
L

O
C

K

C
O

M
P

2
V

A
L

U
E

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
O

M
P

2
P

O
L

A
R

IT
Y

R
es

.

C
O

M
P

2
LP

T
IM

IN
1

C
O

M
P

2
LP

T
IM

IN
2

R
es

.

C
O

M
P

2
IN

P
S

E
L

R
es

.

C
O

M
P

2I
N

N
S

E
L

C
O

M
P

2S
P

E
E

D

R
es

.

R
es

.

C
O

M
P

2
E

N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0367 Rev 8 383/1040

RM0367 Liquid crystal display controller (LCD)

412

17 Liquid crystal display controller (LCD)

17.1 Introduction

The LCD controller is a digital controller/driver for monochrome passive liquid crystal display
(LCD) with up to 8 common terminals and up to 52(a) segment terminals to drive 208 (4x52)
or 384 (8x48) LCD picture elements (pixels). The exact number of terminals depends on the
device pinout as described in the datasheet.

The LCD is made up of several segments (pixels or complete symbols) that can be turned
visible or invisible. Each segment consists of a layer of liquid crystal molecules aligned
between two electrodes. When a voltage greater than a threshold voltage is applied across
the liquid crystal, the segment becomes visible. The segment voltage must be alternated to
avoid an electrophoresis effect in the liquid crystal (which degrades the display). The
waveform across a segment must then be generated so as to avoid having a direct current
(DC).

Glossary

Bias: Number of voltage levels used when driving an LCD. It is defined as 1/(number of
voltage levels used to drive an LCD display - 1).

Boost circuit: Contrast controller circuit

Common: Electrical connection terminal connected to several segments (52 segments).

Duty ratio: Number defined as 1/(number of common terminals on a given LCD display).

Frame: One period of the waveform written to a segment.

Frame rate: Number of frames per second, that is, the number of times the LCD segments
are energized per second.

LCD: (liquid crystal display) a passive display panel with terminals leading directly to a
segment.

Segment: The smallest viewing element (a single bar or dot that is used to help create a
character on an LCD display).

a. Refer to Table 73: Implementation, showing the product configurations.

Liquid crystal display controller (LCD) RM0367

384/1040 RM0367 Rev 8

17.2 LCD main features

• Highly flexible frame rate control.

• Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.

• Supports Static, 1/2, 1/3 and 1/4 bias.

• Double buffered memory allows data in LCD_RAM registers to be updated at any time
by the application firmware without affecting the integrity of the data displayed.

– LCD data RAM of up to 16 x 32-bit registers which contain pixel information
(active/inactive)

• Software selectable LCD output voltage (contrast) from VLCDmin to VLCDmax.

• No need for external analog components:

– A step-up converter is embedded to generate an internal VLCD voltage higher than
VDD

– Software selection between external and internal VLCD voltage source. In case of
an external source, the internal boost circuit is disabled to reduce power
consumption

– A resistive network is embedded to generate intermediate VLCD voltages

– The structure of the resistive network is configurable by software to adapt the
power consumption to match the capacitive charge required by the LCD panel.

• The contrast can be adjusted using two different methods:

– When using the internal step-up converter, the software can adjust VLCD between
VLCDmin and VLCDmax.

– Programmable dead time (up to 8 phase periods) between frames.

• Full support of low-power modes: the LCD controller can be displayed in Sleep, Low-
power run, Low-power sleep and Stop modes or can be fully disabled to reduce power
consumption.

• Built in phase inversion for reduced power consumption and EMI (electromagnetic
interference).

• Start of frame interrupt to synchronize the software when updating the LCD data RAM.

• Blink capability:

– Up to 1, 2, 3, 4, 8 or all pixels which can be programmed to blink at a configurable
frequency

– Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.

• Used LCD segment and common pins should be configured as GPIO alternate
functions and unused segment and common pins can be used for general purpose I/O
or for another peripheral alternate function.

• VLCD rails decoupling capability

Note: When the LCD relies on the internal step-up converter, the VLCD pin should be connected
to VSS with a capacitor. Its typical value is 1 µF (see CEXT value in the product datasheets
for further information).

Note: The VLCD pin should be connected to VDDA if the LCD peripheral is not used.

RM0367 Rev 8 385/1040

RM0367 Liquid crystal display controller (LCD)

412

17.3 LCD implementation

17.4 LCD functional description

17.4.1 General description

The LCD controller has five main blocks (see Figure 67):

Figure 67. LCD controller block diagram

Note: LCDCLK is the same as RTCCLK. Refer to the RTC/LCD clock description in the RCC
section of this manual.

Table 73. Implementation

Products Segments terminals

Category 5 devices 52 segments

Category 3 devices 32 segments

A
D

D
R

E
S

S
 B

U
S

D
AT

A
B

U
S

FREQUENCY GENERATOR

MSv33071V2

LCDCLK

COM0

COM3

VLCD

VSS

COM[3:0]

PS[3:0]

DIV[3:0]

LCDCLK/32768LCDCLK

ck_div

EN

HD

Analog
switch
array

CC[2:0]

1/3-1/4 VLCD

2/3 -3/4VLCD

1/2 VLCDBIAS[1:0]

Interrupt

ck_ps

I/O PortsAnalog step-up
converter

READY

VSEL

STATIC

SEG[51:48]

SEG[47:0]

48

S
E

G
 [3

1:
28

]

COM[7:4]

SEG

MUX
COM

Analog
switch
arrray

VOLTAGE
GENERATOR

CONTRAST
CONTROLLER

LCD
REGS

PULSE GEN

LCD RAM
(32x16 bits)

8-
to

-1
 M

U
X

SEG
DRIVER

COM
DRIVER

SEG[51:0]

52

S
E

G
 [5

1:
48

]
CLOCK MUX

16-bit prescaler

Divide by 16 to 31

LCD
REGS

SEG48/
COM4

SEG49/
COM5

SEG50/
COM6

SEG51/
COM7

SEG0

SEG47

Liquid crystal display controller (LCD) RM0367

386/1040 RM0367 Rev 8

The frequency generator allows you to achieve various LCD frame rates starting from an
LCD input clock frequency (LCDCLK) which can vary from 32 kHz up to 1 MHz.

3 different clock sources can be used to provide the LCD clock (LCDCLK/RTCCLK):

• 32 kHz Low speed external RC (LSE)

• 32 kHz Low speed internal RC (LSI)

• High speed external (HSE) divided by 2, 4, 8 or 16 to obtain a 1 MHz clock

17.4.2 Frequency generator

 This clock source must be stable in order to obtain accurate LCD timing and hence
minimize DC voltage offset across LCD segments. The input clock LCDCLK can be divided
by any value from 1 to 215x 31 (see Section 17.7.2: LCD frame control register (LCD_FCR)
on page 406). The frequency generator consists of a prescaler (16-bit ripple counter) and a
16 to 31 clock divider. The PS[3:0] bits, in the LCD_FCR register, select LCDCLK divided by
2PS[3:0]. If a finer resolution rate is required, the DIV[3:0] bits, in the LCD_FCR register, can
be used to divide the clock further by 16 to 31. In this way you can roughly scale the
frequency, and then fine-tune it by linearly scaling the clock with the counter. The output of
the frequency generator block is fck_div which constitutes the time base for the entire LCD
controller. The ck_div frequency is equivalent to the LCD phase frequency, rather than the
frame frequency (they are equal only in case of static duty). The frame frequency (fframe) is
obtained from fck_div by dividing it by the number of active common terminals (or by
multiplying it for the duty). Thus the relation between the input clock frequency (fLCDCLK) of
the frequency generator and its output clock frequency fck_div is:

This makes the frequency generator very flexible. An example of frame rate calculation is
shown in Table 74.

Table 74. Example of frame rate calculation

LCDCLK PS[3:0] DIV[3:0] Ratio Duty fframe

32.768 kHz 3 1 136 1/8 30.12 Hz

32.768 kHz 4 1 272 1/4 30.12 Hz

32.768 kHz 4 6 352 1/3 31.03 Hz

32.768 kHz 5 1 544 1/2 30.12 Hz

32.768 kHz 6 1 1088 static 30.12 Hz

32.768 kHz 1 4 40 1/8 102.40 Hz

32.768 kHz 2 4 80 1/4 102.40 Hz

32.768 kHz 2 11 108 1/3 101.14 Hz

32.768 kHz 3 4 160 1/2 102.40 Hz

32.768 kHz 4 4 320 static 102.40 Hz

1.00 MHz 6 3 1216 1/8 102.80 Hz

fckdiv

fLCDCLK

2
PS

16 DIV+()×
---=

fframe fckdiv duty×=

RM0367 Rev 8 387/1040

RM0367 Liquid crystal display controller (LCD)

412

The frame frequency must be selected to be within a range of around ~30 Hz to ~100 Hz
and is a compromise between power consumption and the acceptable refresh rate. In
addition, a dedicated blink prescaler selects the blink frequency. This frequency is defined
as:

 fBLINK = fck_div/2(BLINKF + 3),

with BLINKF[2:0] = 0, 1, 2, ... ,7

The blink frequency achieved is in the range of 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.

17.4.3 Common driver

Common signals are generated by the common driver block (see Figure 67).

COM signal bias

Each COM signal has identical waveforms, but different phases. It has its max amplitude
VLCD or VSS only in the corresponding phase of a frame cycle, while during the other
phases, the signal amplitude is:

• 1/4 VLCD or 3/4 VLCD in case of 1/4 bias

• 1/3 VLCD or 2/3 VLCD in case of 1/3 bias

• and 1/2 VLCD in case of 1/2 bias.

Selection between 1/2, 1/3 and 1/4 bias mode can be done through the BIAS bits in the
LCD_CR register.

A pixel is activated when both of its corresponding common and segment lines are active
during the same phase, it means when the voltage difference between common and
segment is maximum during this phase. Common signals are phase inverted in order to
reduce EMI. As shown in Figure 68, with phase inversion, there is a mean voltage of 1/2
VLCD at the end of every odd cycle.

1.00 MHz 7 3 2432 1/4 102.80 Hz

1.00 MHz 7 10 3328 1/3 100.16 Hz

1.00 MHz 8 3 4864 1/2 102.80 Hz

1.00 MHz 9 3 9728 static 102.80 Hz

Table 74. Example of frame rate calculation (continued)

LCDCLK PS[3:0] DIV[3:0] Ratio Duty fframe

Liquid crystal display controller (LCD) RM0367

388/1040 RM0367 Rev 8

Figure 68. 1/3 bias, 1/4 duty

In case of 1/2 bias (BIAS = 01) the VLCD pin generates an intermediate voltage equal to 1/2
VLCD on node b for odd and even frames (see Figure 71).

COM signal duty

Depending on the DUTY[2:0] bits in the LCD_CR register, the COM signals are generated
with static duty (see Figure 70), 1/2 duty (see Figure 71), 1/3 duty (see Figure 72), 1/4 duty
(see Figure 73) or 1/8 duty (see Figure 74).

COM[n] n[0 to 7] is active during phase n in the odd frame, so the COM pin is driven to
VLCD.

During phase n of the even frame the COM pin is driven to VSS.

In the case of 1/3 or 1/4) bias:

• COM[n] is inactive during phases other than n so the COM pin is driven to 1/3 (1/4)
VLCD during odd frames and to 2/3 (3/4) VLCD during even frames

In the case of 1/2 bias:

• If COM[n] is inactive during phases other than n, the COM pin is always driven (odd
and even frame) to 1/2 VLCD.

When static duty is selected, the segment lines are not multiplexed, which means that each
segment output corresponds to one pixel. In this way only up to 51 pixels can be driven.
COM[0] is always active while COM[7:1] are not used and are driven to VSS.

When the LCDEN bit in the LCD_CR register is reset, all common lines are pulled down to
VSS and the ENS flag in the LCD_SR register becomes 0. Static duty means that COM[0] is
always active and only two voltage levels are used for the segment and common lines: VLCD
and VSS. A pixel is active if the corresponding SEG line has a voltage opposite to that of the
COM, and inactive when the voltages are equal. In this way the LCD has maximum contrast
(see Figure 69, Figure 70). In the Figure 69 pixel 0 is active while pixel 1 is inactive.

MS33438V1

VLCD

Odd frame Even frame

Com active Com inactive Com inactive Com inactive Com active Com inactive Com inactive Com inactive

2/3 VLCD

1/3 VLCD

VSS

VLCD

2/3 VLCD

1/3 VLCD

VSS

Com active Com active Com inactive Com inactive Com active Com active Com inactive Com inactive

Phase 0 Phase 1 Phase 2 Phase 3 Phase 0 Phase 1 Phase 2 Phase 3

S
eg

m
en

t
C

om
m

on

RM0367 Rev 8 389/1040

RM0367 Liquid crystal display controller (LCD)

412

Figure 69. Static duty case 1

In each frame there is only one phase, this is why fframe is equal to fLCD. If 1/4 duty is
selected there are four phases in a frame in which COM[0] is active during phase 0, COM[1]
is active during phase 1, COM[2] is active during phase 2, and COM[3] is active during
phase 3.

Figure 70. Static duty case 2

MS33439V1

VLCD

Odd frame

VSSCOM0

Even frame Odd frame Even frame

VLCD

VSSSEG0

VLCD

0
COM0
SEG0

-VLCD

VLCD

VSSSEG1

VLCD

0
COM0
SEG1

-VLCD

MS33440V1

1/1 V

0/1V

PIN
COM0

Liquid crystal display
and terminal connection

COM0

SEG6

SEG5

SEG7

S
E

G
0

S
E

G
1

S
E

G
2

S
E

G
3

S
E

G
4

1/1 V

0/1V

PIN
SEG0

1/1 V

0/1V

PIN
SEG1

1/1 V

0/1V

-1/1V

COM0-SEG0
selected waveform

0/1VCOM0-SEG1
non selected waveform

Liquid crystal display controller (LCD) RM0367

390/1040 RM0367 Rev 8

In this mode, the segment terminals are multiplexed and each of them control four pixels. A
pixel is activated only when both of its corresponding SEG and COM lines are active in the
same phase. In case of 1/4 duty, to deactivate pixel 0 connected to COM[0] the SEG[0]
needs to be inactive during the phase 0 when COM[0] is active. To activate pixel 0
connected to COM[1], the SEG[0] needs to be active during phase 1 when COM[1] is active
(see Figure 73). To activate pixels from 0 to 51 connected to COM[0], SEG[0:51] need to be
active during phase 0 when COM[0] is active. These considerations can be extended to the
other pixels.

8 to 1 Mux

When COM[0] is active the common driver block, also drives the 8 to 1 mux shown in
Figure 67 in order to select the content of first two RAM register locations. When COM[7] is
active, the output of the 8 to 1 mux is the content of the last two RAM locations.

Figure 71. 1/2 duty, 1/2 bias

17.4.4 Segment driver

The segment driver block controls the SEG lines according to the pixel data coming from the
8 to 1 mux driven in each phase by the common driver block.

In the case of 1/4 or 1/8 duty

When COM[0] is active, the pixel information (active/inactive) related to the pixel connected
to COM[0] (content of the first two LCD_RAM locations) goes through the 8 to 1 mux.

The SEG[n] pin n [0 to 51] is driven to VSS (indicating pixel n is active when COM[0] is
active) in phase 0 of the odd frame.

MS33441V1

2/2 V

1/2 V

0/2 V

PIN
COM0

Liquid crystal display
and terminal connection

COM0

S
E

G
0

S
E

G
1

S
E

G
2

S
E

G
3

COM0-SEG1
non selected waveform

COM1
PIN
COM1

2/2 V

1/2 V

0/2 V

PIN
SEG0

2/2 V

0/2 V

PIN
SEG1

2/2 V

0/2V

COM0-SEG0
selected waveform

2/2 V

1/2 V

0/2 V

-1/2 V

-2/2 V

1/2 V

0/2 V

-1/2 V

RM0367 Rev 8 391/1040

RM0367 Liquid crystal display controller (LCD)

412

The SEG[n] pin is driven to VLCD in phase 0 of the even frame. If pixel n is inactive then the
SEG[n] pin is driven to 2/3 (2/4) VLCD in the odd frame or 1/3 (2/4) VLCD in the even frame
(current inversion in VLCD pad) (see Figure 68).

In case of 1/2 bias, if the pixel is inactive the SEG[n] pin is driven to VLCD in the odd and to
VSS in the even frame.

When the LCD controller is disabled (LCDEN bit cleared in the LCD_CR register) then the
SEG lines are pulled down to VSS.

Figure 72. 1/3 duty, 1/3 bias

MS33442V1

3/3 V

2/3 V

1/3 V

0/3 V

PIN
COM0

Liquid crystal display
and terminal connection

COM0

SEG0 SEG2

COM2

COM0-SEG1
selected waveform

3/3 V

2/3 V

1/3 V

0/3 V

-1/3 V

-2/3 V

-3/3 V

COM1

SEG1

3/3 V

2/3 V

1/3 V

0/3 V

PIN
COM1

3/3 V

2/3 V

1/3 V

0/3 V

PIN
COM2

3/3 V

2/3 V

1/3 V

0/3 V

PIN
SEG0

3/3 V

2/3 V

1/3 V

0/3 V

PIN
SEG1

COM0-SEG0
non selected waveform

1/3 V

0/3 V

-1/3 V
1 frame

Liquid crystal display controller (LCD) RM0367

392/1040 RM0367 Rev 8

Figure 73. 1/4 duty, 1/3 bias

MS33443V1

3/3 V

2/3 V

1/3 V

0/3 V

PIN
COM0

Liquid crystal display
and terminal connection

COM0

SEG0

COM2

COM0-SEG1
selected waveform

3/3 V

2/3 V

1/3 V

0/3 V

-1/3 V

-2/3 V

-3/3 V

COM1

SEG1

3/3 V

2/3 V

1/3 V

0/3 V

PIN
COM1

3/3 V

2/3 V

1/3 V

0/3 V

PIN
COM2

3/3 V

2/3 V

1/3 V

0/3 V

PIN
SEG0

3/3 V

2/3 V

1/3 V

0/3 V

PIN
SEG1

COM0-SEG0
non selected waveform

1/3 V

0/3 V

-1/3 V
1 frame

COM3

RM0367 Rev 8 393/1040

RM0367 Liquid crystal display controller (LCD)

412

Figure 74. 1/8 duty, 1/4 bias

MS33444V1

Liquid crystal display
and terminal connection

COM0

SEG0

COM5

COM2-SEG0
non selected waveform

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

-1/4 V

-2/4 V

-3/4 V

-4/4 V

COM1

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

PIN
SEG0

COM7

COM4

COM2

COM3

COM6

COM0-SEG0
selected waveform

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

-1/4 V

-2/4 V

-3/4 V

-4/4 V

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

PIN
COM7

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

PIN
COM2

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

PIN
COM1

4/4 V

3/4 V

2/4 V

1/4 V

0/4 V

PIN
COM0

1 frame

Liquid crystal display controller (LCD) RM0367

394/1040 RM0367 Rev 8

Blink

The segment driver also implements a programmable blink feature to allow some pixels to
continuously switch on at a specific frequency. The blink mode can be configured by the
BLINK[1:0] bits in the LCD_FCR register, making possible to blink up to 1, 2, 4, 8 or all
pixels (see Section 17.7.2: LCD frame control register (LCD_FCR)). The blink frequency
can be selected from eight different values using the BLINKF[2:0] bits in the LCD_FCR
register.

Table 75 gives examples of different blink frequencies (as a function of ck_div frequency).

17.4.5 Voltage generator and contrast control

LCD supply source

The LCD power supply source may come from either the internal step-up converter or from
an external voltage applied on the VLCD pin. Internal or external voltage source can be
selected using the VSEL bit in the LCD_CR register. In case of external source selected, the
internal boost circuit (step-up converter) is disabled to reduce power consumption.

When the step-up converter is selected as VLCD source, the VLCD value can be chosen
among a wide set of values from VLCDmin to VLCDmax by means of CC[2:0] (Contrast
Control) bits inside LCD_FCR (see Section 17.7.2) register. New values of VLCD takes effect
every beginning of a new frame.

When external power source is selected as VLCD source, the VLCD voltage must be chosen
in the range of VLCDmin to VLCDmax (see datasheets). The contrast can then be controlled by
programming a dead time between frames (see Deadtime on page 397).

Table 75. Blink frequency

BLINKF[2:0]

bits

ck_div frequency (with LCDCLK frequency of 32.768 kHz)

32 Hz 64 Hz 128 Hz 256 Hz

0 0 0 4.0 Hz N/A N/A N/A

0 0 1 2.0 Hz 4.0 Hz N/A N/A

0 1 0 1.0 Hz 2.0 Hz 4.0 Hz N/A

0 1 1 0.5 Hz 1.0 Hz 2.0 Hz 4.0 Hz

1 0 0 0.25 Hz 0.5 Hz 1.0 Hz 2.0 Hz

1 0 1 N/A 0.25 Hz 0.5 Hz 1.0 Hz

1 1 0 N/A N/A 0.25 Hz 0.5 Hz

1 1 1 N/A N/A N/A 0.25 Hz

RM0367 Rev 8 395/1040

RM0367 Liquid crystal display controller (LCD)

412

LCD intermediate voltages

The LCD intermediate voltage levels are generated through an internal resistor divider
network as shown in Figure 75.

The LCD voltage generator issues intermediate voltage levels between VSS and VLCD:

• 1/3 VLCD and 2/3 VLCD in case of 1/3 bias

• 1/4 VLCD, 2/4 VLCD and 3/4 VLCD in case of 1/4 bias

• only 1/2 VLCD in case of 1/2 bias.

LCD drive selection

Two resistive networks, one with low value resistors (RL) and one with high value resistors
(RH) are respectively used to increase the current during transitions and reduce power
consumption in static state.

The EN switch follows the rules described below (see Figure 75):

• If LCDEN bit in the LCD_CR register is set, the EN switch is closed.

• When clearing the LCDEN bit in the LCD_CR register, the EN switch is open at the end
of the even frame in order to avoid a medium voltage level different from 0 considering
the entire frame odd plus even.

The PON[2:0] (Pulse ON duration) bits in the LCD_FCR register configure the time during
which RL is enabled through the HD (high drive) switch when the levels of the common and
segment lines change (see Figure 75). A short drive time will lead to lower power
consumption, but displays with high internal resistance may need a longer drive time to
achieve satisfactory contrast.

Liquid crystal display controller (LCD) RM0367

396/1040 RM0367 Rev 8

Figure 75. LCD voltage control

1. RLN and RHN are the low value resistance network and the high value resistance network, respectively.

The RLN divider can be always switched on using the HD bit in the LCD_FCR configuration
register (see Section 17.7.2).

The HD switch follows the rules described below:

• If the HD bit and the PON[2:0] bits in the LCD_FCR register are reset, then HD switch
is open.

• If the HD bit in the LCD_FCR register is reset and the PON[2:0] bits in the LCD_FCR
are different from 00 then, the HD switch is closed during the number of pulses defined
in the PON[2:0] bits.

• If HD bit in the LCD_FCR register is 1 then HD switch is always closed.

After the LCDEN bit is activated, the RDY bit is set in the LCD_SR register to indicate that
voltage levels are stable and the LCD controller can start to work.

MS33422V2

3/4 x VLCD

2/3 x VLCD

1/2 x VLCD

1/3 x VLCD

1/4 x VLCD

VLCDRail1

VLCDRail3

VLCDRail2

BIAS[1]

3 RH

3 RH

RH

2 RH

2 RH

RH

VLCD

3 RL

3 RL

RL

2 RL

2 RL

RL

HD EN

STATIC

VSS

RM0367 Rev 8 397/1040

RM0367 Liquid crystal display controller (LCD)

412

External decoupling

Devices with VLCD rails decoupling capability (see device datasheets) allow adding
decoupling capacitors on the VLCD intermediate voltage rails that available on
LCD_VLCD1, LCD_VLCD2 and LCD_VLCD3 for stabilization purpose (see Figure 75).
Spikes might be observed when the voltage applied to the pixel is alternating. In this case,
these decoupling capacitors will help to get a steady voltage resulting in a higher contrast.

This capability is particularly useful for consumption reason as it allow to select lower
PON[2:0] values in the LCD_FCR register.

To connect the VLCD rails as described in Table 76 to the dedicated GPIOs, configure the
LCD_CAPA[4:0] bits of the SYSCFG_CFGR2 register (see Section 10.2.2: SYSCFG
peripheral mode configuration register (SYSCFG_CFGR2).

In order to be effective, the values of these decoupling capacitors must be tuned according
to the LCD glass and the PCB capacitances. As a guideline the user can set the decoupling
capacitor values to approximately 10 times the LCD capacitance.

Deadtime

In addition to using the CC[2:0] bits, the contrast can be controlled by programming a dead
time between each frame. During the dead time the COM and SEG values are put to VSS.
The DEAD[2:0] bits in the LCD_FCR register can be used to program a time of up to eight
phase periods. This dead time reduces the contrast without modifying the frame rate.

Figure 76. Deadtime

Table 76. VLCDrail connections to GPIO pins

Bias Pin

(selected by LCD_CAPA[4:0] bits)1/2 1/3 1/4

VLCDrail3 Not used Not used 3/4 VLCD PB0 or PE12

VLCDrail2 1/2 VLCD 2/3 VLCD 1/2 VLCD PB2

VLCDrail1 Not used 1/3 VLCD 1/4 VLCD PB12 or PE11

MS33448V1

odd frame even frame odd frame even framedead time

Liquid crystal display controller (LCD) RM0367

398/1040 RM0367 Rev 8

17.4.6 Double buffer memory

Using its double buffer memory the LCD controller ensures the coherency of the displayed
information without having to use interrupts to control LCD_RAM modification.

The application software can access the first buffer level (LCD_RAM) through the APB
interface. Once it has modified the LCD_RAM, it sets the UDR flag in the LCD_SR register.
This UDR flag (update display request) requests the updated information to be moved into
the second buffer level (LCD_DISPLAY).

This operation is done synchronously with the frame (at the beginning of the next frame),
until the update is completed, the LCD_RAM is write protected and the UDR flag stays high.
Once the update is completed another flag (UDD - Update Display Done) is set and
generates an interrupt if the UDDIE bit in the LCD_FCR register is set.

The time it takes to update LCD_DISPLAY is, in the worst case, one odd and one even
frame.

The update will not occur (UDR = 1 and UDD = 0) until the display is enabled (LCDEN = 1)

17.4.7 COM and SEG multiplexing

Output pins versus duty modes

The output pins consists of up to:

• SEG[51:0]

• COM[3:0]

Depending on the duty configuration, the COM and SEG output pins may have different
functions:

• In static, 1/2, 1/3 and 1/4 duty modes there are up to 52 SEG pins and respectively 1, 2,
3 and 4 COM pins

• In 1/8 duty mode (DUTY[2:0] = 100), COM[7:4] outputs are available on the
SEG[51:48] and SEG[31:28] pins on category 5 and category 3 devices, respectively.
This allows reducing the number of available segments.

Remapping capability for small packages

Additionally, it is possible to remap 4 segments by setting the MUX_SEG bit in the LCD_CR
register. This is particularly useful when using smaller device types with fewer external pins.
When MUX_SEG is set, output pins SEG[51:48] have the same function as SEG[31:28].

This feature is available only on category 5 devices.

RM0367 Rev 8 399/1040

RM0367 Liquid crystal display controller (LCD)

412

Summary of COM and SEG functions versus duty and remap

All the possible ways of multiplexing the COM and SEG functions are described in Table 77.
Figure 77 gives examples showing the signal connections to the external pins.

Table 77. Remapping capability(1)

Configuration bits QFP64/
BGA64

(2)

BGA100/
LQFP100

Output pin Function
DUTY MUX_SEG

 1/8

0/1 - 48x8

SEG[51:48]/SEG[31:28]/COM[7:4] COM[7:4]

COM[3:0] COM[3:0]

SEG[47:0] SEG[47:0]

0/1 28x8 -

SEG[51:48]/SEG[31:28]/COM[7:4] COM[7:4]

COM[3:0] COM[3:0]

SEG[27:0] SEG[27:0]

 1/4

0

-

52x4

COM[3:0] COM[3:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[51:48]

SEG[47:0] SEG[47:0]

1 48x4

COM[3:0] COM[3:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[47:32] SEG[47:32]

SEG[31:28] not used

SEG[27:0] SEG[27:0]

0 28x4

-

COM[3:0] COM[3:0]

SEG[51:48]/SEG[31:28]/COM[7:4] not used

SEG[27:0] SEG[27:0]

1 32x4

COM[3:0] COM[3:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[27:0] SEG[27:0]

Liquid crystal display controller (LCD) RM0367

400/1040 RM0367 Rev 8

 1/3

0

-

52x3

COM3 not used

COM[2:0] COM[2:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[51:48]

SEG[47:0] SEG[47:0]

1 48x3

COM3 not used

COM[2:0] COM[2:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[47:32] SEG[47:32]

SEG[31:28] not used

SEG[27:0] SEG[27:0]

0 28x3

-

COM3 not used

COM[2:0] COM[2:0]

SEG[51:48]/SEG[31:28]/COM[7:4] not used

SEG[31:0] SEG[31:0]

1 32x3

COM3 not used

COM[2:0] COM[2:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[27:0] SEG[27:0]

 1/2

0

-

52x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[51:48]

SEG[47:0] SEG[47:0]

1 48x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[47:32] SEG[47:32]

SEG[31:28] not used

SEG[27:0] SEG[27:0]

Table 77. Remapping capability(1) (continued)

Configuration bits QFP64/
BGA64

(2)

BGA100/
LQFP100

Output pin Function
DUTY MUX_SEG

RM0367 Rev 8 401/1040

RM0367 Liquid crystal display controller (LCD)

412

1/2

0 28x2

-

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[51:48]/SEG[31:28]/COM[7:4] not used

SEG[27:0] SEG[27:0]

1 32x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[27:0] SEG[27:0]

STATIC

0

-

52x1

COM[3:1] not used

COM0 COM0

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[51:48]

SEG[47:0] SEG[47:0]

1 48x1

COM[3:1] not used

COM0 COM0

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[47:32] SEG[47:32]

SEG[31:28] not used

SEG[27:0] SEG[27:0]

0 28x1

-

COM[3:1] not used

COM0 COM0

SEG[51:48]/SEG[31:28]/COM[7:4] not used

SEG[27:0] SEG[27:0]

1 32x1

COM[3:1] not used

COM0 COM0

SEG[51:48]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[27:0] SEG[27:0]

1. This table applies only to category 5 devices.

2. SEG21 is not available on BGA64.

Table 77. Remapping capability(1) (continued)

Configuration bits QFP64/
BGA64

(2)

BGA100/
LQFP100

Output pin Function
DUTY MUX_SEG

Liquid crystal display controller (LCD) RM0367

402/1040 RM0367 Rev 8

Figure 77. SEG/COM mux feature example

1. This table applies only to category 5 devices.

LCD CONTROLLER

MS 33073V2

COM[7]

DUTY ≠ 1/8 and MUX_SEG = 0

LCD_SEG[51]
PIN

COM DRIVER

SEG[51]
SEG[31]

SEG DRIVER SEG
COM
MUX

LCD CONTROLLER

COM[7]

DUTY ≠ 1/8 and MUX_SEG = 1

LCD_SEG[31]
PIN

COM DRIVER

SEG[51]
SEG[31]

SEG DRIVER SEG
COM
MUX

LCD CONTROLLER

COM[7]

DUTY = 1/8 and MUX_SEG = 0

COM[7]
PIN

COM DRIVER

SEG[51]
SEG[31]

SEG DRIVER SEG
COM
MUX

RM0367 Rev 8 403/1040

RM0367 Liquid crystal display controller (LCD)

412

17.4.8 Flowchart

Figure 78. Flowchart example

MS33450V1

START

INIT

- Enable the GPIO port clocks
- Configure the LCD GPIO pins as alternate
 functions
- Configure LCD controller according to the
 Display to be driven:

- Load the initial data to be displayed into
 LCD_RAM and set the UDR bit in the LCD_SR
 register

- Program the desired frame rate (PS and DIV
 bits in LCD_FCR)
- Program the contrast (CC bits in LCD_FCR
 register)

Enable the display (LCDEN bit in LCD_CR register)

Adjust contrast?

Modify data?

Change blink?

Disable LCD?

No

Yes

No

No

Yes

Yes

Yes

UDR = 1?

Yes

Change PS, DIV, CC, PON,
DEAD or HD in LCD_FCR

No
Modify the LCD_RAM

Change BLINK or BLINKF in
LCD_FCR

Set UDR bit in LCD_SR

Disable the display (LCDEN bit in LCD_CR register)

END

ENS = 0?

Yes

No

Liquid crystal display controller (LCD) RM0367

404/1040 RM0367 Rev 8

17.5 LCD low-power modes

the LCD controller can be displayed in Stop mode or can be fully disabled to reduce power
consumption.

17.6 LCD interrupts

The table below gives the list of LCD interrupt requests.

Start of frame (SOF)

The LCD start of frame interrupt is executed if the SOFIE (start of frame interrupt enable) bit
is set (see Section 17.7.2: LCD frame control register (LCD_FCR)). SOF is cleared by
writing the SOFC bit to 1 in the LCD_CLR register when executing the corresponding
interrupt handling vector.

Update display done (UDD)

The LCD update display interrupt is executed if the UDDIE (update display done interrupt
enable) bit is set (see Section 17.7.2: LCD frame control register (LCD_FCR)). UDD is
cleared by writing the UDDC bit to 1 in the LCD_CLR register when executing the
corresponding interrupt handling vector.

Depending on the product implementation, all these interrupts events can either share the
same interrupt vector (LCD global interrupt), or be grouped into 2 interrupt vectors (LCD
SOF interrupt and LCD UDD interrupt). Refer to the Table 55: List of vectors for details.

To enable the LCD interrupts, the following sequence is required:

1. Configure and enable the LCD IRQ channel in the NVIC

2. Configure the LCD to generate interrupts

Table 78. LCD behavior in low-power modes

Mode Description

Stop The LCD is still active

Standby The LCD is not active

Table 79. LCD interrupt requests

Interrupt event Event flag
Event flag/Interrupt

clearing method
Interrupt enable

control bit

Start Of Frame (SOF) SOF Write SOFC =1 SOFIE

Update Display Done (UDD) UDD Write UDDC = 1 UDDIE

RM0367 Rev 8 405/1040

RM0367 Liquid crystal display controller (LCD)

412

17.7 LCD registers

The peripheral registers have to be accessed by words (32-bit).

17.7.1 LCD control register (LCD_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
MUX_
SEG

BIAS[1:0] DUTY[2:0] VSEL LCDEN

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value

Bit 7 MUX_SEG: Mux segment enable

This bit is used to enable SEG pin remapping. Four SEG pins can be multiplexed with
SEG[31:28]. See Section 17.4.7.

0: SEG pin multiplexing disabled
1: SEG[31:28] are multiplexed with SEG[43:40]

Bits 6:5 BIAS[1:0]: Bias selector

These bits determine the bias used. Value 11 is forbidden.

00: Bias 1/4
01: Bias 1/2
10: Bias 1/3
11: Reserved

Bits 4:2 DUTY[2:0]: Duty selection

These bits determine the duty cycle. Values 101, 110 and 111 are forbidden.

000: Static duty
001: 1/2 duty
010: 1/3 duty
011: 1/4 duty
100: 1/8 duty
101: Reserved
110: Reserved
111: Reserved

Bit 1 VSEL: Voltage source selection

The VSEL bit determines the voltage source for the LCD.

0: Internal source (voltage step-up converter)
1: External source (VLCD pin)

Bit 0 LCDEN: LCD controller enable

This bit is set by software to enable the LCD Controller/Driver. It is cleared by software to turn
off the LCD at the beginning of the next frame. When the LCD is disabled all COM and SEG
pins are driven to VSS. When this bit is set, the ULP bit must be reset in PWR_CR.

0: LCD Controller disabled
1: LCD Controller enabled

Liquid crystal display controller (LCD) RM0367

406/1040 RM0367 Rev 8

Note: The VSEL, MUX_SEG,BIAS, and DUTY bits are write-protected when the LCD is enabled
(ENS bit in LCD_SR to 1).

17.7.2 LCD frame control register (LCD_FCR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. PS[3:0] DIV[3:0] BLINK[1:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLINKF[2:0] CC[2:0] DEAD[2:0] PON[2:0] UDDIE Res. SOFIE HD

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:26 Reserved, must be kept at reset value

Bits 25:22 PS[3:0]: PS 16-bit prescaler

These bits are written by software to define the division factor of the PS 16-bit prescaler.
ck_ps = LCDCLK/(2). See Section 17.4.2.

0000: ck_ps = LCDCLK
0001: ck_ps = LCDCLK/2
0002: ck_ps = LCDCLK/4
...

1111:ck_ps = LCDCLK/32768

Bits 21:18 DIV[3:0]: DIV clock divider

These bits are written by software to define the division factor of the DIV divider. See
Section 17.4.2.

0000: ck_div = ck_ps/16
0001: ck_div = ck_ps/17
0002: ck_div = ck_ps/18
...

1111:ck_div = ck_ps/31

Bits 17:16 BLINK[1:0]: Blink mode selection

00: Blink disabled
01: Blink enabled on SEG[0], COM[0] (1 pixel)
10: Blink enabled on SEG[0], all COMs (up to 8 pixels depending on the programmed duty)
11: Blink enabled on all SEGs and all COMs (all pixels)

Bits 15:13 BLINKF[2:0]: Blink frequency selection

000: fLCD/8
001: fLCD/16
010: fLCD/32
011: fLCD/64
100: fLCD/128
101: fLCD/256
110: fLCD/512
111: fLCD/1024

RM0367 Rev 8 407/1040

RM0367 Liquid crystal display controller (LCD)

412

Bits 12:10 CC[2:0]: Contrast control

These bits specify one of the VLCD maximum voltages (independent of VDD). It ranges from
2.60 V to 3.51V.

000: VLCD0
001: VLCD1
010: VLCD2
011: VLCD3
100: VLCD4
101: VLCD5
110: VLCD6
111: VLCD7

Refer to the product datasheet for the VLCDx values.

Bits 9:7 DEAD[2:0]: Dead time duration

These bits are written by software to configure the length of the dead time between frames.
During the dead time the COM and SEG voltage levels are held at 0 V to reduce the contrast
without modifying the frame rate.

000: No dead time
001: 1 phase period dead time
010: 2 phase period dead time
......
111: 7 phase period dead time

Bits 6:4 PON[2:0]: Pulse ON duration

These bits are written by software to define the pulse duration in terms of ck_ps pulses. A short
pulse will lead to lower power consumption, but displays with high internal resistance may
need a longer pulse to achieve satisfactory contrast.

Note that the pulse will never be longer than one half prescaled LCD clock period.

000: 0
001: 1/ck_ps
010: 2/ck_ps
011: 3/ck_ps
100: 4/ck_ps
101: 5/ck_ps
110: 6/ck_ps
111: 7/ck_ps

PON duration example with LCDCLK = 32.768 kHz and PS=0x03:

000: 0 µs
001: 244 µs
010: 488 µs
011: 782 µs
100: 976 µs
101: 1.22 ms
110: 1.46 ms
111: 1.71 ms

Bit 3 UDDIE: Update display done interrupt enable

This bit is set and cleared by software.

0: LCD Update Display Done interrupt disabled
1: LCD Update Display Done interrupt enabled

Liquid crystal display controller (LCD) RM0367

408/1040 RM0367 Rev 8

Note: The data in this register can be updated any time, however the new values are applied only
at the beginning of the next frame (except for UDDIE, SOFIE that affect the device behavior
immediately).

The new value of CC[2:0] bits is also applied immediately but its effect on device is delayed
at the beginning of next frame by the voltage generator.

Reading this register obtains the last value written in the register and not the configuration
used to display the current frame.

17.7.3 LCD status register (LCD_SR)

Address offset: 0x08

Reset value: 0x0000 0020

Bit 2 Reserved, must be kept at reset value

Bit 1 SOFIE: Start of frame interrupt enable

This bit is set and cleared by software.

0: LCD Start of Frame interrupt disabled
1: LCD Start of Frame interrupt enabled

Bit 0 HD: High drive enable

This bit is written by software to enable a low resistance divider. Displays with high internal
resistance may need a longer drive time to achieve satisfactory contrast. This bit is useful in
this case if some additional power consumption can be tolerated.

0: Permanent high drive disabled
1: Permanent high drive enabled. When HD=1, then the PON bits have to be programmed

to 001.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FCRSF RDY UDD UDR SOF ENS

r r r rs r r

Bits 31:6 Reserved, must be kept at reset value

Bit 5 FCRSF: LCD Frame Control Register Synchronization flag

This bit is set by hardware each time the LCD_FCR register is updated in the LCDCLK
domain. It is cleared by hardware when writing to the LCD_FCR register.

0: LCD Frame Control Register not yet synchronized
1: LCD Frame Control Register synchronized

Bit 4 RDY: Ready flag

This bit is set and cleared by hardware. It indicates the status of the step-up converter.

0: Not ready
1: Step-up converter is enabled and ready to provide the correct voltage.

RM0367 Rev 8 409/1040

RM0367 Liquid crystal display controller (LCD)

412

17.7.4 LCD clear register (LCD_CLR)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit 3 UDD: Update Display Done

This bit is set by hardware. It is cleared by writing 1 to the UDDC bit in the LCD_CLR register.
The bit set has priority over the clear.

0: No event
1: Update Display Request done. A UDD interrupt is generated if the UDDIE bit in the

LCD_FCR register is set.

Note: If the device is in Stop mode (PCLK not provided) UDD will not generate an interrupt
even if UDDIE = 1.

If the display is not enabled the UDD interrupt will never occur.

Bit 2 UDR: Update display request

Each time software modifies the LCD_RAM it must set the UDR bit to transfer the updated
data to the second level buffer. The UDR bit stays set until the end of the update and during
this time the LCD_RAM is write protected.

0: No effect
1: Update Display request

Note: When the display is disabled, the update is performed for all LCD_DISPLAY locations.
When the display is enabled, the update is performed only for locations for which
commons are active (depending on DUTY). For example if DUTY = 1/2, only the
LCD_DISPLAY of COM0 and COM1 will be updated.

Note: Writing 0 on this bit or writing 1 when it is already 1 has no effect. This bit can be
cleared by hardware only. It can be cleared only when LCDEN = 1

Bit 1 SOF: Start of frame flag

This bit is set by hardware at the beginning of a new frame, at the same time as the display
data is updated. It is cleared by writing a 1 to the SOFC bit in the LCD_CLR register. The bit
clear has priority over the set.

0: No event
1: Start of Frame event occurred. An LCD Start of Frame Interrupt is generated if the SOFIE

bit is set.

Bit 0

ENS: LCD enabled status

This bit is set and cleared by hardware. It indicates the LCD controller status.

0: LCD Controller disabled.
1: LCD Controller enabled

Note: The ENS bit is set immediately when the LCDEN bit in the LCD_CR goes from 0 to 1.
On deactivation it reflects the real status of LCD so it becomes 0 at the end of the last
displayed frame.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UDDC Res. SOFC Res.

w w

Liquid crystal display controller (LCD) RM0367

410/1040 RM0367 Rev 8

17.7.5 LCD display memory (LCD_RAM)

Address offset: 0x14 to 0x50

Reset value: 0x0000 0000

Bits 31:4 Reserved, must be kept at reset value

Bit 3 UDDC: Update display done clear

This bit is written by software to clear the UDD flag in the LCD_SR register.

0: No effect
1: Clear UDD flag

Bit 2 Reserved, must be kept at reset value

Bit 1 SOFC: Start of frame flag clear

This bit is written by software to clear the SOF flag in the LCD_SR register.

0: No effect
1: Clear SOF flag

Bit 0 Reserved, must be kept at reset value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SEGMENT_DATA[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEGMENT_DATA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 SEGMENT_DATA[31:0]

Each bit corresponds to one pixel of the LCD display.

0: Pixel inactive
1: Pixel active

RM0367 Rev 8 411/1040

RM0367 Liquid crystal display controller (LCD)

412

17.7.6 LCD register map

The following table summarizes the LCD registers.

Table 80. LCD register map and reset values

O
ff

se
t

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
LCD_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
M

U
X

_
S

E
G

.

B
IA

S
[1

:0
]

DUTY
[2:0] V

S
E

L

L
C

D
E

N

Reset value 0 0 0 0 0 0 0 0

0x04
LCD_FCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PS[3:0] DIV[3:0]

B
L

IN
K

[1
:0

]

B
L

IN
K

F
[2

:0
]

CC
[2:0]

DEAD
[2:0]

PON
[2:0]

U
D

D
IE

R
es

.

S
O

F
IE

H
D

Reset value 0

0x08
LCD_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

F
C

R
S

F

R
D

Y

U
D

D

U
D

R

S
O

F

E
N

S

Reset value 1 0 0 0 0 0

0x0C
LCD_CLR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
D

D
C

R
es

.

S
O

F
C

R
es

.

Reset value 0 0

0x14

LCD_RAM

(COM0)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x18 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
51

S
50

S
49

S
48

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

LCD_RAM

(COM1)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x20 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
51

S
50

S
49

S
48

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24

LCD_RAM

(COM2)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x28 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
51

S
50

S
49

S
48

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C

LCD_RAM

(COM3)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x30 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
51

S
50

S
49

S
48

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Liquid crystal display controller (LCD) RM0367

412/1040 RM0367 Rev 8

Refer to Section 2.2 on page 58 for the Register boundary addresses table.

0x34

LCD_RAM

(COM4)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x38 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C

LCD_RAM

(COM5)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x40 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44

LCD_RAM

(COM6)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x48 R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C

LCD_RAM

(COM7)

S
3

1
S

3
0

S
2

9
S

2
8

S
2

7
S

2
6

S
2

5
S

2
4

S
2

3
S

2
2

S
2

1
S

2
0

S
1

9
S

1
8

S
1

7
S

1
6

S
1

5
S

1
4

S
1

3
S

1
2

S
11

S
1

0
S

0
9

S
0

8
S

0
7

S
0

6
S

0
5

S
0

4
S

0
3

S
0

2
S

0
1

S
0

0

0 0

0x50 R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

S
47

S
46

S
45

S
44

S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 80. LCD register map and reset values (continued)

O
ff

se
t

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 413/1040

RM0367 Touch sensing controller (TSC)

431

18 Touch sensing controller (TSC)

18.1 Introduction

The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode that is protected from direct touch by a dielectric (for example
glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is
measured using a proven implementation based on a surface charge transfer acquisition
principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library, which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.

18.2 TSC main features

The touch sensing controller has the following main features:

• Proven and robust surface charge transfer acquisition principle

• Supports up to 24 capacitive sensing channels

• Up to 8 capacitive sensing channels can be acquired in parallel offering a very good
response time

• Spread spectrum feature to improve system robustness in noisy environments

• Full hardware management of the charge transfer acquisition sequence

• Programmable charge transfer frequency

• Programmable sampling capacitor I/O pin

• Programmable channel I/O pin

• Programmable max count value to avoid long acquisition when a channel is faulty

• Dedicated end of acquisition and max count error flags with interrupt capability

• One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components

• Compatible with proximity, touchkey, linear and rotary touch sensor implementation

• Designed to operate with STMTouch touch sensing firmware library

Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to IO availability.

Touch sensing controller (TSC) RM0367

414/1040 RM0367 Rev 8

18.3 TSC functional description

18.3.1 TSC block diagram

The block diagram of the touch sensing controller is shown in Figure 79.

Figure 79. TSC block diagram

18.3.2 Surface charge transfer acquisition overview

The surface charge transfer acquisition is a proven, robust and efficient way to measure a
capacitance. It uses a minimum number of external components to operate with a single
ended electrode type. This acquisition is designed around an analog I/O group composed of
up to four GPIOs (see Figure 80). Several analog I/O groups are available to allow the
acquisition of several capacitive sensing channels simultaneously and to support a larger
number of capacitive sensing channels. Within a same analog I/O group, the acquisition of
the capacitive sensing channels is sequential.

One of the GPIOs is dedicated to the sampling capacitor CS. Only one sampling capacitor
I/O per analog I/O group must be enabled at a time.

The remaining GPIOs are dedicated to the electrodes and are commonly called channels.
For some specific needs (such as proximity detection), it is possible to simultaneously
enable more than one channel per analog I/O group.

MS30929V1

G1_IO1
G1_IO2
G1_IO3
G1_IO4

G2_IO1
G2_IO2
G2_IO3
G2_IO4

Gx_IO1
Gx_IO2
Gx_IO3
Gx_IO4

I/O control
logic

SYNC

Pulse generator

Spread spectrum

TSC_IOG1CR

TSC_IOG2CR

TSC_IOGxCR

fHCLK Clock
prescalers

Group counters

RM0367 Rev 8 415/1040

RM0367 Touch sensing controller (TSC)

431

Figure 80. Surface charge transfer analog I/O group structure

Note: Gx_IOy where x is the analog I/O group number and y the GPIO number within the selected
group.

The surface charge transfer acquisition principle consists of charging an electrode
capacitance (CX) and transferring a part of the accumulated charge into a sampling
capacitor (CS). This sequence is repeated until the voltage across CS reaches a given
threshold (VIH in our case). The number of charge transfers required to reach the threshold
is a direct representation of the size of the electrode capacitance.

Table 81 details the charge transfer acquisition sequence of the capacitive sensing channel
1. States 3 to 7 are repeated until the voltage across CS reaches the given threshold. The
same sequence applies to the acquisition of the other channels. The electrode serial
resistor RS improves the ESD immunity of the solution.

MSv30930V2

CX1

Gx_IO1
RS1

CX2

Gx_IO3
RS2

CX3

Gx_IO4
RS3

Gx_IO2

CS

Analog
I/O groupElectrode 1

Electrode 2

Electrode 3

Touch sensing controller (TSC) RM0367

416/1040 RM0367 Rev 8

Note: Gx_IOy where x is the analog I/O group number and y the GPIO number within the selected
group.

The voltage variation over the time on the sampling capacitor CS is detailed below:

Figure 81. Sampling capacitor voltage variation

18.3.3 Reset and clocks

The TSC clock source is the AHB clock (HCLK). Two programmable prescalers are used to
generate the pulse generator and the spread spectrum internal clocks:

• The pulse generator clock (PGCLK) is defined using the PGPSC[2:0] bits of the
TSC_CR register

• The spread spectrum clock (SSCLK) is defined using the SSPSC bit of the TSC_CR
register

Table 81. Acquisition sequence summary

State
Gx_IO1

(channel)
Gx_IO2

(sampling)
Gx_IO3

(channel)
Gx_IO4

(channel)
State description

#1
Input floating
with analog

switch closed

Output open-
drain low with
analog switch

closed

Input floating with analog switch
closed

Discharge all CX and
CS

#2 Input floating Dead time

#3
Output push-

pull high
Input floating Charge CX1

#4 Input floating Dead time

#5
Input floating with analog switch

closed
Input floating

Charge transfer from
CX1 to CS

#6 Input floating Dead time

#7 Input floating Measure CS voltage

MS30931V1

t

VCS

Threshold =VIH

VDD

Burst duration

RM0367 Rev 8 417/1040

RM0367 Touch sensing controller (TSC)

431

The Reset and Clock Controller (RCC) provides dedicated bits to enable the touch sensing
controller clock and to reset this peripheral. For more information, refer to Section 7: Reset
and clock control (RCC).

18.3.4 Charge transfer acquisition sequence

An example of a charge transfer acquisition sequence is detailed in Figure 82.

Figure 82. Charge transfer acquisition sequence

For higher flexibility, the charge transfer frequency is fully configurable. Both the pulse high
state (charge of CX) and the pulse low state (transfer of charge from CX to CS) duration can
be defined using the CTPH[3:0] and CTPL[3:0] bits in the TSC_CR register. The standard
range for the pulse high and low states duration is 500 ns to 2 µs. To ensure a correct
measurement of the electrode capacitance, the pulse high state duration must be set to
ensure that CX is always fully charged.

A dead time where both the sampling capacitor I/O and the channel I/O are in input floating
state is inserted between the pulse high and low states to ensure an optimum charge
transfer acquisition sequence. This state duration is 2 periods of HCLK.

At the end of the pulse high state and if the spread spectrum feature is enabled, a variable
number of periods of the SSCLK clock are added.

The reading of the sampling capacitor I/O, to determine if the voltage across CS has
reached the given threshold, is performed at the end of the pulse low state.

Note: The following TSC control register configurations are forbidden:

• bits PGPSC are set to ‘000’ and bits CTPL are set to ‘0000’

• bits PGPSC are set to ‘000’ and bits CTPL are set to ‘0001’

• bits PGPSC are set to ‘001’ and bits CTPL are set to ‘0000’

MSv30932V3

CLK_AHB

CX

1

0

HiZ

CS

1

0

HiZ

State

D
ea

d
tim

e
st

at
e

Discharge
CX and CS

Pulse high
state

(charge of CX)

D
ea

d
tim

e
st

at
e

D
ea

d
tim

e
st

at
e

D
ea

d
tim

e
st

at
e

D
ea

d
tim

e
st

at
e

C
S
 re

ad
in

g

S
pr

ea
d

sp
ec

tru
m

 s
ta

te

C
S
 re

ad
in

gPulse low
state (charge
transfer from

CX to CS)

Charge transfer frequency

t

Pulse high
state

Pulse low
state

Touch sensing controller (TSC) RM0367

418/1040 RM0367 Rev 8

18.3.5 Spread spectrum feature

The spread spectrum feature generates a variation of the charge transfer frequency. This is
done to improve the robustness of the charge transfer acquisition in noisy environments and
also to reduce the induced emission. The maximum frequency variation is in the range of
10% to 50% of the nominal charge transfer period. For instance, for a nominal charge
transfer frequency of 250 kHz (4 µs), the typical spread spectrum deviation is 10% (400 ns)
which leads to a minimum charge transfer frequency of ~227 kHz.

In practice, the spread spectrum consists of adding a variable number of SSCLK periods to
the pulse high state using the principle shown below:

Figure 83. Spread spectrum variation principle

The table below details the maximum frequency deviation with different HCLK settings:

The spread spectrum feature can be disabled/enabled using the SSE bit in the TSC_CR
register. The frequency deviation is also configurable to accommodate the device HCLK
clock frequency and the selected charge transfer frequency through the SSPSC and
SSD[6:0] bits in the TSC_CR register.

18.3.6 Max count error

The max count error prevents long acquisition times resulting from a faulty capacitive
sensing channel. It consists of specifying a maximum count value for the analog I/O group
counters. This maximum count value is specified using the MCV[2:0] bits in the TSC_CR
register. As soon as an acquisition group counter reaches this maximum value, the ongoing
acquisition is stopped and the end of acquisition (EOAF bit) and max count error (MCEF bit)
flags are both set. An interrupt can also be generated if the corresponding end of acquisition
(EOAIE bit) or/and max count error (MCEIE bit) interrupt enable bits are set.

Table 82. Spread spectrum deviation versus AHB clock frequency

fHCLK Spread spectrum step Maximum spread spectrum deviation

24 MHz 41.6 ns 10666.6 ns

32 MHz 27.7 ns 7111.1 ns

MS30933V1

Number of pulses

Deviation value

0

1

2

3

(SSD +1)

n-1 n+1n

RM0367 Rev 8 419/1040

RM0367 Touch sensing controller (TSC)

431

18.3.7 Sampling capacitor I/O and channel I/O mode selection

To allow the GPIOs to be controlled by the touch sensing controller, the corresponding
alternate function must be enabled through the standard GPIO registers and the GPIOxAFR
registers.

The GPIOs modes controlled by the TSC are defined using the TSC_IOSCR and
TSC_IOCCR register.

When there is no ongoing acquisition, all the I/Os controlled by the touch sensing controller
are in default state. While an acquisition is ongoing, only unused I/Os (neither defined as
sampling capacitor I/O nor as channel I/O) are in default state. The IODEF bit in the
TSC_CR register defines the configuration of the I/Os which are in default state. The table
below summarizes the configuration of the I/O depending on its mode.

Unused I/O mode

An unused I/O corresponds to a GPIO controlled by the TSC peripheral but not defined as
an electrode I/O nor as a sampling capacitor I/O.

Sampling capacitor I/O mode

To allow the control of the sampling capacitor I/O by the TSC peripheral, the corresponding
GPIO must be first set to alternate output open drain mode and then the corresponding
Gx_IOy bit in the TSC_IOSCR register must be set.

Only one sampling capacitor per analog I/O group must be enabled at a time.

Channel I/O mode

To allow the control of the channel I/O by the TSC peripheral, the corresponding GPIO must
be first set to alternate output push-pull mode and the corresponding Gx_IOy bit in the
TSC_IOCCR register must be set.

For proximity detection where a higher equivalent electrode surface is required or to speed-
up the acquisition process, it is possible to enable and simultaneously acquire several
channels belonging to the same analog I/O group.

Note: During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOSCR or TSC_IOCCR bit is set, the corresponding GPIO
analog switch is automatically controlled by the touch sensing controller.

Table 83. I/O state depending on its mode and IODEF bit value

IODEF bit
Acquisition

status
Unused I/O

mode
Channel I/O

mode

Sampling
capacitor I/O

mode

0
(output push-pull low)

No
Output push-pull

low
Output push-pull

low
Output push-pull

low

0
(output push-pull low)

Ongoing
Output push-pull

low
- -

1
(input floating)

No Input floating Input floating Input floating

1
(input floating)

Ongoing Input floating - -

Touch sensing controller (TSC) RM0367

420/1040 RM0367 Rev 8

18.3.8 Acquisition mode

The touch sensing controller offers two acquisition modes:

• Normal acquisition mode: the acquisition starts as soon as the START bit in the
TSC_CR register is set.

• Synchronized acquisition mode: the acquisition is enabled by setting the START bit in
the TSC_CR register but only starts upon the detection of a falling edge or a rising
edge and high level on the SYNC input pin. This mode is useful for synchronizing the
capacitive sensing channels acquisition with an external signal without additional CPU
load.

The GxE bits in the TSC_IOGCSR registers specify which analog I/O groups are enabled
(corresponding counter is counting). The CS voltage of a disabled analog I/O group is not
monitored and this group does not participate in the triggering of the end of acquisition flag.
However, if the disabled analog I/O group contains some channels, they are pulsed.

When the CS voltage of an enabled analog I/O group reaches the given threshold, the
corresponding GxS bit of the TSC_IOGCSR register is set. When the acquisition of all
enabled analog I/O groups is complete (all GxS bits of all enabled analog I/O groups are
set), the EOAF flag in the TSC_ISR register is set. An interrupt request is generated if the
EOAIE bit in the TSC_IER register is set.

In the case that a max count error is detected, the ongoing acquisition is stopped and both
the EOAF and MCEF flags in the TSC_ISR register are set. Interrupt requests can be
generated for both events if the corresponding bits (EOAIE and MCEIE bits of the TSCIER
register) are set. Note that when the max count error is detected the remaining GxS bits in
the enabled analog I/O groups are not set.

To clear the interrupt flags, the corresponding EOAIC and MCEIC bits in the TSC_ICR
register must be set.

The analog I/O group counters are cleared when a new acquisition is started. They are
updated with the number of charge transfer cycles generated on the corresponding
channel(s) upon the completion of the acquisition.

For code example, refer to A.10.1: TSC configuration code example.

18.3.9 I/O hysteresis and analog switch control

In order to offer a higher flexibility, the touch sensing controller is able to take the control of
the Schmitt trigger hysteresis and analog switch of each Gx_IOy. This control is available
whatever the I/O control mode is (controlled by standard GPIO registers or other
peripherals) assuming that the touch sensing controller is enabled. This may be useful to
perform a different acquisition sequence or for other purposes.

In order to improve the system immunity, the Schmitt trigger hysteresis of the GPIOs
controlled by the TSC must be disabled by resetting the corresponding Gx_IOy bit in the
TSC_IOHCR register.

RM0367 Rev 8 421/1040

RM0367 Touch sensing controller (TSC)

431

18.4 TSC low-power modes

18.5 TSC interrupts

For code example, refer to A.10.2: TSC interrupt code example.

Table 84. Effect of low-power modes on TSC

Mode Description

Sleep
No effect
TSC interrupts cause the device to exit Sleep mode.

Stop TSC registers are frozen
The TSC stops its operation until the Stop or Standby mode is exited.Standby

Table 85. Interrupt control bits

Interrupt event
Enable

control bit
Event flag

Clear flag
bit

Exit the
Sleep mode

Exit the
Stop mode

Exit the
Standby mode

End of acquisition EOAIE EOAIF EOAIC Yes No No

Max count error MCEIE MCEIF MCEIC Yes No No

Touch sensing controller (TSC) RM0367

422/1040 RM0367 Rev 8

18.6 TSC registers

Refer to Section 1.2 on page 52 of the reference manual for a list of abbreviations used in
register descriptions.

The peripheral registers can be accessed by words (32-bit).

18.6.1 TSC control register (TSC_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CTPH[3:0] CTPL[3:0] SSD[6:0] SSE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSPSC PGPSC[2:0] Res. Res. Res. Res. MCV[2:0] IODEF
SYNC
POL

AM START TSCE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 CTPH[3:0]: Charge transfer pulse high

These bits are set and cleared by software. They define the duration of the high state of the
charge transfer pulse (charge of CX).
0000: 1x tPGCLK
0001: 2x tPGCLK
...
1111: 16x tPGCLK

Note: These bits must not be modified when an acquisition is ongoing.

Bits 27:24 CTPL[3:0]: Charge transfer pulse low

These bits are set and cleared by software. They define the duration of the low state of the
charge transfer pulse (transfer of charge from CX to CS).
0000: 1x tPGCLK
0001: 2x tPGCLK
...
1111: 16x tPGCLK

Note: These bits must not be modified when an acquisition is ongoing.

Note: Some configurations are forbidden. Refer to the Section 18.3.4: Charge transfer
acquisition sequence for details.

Bits 23:17 SSD[6:0]: Spread spectrum deviation

These bits are set and cleared by software. They define the spread spectrum deviation which
consists in adding a variable number of periods of the SSCLK clock to the charge transfer
pulse high state.
0000000: 1x tSSCLK
0000001: 2x tSSCLK
...
1111111: 128x tSSCLK

Note: These bits must not be modified when an acquisition is ongoing.

RM0367 Rev 8 423/1040

RM0367 Touch sensing controller (TSC)

431

Bit 16 SSE: Spread spectrum enable

This bit is set and cleared by software to enable/disable the spread spectrum feature.
0: Spread spectrum disabled
1: Spread spectrum enabled

Note: This bit must not be modified when an acquisition is ongoing.

Bit 15 SSPSC: Spread spectrum prescaler

This bit is set and cleared by software. It selects the AHB clock divider used to generate the
spread spectrum clock (SSCLK).
0: fHCLK
1: fHCLK /2

Note: This bit must not be modified when an acquisition is ongoing.

Bits 14:12 PGPSC[2:0]: Pulse generator prescaler

These bits are set and cleared by software.They select the AHB clock divider used to
generate the pulse generator clock (PGCLK).
000: fHCLK
001: fHCLK /2
010: fHCLK /4
011: fHCLK /8
100: fHCLK /16
101: fHCLK /32
110: fHCLK /64
111: fHCLK /128

Note: These bits must not be modified when an acquisition is ongoing.

Note: Some configurations are forbidden. Refer to the Section 18.3.4: Charge transfer
acquisition sequence for details.

Bits 11:8 Reserved, must be kept at reset value.

Bits 7:5 MCV[2:0]: Max count value

These bits are set and cleared by software. They define the maximum number of charge
transfer pulses that can be generated before a max count error is generated.
000: 255
001: 511
010: 1023
011: 2047
100: 4095
101: 8191
110: 16383
111: reserved

Note: These bits must not be modified when an acquisition is ongoing.

Bit 4 IODEF: I/O Default mode

This bit is set and cleared by software. It defines the configuration of all the TSC I/Os when
there is no ongoing acquisition. When there is an ongoing acquisition, it defines the
configuration of all unused I/Os (not defined as sampling capacitor I/O or as channel I/O).
0: I/Os are forced to output push-pull low
1: I/Os are in input floating

Note: This bit must not be modified when an acquisition is ongoing.

Bit 3 SYNCPOL: Synchronization pin polarity

This bit is set and cleared by software to select the polarity of the synchronization input pin.
0: Falling edge only
1: Rising edge and high level

Touch sensing controller (TSC) RM0367

424/1040 RM0367 Rev 8

18.6.2 TSC interrupt enable register (TSC_IER)

Address offset: 0x04

Reset value: 0x0000 0000

Bit 2 AM: Acquisition mode

This bit is set and cleared by software to select the acquisition mode.
0: Normal acquisition mode (acquisition starts as soon as START bit is set)
1: Synchronized acquisition mode (acquisition starts if START bit is set and when the
selected signal is detected on the SYNC input pin)

Note: This bit must not be modified when an acquisition is ongoing.

Bit 1 START: Start a new acquisition

This bit is set by software to start a new acquisition. It is cleared by hardware as soon as the
acquisition is complete or by software to cancel the ongoing acquisition.
0: Acquisition not started
1: Start a new acquisition

Bit 0 TSCE: Touch sensing controller enable

This bit is set and cleared by software to enable/disable the touch sensing controller.
0: Touch sensing controller disabled
1: Touch sensing controller enabled

Note: When the touch sensing controller is disabled, TSC registers settings have no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MCEIE EOAIE

rw rw

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 MCEIE: Max count error interrupt enable

This bit is set and cleared by software to enable/disable the max count error interrupt.
0: Max count error interrupt disabled
1: Max count error interrupt enabled

Bit 0 EOAIE: End of acquisition interrupt enable

This bit is set and cleared by software to enable/disable the end of acquisition interrupt.
0: End of acquisition interrupt disabled
1: End of acquisition interrupt enabled

RM0367 Rev 8 425/1040

RM0367 Touch sensing controller (TSC)

431

18.6.3 TSC interrupt clear register (TSC_ICR)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MCEIC EOAIC

rw rw

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 MCEIC: Max count error interrupt clear

This bit is set by software to clear the max count error flag and it is cleared by hardware
when the flag is reset. Writing a ‘0’ has no effect.
0: No effect
1: Clears the corresponding MCEF of the TSC_ISR register

Bit 0 EOAIC: End of acquisition interrupt clear

This bit is set by software to clear the end of acquisition flag and it is cleared by hardware
when the flag is reset. Writing a ‘0’ has no effect.
0: No effect
1: Clears the corresponding EOAF of the TSC_ISR register

Touch sensing controller (TSC) RM0367

426/1040 RM0367 Rev 8

18.6.4 TSC interrupt status register (TSC_ISR)

Address offset: 0x0C

Reset value: 0x0000 0000

18.6.5 TSC I/O hysteresis control register (TSC_IOHCR)

Address offset: 0x10

Reset value: 0xFFFF FFFF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MCEF EOAF

r r

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 MCEF: Max count error flag

This bit is set by hardware as soon as an analog I/O group counter reaches the max count
value specified. It is cleared by software writing 1 to the bit MCEIC of the TSC_ICR register.
0: No max count error (MCE) detected
1: Max count error (MCE) detected

Bit 0 EOAF: End of acquisition flag

This bit is set by hardware when the acquisition of all enabled group is complete (all GxS bits
of all enabled analog I/O groups are set or when a max count error is detected). It is cleared
by software writing 1 to the bit EOAIC of the TSC_ICR register.
0: Acquisition is ongoing or not started
1: Acquisition is complete

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Gx_IOy: Gx_IOy Schmitt trigger hysteresis mode, x = 8 to 1, y = 4 to 1.

These bits are set and cleared by software to enable/disable the Gx_IOy Schmitt trigger
hysteresis.
0: Gx_IOy Schmitt trigger hysteresis disabled
1: Gx_IOy Schmitt trigger hysteresis enabled

Note: These bits control the I/O Schmitt trigger hysteresis whatever the I/O control mode is
(even if controlled by standard GPIO registers).

RM0367 Rev 8 427/1040

RM0367 Touch sensing controller (TSC)

431

18.6.6 TSC I/O analog switch control register
(TSC_IOASCR)

Address offset: 0x18

Reset value: 0x0000 0000

18.6.7 TSC I/O sampling control register (TSC_IOSCR)

Address offset: 0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Gx_IOy: Gx_IOy analog switch enable

These bits are set and cleared by software to enable/disable the Gx_IOy analog switch.
0: Gx_IOy analog switch disabled (opened)
1: Gx_IOy analog switch enabled (closed)

Note: These bits control the I/O analog switch whatever the I/O control mode is (even if
controlled by standard GPIO registers).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Gx_IOy: Gx_IOy sampling mode

These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor
I/O. Only one I/O per analog I/O group must be defined as sampling capacitor.
0: Gx_IOy unused
1: Gx_IOy used as sampling capacitor

Note: These bits must not be modified when an acquisition is ongoing.

During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch
is automatically controlled by the touch sensing controller.

Touch sensing controller (TSC) RM0367

428/1040 RM0367 Rev 8

18.6.8 TSC I/O channel control register (TSC_IOCCR)

Address offset: 0x28

Reset value: 0x0000 0000

18.6.9 TSC I/O group control status register (TSC_IOGCSR)

Address offset: 0x30

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G8_IO4 G8_IO3 G8_IO2 G8_IO1 G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Gx_IOy: Gx_IOy channel mode

These bits are set and cleared by software to configure the Gx_IOy as a channel I/O.
0: Gx_IOy unused
1: Gx_IOy used as channel

Note: These bits must not be modified when an acquisition is ongoing.

During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOCCR bit is set, the corresponding GPIO analog switch
is automatically controlled by the touch sensing controller.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. G8S G7S G6S G5S G4S G3S G2S G1S

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. G8E G7E G6E G5E G4E G3E G2E G1E

rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:16 GxS: Analog I/O group x status

These bits are set by hardware when the acquisition on the corresponding enabled analog
I/O group x is complete. They are cleared by hardware when a new acquisition is started.
0: Acquisition on analog I/O group x is ongoing or not started
1: Acquisition on analog I/O group x is complete

Note: When a max count error is detected the remaining GxS bits of the enabled analog I/O
groups are not set.

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 GxE: Analog I/O group x enable

These bits are set and cleared by software to enable/disable the acquisition (counter is
counting) on the corresponding analog I/O group x.
0: Acquisition on analog I/O group x disabled
1: Acquisition on analog I/O group x enabled

RM0367 Rev 8 429/1040

RM0367 Touch sensing controller (TSC)

431

18.6.10 TSC I/O group x counter register (TSC_IOGxCR)

x represents the analog I/O group number.

Address offset: 0x30 + 0x04 * x, (x = 1..8)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. CNT[13:0]

r r r r r r r r r r r r r r

Bits 31:14 Reserved, must be kept at reset value.

Bits 13:0 CNT[13:0]: Counter value

These bits represent the number of charge transfer cycles generated on the analog I/O
group x to complete its acquisition (voltage across CS has reached the threshold).

Touch sensing controller (TSC) RM0367

430/1040 RM0367 Rev 8

18.6.11 TSC register map

Table 86. TSC register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000
TSC_CR CTPH[3:0] CTPL[3:0] SSD[6:0]

S
S

E

S
S

P
S

C

P
G

P
S

C
[2

:0
]

R
es

.

R
es

.

R
es

.

R
es

. MCV
[2:0]

IO
D

E
F

S
Y

N
C

P
O

L

A
M

S
TA

R
T

T
S

C
E

Reset value 0

0x0004
TSC_IER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
C

E
IE

E
O

A
IE

Reset value 0 0

0x0008
TSC_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
C

E
IC

E
O

A
IC

Reset value 0 0

0x000C
TSC_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
C

E
F

E
O

A
F

Reset value 0 0

0x0010
TSC_IOHCR

G
8

_
IO

4

G
8

_
IO

3

G
8

_
IO

2

G
8

_
IO

1

G
7

_
IO

4

G
7

_
IO

3

G
7

_
IO

2

G
7

_
IO

1

G
6

_
IO

4

G
6

_
IO

3

G
6

_
IO

2

G
6

_
IO

1

G
5

_
IO

4

G
5

_
IO

3

G
5

_
IO

2

G
5

_
IO

1

G
4

_
IO

4

G
4

_
IO

3

G
4

_
IO

2

G
4

_
IO

1

G
3

_
IO

4

G
3

_
IO

3

G
3

_
IO

2

G
3

_
IO

1

G
2

_
IO

4

G
2

_
IO

3

G
2

_
IO

2

G
2

_
IO

1

G
1

_
IO

4

G
1

_
IO

3

G
1

_
IO

2

G
1

_
IO

1

Reset value 1

0x0014 Reserved

0x0018
TSC_IOASCR

G
8_

IO
4

G
8_

IO
3

G
8_

IO
2

G
8_

IO
1

G
7_

IO
4

G
7_

IO
3

G
7_

IO
2

G
7_

IO
1

G
6_

IO
4

G
6_

IO
3

G
6_

IO
2

G
6_

IO
1

G
5_

IO
4

G
5_

IO
3

G
5_

IO
2

G
5_

IO
1

G
4_

IO
4

G
4_

IO
3

G
4_

IO
2

G
4_

IO
1

G
3_

IO
4

G
3_

IO
3

G
3_

IO
2

G
3_

IO
1

G
2_

IO
4

G
2_

IO
3

G
2_

IO
2

G
2_

IO
1

G
1_

IO
4

G
1_

IO
3

G
1_

IO
2

G
1_

IO
1

Reset value 0

0x001C Reserved

0x0020
TSC_IOSCR

G
8

_I
O

4

G
8

_I
O

3

G
8

_I
O

2

G
8

_I
O

1

G
7

_I
O

4

G
7

_I
O

3

G
7

_I
O

2

G
7

_I
O

1

G
6

_I
O

4

G
6

_I
O

3

G
6

_I
O

2

G
6

_I
O

1

G
5

_I
O

4

G
5

_I
O

3

G
5

_I
O

2

G
5

_I
O

1

G
4

_I
O

4

G
4

_I
O

3

G
4

_I
O

2

G
4

_I
O

1

G
3

_I
O

4

G
3

_I
O

3

G
3

_I
O

2

G
3

_I
O

1

G
2

_I
O

4

G
2

_I
O

3

G
2

_I
O

2

G
2

_I
O

1

G
1

_I
O

4

G
1

_I
O

3

G
1

_I
O

2

G
1

_I
O

1

Reset value 0

0x0024 Reserved

0x0028
TSC_IOCCR

G
8

_
IO

4

G
8

_
IO

3

G
8

_
IO

2

G
8

_
IO

1

G
7

_
IO

4

G
7

_
IO

3

G
7

_
IO

2

G
7

_
IO

1

G
6

_
IO

4

G
6

_
IO

3

G
6

_
IO

2

G
6

_
IO

1

G
5

_
IO

4

G
5

_
IO

3

G
5

_
IO

2

G
5

_
IO

1

G
4

_
IO

4

G
4

_
IO

3

G
4

_
IO

2

G
4

_
IO

1

G
3

_
IO

4

G
3

_
IO

3

G
3

_
IO

2

G
3

_
IO

1

G
2

_
IO

4

G
2

_
IO

3

G
2

_
IO

2

G
2

_
IO

1

G
1

_
IO

4

G
1

_
IO

3

G
1

_
IO

2

G
1

_
IO

1

Reset value 0

0x002C Reserved

0x0030
TSC_IOGCSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

G
8

S

G
7

S

G
6

S

G
5

S

G
4

S

G
3

S

G
2

S

G
1

S

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

G
8

E

G
7

E

G
6

E

G
5

E

G
4

E

G
3

E

G
2

E

G
1

E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0034
TSC_IOG1CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0038
TSC_IOG2CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0367 Rev 8 431/1040

RM0367 Touch sensing controller (TSC)

431

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x003C
TSC_IOG3CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0040
TSC_IOG4CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0044
TSC_IOG5CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0048
TSC_IOG6CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x004C
TSC_IOG7CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0050
TSC_IOG8CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 86. TSC register map and reset values (continued)

Offset Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

AES hardware accelerator (AES) RM0367

432/1040 RM0367 Rev 8

19 AES hardware accelerator (AES)

19.1 Introduction

The AES hardware accelerator (AES) encrypts or decrypts data, using an algorithm and
implementation fully compliant with the advanced encryption standard (AES) defined in
Federal information processing standards (FIPS) publication 197.

Multiple chaining modes are supported (ECB, CBC, CTR), for key size of 128 bits.

The AES accelerator is a 32-bit AHB peripheral. It supports DMA single transfers for
incoming and outgoing data (two DMA channels required).

The AES peripheral provides hardware acceleration to AES cryptographic algorithms
packaged in STM32 cryptographic library.

AES is an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only
(otherwise an AHB bus error is generated and write accesses are ignored).

19.2 AES main features

• Compliance with NIST “Advanced encryption standard (AES), FIPS publication 197”
from November 2001

• 128-bit data block processing

• Support for cipher key length of 128-bit

• Encryption and decryption with multiple chaining modes:

– Electronic codebook (ECB) mode

– Cipher block chaining (CBC) mode

– Counter (CTR) mode

• 213 clock cycle latency for processing one 128-bit block of data

• Integrated key scheduler with its key derivation stage (ECB or CBC decryption only)

• AMBA AHB slave peripheral, accessible through 32-bit word single accesses only

• 128-bit register for storing the cryptographic key (four 32-bit registers)

• 128-bit register for storing initialization vector (four 32-bit registers)

– Used for the initialization vector when AES is configured in CBC mode or for the
32-bit counter initialization when CTR mode is selected

• 32-bit buffer for data input and output

• Automatic data flow control with support of single-transfer direct memory access (DMA)
using two channels (one for incoming data, one for processed data)

• Data-swapping logic to support 1-, 8-, 16- or 32-bit data

RM0367 Rev 8 433/1040

RM0367 AES hardware accelerator (AES)

465

19.3 AES implementation

The device has a single instance of AES peripheral.

19.4 AES functional description

19.4.1 AES block diagram

Figure 84 shows the block diagram of AES.

Figure 84. AES block diagram

19.4.2 AES internal signals

Table 87 describes the user relevant internal signals interfacing the AES peripheral.

MSv42155V1

aes_hclk

Banked registers

DOUT

KEY

IVI

DIN

AES

key

control

status

IV, counter

data in

data out

aes_it

32-bit
AHB bus

aes_in_dma

AES_CR

AES_KEYRx

AES_SR

AES_IVRx

AES_DINR

AES_DOUTR

AES
Core
(AEA)

swap

AHB
interface

IRQ
interface

Control Logic
DMA

interfaceaes_out_dma

32-bit
access

Table 87. AES internal input/output signals

Signal name Signal type Description

aes_hclk digital input AHB bus clock

aes_it digital output AES interrupt request

aes_in_dma
digital

input/output
Input DMA single request/acknowledge

aes_out_dma
digital

input/output
Output DMA single request/acknowledge

AES hardware accelerator (AES) RM0367

434/1040 RM0367 Rev 8

19.4.3 AES cryptographic core

Overview

The AES cryptographic core consists of the following components:

• AES algorithm (AEA)

• key input

• initialization vector (IV) input

The AES core works on 128-bit data blocks (four words) with 128-bit key length. Depending
on the chaining mode, the AES requires zero or one 96-bit initialization vector IV (and a 32-
bit counter field).

The AES features the following modes of operation:

• Mode 1:

Plaintext encryption using a key stored in the AES_KEYRx registers

• Mode 2:

ECB or CBC decryption key preparation. It must be used prior to selecting Mode 3 with
ECB or CBC chaining modes. The key prepared for decryption is stored automatically
in the AES_KEYRx registers. Now the AES peripheral is ready to switch to Mode 3 for
executing data decryption.

• Mode 3:

Ciphertext decryption using a key stored in the AES_KEYRx registers. When ECB and
CBC chaining modes are selected, the key must be prepared beforehand, through
Mode 2.

• Mode 4:

ECB or CBC ciphertext single decryption using the key stored in the AES_KEYRx
registers (the initial key is derived automatically).

Note: Mode 2 and mode 4 are only used when performing ECB and CBC decryption.

When Mode 4 is selected only one decryption can be done, therefore usage of Mode 2 and
Mode 3 is recommended instead.

The operating mode is selected by programming the MODE[1:0] bitfield of the AES_CR
register. It may be done only when the AES peripheral is disabled.

Typical data processing

Typical usage of the AES is described in Section 19.4.4: AES procedure to perform a cipher
operation on page 437.

Note: The outputs of the intermediate AEA stages are never revealed outside the cryptographic
boundary, with the exclusion of the IVI bitfield.

Chaining modes

The following chaining modes are supported by AES, selected through the CHMOD[1:0]
bitfield of the AES_CR register:

• Electronic code book (ECB)

• Cipher block chaining (CBC)

• Counter (CTR)

RM0367 Rev 8 435/1040

RM0367 AES hardware accelerator (AES)

465

Note: The chaining mode may be changed only when AES is disabled (bit EN of the AES_CR
register set).

Principle of each AES chaining mode is provided in the following subsections.

Detailed information is in dedicated sections, starting from Section 19.4.8: AES basic
chaining modes (ECB, CBC).

Electronic codebook (ECB) mode

Figure 85. ECB encryption and decryption principle

ECB is the simplest mode of operation. There are no chaining operations, and no special
initialization stage. The message is divided into blocks and each block is encrypted or
decrypted separately.

Note: For decryption, a special key scheduling is required before processing the first block.

MSv42140V1

Encryption
Plaintext block 1 Plaintext block 2 Plaintext block 3

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

Encrypt Encrypt Encrypt

Decryption

key key key

Plaintext block 1 Plaintext block 2 Plaintext block 3

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

Decrypt Decrypt Decrypt
key key key

input

output
key
scheduling

Legend

AES hardware accelerator (AES) RM0367

436/1040 RM0367 Rev 8

Cipher block chaining (CBC) mode

Figure 86. CBC encryption and decryption principle

In CBC mode the output of each block chains with the input of the following block. To make
each message unique, an initialization vector is used during the first block processing.

Note: For decryption, a special key scheduling is required before processing the first block.

MSv42141V1

Encryption
Plaintext block 1 Plaintext block 2 Plaintext block 3

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

Encrypt Encrypt Encrypt

Decryption

key key key

Plaintext block 1 Plaintext block 2 Plaintext block 3

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

Decrypt Decrypt Decrypt
key key key

input

output
key
scheduling

Legend

initialization
vector

initialization
vector

RM0367 Rev 8 437/1040

RM0367 AES hardware accelerator (AES)

465

Counter (CTR) mode

Figure 87. CTR encryption and decryption principle

The CTR mode uses the AES core to generate a key stream. The keys are then XORed
with the plaintext to obtain the ciphertext as specified in NIST Special Publication 800-38A,
Recommendation for Block Cipher Modes of Operation.

Note: Unlike with ECB and CBC modes, no key scheduling is required for the CTR decryption,
since in this chaining scheme the AES core is always used in encryption mode for producing
the key stream, or counter blocks.

19.4.4 AES procedure to perform a cipher operation

Introduction

A typical cipher operation is explained below. Detailed information is provided in sections
starting from Section 19.4.8: AES basic chaining modes (ECB, CBC).

The flowcharts shown in Figure 88 describe the way STM32 cryptographic library
implements the AES algorithm. AES accelerates the execution of the AES-128
cryptographic algorithm in ECB, CBC, and CTR operating modes.

Note: For more details on the cryptographic library, refer to the UM1924 user manual “STM32
crypto library” available from www.st.com.

MSv42142V1

Encryption

Plaintext block 1

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

Encrypt Encrypt Encrypt

Decryption

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

Decrypt Decrypt Decrypt
input

output

Legend

key key key

key key key

Plaintext block 2 Plaintext block 3

Counter Counter Counter+1 +1

Plaintext block 1 Plaintext block 2 Plaintext block 3

Counter Counter Counter+1 +1

XOR

value value + 1 value + 2

value value + 1 value + 2

AES hardware accelerator (AES) RM0367

438/1040 RM0367 Rev 8

Figure 88. STM32 cryptolib AES flowchart example

Initialization of AES

To initialize AES, first disable it by clearing the EN bit of the AES_CR register. Then perform
the following steps in any order:

• Configure the AES mode, by programming the MODE[1:0] bitfield of the AES_CR
register.

– For encryption, Mode 1 must be selected (MODE[1:0] = 00).

– For decryption, Mode 3 must be selected (MODE[1:0] = 10), unless ECB or CBC
chaining modes are used. In this latter case, an initial key derivation of the
encryption key must be performed, as described in Section 19.4.5: AES
decryption key preparation.

• Select the chaining mode, by programming the CHMOD[1:0] bitfield of the AES_CR
register

• Write a symmetric key into the AES_KEYRx registers .

• Configure the data type (1-, 8-, 16- or 32-bit), with the DATATYPE[1:0] bitfield in the
AES_CR register.

• When it is required (for example in CBC or CTR chaining modes), write the initialization
vectors into the AES_IVRx register.

Data append

This section describes different ways of appending data for processing, where the size of
data to process is not a multiple of 128 bits.

MSv42146V1

Error status

Begin

AES_x encrypt init

AES_x encrypt
append

Error status

AES_x encrypt finish/
final

Error status

End

success

success

success

Encryption

Error status

Begin

AES_x decrypt init

AES_x decrypt
append

Error status

AES_x decrypt finish/
final

Error status

End

success

success

success

Decryption

Data to append Data to append

RM0367 Rev 8 439/1040

RM0367 AES hardware accelerator (AES)

465

For ECB or CBC mode, refer to Section 19.4.6: AES ciphertext stealing and data padding.
The second-last and the last block management in these cases is more complex than in the
sequence described in this section.

Data append through polling

This method uses flag polling to control the data append.

For all other cases, the data is appended through the following sequence:

1. Enable the AES peripheral by setting the EN bit of the AES_CR register.

2. Repeat the following sub-sequence until the payload is entirely processed:

a) Write four input data words into the AES_DINR register.

b) Wait until the status flag CCF is set in the AES_SR, then read the four data words
from the AES_DOUTR register.

c) Clear the CCF flag, by setting the CCFC bit of the AES_CR register.

d) If the data block just processed is the second-last block of the message and the
significant data in the last block to process is inferior to 128 bits, pad the
remainder of the last block with zeros

3. Discard the data that is not part of the payload, then disable the AES peripheral by
clearing the EN bit of the AES_CR register.

Note: Up to three wait cycles are automatically inserted between two consecutive writes to the
AES_DINR register, to allow sending the key to the AES processor.

Data append using interrupt

The method uses interrupt from the AES peripheral to control the data append, through the
following sequence:

1. Enable interrupts from AES by setting the CCFIE bit of the AES_CR register.

2. Enable the AES peripheral by setting the EN bit of the AES_CR register.

3. Write first four input data words into the AES_DINR register.

4. Handle the data in the AES interrupt service routine, upon interrupt:

a) Read four output data words from the AES_DOUTR register.

b) Clear the CCF flag and thus the pending interrupt, by setting the CCFC bit of the
AES_CR register

c) If the data block just processed is the second-last block of an message and the
significant data in the last block to process is inferior to 128 bits, pad the
remainder of the last block with zeros. Then proceed with point 4e).

d) If the data block just processed is the last block of the message, discard the data
that is not part of the payload, then disable the AES peripheral by clearing the EN
bit of the AES_CR register and quit the interrupt service routine.

e) Write next four input data words into the AES_DINR register and quit the interrupt
service routine.

Note: AES is tolerant of delays between consecutive read or write operations, which allows, for
example, an interrupt from another peripheral to be served between two AES computations.

Data append using DMA

With this method, all the transfers and processing are managed by DMA and AES. To use
the method, proceed as follows:

AES hardware accelerator (AES) RM0367

440/1040 RM0367 Rev 8

1. Prepare the last four-word data block (if the data to process does not fill it completely),
by padding the remainder of the block with zeros.

2. Configure the DMA controller so as to transfer the data to process from the memory to
the AES peripheral input and the processed data from the AES peripheral output to the
memory, as described in Section 19.4.13: AES DMA interface. Configure the DMA
controller so as to generate an interrupt on transfer completion.

3. Enable the AES peripheral by setting the EN bit of the AES_CR register

4. Enable DMA requests by setting the DMAINEN and DMAOUTEN bits of the AES_CR
register.

5. Upon DMA interrupt indicating the transfer completion, get the AES-processed data
from the memory.

Note: The CCF flag has no use with this method, because the reading of the AES_DOUTR
register is managed by DMA automatically, without any software action, at the end of the
computation phase.

19.4.5 AES decryption key preparation

For an ECB or CBC decryption, a key for the first round of decryption must be derived from
the key of the last round of encryption. This is why a complete key schedule of encryption is
required before performing the decryption. This key preparation is not required for AES
decryption in modes other than ECB or CBC.

Recommended method is to select the Mode 2 by setting to 01 the MODE[1:0] bitfield of the
AES_CR (key process only), then proceed with the decryption by setting MODE[1:0] to 10
(Mode 3, decryption only). Mode 2 usage is described below:

1. Disable the AES peripheral by clearing the EN bit of the AES_CR register.

2. Select Mode 2 by setting to 01 the MODE[1:0] bitfield of the AES_CR. The
CHMOD[1:0] bitfield is not significant in this case because this key derivation mode is
independent of the chaining algorithm selected.

3. Write the AES_KEYRx registers (128bits) with encryption key, as shown in Figure 89.
Writes to the AES_IVRx registers have no effect.

4. Enable the AES peripheral, by setting the EN bit of the AES_CR register.

5. Wait until the CCF flag is set in the AES_SR register.

6. Derived key is available in AES core, ready to use for decryption. Application can also
read the AES_KEYRx register to obtain the derived key if needed, as shown in
Figure 89 (the processed key is loaded automatically into the AES_KEYRx registers).

Note: The AES is disabled by hardware when the derivation key is available.

To restart a derivation key computation, repeat steps 3, 4, 5 and 6 .

RM0367 Rev 8 441/1040

RM0367 AES hardware accelerator (AES)

465

Figure 89. Encryption key derivation for ECB/CBC decryption (Mode 2)

If the software stores the initial key prepared for decryption, it is enough to do the key
schedule operation only once for all the data to be decrypted with a given cipher key.

Note: Alternative key preparation is to select Mode 4 by setting to 11 the MODE[1:0] bitfield of the
AES_CR register. In this case Mode 3 cannot be used.

19.4.6 AES ciphertext stealing and data padding

When using AES in ECB or CBC modes to manage messages the size of which is not a
multiple of the block size (128 bits), ciphertext stealing techniques are used, such as those
described in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes
of Operation: Three Variants of Ciphertext Stealing for CBC Mode. Since the AES peripheral
on the device does not support such techniques, the last two blocks of input data must be
handled in a special way by the application.

Note: Ciphertext stealing techniques are not documented in this reference manual.

Similarly, when AES is used in other modes than ECB or CBC, an incomplete input data
block (that is, block with input data shorter than 128 bits) must be padded with zeros prior to
encryption (that is, extra bits must be appended to the trailing end of the data string). After
decryption, the extra bits must be discarded. As AES does not implement automatic data
padding operation to the last block, the application must follow the recommendation given
in Section 19.4.4: AES procedure to perform a cipher operation on page 437 to manage
messages the size of which is not a multiple of 128 bits.

Note: Padding data are swapped in a similar way as normal data, according to the
DATATYPE[1:0] field of the AES_CR register (see Section 19.4.10: AES data registers and
data swapping on page 450 for details).

19.4.7 AES task suspend and resume

A message can be suspended if another message with a higher priority must be processed.
When this highest priority message is sent, the suspended message can resume in both
encryption or decryption mode.

Suspend/resume operations do not break the chaining operation and the message
processing can resume as soon as AES is enabled again to receive the next data block.

Figure 90 gives an example of suspend/resume operation: Message 1 is suspended in
order to send a shorter and higher-priority Message 2.

MS18937V2

WR
EK3

WR
EK2

WR
EK1

WR
EK0 Wait until flag CCF = 1 RD

DK3
RD
DK2

RD
DK1

RD
DK0

Input phase
4 write operations into

AES_KEYRx[31:0]
Computation phase

Output phase (optional)
4 read operations of
AES_KEYRx[31:0]

EK = encryption key = 4 words (EK3, … , EK0)
DK = decryption key = 4 words (DK3, … , DK0)

MSB LSB MSB LSB

EN = 1 into AES_CR 128-bit derivation key
stored into AES_KEYRx

AES hardware accelerator (AES) RM0367

442/1040 RM0367 Rev 8

Figure 90. Example of suspend mode management

A detailed description of suspend/resume operations is in the sections dedicated to each
AES mode.

19.4.8 AES basic chaining modes (ECB, CBC)

Overview

This section gives a brief explanation of the four basic operation modes provided by the
AES computing core: ECB encryption, ECB decryption, CBC encryption and CBC
decryption. For detailed information, refer to the FIPS publication 197 from November 26,
2001.

Figure 91 illustrates the electronic codebook (ECB) encryption.

Figure 91. ECB encryption

In ECB encrypt mode, the 128-bit plaintext input data block Px in the AES_DINR register
first goes through bit/byte/half-word swapping. The swap result Ix is processed with the AES
core set in encrypt mode, using a 128--bit key. The encryption result Ox goes through
bit/byte/half-word swapping, then is stored in the AES_DOUTR register as 128-bit ciphertext

MSv42148V1

128-bit block 1

Message 1

128-bit block 2

128-bit block 4

128-bit block 5

128-bit block 6

...

AES suspend
sequence

AES resume
sequence

128-bit block 1

128-bit block 2

Message 2

128-bit block 3

New higher-priority
message 2 to be

processed

MSv19105V2

Encrypt
AES_KEYRx (KEY)

AES_DINR (plaintext P1)

AES_DOUTR (ciphertext C1)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

Encrypt
AES_KEYRx (KEY)

AES_DINR (plaintext P2)

AES_DOUTR (ciphertext C2)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

input

output

Legend

I1 I2

O1 O2

Block 1 Block 2

AES core

RM0367 Rev 8 443/1040

RM0367 AES hardware accelerator (AES)

465

output data block Cx. The ECB encryption continues in this way until the last complete
plaintext block is encrypted.

Figure 92 illustrates the electronic codebook (ECB) decryption.

Figure 92. ECB decryption

To perform an AES decryption in the ECB mode, the secret key has to be prepared by
collecting the last-round encryption key (which requires to first execute the complete key
schedule for encryption), and using it as the first-round key for the decryption of the
ciphertext. This preparation is supported by the AES core.

In ECB decrypt mode, the 128-bit ciphertext input data block C1 in the AES_DINR register
first goes through bit/byte/half-word swapping. The keying sequence is reversed compared
to that of the ECB encryption. The swap result I1 is processed with the AES core set in
decrypt mode, using the formerly prepared decryption key. The decryption result goes
through bit/byte/half-word swapping, then is stored in the AES_DOUTR register as 128-bit
plaintext output data block P1. The ECB decryption continues in this way until the last
complete ciphertext block is decrypted.

Figure 93 illustrates the cipher block chaining (CBC) encryption mode.

Figure 93. CBC encryption

In CBC encrypt mode, the first plaintext input block, after bit/byte/half-word swapping (P1’),
is XOR-ed with a 128-bit IVI bitfield (initialization vector and counter), producing the I1 input
data for encrypt with the AES core, using a 128- key. The resulting 128-bit output block O1,
after swapping operation, is used as ciphertext C1. The O1 data is then XOR-ed with the

MSv19106V2

Decrypt
AES_KEYRx (KEY)

AES_DINR (ciphertext C1)

AES_DOUTR (plaintext P1)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

Decrypt
AES_KEYRx (KEY)

AES_DINR (ciphertext C2)

AES_DOUTR (plaintext P2)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

input

output

Legend

I1 I2

O1 O2

Block 1 Block 2

MSv19107V2

Block cipher
encryption

AES_KEYRx (KEY)

AES_DINR (plaintext P1)

AES_DOUTR (ciphertext C1)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

Block cipher
encryption

AES_KEYRx (KEY)

AES_DINR (plaintext P2)

AES_DOUTR (ciphertext C2)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

AES_IVRx (init. vector)

input

output

Legend

XOR

I1 I2

O1 O2

Block 1 Block 2

IVI P1' P2'

AES hardware accelerator (AES) RM0367

444/1040 RM0367 Rev 8

second-block plaintext data P2’ to produce the I2 input data for the AES core to produce the
second block of ciphertext data. The chaining of data blocks continues in this way until the
last plaintext block in the message is encrypted.

If the message size is not a multiple of 128 bits, the final partial data block is encrypted in
the way explained in Section 19.4.6: AES ciphertext stealing and data padding.

Figure 94 illustrates the cipher block chaining (CBC) decryption mode.

Figure 94. CBC decryption

In CBC decrypt mode, like in ECB decrypt mode, the secret key must be prepared to
perform an AES decryption.

After the key preparation process, the decryption goes as follows: the first 128-bit ciphertext
block (after the swap operation) is used directly as the AES core input block I1 for decrypt
operation, using the 128-bit key. Its output O1 is XOR-ed with the 128-bit IVI field (that must
be identical to that used during encryption) to produce the first plaintext block P1.

The second ciphertext block is processed in the same way as the first block, except that the
I1 data from the first block is used in place of the initialization vector.

The decryption continues in this way until the last complete ciphertext block is decrypted.

If the message size is not a multiple of 128 bits, the final partial data block is decrypted in
the way explained in Section 19.4.6: AES ciphertext stealing and data padding.

For more information on data swapping, refer to Section 19.4.10: AES data registers and
data swapping.

MSv19104V2

Decrypt
AES_KEYRx (KEY)

AES_DINR (ciphertext C1)

AES_DOUTR (plaintext P1)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

Decrypt
AES_KEYRx (KEY)

AES_DINR (ciphertext C2)

AES_DOUTR (plaintext P2)

Swap
managementDATATYPE[1:0]

DATATYPE[1:0] Swap
management

AES_IVRx (IV)

input

output

Legend

XOR

I1 I2

O1 O2

Block 1 Block 2

IVI
P1' P2'

RM0367 Rev 8 445/1040

RM0367 AES hardware accelerator (AES)

465

ECB/CBC encryption sequence

The sequence of events to perform an ECB/CBC encryption (more detail in Section 19.4.4):

1. Disable the AES peripheral by clearing the EN bit of the AES_CR register.

2. Select the Mode 1 by to 00 the MODE[1:0] bitfield of the AES_CR register and select
ECB or CBC chaining mode by setting the CHMOD[1:0] bitfield of the AES_CR register
to 00 or 01, respectively. Data type can also be defined, using DATATYPE[1:0] bitfield.

3. Write the AES_KEYRx registers (128 bits) with encryption key. Fill the AES_IVRx
registers with the initialization vector data if CBC mode has been selected.

4. Enable the AES peripheral by setting the EN bit of the AES_CR register.

5. Write the AES_DINR register four times to input the plaintext (MSB first), as shown in
Figure 95.

6. Wait until the CCF flag is set in the AES_SR register.

7. Read the AES_DOUTR register four times to get the ciphertext (MSB first) as shown in
Figure 95. Then clear the CCF flag by setting the CCFC bit of the AES_CR register.

8. Repeat steps 5,6,7to process all the blocks with the same encryption key.

Figure 95. ECB/CBC encryption (Mode 1)

ECB/CBC decryption sequence

The sequence of events to perform an AES ECB/CBC decryption is as follows (more detail
in Section 19.4.4):

1. Follow the steps described in Section 19.4.5: AES decryption key preparation on
page 440, in order to prepare the decryption key in AES core.

2. Disable the AES peripheral by clearing the EN bit of the AES_CR register.

3. Select the Mode 3 by setting to 10 the MODE[1:0] bitfield of the AES_CR register and
select ECB or CBC chaining mode by setting the CHMOD[1:0] bitfield of the AES_CR
register to 00 or 01, respectively. Data type can also be defined, using DATATYPE[1:0]
bitfield.

4. Write the AES_IVRx registers with the initialization vector (required in CBC mode only).

5. Enable AES by setting the EN bit of the AES_CR register.

6. Write the AES_DINR register four times to input the cipher text (MSB first), as shown in
Figure 96.

7. Wait until the CCF flag is set in the AES_SR register.

8. Read the AES_DOUTR register four times to get the plain text (MSB first), as shown in
Figure 96. Then clear the CCF flag by setting the CCFC bit of the AES_CR register.

MS18936V3

WR
PT3

WR
PT2

WR
PT1

WR
PT0 Wait until flag CCF = 1 RD

CT3
RD
CT2

RD
CT1

RD
CT0

Input phase
4 write operations into

AES_DINR[31:0]

Computation phase Output phase
4 read operations of
AES_DOUTR[31:0]

PT = plaintext = 4 words (PT3, … , PT0)
CT = ciphertext = 4 words (CT3, … , CT0)

MSB LSB MSB LSB

AES hardware accelerator (AES) RM0367

446/1040 RM0367 Rev 8

9. Repeat steps 6,7,8 to process all the blocks encrypted with the same key.

Figure 96. ECB/CBC decryption (Mode 3)

Suspend/resume operations in ECB/CBC modes

To suspend the processing of a message, proceed as follows:

1. If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN
bit of the AES_CR register.

2. If DMA is not used, read four times the AES_DOUTR register to save the last
processed block. If DMA is used, wait until the CCF flag is set in the AES_SR register
then stop the DMA transfers from the OUT FIFO by clearing the DMAOUTEN bit of the
AES_CR register.

3. If DMA is not used, poll the CCF flag of the AES_SR register until it becomes 1
(computation completed).

4. Clear the CCF flag by setting the CCFC bit of the AES_CR register.

5. Save initialization vector registers (only required in CBC mode as AES_IVRx registers
are altered during the data processing).

6. Disable the AES peripheral by clearing the bit EN of the AES_CR register.

7. Save the current AES configuration in the memory (except AES initialization vector
values).

8. If DMA is used, save the DMA controller status (pointers for IN and OUT data transfers,
number of remaining bytes, and so on).

Note: In point 7, the derived key information stored in AES_KEYRx registers can optionally be
saved in memory if the interrupted process is a decryption. Otherwise those registers do not
need to be saved as the original key value is known by the application

MS18938V3

WR
CT3

WR
CT2

WR
CT1

WR
CT0 Wait until flag CCF = 1 RD

PT3
RD
PT2

RD
PT1

RD
PT0

Input phase
4 write operations into

AES_DINR[31:0]

Computation phase Output phase
4 read operations from

AES_DOUTR[31:0]

PT = plaintext = 4 words (PT3, … , PT0)
CT = ciphertext = 4 words (CT3, … , CT0)

MSB LSB MSB LSB

RM0367 Rev 8 447/1040

RM0367 AES hardware accelerator (AES)

465

To resume the processing of a message, proceed as follows:

1. If DMA is used, configure the DMA controller so as to complete the rest of the FIFO IN
and FIFO OUT transfers.

2. Ensure that AES is disabled (the EN bit of the AES_CR must be 0).

3. Restore the AES_CR and AES_KEYRx register setting, using the values of the saved
configuration. In case of decryption, derived key information can be written in
AES_KEYRx register instead of the original key value.

4. Prepare the decryption key as described in Section 19.4.5: AES decryption key
preparation (only required for ECB or CBC decryption). This step is not necessary if
derived key information has been loaded in AES_KEYRx registers.

5. Restore AES_IVRx registers using the saved configuration (only required in CBC
mode).

6. Enable the AES peripheral by setting the EN bit of the AES_CR register.

7. If DMA is used, enable AES DMA transfers by setting the DMAINEN and DMAOUTEN
bits of the AES_CR register.

Alternative single ECB/CBC decryption using Mode 4

The sequence of events to perform a single round of ECB/CBC decryption using Mode 4 is:

1. Disable the AES peripheral by clearing the EN bit of the AES_CR register.

2. Select the Mode 4 by setting to 11 the MODE[1:0] bitfield of the AES_CR register and
select ECB or CBC chaining mode by setting the CHMOD[21:0] bitfield of the AES_CR
register to 000 or 001, respectively.

3. Select key length of 128 or 256 bits via KEYSIZE bitfield of the AES_CR register.

4. Write the AES_KEYRx registers with the encryption key. Write the AES_IVRx registers
if the CBC mode is selected.

5. Enable the AES peripheral by setting the EN bit of the AES_CR register.

6. Write the AES_DINR register four times to input the cipher text (MSB first).

7. Wait until the CCF flag is set in the AES_SR register.

8. Read the AES_DOUTR register four times to get the plain text (MSB first). Then clear
the CCF flag by setting the CCFC bit of the AES_CR register.

Note: When mode 4 is selected mode 3 cannot be used.

In mode 4, the AES_KEYRx registers contain the encryption key during all phases of the
processing. No derivation key is stored in these registers. It is stored internally in AES.

19.4.9 AES counter (CTR) mode

Overview

The counter mode (CTR) uses AES as a key-stream generator. The generated keys are
then XOR-ed with the plaintext to obtain the ciphertext.

CTR chaining is defined in NIST Special Publication 800-38A, Recommendation for Block
Cipher Modes of Operation. A typical message construction in CTR mode is given in
Figure 97.

AES hardware accelerator (AES) RM0367

448/1040 RM0367 Rev 8

Figure 97. Message construction in CTR mode

The structure of this message is:

• A 16-byte initial counter block (ICB), composed of two distinct fields:

– Initialization vector (IV): a 96-bit value that must be unique for each encryption
cycle with a given key.

– Counter: a 32-bit big-endian integer that is incremented each time a block
processing is completed. The initial value of the counter should be set to 1.

• The plaintext P is encrypted as ciphertext C, with a known length. This length can be
non-multiple of 16 bytes, in which case a plaintext padding is required.

CTR encryption and decryption

Figure 98 and Figure 99 describe the CTR encryption and decryption process, respectively,
as implemented in the AES peripheral. The CTR mode is selected by writing 10 to the
CHMOD[1:0] bitfield of AES_CR register.

Figure 98. CTR encryption

MSv42156V1

16-byte boundaries

ICB Ciphertext (C) 0

4-byte boundaries

CounterInitialization vector (IV)

de
cr

yp
t

Plaintext (P)

Zero
padding

MSv19102V2

Encrypt
AES_KEYRx (KEY)

AES_DINR (plaintext P1)

AES_DOUTR (ciphertext C1)

DATATYPE[1:0] Swap
management

AES_IVRx
(IV + 32-bit counter)

input

output

Legend

XOR

Swap
management

DATATYPE[1:0]

Encrypt
AES_KEYRx (KEY)

AES_DOUTR (ciphertext C2)

DATATYPE[1:0] Swap
management

Swap
management

DATATYPE[1:0]

Counter
increment (+1)

AES_DINR (plaintext P2)

I1 I2

O1 O2

Block 1 Block 2

P1' P2'
C1' C2'

AES_IVRx
Nonce + 32-bit counter (+1)

RM0367 Rev 8 449/1040

RM0367 AES hardware accelerator (AES)

465

Figure 99. CTR decryption

In CTR mode, the cryptographic core output (also called keystream) Ox is XOR-ed with
relevant input block (Px' for encryption, Cx' for decryption), to produce the correct output
block (Cx' for encryption, Px' for decryption). Initialization vectors in AES must be initialized
as shown in Table 88.

Unlike in CBC mode that uses the AES_IVRx registers only once when processing the first
data block, in CTR mode AES_IVRx registers are used for processing each data block, and
the AES peripheral increments the counter bits of the initialization vector (leaving the nonce
bits unchanged).

CTR decryption does not differ from CTR encryption, since the core always encrypts the
current counter block to produce the key stream that is then XOR-ed with the plaintext (CTR
encryption) or ciphertext (CTR decryption) input. In CTR mode, the MODE[1:0] bitfield
settings 11, 10 or 00 default all to encryption mode, and the setting 01 (key derivation) is
forbidden.

Table 88. CTR mode initialization vector definition

AES_IVR3[31:0] AES_IVR2[31:0] AES_IVR1[31:0] AES_IVR0[31:0]

Nonce[31:0] Nonce[63:32] Nonce[95:64] 32-bit counter = 0x0001

MSv18942V2

Encrypt
AES_KEYRx (KEY)

AES_DINR (ciphertext C1)

AES_DOUTR (plaintext P1)

DATATYPE[1:0] Swap
management

AES_IVRx
Nonce + 32-bit counter

input

output

Legend

XOR

Swap
management

DATATYPE[1:0]

Encrypt
AES_KEYRx (KEY)

AES_DOUTR (plaintext P2)

DATATYPE[1:0] Swap
management

AES_IVRx
Nonce + 32-bit counter (+1)

Swap
management

DATATYPE[1:0]

Counter
increment (+1)

AES_DINR (ciphertext C2)

I1 I2

O1 O2

Block 1 Block 2

C1' C2'
P1' P2'

AES hardware accelerator (AES) RM0367

450/1040 RM0367 Rev 8

The sequence of events to perform an encryption or a decryption in CTR chaining mode:

1. Ensure that AES is disabled (the EN bit of the AES_CR must be 0).

2. Select CTR chaining mode by setting to 10 the CHMOD[1:0] bitfield of the AES_CR
register. Set MODE[1:0] bitfield to any value other than 01.

3. Initialize the AES_KEYRx registers, and load the AES_IVRx registers as described in
Table 88.

4. Set the EN bit of the AES_CR register, to start encrypting the current counter (EN is
automatically reset when the calculation finishes).

5. If it is the last block, pad the data with zeros to have a complete block, if needed.

6. Append data in AES, and read the result. The three possible scenarios are described in
Section 19.4.4: AES procedure to perform a cipher operation.

7. Repeat the previous step till the second-last block is processed. For the last block,
apply the two previous steps and discard the bits that are not part of the payload (if the
size of the significant data in the last input block is less than 16 bytes).

Suspend/resume operations in CTR mode

Like for the CBC mode, it is possible to interrupt a message to send a higher priority
message, and resume the message that was interrupted. Detailed CBC suspend/resume
sequence is described in Section 19.4.8: AES basic chaining modes (ECB, CBC).

Note: Like for CBC mode, the AES_IVRx registers must be reloaded during the resume operation.

19.4.10 AES data registers and data swapping

Data input and output

A 128-bit data block is entered into the AES peripheral with four successive 32-bit word
writes into the AES_DINR register (bitfield DIN[127:0]), the most significant word (bits
[127:96]) first, the least significant word (bits [31:0]) last.

A 128-bit data block is retrieved from the AES peripheral with four successive 32-bit word
reads from the AES_DOUTR register (bitfield DOUT[127:0]), the most significant word (bits
[127:96]) first, the least significant word (bits [31:0]) last.

The 32-bit data word for AES_DINR register or from AES_DOUTR register is organized in
big endian order, that is:

• the most significant byte of a word to write into AES_DINR must be put on the lowest
address out of the four adjacent memory locations keeping the word to write, or

• the most significant byte of a word read from AES_DOUTR goes to the lowest address
out of the four adjacent memory locations receiving the word

For using DMA for input data block write into AES, the four words of the input block must be
stored in the memory consecutively and in big-endian order, that is, the most significant
word on the lowest address. See Section 19.4.13: AES DMA interface.

Data swapping

The AES peripheral can be configured to perform a bit-, a byte-, a half-word-, or no
swapping on the input data word in the AES_DINR register, before loading it to the AES
processing core, and on the data output from the AES processing core, before sending it to
the AES_DOUTR register. The choice depends on the type of data. For example, a byte
swapping is used for an ASCII text stream.

RM0367 Rev 8 451/1040

RM0367 AES hardware accelerator (AES)

465

The data swap type is selected through the DATATYPE[1:0] bitfield of the AES_CR register.
The selection applies both to the input and the output of the AES core.

For different data swap types, Figure 100 shows the construction of AES processing core
input buffer data P127..0, from the input data entered through the AES_DINR register, or the
construction of the output data available through the AES_DOUTR register, from the AES
processing core output buffer data P127..0.

Figure 100. 128-bit block construction with respect to data swap

Note: The data in AES key registers (AES_KEYRx) and initialization registers (AES_IVRx) are not
sensitive to the swap mode selection.

MSv42153V2

DATATYPE[1:0] = 00: no swapping

Word 2Word 3

D127 D96 P95

LSBMSB

DATATYPE[1:0] = 01: 16-bit (half-word) swapping

Word 3

DATATYPE[1:0] = 10: 8-bit (byte) swapping

Word 2Word 3

DATATYPE[1:0] = 11: bit swapping

Word 3

LSBMSB

LSBMSB

LSBMSB

LSBMSB

MSB

MSB

MSB LSB

LSB

Word 0Word 1

LSB

Word 0

Word 0Word 1

D63 D32 D31 D0D64

Word 2

Zero padding (example)

Legend:

Data swap

Word 2

D95

Word 1

Word 0Word 1

AES input/output data block in memory

AES core input/output buffer data

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Order of write to AES_DINR / read from AES_DOUTR

MSB

LSB

increasing memory address

D127 D96 D63 D32 D31 D0D64D95

D127 D96 D95D112 D111 D80 D31 D0D15D16D64D79 D32D63 D48 D47

D127..120 D103..96D119..112 D111.104 D71...64D95..88 D87..80 D79..72 D63...56 D55...48 D47...40 D39...32 D31...24 D23...16 D15...8 D7...0

D127 D126 D125 D98 D97 D96 D95 D94 D93 D31 D30 D29 D0D1D2D66 D65 D64 D63 D62 D61 D34 D33 D32

byte 3 byte 2 byte 1 byte 0
D63 D55 D47 D39D56 D48 D40 D32

most significant bit (127) of memory data block / AEC core buffer

least significant bit (0) of memory data block / AEC core buffer

Dx input/output data bit ‘x’

D96D111 D127 D112 D64D79 D95 D80 D32D47 D63 D48 D0D15 D31 D16

D103..96 D111.104 D119..112 D127..120 D71...64 D79..72 D87..80 D95..88 D39...32 D47...40 D55...48 D63...56 D7...0 D15...8 D23...16 D31...24

D96 D127D97 D126D98 D125 D95D64 D94D65 D93D66 D63D32 D62D33 D61D34 D31D0 D30D1 D29D2

1 4

AES hardware accelerator (AES) RM0367

452/1040 RM0367 Rev 8

Data padding

Figure 100 also gives an example of memory data block padding with zeros such that the
zeroed bits after the data swap form a contiguous zone at the MSB end of the AES core
input buffer. The example shows the padding of an input data block containing:

• 48 message bits, with DATATYPE[1:0] = 01

• 56 message bits, with DATATYPE[1:0] = 10

• 34 message bits, with DATATYPE[1:0] = 11

19.4.11 AES key registers

The AES_KEYRx registers store the encryption or decryption key bitfield KEY[127:0]. The
data to write to or to read from each register is organized in the memory in little-endian
order, that is, with most significant byte on the highest address.

The key is spread over the four registers in little-endian configuration, as shown on
Table 89.

The key for encryption or decryption may be written into these registers when the AES
peripheral is disabled.

The key registers are not affected by the data swapping controlled by DATATYPE[1:0]
bitfield of the AES_CR register.

19.4.12 AES initialization vector registers

The four AES_IVRx registers keep the initialization vector input bitfield IVI[127:0]. The data
to write to or to read from each register is organized in the memory in little-endian order, that
is, with most significant byte on the highest address. The registers are also ordered from
lowest address (AES_IVR0) to highest address (AES_IVR3).

The signification of data in the bitfield depends on the chaining mode selected. When used,
the bitfield is updated upon each computation cycle of the AES core.

Write operations to the AES_IVRx registers when the AES peripheral is enabled have no
effect to the register contents. For modifying the contents of the AES_IVRx registers, the EN
bit of the AES_CR register must first be cleared.

Reading the AES_IVRx registers returns the latest counter value (useful for managing
suspend mode) when the AES peripheral is disabled and returns zeros when it is enabled.

The AES_IVRx registers are not affected by the data swapping feature controlled by the
DATATYPE[1:0] bitfield of the CRYP_CR register.

19.4.13 AES DMA interface

The AES peripheral provides an interface to connect to the DMA (direct memory access)
controller. The DMA operation is controlled through the AES_CR register.

Table 89. Key endianness in AES_KEYRx registers

AES_KEYR3[31:0] AES_KEYR2[31:0] AES_KEYR1[31:0] AES_KEYR0[31:0]

KEY[127:96] KEY[95:64] KEY[63:32] KEY[31:0]

RM0367 Rev 8 453/1040

RM0367 AES hardware accelerator (AES)

465

Data input using DMA

Setting the DMAINEN bit of the AES_CR register enables DMA writing into AES. The AES
peripheral then initiates a DMA request during the input phase each time it requires a word
to be written to the AES_DINR register. It asserts four DMA requests to transfer one 128-bit
(four-word) input data block from memory, as shown in Figure 101.

See Table 90 for recommended DMA configuration.

Figure 101. DMA transfer of a 128-bit data block during input phase

Data output using DMA

Setting the DMAOUTEN bit of the AES_CR register enables DMA reading from AES. The
AES peripheral then initiates a DMA request during the Output phase each time it requires a

Table 90. DMA channel configuration for memory-to-AES data transfer

DMA channel control
register field

Recommended configuration

Transfer size
Message length: a multiple of 128 bits.

According to the algorithm and the mode selected, special padding/
ciphertext stealing might be required.

Source burst size
(memory)

Single

Destination burst size
(peripheral)

Single

DMA FIFO size AES FIFO_size = 4 bytes.

Source transfer width
(memory)

32-bit words

Destination transfer
width (peripheral)

32-bit words

Source address
increment (memory)

Yes, after each 32-bit transfer

Destination address
increment (peripheral)

Fixed address of AES_DINR (no increment)

MSv42160V1

AES core input buffer

AES_DINR

LSBMSB

(No swapping)

Memory accessed through DMA
Word2Word3 Word0Word1

DMA
single writeDMA req N DMA req N+1 DMA req N+2 DMA req N+3

I127 I96 I63 I32 I31 I0I64I95

D127 D96 D63 D32 D31 D0D64D95DIN[127:96] DIN[95:64] DIN[63:32] DIN[31:0]

DMA
single write

DMA
single write

DMA
single write

Chronological order
Increasing address

LSBMSB

A
E

S
pe

rip
he

ra
l

S
ys

te
m

1 2 3 4

1 Order of write to AES_DINR

1 2 3 4

4

AES hardware accelerator (AES) RM0367

454/1040 RM0367 Rev 8

word to be read from the AES_DOUTR register. It asserts four DMA requests to transfer one
128-bit (four-word) output data block to memory, as shown in Figure 102.

See Table 91 for recommended DMA configuration.

Figure 102. DMA transfer of a 128-bit data block during output phase

DMA operation in different operating modes

DMA operations are usable when Mode 1 (encryption) or Mode 3 (decryption) are selected
via the MODE[1:0] bitfield of the register AES_CR. As in Mode 2 (key derivation) the
AES_KEYRx registers must be written by software, enabling the DMA transfer through the
DMAINEN and DMAOUTEN bits of the AES_CR register have no effect in that mode.

Table 91. DMA channel configuration for AES-to-memory data transfer

DMA channel control
register field

Recommended configuration

Transfer size
It is the message length multiple of AES block size (4 words). According to
the case extra bytes will have to be discarded.

Source burst size
(peripheral)

Single

Destination burst size
(memory)

Single

DMA FIFIO size AES FIFO_size = 4 bytes

Source transfer width
(peripheral)

32-bit words

Destination transfer
width (memory)

32-bit words

Source address
increment (peripheral)

Fixed address of AES_DINR (no increment)

Destination address
increment (memory)

Yes, after each 32-bit transfer

MSv42161V1

AES core output buffer

LSBMSB

(No swapping)

Memory accessed through DMA
Word2Word3 Word0Word1

DMA
single readDMA req N DMA req N+1 DMA req N+2 DMA req N+3

O127 O96 O63 O32 O31 O0O64O95

D127 D96 D63 D32 D31 D0D64D95DOUT[127:96] DOUT[95:64] DOUT[63:32] DOUT[31:0]

DMA
single read

DMA
single read

DMA
single read

Chronological order
Increasing address

LSBMSB

S
ys

te
m

A
E

S
pe

rip
he

ra
l

1 2 3 4

1 2 3 4

1 Order of read from AES_DOUTR4

AES_DOUTR

RM0367 Rev 8 455/1040

RM0367 AES hardware accelerator (AES)

465

DMA single requests are generated by AES until it is disabled. So, after the data output
phase at the end of processing of a 128-bit data block, AES switches automatically to a new
data input phase for the next data block, if any.

When the data transferring between AES and memory is managed by DMA, the CCF flag is
not relevant and can be ignored (left set) by software. It must only be cleared when
transiting back to data transferring managed by software. See Suspend/resume operations
in ECB/CBC modes in Section 19.4.8: AES basic chaining modes (ECB, CBC) as example.

19.4.14 AES error management

The read error flag (RDERR) and write error flag (WRERR) of the AES_SR register are set
when an unexpected read or write operation, respectively, is detected. An interrupt can be
generated if the error interrupt enable (ERRIE) bit of the AES_CR register is set. For more
details, refer to Section 19.5: AES interrupts.

Note: AES is not disabled after an error detection and continues processing.

AES can be re-initialized at any moment by clearing then setting the EN bit of the AES_CR
register.

Read error flag (RDERR)

When an unexpected read operation is detected during the computation phase or during the
input phase, the AES read error flag (RDERR) is set in the AES_SR register. An interrupt is
generated if the ERRIE bit of the AES_CR register is set.

The RDERR flag is cleared by setting the corresponding ERRC bit of the AES_CR register.

Write error flag (WDERR)

When an unexpected write operation is detected during the computation phase or during the
output phase, the AES write error flag (WRERR) is set in the AES_SR register. An interrupt
is generated if the ERRIE bit of the AES_CR register is set.

The WDERR flag is cleared by setting the corresponding ERRC bit of the AES_CR register.

19.5 AES interrupts

There are three individual maskable interrupt sources generated by the AES peripheral, to
signal the following events:

• computation completed

• read error, see Section 19.4.14

• write error, see Section 19.4.14

These three sources are combined into a common interrupt signal aes_it that connects to
NVIC (nested vectored interrupt controller).

AES hardware accelerator (AES) RM0367

456/1040 RM0367 Rev 8

Figure 103. AES interrupt signal generation

Each AES interrupt source can individually be enabled/disabled, by setting/clearing the
corresponding enable bit of the AES_CR register. See Figure 103.

The status of the individual maskable interrupt sources can be read from the AES_SR
register.

Table 92 gives a summary of the interrupt sources, their event flags and enable bits.

19.6 AES processing latency

The tables below summarize the latency to process a 128-bit block for each mode of
operation.

Table 92. AES interrupt requests

AES interrupt event Event flag Enable bit

computation completed flag CCF CCFIE

read error flag RDERR ERRIE

write error flag WRERR ERRIE

MSv42162V1

WRERR
ERRIE

aes_it
(goes to NVIC)

RDERR
ERRIE

CCF
CCFIE

Flags in AES_SR register
Bits of AES_CR register

Table 93. Processing latency (in clock cycle)

Mode of operation Algorithm Input phase
Computation

phase
Output
phase

Total

Mode 1: Encryption ECB, CBC, CTR 8 202 4 214

Mode 2: Key derivation for decryption ECB, CBC - 80 - 80

Mode 3: Decryption ECB, CBC, CTR 8 202 4 214

Mode 4: Key derivation then
decryption

ECB, CBC 8 276 4 288

RM0367 Rev 8 457/1040

RM0367 AES hardware accelerator (AES)

465

19.7 AES registers

19.7.1 AES control register (AES_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
DMAO
UTEN

DMAIN
EN

ERRIE CCFIE ERRC CCFC CHMOD[1:0] MODE[1:0] DATATYPE[1:0] EN

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31:13 Reserved, must be kept at zero

Bit 12 DMAOUTEN: DMA output enable

This bit enables/disables data transferring with DMA, in the output phase:
0: Disable
1: Enable

When the bit is set, DMA requests are automatically generated by AES during the output data
phase. This feature is only effective when Mode 1 or Mode 3 is selected through the MODE[1:0]
bitfield. It is not effective for Mode 2 (key derivation).
Usage of DMA with Mode 4 (single decryption) is not recommended.

Bit 11 DMAINEN: DMA input enable

This bit enables/disables data transferring with DMA, in the input phase:
0: Disable
1: Enable

When the bit is set, DMA requests are automatically generated by AES during the input data phase.
This feature is only effective when Mode 1 or Mode 3 is selected through the MODE[1:0] bitfield. It is
not effective for Mode 2 (key derivation).
Usage of DMA with Mode 4 (single decryption) is not recommended.

Bit 10 ERRIE: Error interrupt enable

This bit enables or disables (masks) the AES interrupt generation when RDERR and/or WRERR is
set:
0: Disable (mask)
1: Enable

Bit 9 CCFIE: CCF interrupt enable

This bit enables or disables (masks) the AES interrupt generation when CCF (computation complete
flag) is set:
0: Disable (mask)
1: Enable

AES hardware accelerator (AES) RM0367

458/1040 RM0367 Rev 8

Bit 8 ERRC: Error flag clear

Upon written to 1, this bit clears the RDERR and WRERR error flags in the AES_SR register:
0: No effect
1: Clear RDERR and WRERR flags

Reading the flag always returns zero.

Bit 7 CCFC: Computation complete flag clear

Upon written to 1, this bit clears the computation complete flag (CCF) in the AES_SR register:
0: No effect
1: Clear CCF

Reading the flag always returns zero.

Bits 6:5 CHMOD[1:0]: Chaining mode selection

This bitfield selects the AES chaining mode:
00: Electronic codebook (ECB)
01: Cipher-Block Chaining (CBC)
10: Counter Mode (CTR)
11: Reserved

The bitfield value change is allowed only when AES is disabled, so as to avoid an unpredictable
behavior.

Bits 4:3 MODE[1:0]: AES operating mode

This bitfield selects the AES operating mode:
00: Mode 1: encryption
01: Mode 2: key derivation (or key preparation for ECB/CBC decryption)
10: Mode 3: decryption
11: Mode 4: key derivation then single decryption

The bitfield value change is allowed only when AES is disabled, so as to avoid an unpredictable
behavior. Any attempt to selecting Mode 4 while either ECB or CBC chaining mode is not selected,
defaults to effective selection of Mode 3. It is not possible to select a Mode 3 following a Mode 4.

Bits 2:1 DATATYPE[1:0]: Data type selection

This bitfield defines the format of data written in the AES_DINR register or read from the
AES_DOUTR register, through selecting the mode of data swapping:
00: None
01: Half-word (16-bit)
10: Byte (8-bit)
11: Bit

For more details, refer to Section 19.4.10: AES data registers and data swapping.
The bitfield value change is allowed only when AES is disabled, so as to avoid an unpredictable
behavior.

Bit 0 EN: AES enable

This bit enables/disables the AES peripheral:
0: Disable
1: Enable

At any moment, clearing then setting the bit re-initializes the AES peripheral.
This bit is automatically cleared by hardware when the key preparation process ends (Mode 2).

RM0367 Rev 8 459/1040

RM0367 AES hardware accelerator (AES)

465

19.7.2 AES status register (AES_SR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WRERR RDERR CCF

r r r r r r r r r r r r r r r r

Bits 31:3 Reserved, must be kept at zero

Bit 2 WRERR: Write error

This flag indicates the detection of an unexpected write operation to the AES_DINR register (during
computation or data output phase):
0: Not detected
1: Detected

The flag is set by hardware. It is cleared by software upon setting the ERRC bit of the AES_CR
register.
Upon the flag setting, an interrupt is generated if enabled through the ERRIE bit of the AES_CR
register.
The flag setting has no impact on the AES operation.
The flag is not effective when key derivation mode is selected.

Bit 1 RDERR: Read error flag

This flag indicates the detection of an unexpected read operation from the AES_DOUTR register
(during computation or data input phase):
0: Not detected
1: Detected

The flag is set by hardware. It is cleared by software upon setting the ERRC bit of the AES_CR
register.
Upon the flag setting, an interrupt is generated if enabled through the ERRIE bit of the AES_CR
register.
The flag setting has no impact on the AES operation.
The flag is not effective when key derivation mode is selected.

Bit 0 CCF: Computation completed flag

This flag indicates whether the computation is completed:
0: Not completed
1: Completed

The flag is set by hardware upon the completion of the computation. It is cleared by software, upon
setting the CCFC bit of the AES_CR register.
Upon the flag setting, an interrupt is generated if enabled through the CCFIE bit of the AES_CR
register.
The flag is significant only when the DMAOUTEN bit is 0. It may stay high when DMA_EN is 1.

AES hardware accelerator (AES) RM0367

460/1040 RM0367 Rev 8

19.7.3 AES data input register (AES_DINR)

Address offset: 0x08

Reset value: 0x0000 0000

Only 32-bit access type is supported.

19.7.4 AES data output register (AES_DOUTR)

Address offset: 0x0C

Reset value: 0x0000 0000

Only 32-bit access type is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DIN[x+31:x+16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIN[x+15:x]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 DIN[x+31:x]: One of four 32-bit words of a 128-bit input data block being written into the peripheral

This bitfield feeds a 32-bit input buffer. A 4-fold sequential write to this bitfield during the input phase
virtually writes a complete 128-bit block of input data to the AES peripheral. Upon each write, the
data from the input buffer are handled by the data swap block according to the DATATYPE[1:0]
bitfield, then written into the AES core 128-bit input buffer.
The substitution for “x”, from the first to the fourth write operation, is: 96, 64, 32, and 0. In other
words, data from the first to the fourth write operation are: DIN[127:96], DIN[95:64], DIN[63:32], and
DIN[31:0].
The data signification of the input data block depends on the AES operating mode:
- Mode 1 (encryption): plaintext
- Mode 2 (key derivation): the bitfield is not used (AES_KEYRx registers used for input)
- Mode 3 (decryption) and Mode 4 (key derivation then single decryption): ciphertext
The data swap operation is described in Section 19.4.10: AES data registers and data swapping on
page 450.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DOUT[x+31:x+16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DOUT[x+15:0]

r r r r r r r r r r r r r r r r

RM0367 Rev 8 461/1040

RM0367 AES hardware accelerator (AES)

465

19.7.5 AES key register 0 (AES_KEYR0)

Address offset: 0x10

Reset value: 0x0000 0000

Bits 31:0 DOUT[x+31:x]: One of four 32-bit words of a 128-bit output data block being read from the peripheral

This bitfield fetches a 32-bit output buffer. A 4-fold sequential read of this bitfield, upon the
computation completion (CCF set), virtually reads a complete 128-bit block of output data from the
AES peripheral. Before reaching the output buffer, the data produced by the AES core are handled
by the data swap block according to the DATATYPE[1:0] bitfield.
The substitution for DOUT[x+31:x], from the first to the fourth read operation, is: 96, 64, 32, and 0. In
other words, data from the first to the fourth read operation are: DOUT[127:96], DOUT[95:64],
DOUT[63:32], and DOUT[31:0].
The data signification of the output data block depends on the AES operating mode:
- Mode 1 (encryption): ciphertext
- Mode 2 (key derivation): the bitfield is not used (AES_KEYRx registers used for output).
- Mode 3 (decryption) and Mode 4 (key derivation then single decryption): plaintext
The data swap operation is described in Section 19.4.10: AES data registers and data swapping on
page 450.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEY[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEY[31:0]: Cryptographic key, bits [31:0]

This bitfield contains the bits [31:0] of the AES encryption or decryption key, depending on the
operating mode:
- In Mode 1 (encryption), Mode 2 (key derivation) and Mode 4 (key derivation then single
decryption): the value to write into the bitfield is the encryption key.
- In Mode 3 (decryption): the value to write into the bitfield is the encryption key to be derived before
being used for decryption. After writing the encryption key into the bitfield, its reading before
enabling AES returns the same value. Its reading after enabling AES and after the CCF flag is set
returns the decryption key derived from the encryption key.

Note: In mode 4 (key derivation then single decryption) the bitfield always contains the encryption
key.

The AES_KEYRx registers may be written only when the AES peripheral is disabled.

Refer to Section 19.4.11: AES key registers on page 452 for more details.

AES hardware accelerator (AES) RM0367

462/1040 RM0367 Rev 8

19.7.6 AES key register 1 (AES_KEYR1)

Address offset: 0x14

Reset value: 0x0000 0000

19.7.7 AES key register 2 (AES_KEYR2)

Address offset: 0x18

Reset value: 0x0000 0000

19.7.8 AES key register 3 (AES_KEYR3)

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEY[63:48]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[47:32]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEY[63:32]: Cryptographic key, bits [63:32]

Refer to the AES_KEYR0 register for description of the KEY[127:0] bitfield.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEY[95:80]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[79:64]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEY[95:64]: Cryptographic key, bits [95:64]

Refer to the AES_KEYR0 register for description of the KEY[127:0] bitfield.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEY[127:112]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[111:96]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEY[127:96]: Cryptographic key, bits [127:96]

Refer to the AES_KEYR0 register for description of the KEY[127:0] bitfield.

RM0367 Rev 8 463/1040

RM0367 AES hardware accelerator (AES)

465

19.7.9 AES initialization vector register 0 (AES_IVR0)

Address offset: 0x20

Reset value: 0x0000 0000

19.7.10 AES initialization vector register 1 (AES_IVR1)

Address offset: 0x24

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVI[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVI[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVI[31:0]: Initialization vector input, bits [31:0]

Refer to Section 19.4.12: AES initialization vector registers on page 452 for description of the
IVI[127:0] bitfield.
The initialization vector is only used in chaining modes other than ECB.
The initialization vector may be written only when the AES peripheral is disabled.
Reading this bitfield while AES is enabled returns 0x0000 0000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVI[63:48]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVI[47:32]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVI[63:32]: Initialization vector input, bits [63:32]

Refer to Section 19.4.12: AES initialization vector registers on page 452 for description of the
IVI[127:0] bitfield.
The initialization vector is only used in chaining modes other than ECB.
The initialization vector may be written only when the AES peripheral is disabled.
Reading this bitfield while AES is enabled returns 0x0000 0000.

AES hardware accelerator (AES) RM0367

464/1040 RM0367 Rev 8

19.7.11 AES initialization vector register 2 (AES_IVR2)

Address offset: 0x28

Reset value: 0x0000 0000

19.7.12 AES initialization vector register 3 (AES_IVR3)

Address offset: 0x2C

Reset value: 0x0000 0000

19.7.13 AES register map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVI[95:80]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVI[79:64]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVI[95:64]: Initialization vector input, bits [95:64]

Refer to Section 19.4.12: AES initialization vector registers on page 452 for description of the
IVI[127:0] bitfield.
The initialization vector is only used in chaining modes other than ECB.
The initialization vector may be written only when the AES peripheral is disabled.
Reading this bitfield while AES is enabled returns 0x0000 0000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVI[127:112]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVI[111:96]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVI[127:96]: Initialization vector input, bits [127:96]

Refer to Section 19.4.12: AES initialization vector registers on page 452 for description of the
IVI[127:0] bitfield.
The initialization vector is only used in chaining modes other than ECB.
The initialization vector may be written only when the AES peripheral is disabled.
Reading this bitfield while AES is enabled returns 0x0000 0000.

Table 94. AES register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000
AES_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
O

U
T

E
N

D
M

A
IN

E
N

E
R

R
IE

C
C

F
IE

E
R

R
C

C
C

F
C

C
H

M
O

D
[1

:0
]

M
O

D
E

[1
:0

]

D
A

TA
T

Y
P

E
[1

:0
]

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0367 Rev 8 465/1040

RM0367 AES hardware accelerator (AES)

465

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x0004
AES_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
R

E
R

R

R
D

E
R

R

C
C

F

Reset value 0 0 0

0x0008

AES_DINR
x=96,64,32,0

DIN[x+31:x]

Reset value 0

0x000
C

AES_DOUTR
x=96,64,32,0

DOUT[x+31:x]

Reset value 0

0x0010
AES_KEYR0 KEY[31:0]

Reset value 0

0x0014
AES_KEYR1 KEY[63:32]

Reset value 0

0x0018
AES_KEYR2 KEY[95:64]

Reset value 0

0x001
C

AES_KEYR3 KEY[127:96]

Reset value 0

0x0020
AES_IVR0 IVI[31:0]

Reset value 0

0x0024
AES_IVR1 IVI[63:32]

Reset value 0

0x0028
AES_IVR2 IVI[95:64]

Reset value 0

0x002
C

AES_IVR3 IVI[127:96]

Reset value 0

Table 94. AES register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

True random number generator (RNG) RM0367

466/1040 RM0367 Rev 8

20 True random number generator (RNG)

20.1 Introduction

The RNG is a true random number generator that continuously provides 32-bit entropy
samples, based on an analog noise source. It can be used by the application as a live
entropy source to build a NIST compliant Deterministic Random Bit Generator (DRBG).

The RNG true random number generator has been tested using NIST statistical test suite
SP800-22 rev1a (April 2010).

20.2 RNG main features

• The RNG delivers 32-bit true random numbers, produced by an analog entropy source
post-processed with linear-feedback shift registers (LFSR).

• In the NIST configuration, it produces one 32-bit random samples every 42 RNG clock
cycles(dedicated clock).

• It allows embedded continuous basic health tests with associated error management

– Includes too low sampling clock detection and repetition count tests.

• It can be disabled to reduce power consumption.

• It has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses
only (else an AHB bus error is generated). Warning! any write not equal to 32 bits might
corrupt the register content.

RM0367 Rev 8 467/1040

RM0367 True random number generator (RNG)

476

20.3 RNG functional description

20.3.1 RNG block diagram

Figure 104 shows the RNG block diagram.

Figure 104. RNG block diagram

20.3.2 RNG internal signals

Table 95 describes a list of useful-to-know internal signals available at the RNG level, not at
the STM32 product level (on pads).

MSv42096V2

True RNG

RNG_SR

AHB
interface

status

RNG_CR

Analog
noise
source 1

Banked Registers

Sampling &
Normalization (x 2)

Analog noise source

2-bit

Analog
noise
source 2en_osc

32
-b

it
A

H
B

 B
us

rng_it

rng_hclk

rng_clk

AHB clock domain

RNG clock domain

Data shift reg

16-bit

8-bit LFSR (x2)

Post-processing logic 16-bit

Fault detection
Clock checker

A
larm

s

RNG_DRdata

control

Table 95. RNG internal input/output signals

Signal name Signal type Description

rng_it Digital output RNG global interrupt request

rng_hclk Digital input AHB clock

rng_clk Digital input RNG dedicated clock, asynchronous to rng_hclk

True random number generator (RNG) RM0367

468/1040 RM0367 Rev 8

20.3.3 Random number generation

The true random number generator (RNG) delivers truly random data through its AHB
interface at deterministic intervals. Within its boundary the RNG implements the entropy
source model pictured on Figure 105, and provides three main functions to the application:

• Collects the bitstring output of the entropy source box

• Obtains samples of the noise source for validation purpose

• Collects error messages from continuous health tests

Figure 105. Entropy source model

The main components of the RNG are:

• A source of physical randomness (analog noise source)

• A digitization stage for this analog noise source

• A stage delivering post-processed noise source (raw data)

• An output buffer for the raw data. If further cryptographic conditioning is required by the
application it needs to be performed by software.

• An optional output for the digitized noise source (unbuffered, on digital pads)

• Basic health tests on the digitized noise source

The components pictured above are detailed hereafter:

MSv42095V1

Entropy source

Noise Source

Digitization

Post-processing
(optional)

Raw data

Conditioning
(optional)Heath

tests

OutputError
message

Output
(raw data or
digitized noise
source)

RM0367 Rev 8 469/1040

RM0367 True random number generator (RNG)

476

Noise source

The noise source is the component that contains the non-deterministic, entropy-providing
activity that is ultimately responsible for the uncertainty associated with the bitstring output
by the entropy source. It is composed of:

• Two analog noise sources, each based on three XORed free-running ring oscillator
outputs. It is possible to disable those analog oscillators to save power, as described in
Section 20.3.8: RNG low-power usage.

• A sampling stage of these outputs clocked by a dedicated clock input (rng_clk),
delivering a 2-bit raw data output.

This noise source sampling is independent to the AHB interface clock frequency (rng_hclk).

Note: In Section 20.6: RNG entropy source validation recommended RNG clock frequencies are
given.

Post processing

The sample values obtained from a true random noise source consist of 2-bit bitstrings.
Because this noise source output is biased, the RNG implements a post-processing
component that reduces that bias to a tolerable level.

The RNG post-processing consists of two stages, applied to each noise source bits:

• The RNG takes half of the bits from the sampled noise source, and half of the bits from
inverted sampled noise source. Thus, if the source generates more ‘1’ than ‘0’ (or the
opposite), it is filtered

• A linear feedback shift register (LFSR) performs a whitening process, producing 8-bit
strings.

This component is clocked by the RNG clock.

The times required between two random number generations, and between the RNG
initialization and availability of first sample are described in Section 20.5: RNG processing
time.

Output buffer

The RNG_DR data output register can store up to two 16-bit words which have been output
from the post-processing component (LFSR). In order to read back 32-bit random samples it
is required to wait 42 RNG clock cycles.

Whenever a random number is available through the RNG_DR register the DRDY flag
transitions from 0 to 1. This flag remains high until output buffer becomes empty after
reading one word from the RNG_DR register.

Note: When interrupts are enabled an interrupt is generated when this data ready flag transitions
from 0 to 1. Interrupt is then cleared automatically by the RNG as explained above.

True random number generator (RNG) RM0367

470/1040 RM0367 Rev 8

Health checks

This component ensures that the entire entropy source (with its noise source) starts then
operates as expected, obtaining assurance that failures are caught quickly and with a high
probability and reliability.

The RNG implements the following health check features.

1. Continuous health tests, running indefinitely on the output of the noise source

– Repetition count test, flagging an error when:

a) One of the noise source has provided more than 64 consecutive bits at a constant
value (“0” or “1”)

b) One of the noise sources has delivered more than 32 consecutive occurrence of
two bits patterns (“01” or “10”)

2. Vendor specific continuous test

– Real-time “too slow” sampling clock detector, flagging an error when one RNG
clock cycle is smaller than AHB clock cycle divided by 16.

The CECS and SECS status bits in the RNG_SR register indicate when an error condition is
detected, as detailed in Section 20.3.7: Error management.

Note: An interrupt can be generated when an error is detected.

20.3.4 RNG initialization

When a hardware reset occurs the following chain of events occurs:

1. The analog noise source is enabled, and logic starts sampling the analog output after
four RNG clock cycles, filling LFSR shift register and associated 16-bit post-processing
shift register.

2. The output buffer is refilled automatically according to the RNG usage.

The associated initialization time can be found in Section 20.5: RNG processing time.

20.3.5 RNG operation

Normal operations

To run the RNG using interrupts, the following steps are recommended:

1. Enable the interrupts by setting the IE bit in the RNG_CR register. At the same time
enable the RNG by setting the bit RNGEN=1.

2. An interrupt is now generated when a random number is ready or when an error
occurs. Therefore at each interrupt, check that:

– No error occurred. The SEIS and CEIS bits must be set to 0 in the RNG_SR
register.

– A random number is ready. The DRDY bit must be set to 1 in the RNG_SR
register.

– If above two conditions are true the content of the RNG_DR register can be read.

RM0367 Rev 8 471/1040

RM0367 True random number generator (RNG)

476

To run the RNG in polling mode following steps are recommended:

1. Enable the random number generation by setting the RNGEN bit to “1” in the RNG_CR
register.

2. Read the RNG_SR register and check that:

– No error occurred (the SEIS and CEIS bits must be set to 0)

– A random number is ready (the DRDY bit must be set to 1)

3. If above conditions are true read the content of the RNG_DR register.

Note: When data is not ready (DRDY = 0) RNG_DR returns zero.
It is recommended to always verify that RNG_DR is different from zero. Because when it is
the case a seed error occurred between RNG_SR polling and RND_DR output reading (rare
event).

Low-power operations

If the power consumption is a concern to the application, low-power strategies can be used,
as described in Section 20.3.8: RNG low-power usage.

Software post-processing

If a NIST approved DRBG with 128 bits of security strength is required an approved random
generator software must be built around the RNG true random number generator.

20.3.6 RNG clocking

The RNG runs on two different clocks: the AHB bus clock and a dedicated RNG clock.

The AHB clock is used to clock the AHB banked registers and the post-processing
component. The RNG clock is used for noise source sampling. Recommended clock
configurations are detailed in Section 20.6: RNG entropy source validation.

Note: When the CED bit in the RNG_CR register is set to 0, the RNG clock frequency must be
higher than AHB clock frequency divided by 16, otherwise the clock checker always flags a
clock error (CECS = 1 in the RNG_SR register).

See Section 20.3.1: RNG block diagram for details (AHB and RNG clock domains).

20.3.7 Error management

In parallel to random number generation an health check block verifies the correct noise
source behavior and the frequency of the RNG source clock as detailed in this section.
Associated error state is also described.

Clock error detection

When the clock error detection is enabled (CED = 0) and if the RNG clock frequency is too
low, the RNG sets to 1 both the CEIS and CECS bits to indicate that a clock error occurred.
In this case, the application should check that the RNG clock is configured correctly (see
Section 20.3.6: RNG clocking) and then it must clear the CEIS bit interrupt flag. The CECS
bit is automatically cleared when clocking condition is normal.

Note: The clock error has no impact on generated random numbers, that is the application can still
read RNG_DR register.

CEIS is set only when CECS is set to 1 by RNG.

True random number generator (RNG) RM0367

472/1040 RM0367 Rev 8

Noise source error detection

When a noise source (or seed) error occurs, the RNG stops generating random numbers
and sets to 1 both SEIS and SECS bits to indicate that a seed error occurred. If a value is
available in the RNG_DR register, it must not be used as it may not have enough entropy.

In order to fully recover from a seed error application must clear the SEIS bit by writing it to
“0”, then clear and set the RNGEN bit to reinitialize and restart the RNG.

20.3.8 RNG low-power usage

If power consumption is a concern, the RNG can be disabled as soon as the DRDY bit is set
to “1” by setting the RNGEN bit to “0” in the RNG_CR register. The 32-bit random value
stored in the RNG_DR register is still available. If a new random is needed the application
needs to re-enable the RNG and wait for 42+4 RNG clock cycles.

When disabling the RNG the user deactivates all the analog seed generators, whose power
consumption is given in the datasheet electrical characteristics section.

20.4 RNG interrupts

In the RNG an interrupt can be produced on the following events:

• Data ready flag

• Seed error, see Section 20.3.7: Error management

• Clock error, see Section 20.3.7: Error management

Dedicated interrupt enable control bits are available as shown in Table 96.

The user can enable or disable the above interrupt sources individually by changing the
mask bits or the general interrupt control bit IE in the RNG_CR register. The status of the
individual interrupt sources can be read from the RNG_SR register.

Note: Interrupts are generated only when RNG is enabled.

20.5 RNG processing time

The RNG can produce one 32-bit random numbers every 42 RNG clock cycles.

After enabling or re-enabling the RNG using the RNGEN bit it takes 46 RNG clock cycles
before random data are available.

Table 96. RNG interrupt requests

Interrupt acronym Interrupt event Event flag Enable control bit Interrupt clear method

RNG

Data ready flag DRDY IE None (automatic)

Seed error flag SEIS IE Write 0 to SEIS

Clock error flag CEIS IE Write 0 to CEIS

RM0367 Rev 8 473/1040

RM0367 True random number generator (RNG)

476

20.6 RNG entropy source validation

20.6.1 Introduction

In order to assess the amount of entropy available from the RNG, STMicroelectronics has
tested the peripheral using NIST SP800-22 rev1a statistical tests. The results can be
provided on demand or the customer can reproduce the tests.

For more information on running this NIST statistical test suite, refer to STM32
microcontrollers random number generation validation using NIST statistical test suite
application note (AN4230), available on STMicroelectronics website.

20.6.2 Validation conditions

STMicroelectronics has tested the RNG true random number generator in the following
conditions:

• RNG clock rng_clk= 48 MHz (CED bit = ’0’ in RNG_CR register) and rng_clk = 400 kHz
(CED bit = ‘1’ in RNG_CR register).

20.6.3 Data collection

In order to run statistical tests it is required to collect samples from the entropy source at raw
data level as well as at the output of the entropy source.Contact STMicroelectronics if above
samples need to be retrieved for the product.

20.7 RNG registers

The RNG is associated with a control register, a data register and a status register.

20.7.1 RNG control register (RNG_CR)

Address offset: 0x000

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CED Res. IE RNGEN Res. Res.

rw rw rw

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 CED: Clock error detection

0: Clock error detection is enable
1: Clock error detection is disable
The clock error detection cannot be enabled nor disabled on-the-fly when the RNG is
enabled, that is to enable or disable CED the RNG must be disabled.

Bit 4 Reserved, must be kept at reset value.

True random number generator (RNG) RM0367

474/1040 RM0367 Rev 8

Bit 3 IE: Interrupt Enable

0: RNG Interrupt is disabled
1: RNG Interrupt is enabled. An interrupt is pending as soon as DRDY = 1, SEIS = 1 or
CEIS = 1 in the RNG_SR register.

Bit 2 RNGEN: True random number generator enable

0: True random number generator is disabled. Analog noise sources are powered off and
logic clocked by the RNG clock is gated.
1: True random number generator is enabled.

Bits 1:0 Reserved, must be kept at reset value.

RM0367 Rev 8 475/1040

RM0367 True random number generator (RNG)

476

20.7.2 RNG status register (RNG_SR)

Address offset: 0x004

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. SEIS CEIS Res. Res. SECS CECS DRDY

rc_w0 rc_w0 r r r

Bits 31:7 Reserved, must be kept at reset value.

Bit 6 SEIS: Seed error interrupt status

This bit is set at the same time as SECS. It is cleared by writing 0. Writing 1 has no effect.
0: No faulty sequence detected
1: At least one faulty sequence is detected. See SECS bit description for details.
An interrupt is pending if IE = 1 in the RNG_CR register.

Bit 5 CEIS: Clock error interrupt status

This bit is set at the same time as CECS. It is cleared by writing 0. Writing 1 has no effect.
0: The RNG clock is correct (fRNGCLK > fHCLK/16)
1: The RNG is detected too slow (fRNGCLK < fHCLK/16)
An interrupt is pending if IE = 1 in the RNG_CR register.

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 SECS: Seed error current status

0: No faulty sequence has currently been detected. If the SEIS bit is set, this means that a
faulty sequence was detected and the situation has been recovered.
1: One of the noise source has provided more than 64 consecutive bits at a constant value
(“0” or “1”), or more than 32 consecutive occurrence of two bits patterns (“01” or “10”)

Bit 1 CECS: Clock error current status

0: The RNG clock is correct (fRNGCLK> fHCLK/16). If the CEIS bit is set, this means that a
slow clock was detected and the situation has been recovered.
1: The RNG clock is too slow (fRNGCLK< fHCLK/16).

Note: CECS bit is valid only if the CED bit in the RNG_CR register is set to 0.

Bit 0 DRDY: Data Ready

0: The RNG_DR register is not yet valid, no random data is available.
1: The RNG_DR register contains valid random data.
Once the RNG_DR register has been read, this bit returns to 0 until a new random value is
generated.
If IE=1 in the RNG_CR register, an interrupt is generated when DRDY = 1.

True random number generator (RNG) RM0367

476/1040 RM0367 Rev 8

20.7.3 RNG data register (RNG_DR)

Address offset: 0x008

Reset value: 0x0000 0000

The RNG_DR register is a read-only register that delivers a 32-bit random value when read.
After being read this register delivers a new random value after 42 periods of RNG clock if
the output FIFO is empty.

The content of this register is valid when DRDY = 1 and value is not 0x0, even if
RNGEN = 0.

20.7.4 RNG register map

Refer to Section 2.2 for the register boundary addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RNDATA[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:0 RNDATA[31:0]: Random data

32-bit random data which are valid when DRDY = 1. When DRDY = 0 RNDATA value
is zero.
It is recommended to always verify that RNG_DR is different from zero. Because when it is
the case a seed error occurred between RNG_SR polling and RND_DR output reading
(rare event).

Table 97. RNG register map and reset map

Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
RNG_CR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

C
E

D
R

es
.

IE
R

N
G

E
N

R
es

.
R

es
.

Reset value 0 0 0

0x004
RNG_SR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.

S
E

IS
C

E
IS

R
e

s.
R

e
s.

S
E

C
S

C
E

C
S

D
R

D
Y

Reset value 0 0 0 0 0

0x008
RNG_DR RNDATA[31:0]

Reset value 0

RM0367 Rev 8 477/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21 General-purpose timers (TIM2/TIM3)

21.1 TIM2/TIM3 introduction

The general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timers are completely independent, and do not share any resources. They can be
synchronized together as described in Section 21.3.15.

21.2 TIM2/TIM3 main features

General-purpose TIMx timer features include:

• 16-bit (TIM2/3) up, down, up/down auto-reload counter.

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535.

• Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge- and Center-aligned modes)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers.

• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes

• Trigger input for external clock or cycle-by-cycle current management

General-purpose timers (TIM2/TIM3) RM0367

478/1040 RM0367 Rev 8

Figure 106. General-purpose timer block diagram

U

U

U

CC1I

CC2I

Trigger
controller

+/-

Stop, clear or up/down

TI1FP1
TI2FP2

ITR0
ITR1
ITR2 TRGI

Output
control

TRGO

OC1REF

OC2REF

U

UI

Reset, enable, up, count

CK_PSC

IC1

IC2 IC2PS

IC1PS
TI1FP1

TGI

TRC

TRC

ITR
TRC

TI1F_ED

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

TIMx_CH1

TIMx_CH2

OC1

OC2 TIMx_CH2

TIMx_CH1

to other timers
to DAC/ADC

Slave
controller

mode

PSC
prescaler CNT counter

Internal clock (CK_INT)

CK_CNT

TIMxCLK from RCC

ITR3

MS19673V1

XOR
Input filter &
edge detector

 Capture/Compare 1 register

Notes:

Reg Preload registers transferred
to active registers on U event
according to control bit

Event

Interrupt & DMA output

Auto-reload register

Capture/Compare 2 registerPrescaler

Prescaler

Input filter &
edge detector

Output
control

U

U

CC3I

CC4I

Output
control

OC3REF

OC4REF

IC3

IC4 IC4PS

IC3PS

TI4FP3
TI4FP4

TIMx_CH3

TIMx_CH4

OC3

OC4 TIMx_CH4

TIMx_CH3Input filter &
edge detector

 Capture/Compare 3 register

Capture/Compare 4 registerPrescaler

Prescaler

Input filter &
edge detector

Output
control

TRC

TI3FP3
TI3FP4

TRC

CC3I

CC4I

TI3

TI4

Encoder
interface

TIMx_ETR Input filterPolarity selection & edge
detector & prescaler

ETR ETRP

ETRF

ETRF

RM0367 Rev 8 479/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.3 TIM2/TIM3 functional description

21.3.1 Time-base unit

The main block of the programmable timer is a 16-bit with its related auto-reload register.
The counter can count up, down or both up and down but also down or both up and down.
The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC):

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC
register). It can be changed on the fly as this control register is buffered. The new prescaler
ratio is taken into account at the next update event.

Figure 107 and Figure 21.3.2 give some examples of the counter behavior when the
prescaler ratio is changed on the fly:

General-purpose timers (TIM2/TIM3) RM0367

480/1040 RM0367 Rev 8

Figure 107. Counter timing diagram with prescaler division change from 1 to 2

Figure 108. Counter timing diagram with prescaler division change from 1 to 4

CK_PSC

00

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

MS31076V2

0

30

0 1 2 3 0 1 2 3

MS31077V2

CK_PSC

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

RM0367 Rev 8 481/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 109. Counter timing diagram, internal clock divided by 1

00 02 03 04 05 06 0732 33 34 35 3631

MS31078V2

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

01

General-purpose timers (TIM2/TIM3) RM0367

482/1040 RM0367 Rev 8

Figure 110. Counter timing diagram, internal clock divided by 2

Figure 111. Counter timing diagram, internal clock divided by 4

MS31079V2

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

0034 0035 0036 0000 0001 0002 0003

0000 00010035 0036

MS31080V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

CNT_EN

RM0367 Rev 8 483/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 112. Counter timing diagram, internal clock divided by N

Figure 113. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

001F 20

MS31081V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

FF 36

MS31082V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

General-purpose timers (TIM2/TIM3) RM0367

484/1040 RM0367 Rev 8

Figure 114. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

MS31083V2

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Auto-reload shadow
register F5 36

RM0367 Rev 8 485/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 115. Counter timing diagram, internal clock divided by 1

Figure 116. Counter timing diagram, internal clock divided by 2

36 34 33 32 31 30 2F04 03 02 01 0005

MS31184V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow
(cnt_udf)

Update interrupt flag
 (UIF)

35

MS31185V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0002 0001 0000 0036 0035 0034 0033

General-purpose timers (TIM2/TIM3) RM0367

486/1040 RM0367 Rev 8

Figure 117. Counter timing diagram, internal clock divided by 4

Figure 118. Counter timing diagram, internal clock divided by N

0000 00010001 0000

MS31186V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

CNT_EN

001F20

MS31187V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

36

RM0367 Rev 8 487/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 119. Counter timing diagram, Update event when repetition counter
is not used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or

FF 36

MS31188V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0002030405 30 2F3233343536 3101

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

General-purpose timers (TIM2/TIM3) RM0367

488/1040 RM0367 Rev 8

DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 120. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 21.4.1: TIMx control register 1
(TIMx_CR1) on page 521).

MS31189V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00020304 05 0601

CEN

02 03 0401 05 0304

Counter underflow

RM0367 Rev 8 489/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 121. Counter timing diagram, internal clock divided by 2

Figure 122. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

MS31190V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0003 0002 0001 0000 0001 0002 0003

0034 0035

MS31191V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

CNT_EN

Note: Here, center_aligned mode 2 or 3 is updated with an UIF on overflow

0036 0035

General-purpose timers (TIM2/TIM3) RM0367

490/1040 RM0367 Rev 8

Figure 123. Counter timing diagram, internal clock divided by N

Figure 124. Counter timing diagram, Update event with ARPE=1 (counter underflow)

001F20

MS31192V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

01

FD 36

MS31193V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 0701

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

06 05 04 03 02 01

FD 36
Auto-reload active

register

RM0367 Rev 8 491/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 125. Counter timing diagram, Update event with ARPE=1 (counter overflow)

21.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin (TIx)

• External clock mode2: external trigger input (ETR)

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer. Refer to :
Using one timer as prescaler for another timer on page 514 for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 126 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

MS31194V1

FD 36

CK_PSC

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

36 34 33 32 31 30 2FF8 F9 FA FB FCF7 35

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR
Auto-reload active

register FD 36

General-purpose timers (TIM2/TIM3) RM0367

492/1040 RM0367 Rev 8

Figure 126. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

Figure 127. TI2 external clock connection example

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

TIMx_SMCR

TS[2:0]

TI2 0
1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI2F_Rising

TI2F_Falling
110

0xx

100

101

MS31196V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

ETRF 111

External clock
mode 2

ETRF

ECE

RM0367 Rev 8 493/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so it does not need to be configured.

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

For code example, refer to A.11.1: Upcounter on TI2 rising edge code example.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 128. Control circuit in external clock mode 1

Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

MS31087V2

General-purpose timers (TIM2/TIM3) RM0367

494/1040 RM0367 Rev 8

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 129 gives an overview of the external trigger input block.

Figure 129. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

For code example, refer to A.11.2: Up counter on each 2 ETR rising edges code example.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

MS33116V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

External clock
mode 2

ETRF

ECE

0

1

TIMx_SMCR

ETP

ETR pin

ETR
Divider

/1, /2, /4, /8 Filter
downcounterf

ETRP

TIMx_SMCR

ETPS[1:0]

TIMx_SMCR

ETF[3:0]

DTS

RM0367 Rev 8 495/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 130. Control circuit in external clock mode 2

21.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

The following figure gives an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

MS33111V2

34 35 36

fCK_INT

CNT_EN

ETR

ETRP

ETRF

Counter clock =
CK_INT =CK_PSC

Counter register

General-purpose timers (TIM2/TIM3) RM0367

496/1040 RM0367 Rev 8

Figure 131. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 132. Capture/compare channel 1 main circuit

0

1
Divider

/1, /2, /4, /8

ICPS[1:0]

TI1F_ED
To the slave mode controller

TI1FP1

11

01

CC1S[1:0]

IC1TI2FP1

TRC

(from slave mode
controller)

10
IC1PS

0

1

MS33115V1

TI1

TIMx_CCER

CC1P/CC1NP

Filter
downcounter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI1F_Rising

TI1F_Falling

TIMx_CCMR1

TIMx_CCER

TI2F_Rising
(from channel 2)

TI2F_Falling
(from channel 2)

TI1F
f

CC1E

DTS

CC1E

Capture/compare shadow register

Comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]
CC1S[1]

Capture

Input
mode

S

R

Read CCR1H

Read CCR1L
read_in_progress

capture_transfer CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L
write_in_progress

Output
mode

UEV

OC1PE

(from time
base unit)

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

MS33144V1

RM0367 Rev 8 497/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 133. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

21.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when it is written with 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

2. Program the appropriate input filter duration in relation with the signal connected to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been

MS33146V1

Output
mode

controller

CNT > CCR1

CNT = CCR1

TIMx_CCMR1

OC1M[2:0]

0

1

CC1P

TIMx_CCER

Output
enable
circuit

OC1

CC1E TIM1_CCER

To the master
mode controller

OC1REF

0

1

ocref_clr_int

ETRF

OCREF_CLR

OCCS
TIMx_SMCR

General-purpose timers (TIM2/TIM3) RM0367

498/1040 RM0367 Rev 8

detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.

3. Select the edge of the active transition on the TI1 channel by writing the CC1P and
CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case).

4. Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

For code example, refer to A.11.3: Input capture configuration code example.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

For code example, refer to A.11.4: Input capture data management code example.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

RM0367 Rev 8 499/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, one can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

1. Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge).

3. Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ and the CC2NP bit to ’0’(active on falling edge).

5. Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

6. Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.

For code example, refer to A.11.5: PWM input configuration code example.

Figure 134. PWM input mode timing

General-purpose timers (TIM2/TIM3) RM0367

500/1040 RM0367 Rev 8

21.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCxREF/OCx) to its active level, one just needs to write
101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCxREF is forced
high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the Output Compare Mode section.

21.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.

4. Select the output mode. For example, one must write OCxM=011, OCxPE=0, CCxP=0
and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not
used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

For code example, refer to A.11.7: Output compare configuration code example.

RM0367 Rev 8 501/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 135.

Figure 135. Output compare mode, toggle on OC1.

21.3.9 PWM mode

Pulse width modulation mode allows to generate a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, all registers must be initialized by setting the UG bit in
the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

MS31092V1

OC1REF= OC1

TIM1_CNT B200 B2010039

TIM1_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

General-purpose timers (TIM2/TIM3) RM0367

502/1040 RM0367 Rev 8

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction
of the counter). However, to comply with the OCREF_CLR functionality (OCREF can be
cleared by an external event through the ETR signal until the next PWM period), the
OCREF signal is asserted only:

• When the result of the comparison changes, or

• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Section :
Upcounting mode on page 481.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1.
If the compare value is 0 then OCxREF is held at ‘0. Figure 136 shows some edge-aligned
PWM waveforms in an example where TIMx_ARR=8.

For code example, refer to A.11.8: Edge-aligned PWM configuration example.

Figure 136. Edge-aligned PWM waveforms (ARR=8)

MS31093V1

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0
‘0’

RM0367 Rev 8 503/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Section :
Downcounting mode on page 484.

In PWM mode 1, the reference signal OCxREF is low as long as TIMx_CNT>TIMx_CCRx
else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload
value in TIMx_ARR, then OCxREF is held at ‘1. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00 (all the remaining configurations having the same effect on the OCxREF/OCx signals).
The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
Section : Center-aligned mode (up/down counting) on page 487.

Figure 137 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

For code example, refer to A.11.9: Center-aligned PWM configuration example.

General-purpose timers (TIM2/TIM3) RM0367

504/1040 RM0367 Rev 8

Figure 137. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if a value greater than the auto-reload value is written
in the counter (TIMx_CNT>TIMx_ARR). For example, if the counter was counting
up, it continues to count up.

– The direction is updated if 0 or the TIMx_ARR value is written in the counter but no
Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

CCxIF

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1Counter register

CCRx = 4
OCxREF

CMS=01
CMS=10
CMS=11

CCxIF

CCRx=7
OCxREF

CMS=10 or 11

CCxIF

CCRx=8
OCxREF

CMS=01
CMS=10
CMS=11

‘1’

CCxIF

CCRx>8
OCxREF

CMS=01
CMS=10
CMS=11

‘1’

CCxIF

CCRx=0
OCxREF

CMS=01
CMS=10
CMS=11

‘0’

AI14681b

RM0367 Rev 8 505/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. One-pulse mode is selected
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT<CCRx ≤ ARR (in particular, 0<CCRx),

• In downcounting: CNT>CCRx.

Figure 138. Example of one-pulse mode.

For example one may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

1. Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register.

2. TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=’0’ in the TIMx_CCER
register.

3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in
the TIMx_SMCR register.

4. TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register
(trigger mode).

For code example, refer to A.11.16: One-Pulse mode code example.

MS31099V1

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY tPULSE

General-purpose timers (TIM2/TIM3) RM0367

506/1040 RM0367 Rev 8

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1+1).

• Let’s say one want to build a waveform with a transition from ‘0 to ‘1 when a compare
match occurs and a transition from ‘1 to ‘0 when the counter reaches the auto-reload
value. To do this PWM mode 2 must be enabled by writing OC1M=111 in the
TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing
OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case one has to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over
from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0',
so the Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the
TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

For code example, refer to A.11.16: One-Pulse mode code example.

21.3.11 Clearing the OCxREF signal on an external event

1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR
register are cleared to 00.

2. The external clock mode 2 must be disabled: bit ECE in the TIMx_SMCR register is
cleared to 0.

3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be
configured according to the application’s needs.

For code example, refer to A.11.10: ETR configuration to clear OCxREF code example.

Figure 139 shows the behavior of the OCxREF signal when the ETRF input becomes high,
for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in
PWM mode.

RM0367 Rev 8 507/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 139. Clearing TIMx OCxREF

1. In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the next counter
overflow.

21.3.12 Encoder interface mode

To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter
is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if
it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. CC1NP and CC2NP must be kept cleared. When needed, the input filter can be
programmed as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 98. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the
TIMx_ARR must be configured before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s

MS33105V1

(CCRx)

Counter (CNT)

ETRF

OCxREF
(OCxCE = ‘0’)

OCxREF
(OCxCE = ‘1’)

OCxREF_CLR
becomes high

OCxREF_CLR
still high

General-purpose timers (TIM2/TIM3) RM0367

508/1040 RM0367 Rev 8

position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 do not switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 140 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S= 01 (TIMx_CCMR1 register, TI1FP1 mapped on TI1)

• CC2S= 01 (TIMx_CCMR2 register, TI2FP2 mapped on TI2)

• CC1P=0, CC1NP = ‘0’ (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1)

• CC2P=0, CC2NP = ‘0’ (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2)

• SMS= 011 (TIMx_SMCR register, both inputs are active on both rising and falling
edges)

• CEN= 1 (TIMx_CR1 register, Counter is enabled)

For code example, refer to A.11.11: Encoder interface code example.

Table 98. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for
TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

RM0367 Rev 8 509/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 140. Example of counter operation in encoder interface mode

Figure 141 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=1).

Figure 141. Example of encoder interface mode with TI1FP1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. Dynamic information can be obtained (speed, acceleration, deceleration)
by measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. This can be done by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a Real-Time clock.

21.3.13 Timer input XOR function

The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture.

TI1

backwardjitter jitter

up down up

TI2

Counter

forward forward

MS33107V1

TI1

backwardjitter jitter

updown

TI2

Counter

forward forward

MS33108V1

down

General-purpose timers (TIM2/TIM3) RM0367

510/1040 RM0367 Rev 8

21.3.14 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect
rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

For code example, refer to A.11.12: Reset mode code example.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 142. Control circuit in reset mode

MS31401V2

00

Counter clock = ck_cnt = ck_psc

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0367 Rev 8 511/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

2. Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

3. Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

For code example, refer to A.11.13: Gated mode code example.

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 143. Control circuit in gated mode

1. The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not have any effect
in gated mode because gated mode acts on a level and not on an edge.

MS31402V1

TI1

cnt_en

Write TIF=0

37

Counter clock = ck_cnt = ck_psc

Counter register 3832 33 34 35 363130

TIF

General-purpose timers (TIM2/TIM3) RM0367

512/1040 RM0367 Rev 8

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. CC2S bits are
selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write
CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

2. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

For code example, refer to A.11.14: Trigger mode code example.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 144. Control circuit in trigger mode

MS31403V1

TI2

cnt_en

37

Counter clock = ck_cnt = ck_psc

Counter register 3834 35 36

TIF

RM0367 Rev 8 513/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input when operating in reset mode,
gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS
bits of TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS=00: prescaler disabled

– ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01in TIMx_CCMR1 register to select only the input capture source

– CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect
rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

For code example, refer to A.11.15: External clock mode 2 + trigger mode code example.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

General-purpose timers (TIM2/TIM3) RM0367

514/1040 RM0367 Rev 8

Figure 145. Control circuit in external clock mode 2 + trigger mode

21.3.15 Timer synchronization

The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave Mode.

Figure 146: Master/Slave timer example presents an overview of the trigger selection and
the master mode selection blocks.

Note: The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

Using one timer as prescaler for another timer

Figure 146. Master/Slave timer example

MS33110V1

34 35 36

TIF

Counter register

Counter clock = CK_CNT = CK_PSC

ETR

CEN/CNT_EN

TI1

MS33136V1

Counter

Master
mode
control

UEV

Prescaler

Clock

Slave
mode
control CounterPrescaler

CK_PSCITR1TRGO1

MMS SMSTS

Input
trigger

selection

TIMx TIMy

RM0367 Rev 8 515/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

For example, Timer x can be configured to act as a prescaler for Timer y. Refer to
Figure 146. To do this, follow the sequence below:

1. Configure Timer x in master mode so that it outputs a periodic trigger signal on each
update event UEV. If MMS=010 is written in the TIMx_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

2. To connect the TRGO1 output of Timer x to Timer y, Timer y must be configured in
slave mode using ITR1 as internal trigger. This is selected through the TS bits in the
TIMy_SMCR register (writing TS=000).

3. Then the slave mode controller must be put in external clock mode 1 (write SMS=111 in
the TIMy_SMCR register). This causes Timer y to be clocked by the rising edge of the
periodic Timer x trigger signal (which correspond to the timer x counter overflow).

4. Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

For code example, refer to A.11.17: Timer prescaling another timer code example.

Note: If OCx is selected on Timer x as trigger output (MMS=1xx), its rising edge is used to clock
the counter of timer y.

Using one timer to enable another timer

In this example, we control the enable of Timer y with the output compare 1 of Timer x.
Refer to Figure 146 for connections. Timer y counts on the divided internal clock only when
OC1REF of Timer x is high. Both counter clock frequencies are divided by 3 by the
prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

1. Configure Timer x master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer x OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer y to get the input trigger from Timer x (TS=000 in the TIMy_SMCR
register).

4. Configure Timer y in gated mode (SMS=101 in TIMy_SMCR register).

5. Enable Timer y by writing ‘1 in the CEN bit (TIMy_CR1 register).

6. Start Timer x by writing ‘1 in the CEN bit (TIMx_CR1 register).

For code example, refer to A.11.18: Timer enabling another timer code example.

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer y
counter enable signal.

General-purpose timers (TIM2/TIM3) RM0367

516/1040 RM0367 Rev 8

Figure 147. Gating timer y with OC1REF of timer x

In the example in Figure 147, the Timer y counter and prescaler are not initialized before
being started. So they start counting from their current value. It is possible to start from a
given value by resetting both timers before starting Timer x. Then any value can be written
in the timer counters. The timers can easily be reset by software using the UG bit in the
TIMx_EGR registers.

In the next example, we synchronize Timer x and Timer y. Timer x is the master and starts
from 0. Timer y is the slave and starts from 0xE7. The prescaler ratio is the same for both
timers. Timer y stops when Timer x is disabled by writing ‘0 to the CEN bit in the TIMy_CR1
register:

1. Configure Timer x master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIMx_CR2 register).

2. Configure the Timer x OC1REF waveform (TIMx_CCMR1 register).

3. Configure Timer y to get the input trigger from Timer x (TS=000 in the TIMy_SMCR
register).

4. Configure Timer y in gated mode (SMS=101 in TIMy_SMCR register).

5. Reset Timer x by writing ‘1 in UG bit (TIMx_EGR register).

6. Reset Timer y by writing ‘1 in UG bit (TIMy_EGR register).

7. Initialize Timer y to 0xE7 by writing ‘0xE7’ in the timer y counter (TIMy_CNTL).

8. Enable Timer y by writing ‘1 in the CEN bit (TIMy_CR1 register).

9. Start Timer x by writing ‘1 in the CEN bit (TIMx_CR1 register).

10. Stop Timer x by writing ‘0 in the CEN bit (TIMx_CR1 register).

For code example, refer to A.11.19: Master and slave synchronization code example.

MS33137V1

CK_INT

FC FD FE FF 00 01

TIMERx-OC1REF

TIMERx-CNT

30463045 3047 3048TIMERy-CNT

TIMERy-TIF

Write TIF = 0

RM0367 Rev 8 517/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Figure 148. Gating timer y with Enable of timer x

Using one timer to start another timer

In this example, we set the enable of Timer y with the update event of Timer x. Refer to
Figure 146 for connections. Timer y starts counting from its current value (which can be
nonzero) on the divided internal clock as soon as the update event is generated by Timer x.
When Timer y receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ‘0 to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

1. Configure Timer x master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIMx_CR2 register).

2. Configure the Timer x period (TIMx_ARR registers).

3. Configure Timer y to get the input trigger from Timer x (TS=000 in the TIMy_SMCR
register).

4. Configure Timer y in trigger mode (SMS=110 in TIMy_SMCR register).

5. Start Timer x by writing ‘1 in the CEN bit (TIMx_CR1 register).

MS33138V1

CK_INT

75 00

E7

TIMERx-CNT_INIT

TIMERx-CNT

ABTIMERy-CNT

TIMERy-CNT_INIT

Write TIF = 0

01 02

E9E800

TIMERx-CEN=CNT_EN

TIMERy-write CNT

TIMERy-TIF

General-purpose timers (TIM2/TIM3) RM0367

518/1040 RM0367 Rev 8

Figure 149. Triggering timer y with update of timer x

As in the previous example, both counters can be initialized before starting counting.
Figure 150 shows the behavior with the same configuration as in Figure 149 but in trigger
mode instead of gated mode (SMS=110 in the TIMy_SMCR register).

Figure 150. Triggering timer y with Enable of timer x

MS33139V1

CK_INT

TIMERy-CNT

FDTIMERx-CNT

Write TIF = 0

TIMERy-CEN=CNT_EN

TIMERy-TIF

FE FF 00 01 02

46 47 4845

TIMERx-UEV

MS33140V1

CK_INT

TIMERy-CNT

TIMERx-CNT_INIT

Write TIF = 0

TIMERx-CEN=CNT_EN

TIMERy-TIF

E7

0200 01

E9

75

CD 00 E8 EA

TIMERx-CNT

TIMERy-CNT_INIT

TIMERy
write CNT

RM0367 Rev 8 519/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of timer x when its TI1 input rises, and the enable of
Timer y with the enable of Timer x. Refer to Figure 146 for connections. To ensure the
counters are aligned, Timer x must be configured in Master/Slave mode (slave with respect
to TI1, master with respect to Timer y):

1. Configure Timer x master mode to send its Enable as trigger output (MMS=001 in the
TIMx_CR2 register).

2. Configure Timer x slave mode to get the input trigger from TI1 (TS=100 in the
TIMx_SMCR register).

3. Configure Timer x in trigger mode (SMS=110 in the TIMx_SMCR register).

4. Configure the Timer x in Master/Slave mode by writing MSM=1 (TIMx_SMCR register).

5. Configure Timer y to get the input trigger from Timer x (TS=000 in the TIMy_SMCR
register).

6. Configure Timer y in trigger mode (SMS=110 in the TIMy_SMCR register).

For code example, refer to A.11.20: Two timers synchronized by an external trigger code
example.

When a rising edge occurs on TI1 (Timer x), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but an offset can easily be inserted between them by
writing any of the counter registers (TIMx_CNT). One can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on timer x.

Figure 151. Triggering timer x and y with timer x TI1 input

MS33141V1

CK_INT

TIMERy-CNT

TIMERx-CEN=CNT_EN

TIMERy-TIF

01TIMERx-CNT 02 03 04 05 06 07 08 0900

01 02 03 04 05 06 07 08 0900

TIMERy-CEN=CNT_EN

TIMERx-TIF

TIMERx-CK_PSC

TIMERx-TI1

TIMERy-CK_PSC

General-purpose timers (TIM2/TIM3) RM0367

520/1040 RM0367 Rev 8

21.3.16 Debug mode

When the microcontroller enters debug mode (Cortex®-M0+ core - halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 33.9.2: Debug support for timers,
watchdog and I2C.

RM0367 Rev 8 521/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4 TIM2/TIM3 registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral
registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be
done by bytes (8 bits), half-words (16 bits) or words (32 bits).

21.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

General-purpose timers (TIM2/TIM3) RM0367

522/1040 RM0367 Rev 8

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0367 Rev 8 523/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.2 TIMx control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TI1S MMS[2:0] CCDS Res. Res. Res.

rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO)
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Note: The clock of the slave timer or ADC must be enabled prior to receiving events from the
master timer, and must not be changed on-the-fly while triggers are received from the
master timer.

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, must be kept at reset value.

General-purpose timers (TIM2/TIM3) RM0367

524/1040 RM0367 Rev 8

21.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is noninverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave modes:
reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

RM0367 Rev 8 525/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0).
001: Internal Trigger 1 (ITR1).
010: Internal Trigger 2 (ITR2).
011: Reserved.
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)
See Table 99: TIM2/TIM3 internal trigger connection on page 525 for more details on ITRx
meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at ‘1’.

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100).
Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode
checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer."

Table 99. TIM2/TIM3 internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010)

TIM2 TIM21 TIM22 TIM3

TIM3 TIM2 TIM22 TIM21

General-purpose timers (TIM2/TIM3) RM0367

526/1040 RM0367 Rev 8

21.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TDE Res. CC4DE CC3DE CC2DE CC1DE UDE Res. TIE Res. CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled.
1: Trigger DMA request enabled.

Bit 13 Reserved, always read as 0

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled.
1: CC4 DMA request enabled.

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled.
1: CC3 DMA request enabled.

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled.
1: CC2 DMA request enabled.

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled.
1: CC1 DMA request enabled.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bit 7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled.
1: CC4 interrupt enabled.

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled
1: CC3 interrupt enabled

RM0367 Rev 8 527/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. CC4OF CC3OF CC2OF CC1OF Res. Res. TIF Res. CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

General-purpose timers (TIM2/TIM3) RM0367

528/1040 RM0367 Rev 8

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow
(in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected
on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

″ This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

″ At overflow or underflow and if UDIS=0 in the TIMx_CR1 register.

″ When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0
and UDIS=0 in the TIMx_CR1 register.

When CNT is reinitialized by a trigger event (refer to the synchro control register description),
if URS=0 and UDIS=0 in the TIMx_CR1 register.

RM0367 Rev 8 529/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. CC4G CC3G CC2G CC1G UG

w w w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4G: Capture/compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

General-purpose timers (TIM2/TIM3) RM0367

530/1040 RM0367 Rev 8

21.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So one must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable

OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

RM0367 Rev 8 531/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Input capture mode

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: The PWM mode can be used without validating the preload register only in one-pulse
mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM2/TIM3) RM0367

532/1040 RM0367 Rev 8

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS 1000: fSAMPLING=fDTS/8, N=6
0001: fSAMPLING=fCK_INT, N=2 1001: fSAMPLING=fDTS/8, N=8
0010: fSAMPLING=fCK_INT, N=4 1010: fSAMPLING=fDTS/16, N=5
0011: fSAMPLING=fCK_INT, N=8 1011: fSAMPLING=fDTS/16, N=6
0100: fSAMPLING=fDTS/2, N=6 1100: fSAMPLING=fDTS/16, N=8
0101: fSAMPLING=fDTS/2, N=8 1101: fSAMPLING=fDTS/32, N=5
0110: fSAMPLING=fDTS/4, N=6 1110: fSAMPLING=fDTS/32, N=6
0111: fSAMPLING=fDTS/4, N=8 1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0367 Rev 8 533/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4CE OC4M[2:0] OC4PE OC4FE
CC4S[1:0]

OC3CE OC3M[2:0] OC3PE OC3FE
CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

General-purpose timers (TIM2/TIM3) RM0367

534/1040 RM0367 Rev 8

Input capture mode

21.4.9 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC4NP Res. CC4P CC4E CC3NP Res. CC3P CC3E CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CC4NP: Capture/Compare 4 output Polarity.

Refer to CC1NP description

Bit 14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output Polarity.

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable.

refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 output Polarity.

refer to CC1NP description

Bit 10 Reserved, must be kept at reset value.

Bit 9 CC3P: Capture/Compare 3 output Polarity.

refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable.

refer to CC1E description

RM0367 Rev 8 535/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

Bit 7 CC2NP: Capture/Compare 2 output Polarity.

refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity.

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable.

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
CC1NP must be kept cleared in this case.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P
description.

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration
must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 100. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

General-purpose timers (TIM2/TIM3) RM0367

536/1040 RM0367 Rev 8

Note: The state of the external I/O pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO registers.

21.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

21.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

21.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF FFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Low counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Low Auto-reload value

ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 21.3.1: Time-base unit on page 479 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.

RM0367 Rev 8 537/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.13 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

21.4.14 TIMx capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The
TIMx_CCR1 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2). The
TIMx_CCR2 register is read-only and cannot be programmed.

General-purpose timers (TIM2/TIM3) RM0367

538/1040 RM0367 Rev 8

21.4.15 TIMx capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

21.4.16 TIMx capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR3[15:0]: Low Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register
(bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.
If channel CC3is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3). The
TIMx_CCR3 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR4[15:0]: Low Capture/Compare value

If CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register
(bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
If CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4). The
TIMx_CCR4 register is read-only and cannot be programmed.

RM0367 Rev 8 539/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.17 TIMx DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

21.4.18 TIMx DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. DBL[4:0] Res. Res. Res. DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this
case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

General-purpose timers (TIM2/TIM3) RM0367

540/1040 RM0367 Rev 8

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

For code example, refer to A.11.21: DMA burst feature code example.

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

RM0367 Rev 8 541/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.4.19 TIM2 option register (TIM2_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TI4_RMP ETR_RMP

rw rw rw rw rw

Bits 15:5 Reserved, must be kept at reset value.

Bits 4:3 TI4_RMP: Internal trigger (TI4 connected to TIM2_CH4) remap

This bit is set and cleared by software.
01: TIM2 TI4 input connected to COMP2_OUT
10: TIM2 TI4 input connected to COMP1_OUT
others: TIM2 TI4 input connected to ORed GPIOs. Refer to the Alternate function mapping
table in the device datasheets.

Bits 2:0 ETR_RMP: Timer2 ETR remap

This bit is set and cleared by software.
111: TIM2 ETR input is connected to COMP1_OUT
110: TIM2 ETR input is connected to COMP2_OUT
101: TIM2 ETR input is connected to LSE
100: TIM2 ETR input is connected to HSI48 (see note below)
011: TIM2 ETR input is connected to HSI16 when HSI16OUTEN bit is set in Clock control
register (RCC_CR) (except for category 3 devices)
others: TIM2 ETR input is connected to ORed GPIOs. Refer to the Alternate function
mapping table in the device datasheets

Note: When TIM2 ETR is fed with HSI48, this ETR must be prescaled internally to the TIMER2
because the maximum system frequency is 32 MHz.

General-purpose timers (TIM2/TIM3) RM0367

542/1040 RM0367 Rev 8

21.4.20 TIM3 option register (TIM3_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TI_RMP ETR_RMP

rw rw rw rw rw

Bits 15:5 Reserved, must be kept at reset value.

Bit 4 TI_RMP: Timer3 remapping on PC9

This bit is set and cleared by software.
1: TIM3_CH4 selected
0: USB_NOE selected

Bit 3 TI_RMP: Timer3 remap on PB5

This bit is set and cleared by software.
1: TIM3_CH2 selected
0: TIM22_CH2 selected

Bit 2 TI_RMP: Timer3 TI remap

This bit is set and cleared by software.
1: TIM3_TI1 input is connected to PE3, PA6, PC6 or PB4
0: TIM3 _TI1 input is connected to USB_SOF

Bits 1:0 ETR_RMP: Timer3 ETR remap

These bits are set and cleared by software.
10: TIM3_ETR input is connected to HSI48 divided by 6 provided HSI48DIV6EN bit is set
(see Section 7.3.3: Clock recovery RC register (RCC_CRRCR))
others configurations: TIM3_ETR input is connected to PE2 or PD2

RM0367 Rev 8 543/1040

RM0367 General-purpose timers (TIM2/TIM3)

544

21.5 TIMx register map

TIMx registers are mapped as described in the table below:

Table 101. TIM2/3 register map and reset values

Offset Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CKD [1:0]

A
R

P
E

CMS[1:0]

D
IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
I1

S

MMS[2:0]

C
C

D
S

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0

0x08
TIMx_SMCR

E
T

P

E
C

E

E
T

P
S

 [
1

:0
]

ETF[3:0]

M
S

M TS[2:0]

R
es

.

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

R
es

.

T
D

E

R
es

.

C
C

4
D

E

C
C

3
D

E

C
C

2
D

E

C
C

1
D

E

U
D

E

R
es

.

T
IE

R
es

.

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

C
C

4O
F

C
C

3O
F

C
C

2O
F

C
C

1O
F

R
es

.

R
es

.

T
IF

R
es

.

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

R
es

.

C
C

4
G

C
C

3
G

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output

Compare mode O
C

2
C

E

OC2M
[2:0]

O
C

2P
E

O
C

2
F

E

CC2S [1:0]

O
C

1
C

E

OC1M
[2:0]

O
C

1P
E

O
C

1
F

E

CC1S [1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode
IC2F[3:0]

IC2
PSC
[1:0]

CC2S [1:0] IC1F[3:0]
IC1
PSC
[1:0]

CC1S [1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output

Compare mode O
C

4
C

E

OC4M
[2:0]

O
C

4P
E

O
C

4
F

E

CC4S [1:0]

O
C

3
C

E

OC3M
[2:0]

O
C

3P
E

O
C

3
F

E

CC3S [1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR2
Input Capture

mode
IC4F[3:0]

IC4
PSC
[1:0]

CC4S [1:0] IC3F[3:0]
IC3
PSC
[1:0]

CC3S [1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

C
C

4
N

P

R
es

.

C
C

4P

C
C

4E

C
C

3
N

P

R
es

.

C
C

3P

C
C

3E

C
C

2
N

P

R
es

.

C
C

2P

C
C

2E

C
C

1
N

P

R
es

.

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
TIMx_CNT CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

General-purpose timers (TIM2/TIM3) RM0367

544/1040 RM0367 Rev 8

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x2C
TIMx_ARR ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Res.

0x34
TIMx_CCR1 CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2 CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3 CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4 CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44 Res.

0x48
TIMx_DCR

R
es

.

R
es

.

R
es

.

DBL[4:0]
R

es
.

R
es

.

R
es

.

DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
TIM2_OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
I4

_
R

M
P

E
T

R
_R

M
P

Reset value 0 0 0 0

0x50
TIM3_OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TI_RMP ETR_RMP

Reset value 0 0 0 0 0

Table 101. TIM2/3 register map and reset values (continued)

Offset Register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 545/1040

RM0367 General-purpose timers (TIM21/22)

599

22 General-purpose timers (TIM21/22)

22.1 Introduction

The TIM21/22 general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM21/22 timers are completely independent, and do not share any resources. They
can be synchronized together as described in Section 22.3.14.

22.2 TIM21/22 main features

22.2.1 TIM21/22 main features

The features of the TIM21/22 general-purpose timers include:

• 16-bit up, down, up/down, auto-reload counter

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65535 (can be changed “on the fly”)

• Up to 2 independent channels for:

– Input capture

– Output compare

– PWM generation (edge- and center-aligned mode)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together

• Interrupt generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or internal
trigger)

– Trigger event (counter start, stop, initialization or count by internal trigger)

– Input capture

– Output compare

General-purpose timers (TIM21/22) RM0367

546/1040 RM0367 Rev 8

Figure 152. General-purpose timer block diagram (TIM21/22)

MSv33704V2

U

U

U

CC1I

CC2I

Trigger
controller

+/-

Stop, Clear

ITR0
ITR1 TRGI

Output
control

OC1REF

OC2REF

U

UI

Reset, enable, up, count

CK_PSC

IC1

IC2 IC2PS

IC1PS
TI1FP1

TGI

TRC

TRC

ITR
TRC

TI1F_ED

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

TIMx_CH1

TIMx_CH2

OC1

OC2

TIMx_CH1

TIMx_CH2

Slave
controller
mode

PSC
prescaler CNT counter

Internal clock (CK_INT)

CK_CNT

Input filter &
edge detector

Capture/Compare 1 register

Notes:

Reg Preload registers transferred
to active registers on U event
according to control bit

Event

Interrupt

Auto-reload register

Capture/Compare 2 registerPrescaler

Prescaler

Input filter &
edge detector

Output
control

TIMx_ETR ETR ETRP
Polarity selection & edge Input filter

ETRF

TI1FP1
TI2FP2

Encoder
interface

TRGO

ETRF

RM0367 Rev 8 547/1040

RM0367 General-purpose timers (TIM21/22)

599

22.3 TIM21/22 functional description

22.3.1 Timebase unit

The main block of the timer is a 16-bit counter with its related auto-reload register. The
counters counts up, down or both up and down but also down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The timebase unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be
generated by software. The generation of the update event is described in detailed for each
configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 154 and Figure 155 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

General-purpose timers (TIM21/22) RM0367

548/1040 RM0367 Rev 8

Figure 153. Counter timing diagram with prescaler division change from 1 to 2

CK_PSC

00

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

MS31076V2

RM0367 Rev 8 549/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 154. Counter timing diagram with prescaler division change from 1 to 4

22.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller on TIM21/22) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

0

30

0 1 2 3 0 1 2 3

MS31077V2

CK_PSC

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

General-purpose timers (TIM21/22) RM0367

550/1040 RM0367 Rev 8

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 155. Counter timing diagram, internal clock divided by 1

00 02 03 04 05 06 0732 33 34 35 3631

MS31078V2

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

01

RM0367 Rev 8 551/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 156. Counter timing diagram, internal clock divided by 2

Figure 157. Counter timing diagram, internal clock divided by 4

MS31079V2

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

0034 0035 0036 0000 0001 0002 0003

0000 00010035 0036

MS31080V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

CNT_EN

General-purpose timers (TIM21/22) RM0367

552/1040 RM0367 Rev 8

Figure 158. Counter timing diagram, internal clock divided by N

Figure 159. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

001F 20

MS31081V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

FF 36

MS31082V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

RM0367 Rev 8 553/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 160. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

MS31083V2

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Auto-reload shadow
register F5 36

General-purpose timers (TIM21/22) RM0367

554/1040 RM0367 Rev 8

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 161. Counter timing diagram, internal clock divided by 1

Figure 162. Counter timing diagram, internal clock divided by 2

36 34 33 32 31 30 2F04 03 02 01 0005

MS31184V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow
(cnt_udf)

Update interrupt flag
 (UIF)

35

MS31185V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0002 0001 0000 0036 0035 0034 0033

RM0367 Rev 8 555/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 163. Counter timing diagram, internal clock divided by 4

Figure 164. Counter timing diagram, internal clock divided by N

0000 00010001 0000

MS31186V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

CNT_EN

001F20

MS31187V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

36

General-purpose timers (TIM21/22) RM0367

556/1040 RM0367 Rev 8

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

RM0367 Rev 8 557/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 165. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 22.4.1: TIM21/22 control register 1
(TIMx_CR1) on page 581).

Figure 166. Counter timing diagram, internal clock divided by 2

MS31189V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00020304 05 0601

CEN

02 03 0401 05 0304

Counter underflow

MS31190V1

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

0003 0002 0001 0000 0001 0002 0003

General-purpose timers (TIM21/22) RM0367

558/1040 RM0367 Rev 8

Figure 167. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 168. Counter timing diagram, internal clock divided by N

0034 0035

MS31191V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

CNT_EN

Note: Here, center_aligned mode 2 or 3 is updated with an UIF on overflow

0036 0035

001F20

MS31192V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

01

RM0367 Rev 8 559/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 169. Counter timing diagram, Update event with ARPE=1 (counter underflow)

Figure 170. Counter timing diagram, Update event with ARPE=1 (counter overflow)

FD 36

MS31193V1

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter underflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 0701

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

06 05 04 03 02 01

FD 36
Auto-reload active

register

MS31194V1

FD 36

CK_PSC

Timer clock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

36 34 33 32 31 30 2FF8 F9 FA FB FCF7 35

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR
Auto-reload active

register FD 36

General-purpose timers (TIM21/22) RM0367

560/1040 RM0367 Rev 8

22.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin (TIx)

• External clock mode2: external trigger input (ETR connected internally to LSE)

• Internal trigger inputs (ITRx): connecting the trigger output from another timer. Refer to
Section : Using one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

The internal clock source is selected when the slave mode controller is disabled
(SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR
register are then used as control bits and can be changed only by software (except for UG
which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is
clocked by the internal clock CK_INT.

Figure 171 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 171. Control circuit in normal mode, internal clock divided by 1

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

RM0367 Rev 8 561/1040

RM0367 General-purpose timers (TIM21/22)

599

External clock source mode 1

This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

Figure 172. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:
1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in

the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=’0000’).

3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register.

6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register.

For code example, refer to A.11.1: Upcounter on TI2 rising edge code example.

Note: The capture prescaler is not used for triggering, so it does not need to be configured.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.
The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

ITRx

TI1_ED

TI1FP1

TI2FP2

TIMx_SMCR

TS[2:0]

TI2 0
1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI2F_Rising

TI2F_Falling
110

0xx

100

101

MS31196V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

ETRF 111

External clock
mode 2

ETRF

ECE

General-purpose timers (TIM21/22) RM0367

562/1040 RM0367 Rev 8

Figure 173. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The Figure 174 gives an overview of the external trigger input block.

Figure 174. External trigger input block

Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

MS31087V2

External clock
mode 1

Internal clock
mode

TRGI

CK_INT

CK_PSC

TIMx_SMCR

SMS[2:0]

MS33116V1

(internal clock)

TI1F or
TI2F oror

Encoder
mode

External clock
mode 2

ETRF

ECE

0

1

TIMx_SMCR

ETP

ETR pin

ETR
Divider

/1, /2, /4, /8 Filter
downcounterf

ETRP

TIMx_SMCR

ETPS[1:0]

TIMx_SMCR

ETF[3:0]

DTS

RM0367 Rev 8 563/1040

RM0367 General-purpose timers (TIM21/22)

599

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

For code example, refer to A.11.2: Up counter on each 2 ETR rising edges code example.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 175. Control circuit in external clock mode 2

22.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 176 to Figure 178 give an overview of one capture/compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

MS33111V2

34 35 36

fCK_INT

CNT_EN

ETR

ETRP

ETRF

Counter clock =
CK_INT =CK_PSC

Counter register

General-purpose timers (TIM21/22) RM0367

564/1040 RM0367 Rev 8

Figure 176. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 177. Capture/compare channel 1 main circuit

0

1
Divider

/1, /2, /4, /8

ICPS[1:0]

TI1F_ED
To the slave mode controller

TI1FP1

11

01

CC1S[1:0]

IC1TI2FP1

TRC

(from slave mode
controller)

10
IC1PS

0

1

MS33115V1

TI1

TIMx_CCER

CC1P/CC1NP

Filter
downcounter

ICF[3:0]

TIMx_CCMR1

Edge
detector

TI1F_Rising

TI1F_Falling

TIMx_CCMR1

TIMx_CCER

TI2F_Rising
(from channel 2)

TI2F_Falling
(from channel 2)

TI1F
f

CC1E

DTS

MS31089V3

CC1E

Capture/compare shadow register

Comparator

Capture/compare preload register

Counter

IC1PS

CC1S[0]
CC1S[1]

Capture

Input
mode

S

R

Read CCR1H

Read CCR1L
read_in_progress

capture_transfer CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L
write_in_progress

Output
mode

UEV

OC1PE

(from time
base unit)

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

RM0367 Rev 8 565/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 178. Output stage of capture/compare channel (channel 1 and 2)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

22.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when it is written with 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’,
the channel is configured in input mode and the TIMx_CCR1 register becomes read-
only.

2. Program the appropriate input filter duration in relation with the signal connected to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been

MSv33714V1

TIMx_CCER

Output
mode

controller

CNT > CCR2

CNT = CCR2

TIMx_CCMR1

0

1

TIMx_CCER

Output
enable
circuit

OCx

CCxE

To the master
mode controller

OCx_REF

OCxM[2:0]

CCxP

ETRF

General-purpose timers (TIM21/22) RM0367

566/1040 RM0367 Rev 8

detected (sampled at fDTS frequency). Then write IC1F bits to ‘0011’ in the
TIMx_CCMR1 register.

3. Select the edge of the active transition on the TI1 channel by programming CC1P and
CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case).

4. Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register.

For code example, refer to A.11.3: Input capture configuration code example.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

For code example, refer to A.11.4: Input capture data management code example.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in
the TIMx_EGR register.

RM0367 Rev 8 567/1040

RM0367 General-purpose timers (TIM21/22)

599

22.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, one can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1
register (TI1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge).

3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1
register (TI1 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the
CC2P and CC2NP bits to ‘11’ (active on falling edge).

5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register
(TI1FP1 selected).

6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the
TIMx_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

For code example, refer to A.11.5: PWM input configuration code example.

Figure 179. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

General-purpose timers (TIM21/22) RM0367

568/1040 RM0367 Rev 8

22.3.7 Forced output mode

In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, one just needs to write
‘101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced
high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

For example: CCxP=’0’ (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to ‘100’ in the
TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the output compare mode section below.

22.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

1. Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=’000’), be set
active (OCxM=’001’), be set inactive (OCxM=’010’) or can toggle (OCxM=’011’) on
match.

2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = ‘011’ to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = ‘0’ to disable preload register

– Write CCxP = ‘0’ to select active high polarity

– Write CCxE = ‘1’ to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

For code example, refer to A.11.7: Output compare configuration code example.

RM0367 Rev 8 569/1040

RM0367 General-purpose timers (TIM21/22)

599

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 180.

Figure 180. Output compare mode, toggle on OC1

22.3.9 PWM mode

Pulse Width Modulation mode allows to generate a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing the OCxM bits in the TIMx_CCMRx register. The corresponding preload
register must be enabled by setting the OCxPE bit in the TIMx_CCMRx register, and
eventually the auto-reload preload register (in upcounting or center-aligned modes) by
setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, all registers must be initialized by setting the UG bit in
the TIMx_EGR register.

The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. The OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CNT ≤ TIMx_CCRx.

MS31092V1

OC1REF= OC1

TIM1_CNT B200 B2010039

TIM1_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

General-purpose timers (TIM21/22) RM0367

570/1040 RM0367 Rev 8

The timer is able to generate PWM in edge-aligned mode only since the counter is
upcounting.

• Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the
Upcounting mode on page 549.

In the following example, we consider PWM mode 1. The reference PWM signal
OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the
compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’.
Figure 181 shows some edge-aligned PWM waveforms in an example where
TIMx_ARR=8.

For code example, refer to A.11.8: Edge-aligned PWM configuration example.

Figure 181. Edge-aligned PWM waveforms (ARR=8)

• Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to the
Downcounting mode on page 553

In PWM mode 1, the reference signal OCxRef is low as long as
TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is
greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM
is not possible in this mode.

MS31093V1

Counter register

‘1’

0 1 2 3 4 5 6 7 8 0 1

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

OCXREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0
‘0’

RM0367 Rev 8 571/1040

RM0367 General-purpose timers (TIM21/22)

599

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals).
The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
the Center-aligned mode (up/down counting) on page 556.

Figure 182 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

For code example, refer to A.11.9: Center-aligned PWM configuration example.

Figure 182. Center-aligned PWM waveforms (ARR=8)

CCxIF

0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1Counter register

CCRx = 4
OCxREF

CMS=01
CMS=10
CMS=11

CCxIF

CCRx=7
OCxREF

CMS=10 or 11

CCxIF

CCRx=8
OCxREF

CMS=01
CMS=10
CMS=11

‘1’

CCxIF

CCRx>8
OCxREF

CMS=01
CMS=10
CMS=11

‘1’

CCxIF

CCRx=0
OCxREF

CMS=01
CMS=10
CMS=11

‘0’

AI14681b

General-purpose timers (TIM21/22) RM0367

572/1040 RM0367 Rev 8

Hints on using center-aligned mode

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if a value greater than the auto-reload value is written
in the counter (TIMx_CNT>TIMx_ARR). For example, if the counter was counting
up, it continues to count up.

– The direction is updated if 0 or the TIMx_ARR value is written in the counter but no
Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

22.3.10 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The
OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for
current handling. In this case, the ETR must be configured as follow:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to
‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured according to the user needs.

For code example, refer to A.11.10: ETR configuration to clear OCxREF code example.

Figure 183 shows the behavior of the OCxREF signal when the ETRF Input becomes High,
for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in
PWM mode.

RM0367 Rev 8 573/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 183. Clearing TIMx OCxREF

Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at
the next counter overflow.

22.3.11 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. One-pulse mode is selected
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be as follows:

CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

MS33105V1

(CCRx)

Counter (CNT)

ETRF

OCxREF
(OCxCE = ‘0’)

OCxREF
(OCxCE = ‘1’)

OCxREF_CLR
becomes high

OCxREF_CLR
still high

General-purpose timers (TIM21/22) RM0367

574/1040 RM0367 Rev 8

Figure 184. Example of one pulse mode

For example one may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Use TI2FP2 as trigger 1:

1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP = ‘0’ in the TIMx_CCER
register.

3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1+1).

• Let’s say one want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this PWM mode 2 must be enabled by writing OC1M=’111’ in the
TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case one has to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

For code example, refer to A.11.16: One-Pulse mode code example.

MS31099V1

TI2

OC1REF

C
ou

nt
er

t
0

TIM1_ARR

TIM1_CCR1

OC1

tDELAY tPULSE

RM0367 Rev 8 575/1040

RM0367 General-purpose timers (TIM21/22)

599

Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over
from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0',
so the Repetitive Mode is selected.

Particular case: OCx fast enable

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

For code example, refer to A.11.16: One-Pulse mode code example.

22.3.12 Encoder interface mode

To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter
is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if
it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. CC1NP and CC2NP must be kept cleared. When needed, the input filter can be
programmed as well. CC1NP and CC2NP must be kept low.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 102. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the
TIMx_ARR must be configured before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the quadrature encoder and its content, therefore, always represents the encoder’s position.
The count direction correspond to the rotation direction of the connected sensor. The table
summarizes the possible combinations, assuming TI1 and TI2 do not switch at the same
time.

General-purpose timers (TIM21/22) RM0367

576/1040 RM0367 Rev 8

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 185 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S= 01 (TIMx_CCMR1 register, TI1FP1 mapped on TI1)

• CC2S= 01 (TIMx_CCMR2 register, TI2FP2 mapped on TI2)

• CC1P and CC1NP = ‘0’ (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1)

• CC2P and CC2NP = ‘0’ (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2)

• SMS= 011 (TIMx_SMCR register, both inputs are active on both rising and falling
edges)

• CEN= 1 (TIMx_CR1 register, Counter is enabled)

For code example, refer to A.11.11: Encoder interface code example.

Figure 185. Example of counter operation in encoder interface mode

Table 102. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for
TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

TI1

backwardjitter jitter

up down up

TI2

Counter

forward forward

MS33107V1

RM0367 Rev 8 577/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 186 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=1).

Figure 186. Example of encoder interface mode with TI1FP1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. Dynamic information can be obtained (speed, acceleration, deceleration)
by measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. This can be done by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a Real-Time clock.

22.3.13 TIM21/22 external trigger synchronization

The TIM21/22 timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=’0000’). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register.
Program CC1P and CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and
detect rising edges only).

2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select
TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register.

For code example, refer to A.11.12: Reset mode code example.

TI1

backwardjitter jitter

updown

TI2

Counter

forward forward

MS33108V1

down

General-purpose timers (TIM21/22) RM0367

578/1040 RM0367 Rev 8

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if
enabled (depending on the TIE bit in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 187. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=’0000’). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program
CC1P=’1’ and CC1NP= ‘0’ in TIMx_CCER register to validate the polarity (and detect
low level only).

2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register.
Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=’0’, whatever is the trigger input level).

For code example, refer to A.11.13: Gated mode code example.

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

MS31401V2

00

Counter clock = ck_cnt = ck_psc

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0367 Rev 8 579/1040

RM0367 General-purpose timers (TIM21/22)

599

Figure 188. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS = 00: prescaler disabled

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC2F=’0000’). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC2S bits
are configured to select the input capture source only, CC2S=’01’ in TIMx_CCMR1
register. Program CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the
polarity (and detect low level only).

2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register.
Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register.

For code example, refer to A.11.14: Trigger mode code example.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

MS31402V1

TI1

cnt_en

Write TIF=0

37

Counter clock = ck_cnt = ck_psc

Counter register 3832 33 34 35 363130

TIF

General-purpose timers (TIM21/22) RM0367

580/1040 RM0367 Rev 8

Figure 189. Control circuit in trigger mode

22.3.14 Timer synchronization (TIM21/22)

The timers are linked together internally for timer synchronization or chaining. Refer to
Section 21.3.15: Timer synchronization on page 514 for details.

22.3.15 Debug mode

When the microcontroller enters debug mode (Cortex®-M0+ core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 31.16.2: Debug support for timers,
watchdog, bxCAN and I2C.

MS31403V1

TI2

cnt_en

37

Counter clock = ck_cnt = ck_psc

Counter register 3834 35 36

TIF

RM0367 Rev 8 581/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4 TIM21/22 registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

22.4.1 TIM21/22 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1).

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

General-purpose timers (TIM21/22) RM0367

582/1040 RM0367 Rev 8

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an update interrupt if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update event (UEV) generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0367 Rev 8 583/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4.2 TIM21/22 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. MMS[2:0] Res. Res. Res. Res.

rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO)
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Reserved
111: Reserved

Bits 3:0 Reserved, must be kept at reset value.

General-purpose timers (TIM21/22) RM0367

584/1040 RM0367 Rev 8

22.4.3 TIM21/22 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).

It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

Bits 13:12 ETPS[1:0]: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.

00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

RM0367 Rev 8 585/1040

RM0367 General-purpose timers (TIM21/22)

599

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:

0000: No filter, sampling is done at fDTS

0001: fSAMPLING=fCK_INT, N=2

0010: fSAMPLING=fCK_INT, N=4

0011: fSAMPLING=fCK_INT, N=8

0100: fSAMPLING=fDTS/2, N=6

0101: fSAMPLING=fDTS/2, N=8

0110: fSAMPLING=fDTS/4, N=6

0111: fSAMPLING=fDTS/4, N=8

1000: fSAMPLING=fDTS/8, N=6

1001: fSAMPLING=fDTS/8, N=8

1010: fSAMPLING=fDTS/16, N=5

1011: fSAMPLING=fDTS/16, N=6

1100: fSAMPLING=fDTS/16, N=8

1101: fSAMPLING=fDTS/32, N=5

1110: fSAMPLING=fDTS/32, N=6

1111: fSAMPLING=fDTS/32, N=8

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful in
order to synchronize several timers on a single external event.

General-purpose timers (TIM21/22) RM0367

586/1040 RM0367 Rev 8

Bits 6:4 TS: Trigger selection

This bitfield selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Reserved
011: Reserved
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: Reserved.
See Table 103: TIMx Internal trigger connection on page 586 for more details on the
meaning of ITRx for each timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input control register and Control register
descriptions.
000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal
clock
001: Encoder mode 1
010: Encoder mode 2
011: Encoder mode 3
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops
are both controlled
110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled
111: External Clock Mode 1

Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
Gated mode checks the level of the trigger signal.

Table 103. TIMx Internal trigger connection(1)

1. When a timer is not present in the product, the corresponding trigger ITRx is not available.

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001)

TIM21 TIM2 TIM22

TIM22 TIM21 TIM2

RM0367 Rev 8 587/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4.4 TIM21/22 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

22.4.5 TIM21/22 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. TIE Res. Res. Res. CC2IE CC1IE UIE

rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. CC2OF CC1OF Res. Res. TIF Res. Res. Res. CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

General-purpose timers (TIM21/22) RM0367

588/1040 RM0367 Rev 8

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and
UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to the synchro control register
description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

RM0367 Rev 8 589/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4.6 TIM21/22 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. Res. Res. CC2G CC1G UG

w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software to generate an event, it is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
the CC1IF flag is set, the corresponding interrupt is sent if enabled.
If channel CC1 is configured as input:
The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initializes the counter and generates an update of the registers. The prescaler counter
is also cleared and the prescaler ratio is not affected. The counter is cleared.

General-purpose timers (TIM21/22) RM0367

590/1040 RM0367 Rev 8

22.4.7 TIM21/22 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits in this register have different functions in input and output modes. For a given bit, OCxx
describes its function when the channel is configured in output mode, ICxx describes its
function when the channel is configured in input mode. So one must take care that the same
bit can have different meanings for the input stage and the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
OC2M[2:0] OC2PE OC2FE

CC2S[1:0] Res.
OC1M[2:0] OC1PE OC1FE

CC1S[1:0]
IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 Reserved, must be kept at reset value.

RM0367 Rev 8 591/1040

RM0367 General-purpose timers (TIM21/22)

599

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N
depend on the CC1P and CC1NP bits, respectively.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. The OC1REF signal is forced high when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1
100: Force inactive level - OC1REF is forced low
101: Force active level - OC1REF is forced high
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else it is inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1, else it is active (OC1REF=’1’)
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else it is active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1
else it is inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken into account immediately
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded into the active register at each update event

Note: The PWM mode can be used without validating the preload register only in one-pulse
mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on the counter and CCR1 values even when the
trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the
trigger input is 5 clock cycles
1: An active edge on the trigger input acts like a compare match on the CC1 output. Then,
OC is set to the compare level independently of the result of the comparison. Delay to
sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE
acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM21/22) RM0367

592/1040 RM0367 Rev 8

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bitfield defines the frequency used to sample the TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N consecutive
events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS 1000: fSAMPLING=fDTS/8, N=6
0001: fSAMPLING=fCK_INT, N=2 1001: fSAMPLING=fDTS/8, N=8
0010: fSAMPLING=fCK_INT, N=4 1010: fSAMPLING=fDTS/16, N=5
0011: fSAMPLING=fCK_INT, N=8 1011: fSAMPLING=fDTS/16, N=6
0100: fSAMPLING=fDTS/2, N=6 1100: fSAMPLING=fDTS/16, N=8
0101: fSAMPLING=fDTS/2, N=8 1101: fSAMPLING=fDTS/32, N=5
0110: fSAMPLING=fDTS/4, N=6 1110: fSAMPLING=fDTS/32, N=6
0111: fSAMPLING=fDTS/4, N=8 1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0367 Rev 8 593/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4.8 TIM21/22 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E

rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 CC2NP: Capture/Compare 2 output Polarity

refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity

CC1 channel configured as output: CC1NP must be kept cleared
CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.

Note: 11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset,
external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This
configuration must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

General-purpose timers (TIM21/22) RM0367

594/1040 RM0367 Rev 8

Note: The states of the external I/O pins connected to the standard OCx channels depend on the
state of the OCx channel and on the GPIO registers.

22.4.9 TIM21/22 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

22.4.10 TIM21/22 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

22.4.11 TIM21/22 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

Table 104. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to the Section 22.3.1: Timebase unit on page 547 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.

RM0367 Rev 8 595/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4.12 TIM21/22 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

22.4.13 TIM21/22 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(OC1PE bit). Else the preload value is copied into the active capture/compare 1 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signaled on the OC1 output.
If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1). The
TIMx_CCR1 register is read-only and cannot be programmed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(OC2PE bit). Else the preload value is copied into the active capture/compare 2 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signalled on the OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2). The
TIMx_CCR2 register is read-only and cannot be programmed.

General-purpose timers (TIM21/22) RM0367

596/1040 RM0367 Rev 8

22.4.14 TIM21 option register (TIM21_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TI2_RMP TI1_RMP ETR_RMP

rw rw rw rw rw rw

Bits 15:6 Reserved, must be kept at reset value.

Bit 5 TI2_RMP: Timer21 TI2 (connected to TIM21_CH1) remap

This bit is set and cleared by software.
0: TIM21 TI2 input connected to GPIO. Refer to the Alternate function mapping table in the
device datasheet.
1: TIM21 TI2 input connected to COMP2_OUT

Bits 4:2 TI1_RMP: Timer21 TI1 (connected to TIM21_CH1) remap

This bit is set and cleared by software.
000: TIM21 TI1 input connected to GPIO. Refer to the Alternate function mapping table in the
device datasheet.
001:TIM21 TI1 input connected to RTC WAKEUP interrupt
010: TIM21 TI1 input connected to HSE_RTC clock
011: TIM21 TI1 input connected to MSI clock
100: TIM21 TI1 input connected to LSE clock
101: TIM21 TI1 input connected to LSI clock
110: TIM21 TI1 input connected to COMP1_OUT
111: TIM21 TI1 input connected to MCO clock

Bits 1:0 ETR_RMP: Timer21 ETR remap

This bit is set and cleared by software.
00: TIM21 ETR input connected to GPIO. Refer to the Alternate function mapping table in the
device datasheet.
01: TIM21 ETR input connected to COMP2_OUT
10: TIM21 ETR input connected to COMP1_OUT
11: TIM21 ETR input connected to LSE clock

RM0367 Rev 8 597/1040

RM0367 General-purpose timers (TIM21/22)

599

22.4.15 TIM22 option register (TIM22_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TI1_RMP ETR_RMP

rw rw rw rw

Bits 15:4 Reserved, must be kept at reset value.

Bits 3:2 TI1_RMP: Timer 22 TI1 (connected to TIM22_CH1) remap

This bit is set and cleared by software.
00: TIM22 TI1 input connected to GPIO. Refer to the Alternate function mapping table in the
device datasheet.
01:TIM22 TI1 input connected to COMP2_OUT
10: TIM22 TI1 input connected to COMP1_OUT
11: TIM22 TI1 input connected to GPIO. Refer to the Alternate function mapping table in the
device datasheet.

Bits 1:0 ETR_RMP: Timer 22 ETR remap

This bit is set and cleared by software.
00: TIM22 ETR input connected to GPIO. Refer to the Alternate function mapping table in the
device datasheet.
01: TIM22 ETR input connected to COMP2_OUT
10: TIM22 ETR input connected to COMP1_OUT
11: TIM22 ETR input connected to LSE clock

General-purpose timers (TIM21/22) RM0367

598/1040 RM0367 Rev 8

22.4.16 TIM21/22 register map

The table below shows TIM21/22 register map and reset values.

Table 105. TIM21/22 register map and reset values

Offset Register 1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s. CKD
[1:0] A

R
P

E CMS
[1:0] D

IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

MMS[2:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0

0x08
TIMx_SMCR

E
T

P

E
C

E

E
T

P
S

[1
:0

]

ETF[3:0]

M
S

M

TS[2:0]

R
e

s. SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

T
IE

R
e

s.

R
e

s.

R
e

s.

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

2O
F

C
C

1O
F

R
es

.

R
es

.

T
IF

R
es

.

R
es

.

R
es

.

C
C

2
IF

C
C

1
IF

U
IF

Reset value 0 0 0 0 0 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

R
es

.

R
es

.

R
es

.

C
C

2G

C
C

1G

U
G

Reset value 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode R
es

. OC2M
[2:0]

O
C

2P
E

O
C

2
F

E

CC2S
[1:0] R

es
. OC1M

[2:0]

O
C

1P
E

O
C

1
F

E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture mode

IC2F[3:0]
IC2PSC

[1:0]
CC2S
[1:0]

IC1F[3:0]
IC1PSC

[1:0]
CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C Res.

0x20
TIMx_CCER

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

C
C

2N
P

R
e

s.

C
C

2P

C
C

2E

C
C

1N
P

R
e

s.

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0

0x24
TIMx_CNT CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0367 Rev 8 599/1040

RM0367 General-purpose timers (TIM21/22)

599

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x28
TIMx_PSC PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x30 Res.

0x34
TIMx_CCR1 CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2 CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C to
0x4C

Res.

0x38
TIMx_CCR2 CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
TIM21_OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
I2

_R
M

P

T
I1

_R
M

P

E
T

R
_R

M
P

Reset value 0 0 0 0 0 0

0x50
TIM22_OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
I1

_R
M

P

E
T

R
_R

M
P

Reset value 0 0 0 0

Table 105. TIM21/22 register map and reset values (continued)

Offset Register 1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Basic timers (TIM6/7) RM0367

600/1040 RM0367 Rev 8

23 Basic timers (TIM6/7)

23.1 Introduction

The basic timers TIM6, TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They can be used as generic timers for timebase generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

23.2 TIM6/7 main features

Basic timer (TIM6/TIM7) features include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536

• Synchronization circuit to trigger the DAC

• Interrupt/DMA generation on the update event: counter overflow

Figure 190. Basic timer block diagram

MS33142V1

Internal clock (CK_INT)

Auto-reload register

CNT counter+
CK_PSC CK_CNT

Stop, clear or up

UI

U

U

Notes:

Reg Preload registers transferred
to active registers on U event
according to control bit

Event

Interrupt & DMA output

PSC
prescaler

Trigger
controller

Reset, enable, Count

TIMxCLK from RCC

TRGO to DAC

Control

RM0367 Rev 8 601/1040

RM0367 Basic timers (TIM6/7)

612

23.3 TIM6/7 functional description

23.3.1 Time-base unit

The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC)

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

Figure 191 and Figure 192 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

Basic timers (TIM6/7) RM0367

602/1040 RM0367 Rev 8

Figure 191. Counter timing diagram with prescaler division change from 1 to 2

Figure 192. Counter timing diagram with prescaler division change from 1 to 4

CK_PSC

00

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

0

Prescaler control register 10

Write a new value in TIMx_PSC

Prescaler buffer 10

Prescaler counter 0 1 0 1 0 1 0 1

01 02 03FA FBF7 F8 F9 FC

MS31076V2

0

30

0 1 2 3 0 1 2 3

MS31077V2

CK_PSC

CEN

 Timerclock = CK_CNT

Counter register

Update event (UEV)

Prescaler control register

Write a new value in TIMx_PSC

Prescaler buffer

Prescaler counter

00 01FA FBF7 F8 F9 FC

30

RM0367 Rev 8 603/1040

RM0367 Basic timers (TIM6/7)

612

23.3.2 Counting mode

The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.

An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

Figure 193. Counter timing diagram, internal clock divided by 1

00 02 03 04 05 06 0732 33 34 35 3631

MS31078V2

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

01

Basic timers (TIM6/7) RM0367

604/1040 RM0367 Rev 8

Figure 194. Counter timing diagram, internal clock divided by 2

Figure 195. Counter timing diagram, internal clock divided by 4

MS31079V2

CK_PSC

CNT_EN

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

0034 0035 0036 0000 0001 0002 0003

0000 00010035 0036

MS31080V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

CNT_EN

RM0367 Rev 8 605/1040

RM0367 Basic timers (TIM6/7)

612

Figure 196. Counter timing diagram, internal clock divided by N

Figure 197. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not
preloaded)

001F 20

MS31081V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

FF 36

MS31082V2

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 0732 33 34 35 3631 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Basic timers (TIM6/7) RM0367

606/1040 RM0367 Rev 8

Figure 198. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

23.3.3 Clock source

The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 199 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

MS31083V2

F5 36

CK_PSC

Timerclock = CK_CNT

Counter register

Update event (UEV)

Counter overflow

Update interrupt flag
 (UIF)

00 02 03 04 05 06 07F1 F2 F3 F4 F5F0 01

CEN

Auto-reload preload
register

Write a new value in TIMx_ARR

Auto-reload shadow
register F5 36

RM0367 Rev 8 607/1040

RM0367 Basic timers (TIM6/7)

612

Figure 199. Control circuit in normal mode, internal clock divided by 1

23.3.4 Debug mode

When the microcontroller enters the debug mode (Cortex®-M0+ core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 33.9.2: Debug
support for timers, watchdog and I2C.

Internal clock

Counter clock = CK_CNT = CK_PSC

Counter register

CEN=CNT_EN

UG

CNT_INIT

MS31085V2

00 02 03 04 05 06 073 2 33 34 35 3631 01

Basic timers (TIM6/7) RM0367

608/1040 RM0367 Rev 8

23.4 TIM6/7 registers

Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

23.4.1 TIM6/7 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. ARPE Res. Res. Res. OPM URS UDIS CEN

rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: Gated mode can work only if the CEN bit has been previously set by software.
However trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0367 Rev 8 609/1040

RM0367 Basic timers (TIM6/7)

612

23.4.2 TIM6/7 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

23.4.3 TIM6/7 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. MMS[2:0] Res. Res. Res. Res.

rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS: Master mode selection

These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Bits 3:0 Reserved, must be kept at reset value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. UDE Res. Res. Res. Res. Res. Res. Res. UIE

rw rw

Bits 15:9 Reserved, must be kept at reset value.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

Basic timers (TIM6/7) RM0367

610/1040 RM0367 Rev 8

23.4.4 TIM6/7 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

23.4.5 TIM6/7 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

23.4.6 TIM6/7 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UIF

rc_w0

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UG

w

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

RM0367 Rev 8 611/1040

RM0367 Basic timers (TIM6/7)

612

23.4.7 TIM6/7 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

23.4.8 TIM6/7 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 23.3.1: Time-base unit on page 601 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

Basic timers (TIM6/7) RM0367

612/1040 RM0367 Rev 8

23.4.9 TIM6/7 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 106. TIM6/7 register map and reset values

Offset Register 1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

A
R

P
E

R
e

s.

R
e

s.

R
e

s.

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0

0x04
TIMx_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

MMS[2:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0

0x08 Res.

0x0C
TIMx_DIER

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

U
D

E

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

U
IE

Reset value 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
IF

Reset value 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
G

Reset value 0

0x18 Res.

0x1C Res.

0x20 Res.

0x24
TIMx_CNT CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RM0367 Rev 8 613/1040

RM0367 Low-power timer (LPTIM)

633

24 Low-power timer (LPTIM)

24.1 Introduction

The LPTIM is a 16-bit timer that benefits from the ultimate developments in power
consumption reduction. Thanks to its diversity of clock sources, the LPTIM is able to keep
running in all power modes except for Standby mode. Given its capability to run even with
no internal clock source, the LPTIM can be used as a “Pulse Counter” which can be useful
in some applications. Also, the LPTIM capability to wake up the system from low-power
modes, makes it suitable to realize “Timeout functions” with extremely low power
consumption.

The LPTIM introduces a flexible clock scheme that provides the needed functionalities and
performance, while minimizing the power consumption.

24.2 LPTIM main features

• 16 bit upcounter

• 3-bit prescaler with 8 possible dividing factors (1,2,4,8,16,32,64,128)

• Selectable clock

– Internal clock sources: configurable internal clock source (see RCC section)

– External clock source over LPTIM input (working with no embedded oscillator
running, used by Pulse Counter application)

• 16 bit ARR autoreload register

• 16 bit compare register

• Continuous/One-shot mode

• Selectable software/hardware input trigger

• Programmable Digital Glitch filter

• Configurable output: Pulse, PWM

• Configurable I/O polarity

• Encoder mode

Low-power timer (LPTIM) RM0367

614/1040 RM0367 Rev 8

24.3 LPTIM implementation

Table 107 describes LPTIM implementation on STM32L0x3 devices.

24.4 LPTIM functional description

24.4.1 LPTIM block diagram

Figure 200. Low-power timer block diagram

Table 107. STM32L0x3 LPTIM features

LPTIM modes/features(1)

1. X = supported.

LPTIM1

Encoder mode X

RCC

LPTIM

APB_ITF

Kernel

MS32468V2

sw
trigger

up to 8 ext
trigger

CLKMUX

HSI16
LSI

LSE
APB clock

16-bit compare

16-bit counter

16-bit ARR

Out

Prescaler

Mux trigger

Glitch
filter

Glitch
filter Input 1

Encoder Glitch
filter Input 2

Up/down

CKSEL

1

1

0

0

‘1' COUNT
MODE

RM0367 Rev 8 615/1040

RM0367 Low-power timer (LPTIM)

633

24.4.2 LPTIM trigger mapping

The LPTIM external trigger connections are detailed hereafter:

24.4.3 LPTIM reset and clocks

The LPTIM can be clocked using several clock sources. It can be clocked using an internal
clock signal which can be any configurable internal clock source selectable through the
RCC (see RCC section for more details). Also, the LPTIM can be clocked using an external
clock signal injected on its external Input1. When clocked with an external clock source, the
LPTIM may run in one of these two possible configurations:

• The first configuration is when the LPTIM is clocked by an external signal but in the
same time an internal clock signal is provided to the LPTIM from configurable internal
clock source (see RCC section).

• The second configuration is when the LPTIM is solely clocked by an external clock
source through its external Input1. This configuration is the one used to realize Timeout
function or Pulse counter function when all the embedded oscillators are turned off
after entering a low-power mode.

Programming the CKSEL and COUNTMODE bits allows controlling whether the LPTIM will
use an external clock source or an internal one.

When configured to use an external clock source, the CKPOL bits are used to select the
external clock signal active edge. If both edges are configured to be active ones, an internal
clock signal should also be provided (first configuration). In this case, the internal clock
signal frequency should be at least four times higher than the external clock signal
frequency.

24.4.4 Glitch filter

The LPTIM inputs, either external (mapped to GPIOs) or internal (mapped on the chip-level
to other embedded peripherals), are protected with digital filters that prevent any glitches
and noise perturbations to propagate inside the LPTIM. This is in order to prevent spurious
counts or triggers.

Before activating the digital filters, an internal clock source should first be provided to the
LPTIM. This is necessary to guarantee the proper operation of the filters.

Table 108. LPTIM1 external trigger connection

TRIGSEL External trigger

lptim_ext_trig0 PB6 or PC3

lptim_ext_trig1 RTC alarm A

lptim_ext_trig2 RTC alarm B

lptim_ext_trig3 RTC_TAMP1 input detection

lptim_ext_trig4 RTC_TAMP2 input detection

lptim_ext_trig5 RTC_TAMP3 input detection

lptim_ext_trig6 COMP1_OUT

lptim_ext_trig7 COMP2_OUT

Low-power timer (LPTIM) RM0367

616/1040 RM0367 Rev 8

The digital filters are divided into two groups:

• The first group of digital filters protects the LPTIM external inputs. The digital filters
sensitivity is controlled by the CKFLT bits

• The second group of digital filters protects the LPTIM internal trigger inputs. The digital
filters sensitivity is controlled by the TRGFLT bits.

Note: The digital filters sensitivity is controlled by groups. It is not possible to configure each digital
filter sensitivity separately inside the same group.

The filter sensitivity acts on the number of consecutive equal samples that should be
detected on one of the LPTIM inputs to consider a signal level change as a valid transition.
Figure 201 shows an example of glitch filter behavior in case of a 2 consecutive samples
programmed.

Figure 201. Glitch filter timing diagram

Note: In case no internal clock signal is provided, the digital filter must be deactivated by setting
the CKFLT and TRGFLT bits to ‘0’. In that case, an external analog filter may be used to
protect the LPTIM external inputs against glitches.

24.4.5 Prescaler

The LPTIM 16-bit counter is preceded by a configurable power-of-2 prescaler. The prescaler
division ratio is controlled by the PRESC[2:0] 3-bit field. The table below lists all the possible
division ratios:

MS32490V1

CLKMUX

Input

Filter out

2 consecutive samples 2 consecutive samples Filtered

Table 109. Prescaler division ratios

programming dividing factor

000 /1

001 /2

010 /4

011 /8

100 /16

101 /32

110 /64

111 /128

RM0367 Rev 8 617/1040

RM0367 Low-power timer (LPTIM)

633

24.4.6 Trigger multiplexer

The LPTIM counter may be started either by software or after the detection of an active
edge on one of the 8 trigger inputs.

TRIGEN[1:0] is used to determine the LPTIM trigger source:

• When TRIGEN[1:0] equals ‘00’, The LPTIM counter is started as soon as one of the
CNTSTRT or the SNGSTRT bits is set by software. The three remaining possible
values for the TRIGEN[1:0] are used to configure the active edge used by the trigger
inputs. The LPTIM counter starts as soon as an active edge is detected.

• When TRIGEN[1:0] is different than ‘00’, TRIGSEL[2:0] is used to select which of the 8
trigger inputs is used to start the counter.

The external triggers are considered asynchronous signals for the LPTIM. So after a trigger
detection, a two-counter-clock period latency is needed before the timer starts running due
to the synchronization.

If a new trigger event occurs when the timer is already started it will be ignored (unless
timeout function is enabled).

Note: The timer must be enabled before setting the SNGSTRT/CNTSTRT bits. Any write on these
bits when the timer is disabled will be discarded by hardware.

Note: When starting the counter by software (TRIGEN[1:0] = 00), there is a delay of 3 kernel clock
cycles between the LPTIM_CR register update (set one of SNGSTRT or CNTSTRT bits)
and the effective start of the counter.

24.4.7 Operating mode

The LPTIM features two operating modes:

• The Continuous mode: the timer is free running, the timer is started from a trigger event
and never stops until the timer is disabled

• One-shot mode: the timer is started from a trigger event and stops when reaching the
ARR value.

One-shot mode

To enable the one-shot counting, the SNGSTRT bit must be set.

A new trigger event will re-start the timer. Any trigger event occurring after the counter starts
and before the counter reaches ARR will be discarded.

In case an external trigger is selected, each external trigger event arriving after the
SNGSTRT bit is set, and after the counter register has stopped (contains zero value), will
start the counter for a new one-shot counting cycle as shown in Figure 202.

Low-power timer (LPTIM) RM0367

618/1040 RM0367 Rev 8

Figure 202. LPTIM output waveform, single counting mode configuration

- Set-once mode activated:

It should be noted that when the WAVE bit-field in the LPTIM_CFGR register is set, the Set-
once mode is activated. In this case, the counter is only started once following the first
trigger, and any subsequent trigger event is discarded as shown in Figure 203.

Figure 203. LPTIM output waveform, Single counting mode configuration
and Set-once mode activated (WAVE bit is set)

In case of software start (TRIGEN[1:0] = ‘00’), the SNGSTRT setting will start the counter for
one-shot counting.

Continous mode

To enable the continuous counting, the CNTSTRT bit must be set.

In case an external trigger is selected, an external trigger event arriving after CNTSTRT is
set will start the counter for continuous counting. Any subsequent external trigger event will
be discarded as shown in Figure 204.

In case of software start (TRIGEN[1:0] = ‘00’), setting CNTSTRT will start the counter for
continuous counting.

MSv39230V2

PWM

0

Compare
LPTIM_ARR

External trigger event

MSv39231V2

PWM

0

Compare
LPTIM_ARR

Discarded trigger

External trigger event

RM0367 Rev 8 619/1040

RM0367 Low-power timer (LPTIM)

633

Figure 204. LPTIM output waveform, Continuous counting mode configuration

SNGSTRT and CNTSTRT bits can only be set when the timer is enabled (The ENABLE bit
is set to ‘1’). It is possible to change “on the fly” from One-shot mode to Continuous mode.

If the Continuous mode was previously selected, setting SNGSTRT will switch the LPTIM to
the One-shot mode. The counter (if active) will stop as soon as it reaches ARR.

If the One-shot mode was previously selected, setting CNTSTRT will switch the LPTIM to
the Continuous mode. The counter (if active) will restart as soon as it reaches ARR.

24.4.8 Timeout function

The detection of an active edge on one selected trigger input can be used to reset the
LPTIM counter. This feature is controlled through the TIMOUT bit.

The first trigger event will start the timer, any successive trigger event will reset the counter
and the timer will restart.

A low-power timeout function can be realized. The timeout value corresponds to the
compare value; if no trigger occurs within the expected time frame, the MCU is waked-up by
the compare match event.

24.4.9 Waveform generation

Two 16-bit registers, the LPTIM_ARR (autoreload register) and LPTIM_CMP (compare
register), are used to generate several different waveforms on LPTIM output

The timer can generate the following waveforms:

• The PWM mode: the LPTIM output is set as soon as the counter value in LPTIM_CNT
exceeds the compare value in LPTIM_CMP. The LPTIM output is reset as soon as a
match occurs between the LPTIM_ARR and the LPTIM_CNT registers.

• The One-pulse mode: the output waveform is similar to the one of the PWM mode for
the first pulse, then the output is permanently reset

• The Set-once mode: the output waveform is similar to the One-pulse mode except that
the output is kept to the last signal level (depends on the output configured polarity).

The above described modes require that the LPTIM_ARR register value be strictly greater
than the LPTIM_CMP register value.

MSv39229V2

PWM

0

Compare
LPTIM_ARR

Discarded triggers

External trigger event

Low-power timer (LPTIM) RM0367

620/1040 RM0367 Rev 8

The LPTIM output waveform can be configured through the WAVE bit as follow:

• Resetting the WAVE bit to ‘0’ forces the LPTIM to generate either a PWM waveform or
a One pulse waveform depending on which bit is set: CNTSTRT or SNGSTRT.

• Setting the WAVE bit to ‘1’ forces the LPTIM to generate a Set-once mode waveform.

The WAVPOL bit controls the LPTIM output polarity. The change takes effect immediately,
so the output default value will change immediately after the polarity is re-configured, even
before the timer is enabled.

Signals with frequencies up to the LPTIM clock frequency divided by 2 can be generated.
Figure 205 below shows the three possible waveforms that can be generated on the LPTIM
output. Also, it shows the effect of the polarity change using the WAVPOL bit.

Figure 205. Waveform generation

24.4.10 Register update

The LPTIM_ARR register and LPTIM_CMP register are updated immediately after the APB
bus write operation, or at the end of the current period if the timer is already started.

The PRELOAD bit controls how the LPTIM_ARR and the LPTIM_CMP registers are
updated:

• When the PRELOAD bit is reset to ‘0’, the LPTIM_ARR and the LPTIM_CMP registers
are immediately updated after any write access.

• When the PRELOAD bit is set to ‘1’, the LPTIM_ARR and the LPTIM_CMP registers
are updated at the end of the current period, if the timer has been already started.

The LPTIM APB interface and the LPTIM kernel logic use different clocks, so there is some
latency between the APB write and the moment when these values are available to the

MS32467V2

LPTIM_ARR
Compare

0

PWM

One shot

Set once

PWM

One shot

Set once

Pol = 0

Pol = 1

RM0367 Rev 8 621/1040

RM0367 Low-power timer (LPTIM)

633

counter comparator. Within this latency period, any additional write into these registers must
be avoided.

The ARROK flag and the CMPOK flag in the LPTIM_ISR register indicate when the write
operation is completed to respectively the LPTIM_ARR register and the LPTIM_CMP
register.

After a write to the LPTIM_ARR register or the LPTIM_CMP register, a new write operation
to the same register can only be performed when the previous write operation is completed.
Any successive write before respectively the ARROK flag or the CMPOK flag be set, will
lead to unpredictable results.

24.4.11 Counter mode

The LPTIM counter can be used to count external events on the LPTIM Input1 or it can be
used to count internal clock cycles. The CKSEL and COUNTMODE bits control which
source will be used for updating the counter.

In case the LPTIM is configured to count external events on Input1, the counter can be
updated following a rising edge, falling edge or both edges depending on the value written
to the CKPOL[1:0] bits.

The count modes below can be selected, depending on CKSEL and COUNTMODE values:

• CKSEL = 0: the LPTIM is clocked by an internal clock source

– COUNTMODE = 0

The LPTIM is configured to be clocked by an internal clock source and the LPTIM
counter is configured to be updated following each internal clock pulse.

– COUNTMODE = 1

The LPTIM external Input1 is sampled with the internal clock provided to the
LPTIM.

Consequently, in order not to miss any event, the frequency of the changes on the
external Input1 signal should never exceed the frequency of the internal clock
provided to the LPTIM. Also, the internal clock provided to the LPTIM must not be
prescaled (PRESC[2:0] = 000).

• CKSEL = 1: the LPTIM is clocked by an external clock source

COUNTMODE value is don’t care.

In this configuration, the LPTIM has no need for an internal clock source (except if the
glitch filters are enabled). The signal injected on the LPTIM external Input1 is used as
system clock for the LPTIM. This configuration is suitable for operation modes where
no embedded oscillator is enabled.

For this configuration, the LPTIM counter can be updated either on rising edges or
falling edges of the input1 clock signal but not on both rising and falling edges.

Since the signal injected on the LPTIM external Input1 is also used to clock the LPTIM
kernel logic, there is some initial latency (after the LPTIM is enabled) before the counter
is incremented. More precisely, the first five active edges on the LPTIM external Input1
(after LPTIM is enable) are lost.

For code example, refer to A.12.1: Pulse counter configuration code example.

Low-power timer (LPTIM) RM0367

622/1040 RM0367 Rev 8

24.4.12 Timer enable

The ENABLE bit located in the LPTIM_CR register is used to enable/disable the LPTIM
kernel logic. After setting the ENABLE bit, a delay of two counter clock is needed before the
LPTIM is actually enabled.

The LPTIM_CFGR and LPTIM_IER registers must be modified only when the LPTIM is
disabled.

24.4.13 Encoder mode

This mode allows handling signals from quadrature encoders used to detect angular
position of rotary elements. Encoder interface mode acts simply as an external clock with
direction selection. This means that the counter just counts continuously between 0 and the
auto-reload value programmed into the LPTIM_ARR register (0 up to ARR or ARR down to
0 depending on the direction). Therefore LPTIM_ARR must be configured before starting
the counter. From the two external input signals, Input1 and Input2, a clock signal is
generated to clock the LPTIM counter. The phase between those two signals determines
the counting direction.

The Encoder mode is only available when the LPTIM is clocked by an internal clock source.
The signals frequency on both Input1 and Input2 inputs must not exceed the LPTIM internal
clock frequency divided by 4. This is mandatory in order to guarantee a proper operation of
the LPTIM.

Direction change is signalized by the two Down and Up flags in the LPTIM_ISR register.
Also, an interrupt can be generated for both direction change events if enabled through the
DOWNIE bit.

To activate the Encoder mode the ENC bit has to be set to ‘1’. The LPTIM must first be
configured in Continuous mode.

When Encoder mode is active, the LPTIM counter is modified automatically following the
speed and the direction of the incremental encoder. Therefore, its content always
represents the encoder’s position. The count direction, signaled by the Up and Down flags,
correspond to the rotation direction of the encoder rotor.

According to the edge sensitivity configured using the CKPOL[1:0] bits, different counting
scenarios are possible. The following table summarizes the possible combinations,
assuming that Input1 and Input2 do not switch at the same time.

Table 110. Encoder counting scenarios

Active edge

Level on opposite
signal (Input1 for
Input2, Input2 for

Input1)

Input1 signal Input2 signal

Rising Falling Rising Falling

Rising Edge
High Down No count Up No count

Low Up No count Down No count

Falling Edge
High No count Up No count Down

Low No count Down No count Up

Both Edges
High Down Up Up Down

Low Up Down Down Up

RM0367 Rev 8 623/1040

RM0367 Low-power timer (LPTIM)

633

The following figure shows a counting sequence for Encoder mode where both-edge
sensitivity is configured.

Caution: In this mode the LPTIM must be clocked by an internal clock source, so the CKSEL bit must
be maintained to its reset value which is equal to ‘0’. Also, the prescaler division ratio must
be equal to its reset value which is 1 (PRESC[2:0] bits must be ‘000’).

Figure 206. Encoder mode counting sequence

24.4.14 Debug mode

When the microcontroller enters debug mode (core halted), the LPTIM counter either
continues to work normally or stops, depending on the DBG_LPTIM_STOP configuration bit
in the DBG module.

24.5 LPTIM low-power modes

MS32491V1

T1

Counter

up updown

T2

Table 111. Effect of low-power modes on the LPTIM

Mode Description

Sleep No effect. LPTIM interrupts cause the device to exit Sleep mode.

Stop The LPTIM peripheral is active when it is clocked by LSE or LSI. LPTIM
interrupts cause the device to exit Stop mode

Standby
The LPTIM peripheral is powered down and must be reinitialized after
exiting Standby mode.

Low-power timer (LPTIM) RM0367

624/1040 RM0367 Rev 8

24.6 LPTIM interrupts

The following events generate an interrupt/wake-up event, if they are enabled through the
LPTIM_IER register:

• Compare match

• Auto-reload match (whatever the direction if encoder mode)

• External trigger event

• Autoreload register write completed

• Compare register write completed

• Direction change (encoder mode), programmable (up / down / both).

Note: If any bit in the LPTIM_IER register (Interrupt Enable Register) is set after that its
corresponding flag in the LPTIM_ISR register (Status Register) is set, the interrupt is not
asserted.

24.7 LPTIM registers

The peripheral registers can only be accessed by words (32-bit).

Table 112. Interrupt events

Interrupt event Description

Compare match
Interrupt flag is raised when the content of the Counter register
(LPTIM_CNT) matches the content of the compare register (LPTIM_CMP).

Auto-reload match
Interrupt flag is raised when the content of the Counter register
(LPTIM_CNT) matches the content of the Auto-reload register
(LPTIM_ARR).

External trigger event Interrupt flag is raised when an external trigger event is detected

Auto-reload register
update OK

Interrupt flag is raised when the write operation to the LPTIM_ARR register
is complete.

Compare register
update OK

Interrupt flag is raised when the write operation to the LPTIM_CMP register
is complete.

Direction change

Used in Encoder mode. Two interrupt flags are embedded to signal
direction change:

– UP flag signals up-counting direction change

– DOWN flag signals down-counting direction change.

RM0367 Rev 8 625/1040

RM0367 Low-power timer (LPTIM)

633

24.7.1 LPTIM interrupt and status register (LPTIM_ISR)

Address offset: 0x000

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. DOWN UP
ARR
OK

CMP
OK

EXT
TRIG

ARRM CMPM

r r r r r r r

Bits 31:7 Reserved, must be kept at reset value.

Bit 6 DOWN: Counter direction change up to down

In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has
changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the
LPTIM_ICR register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 5 UP: Counter direction change down to up

In Encoder mode, UP bit is set by hardware to inform application that the counter direction has
changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR
register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 4 ARROK: Autoreload register update OK

ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR
register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF
bit in the LPTIM_ICR register.

Bit 3 CMPOK: Compare register update OK

CMPOK is set by hardware to inform application that the APB bus write operation to the
LPTIM_CMP register has been successfully completed. CMPOK flag can be cleared by writing 1 to
the CMPOKCF bit in the LPTIM_ICR register.

Bit 2 EXTTRIG: External trigger edge event

EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger
input has occurred. If the trigger is ignored because the timer has already started, then this flag is
not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register.

Bit 1 ARRM: Autoreload match

ARRM is set by hardware to inform application that LPTIM_CNT register’s value reached the
LPTIM_ARR register’s value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the
LPTIM_ICR register.

Bit 0 CMPM: Compare match

The CMPM bit is set by hardware to inform application that LPTIM_CNT register value reached the
LPTIM_CMP register’s value. CMPM flag can be cleared by writing 1 to the CMPMCF bit in the
LPTIM_ICR register.

Low-power timer (LPTIM) RM0367

626/1040 RM0367 Rev 8

24.7.2 LPTIM interrupt clear register (LPTIM_ICR)

Address offset: 0x004

Reset value: 0x0000 0000

24.7.3 LPTIM interrupt enable register (LPTIM_IER)

Address offset: 0x008

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DOWN

CF
UPCF

ARRO
KCF

CMPO
KCF

EXTTR
IGCF

ARRM
CF

CMPM
CF

w w w w w w w

Bits 31:7 Reserved, must be kept at reset value.

Bit 6 DOWNCF: Direction change to down clear flag

Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 5 UPCF: Direction change to UP clear flag

Writing 1 to this bit clear the UP flag in the LPTIM_ISR register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 4 ARROKCF: Autoreload register update OK clear flag

Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register

Bit 3 CMPOKCF: Compare register update OK clear flag

Writing 1 to this bit clears the CMPOK flag in the LPTIM_ISR register

Bit 2 EXTTRIGCF: External trigger valid edge clear flag

Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register

Bit 1 ARRMCF: Autoreload match clear flag

Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register

Bit 0 CMPMCF: Compare match clear flag

Writing 1 to this bit clears the CMPM flag in the LPTIM_ISR register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DOWNI

E
UPIE

ARRO
KIE

CMPO
KIE

EXT
TRIGIE

ARRM
IE

CMPM
IE

rw rw rw rw rw rw rw

RM0367 Rev 8 627/1040

RM0367 Low-power timer (LPTIM)

633

Caution: The LPTIM_IER register must only be modified when the LPTIM is disabled (ENABLE bit reset to ‘0’)

24.7.4 LPTIM configuration register (LPTIM_CFGR)

Address offset: 0x00C

Reset value: 0x0000 0000

Bits 31:7 Reserved, must be kept at reset value.

Bit 6 DOWNIE: Direction change to down Interrupt Enable

0: DOWN interrupt disabled
1: DOWN interrupt enabled

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 5 UPIE: Direction change to UP Interrupt Enable

0: UP interrupt disabled
1: UP interrupt enabled

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 4 ARROKIE: Autoreload register update OK Interrupt Enable

0: ARROK interrupt disabled
1: ARROK interrupt enabled

Bit 3 CMPOKIE: Compare register update OK Interrupt Enable

0: CMPOK interrupt disabled
1: CMPOK interrupt enabled

Bit 2 EXTTRIGIE: External trigger valid edge Interrupt Enable

0: EXTTRIG interrupt disabled
1: EXTTRIG interrupt enabled

Bit 1 ARRMIE: Autoreload match Interrupt Enable

0: ARRM interrupt disabled
1: ARRM interrupt enabled

Bit 0 CMPMIE: Compare match Interrupt Enable

0: CMPM interrupt disabled
1: CMPM interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. ENC
COUNT
MODE

PRELOAD WAVPOL WAVE TIMOUT TRIGEN[1:0] Res.

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRIGSEL[2:0] Res. PRESC[2:0] Res. TRGFLT[1:0] Res. CKFLT[1:0] CKPOL[1:0] CKSEL

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 Reserved, must be kept at reset value.

Bits 28:25 Reserved, must be kept at reset value.

Low-power timer (LPTIM) RM0367

628/1040 RM0367 Rev 8

Bit 24 ENC: Encoder mode enable

The ENC bit controls the Encoder mode
0: Encoder mode disabled
1: Encoder mode enabled

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 24.3: LPTIM implementation.

Bit 23 COUNTMODE: counter mode enabled

The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter:
0: the counter is incremented following each internal clock pulse
1: the counter is incremented following each valid clock pulse on the LPTIM external Input1

Bit 22 PRELOAD: Registers update mode

The PRELOAD bit controls the LPTIM_ARR and the LPTIM_CMP registers update modality
0: Registers are updated after each APB bus write access
1: Registers are updated at the end of the current LPTIM period

Bit 21 WAVPOL: Waveform shape polarity

The WAVEPOL bit controls the output polarity
0: The LPTIM output reflects the compare results between LPTIM_CNT and LPTIM_CMP

registers
1: The LPTIM output reflects the inverse of the compare results between LPTIM_CNT and

LPTIM_CMP registers

Bit 20 WAVE: Waveform shape

The WAVE bit controls the output shape
0: Deactivate Set-once mode
1: Activate the Set-once mode

Bit 19 TIMOUT: Timeout enable

The TIMOUT bit controls the Timeout feature
0: A trigger event arriving when the timer is already started will be ignored
1: A trigger event arriving when the timer is already started will reset and restart the counter

Bits 18:17 TRIGEN[1:0]: Trigger enable and polarity

The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the
external trigger option is selected, three configurations are possible for the trigger active edge:
00: software trigger (counting start is initiated by software)
01: rising edge is the active edge
10: falling edge is the active edge
11: both edges are active edges

Bit 16 Reserved, must be kept at reset value.

RM0367 Rev 8 629/1040

RM0367 Low-power timer (LPTIM)

633

Bits 15:13 TRIGSEL[2:0]: Trigger selector

The TRIGSEL bits select the trigger source that will serve as a trigger event for the LPTIM among
the below 8 available sources:
000: lptim_ext_trig0
001: lptim_ext_trig1
010: lptim_ext_trig2
011: lptim_ext_trig3
100: lptim_ext_trig4
101: lptim_ext_trig5
110: lptim_ext_trig6
111: lptim_ext_trig7
See Section 24.4.2: LPTIM trigger mapping for details.

Bit 12 Reserved, must be kept at reset value.

Bits 11:9 PRESC[2:0]: Clock prescaler

The PRESC bits configure the prescaler division factor. It can be one among the following division
factors:
000: /1
001: /2
010: /4
011: /8
100: /16
101: /32
110: /64
111: /128

Bit 8 Reserved, must be kept at reset value.

Bits 7:6 TRGFLT[1:0]: Configurable digital filter for trigger

The TRGFLT value sets the number of consecutive equal samples that should be detected when a
level change occurs on an internal trigger before it is considered as a valid level transition. An
internal clock source must be present to use this feature
00: any trigger active level change is considered as a valid trigger
01: trigger active level change must be stable for at least 2 clock periods before it is considered as

valid trigger.
10: trigger active level change must be stable for at least 4 clock periods before it is considered as

valid trigger.
11: trigger active level change must be stable for at least 8 clock periods before it is considered as

valid trigger.

Bit 5 Reserved, must be kept at reset value.

Low-power timer (LPTIM) RM0367

630/1040 RM0367 Rev 8

Caution: The LPTIM_CFGR register must only be modified when the LPTIM is disabled (ENABLE bit
reset to ‘0’).

24.7.5 LPTIM control register (LPTIM_CR)

Address offset: 0x010

Reset value: 0x0000 0000

Bits 4:3 CKFLT[1:0]: Configurable digital filter for external clock

The CKFLT value sets the number of consecutive equal samples that should be detected when a
level change occurs on an external clock signal before it is considered as a valid level transition. An
internal clock source must be present to use this feature
00: any external clock signal level change is considered as a valid transition
01: external clock signal level change must be stable for at least 2 clock periods before it is

considered as valid transition.
10: external clock signal level change must be stable for at least 4 clock periods before it is

considered as valid transition.
11: external clock signal level change must be stable for at least 8 clock periods before it is

considered as valid transition.

Bits 2:1 CKPOL[1:0]: Clock Polarity

If LPTIM is clocked by an external clock source:

When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active
edge or edges used by the counter:
00:the rising edge is the active edge used for counting.

If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 1 is active.
01:the falling edge is the active edge used for counting

If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 2 is active.
10:both edges are active edges. When both external clock signal edges are considered active ones,

the LPTIM must also be clocked by an internal clock source with a frequency equal to at least
four times the external clock frequency.
If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 3 is active.

11:not allowed

Refer to Section 24.4.13: Encoder mode for more details about Encoder mode sub-modes.

Bit 0 CKSEL: Clock selector

The CKSEL bit selects which clock source the LPTIM will use:
0: LPTIM is clocked by internal clock source (APB clock or any of the embedded oscillators)
1: LPTIM is clocked by an external clock source through the LPTIM external Input1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
CNT
STRT

SNG
STRT

ENA
BLE

rw rw rw

RM0367 Rev 8 631/1040

RM0367 Low-power timer (LPTIM)

633

24.7.6 LPTIM compare register (LPTIM_CMP)

Address offset: 0x014

Reset value: 0x0000 0000

Caution: The LPTIM_CMP register must only be modified when the LPTIM is enabled (ENABLE bit
set to ‘1’).

Bits 31:3 Reserved, must be kept at reset value.

Bit 2 CNTSTRT: Timer start in Continuous mode

This bit is set by software and cleared by hardware.
In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in Continuous mode.
If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the timer in
Continuous mode as soon as an external trigger is detected.
If this bit is set when a single pulse mode counting is ongoing, then the timer will not stop at the next
match between the LPTIM_ARR and LPTIM_CNT registers and the LPTIM counter keeps counting
in Continuous mode.
This bit can be set only when the LPTIM is enabled. It will be automatically reset by hardware.

Bit 1 SNGSTRT: LPTIM start in Single mode

This bit is set by software and cleared by hardware.
In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in single pulse mode.
If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the LPTIM in
single pulse mode as soon as an external trigger is detected.
If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM will stop at the
following match between LPTIM_ARR and LPTIM_CNT registers.
This bit can only be set when the LPTIM is enabled. It will be automatically reset by hardware.

Bit 0 ENABLE: LPTIM enable

The ENABLE bit is set and cleared by software.
0:LPTIM is disabled
1:LPTIM is enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 CMP[15:0]: Compare value

CMP is the compare value used by the LPTIM.

Low-power timer (LPTIM) RM0367

632/1040 RM0367 Rev 8

24.7.7 LPTIM autoreload register (LPTIM_ARR)

Address offset: 0x018

Reset value: 0x0000 0001

Caution: The LPTIM_ARR register must only be modified when the LPTIM is enabled (ENABLE bit
set to ‘1’).

24.7.8 LPTIM counter register (LPTIM_CNT)

Address offset: 0x01C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ARR[15:0]: Auto reload value

ARR is the autoreload value for the LPTIM.
This value must be strictly greater than the CMP[15:0] value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 CNT[15:0]: Counter value

When the LPTIM is running with an asynchronous clock, reading the LPTIM_CNT register may
return unreliable values. So in this case it is necessary to perform two consecutive read accesses
and verify that the two returned values are identical.
It should be noted that for a reliable LPTIM_CNT register read access, two consecutive read
accesses must be performed and compared. A read access can be considered reliable when the
values of the two consecutive read accesses are equal.

RM0367 Rev 8 633/1040

RM0367 Low-power timer (LPTIM)

633

24.7.9 LPTIM register map

The following table summarizes the LPTIM registers.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 113. LPTIM register map and reset values

Offset Register name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
LPTIM_ISR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
D

O
W

N
(1

)

U
P

(1
)

A
R

R
O

K
C

M
P

O
K

E
X

T
T

R
IG

A
R

R
M

C
M

P
M

Reset value 0 0 0 0 0 0 0

0x004
LPTIM_ICR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
D

O
W

N
C

F
(1

)

U
P

C
F

(1
)

A
R

R
O

K
C

F
C

M
P

O
K

C
F

E
X

T
T

R
IG

C
F

A
R

R
M

C
F

C
M

P
M

C
F

Reset value 0 0 0 0 0 0 0

0x008
LPTIM_IER

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
D

O
W

N
IE

(1
)

U
P

IE
(1

)

A
R

R
O

K
IE

C
M

P
O

K
IE

E
X

T
T

R
IG

IE
A

R
R

M
IE

C
M

P
M

IE

Reset value 0 0 0 0 0 0 0

0x00C
LPTIM_CFGR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
E

N
C

(1
)

C
O

U
N

T
M

O
D

E
P

R
E

LO
A

D
W

A
V

E
P

O
L

W
A

V
E

T
IM

O
U

T

T
R

IG
E

N

R
es

.

T
R

IG
S

E
L[

2:
0]

R
es

.

P
R

E
S

C

R
es

.

T
R

G
F

LT

R
es

.

C
K

F
LT

C
K

P
O

L

C
K

S
E

L

Reset value 0

0x010
LPTIM_CR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
C

N
T

S
T

R
T

S
N

G
S

T
R

T
E

N
A

B
LE

Reset value 0 0 0

0x014
LPTIM_CMP

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. CMP[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x018
LPTIM_ARR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0x01C
LPTIM_CNT

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. If LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 24.3: LPTIM implementation.

Independent watchdog (IWDG) RM0367

634/1040 RM0367 Rev 8

25 Independent watchdog (IWDG)

25.1 Introduction

The devices feature an embedded watchdog peripheral that offers a combination of high
safety level, timing accuracy and flexibility of use. The Independent watchdog peripheral
detects and solves malfunctions due to software failure, and triggers system reset when the
counter reaches a given timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails.

The IWDG is best suited for applications that require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. For further information on the window watchdog, refer to Section 26 on page
643.

25.2 IWDG main features

• Free-running downcounter

• Clocked from an independent RC oscillator (can operate in Standby and Stop modes)

• Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes lower than
0x000

– Reset (if watchdog activated) if the downcounter is reloaded outside the window

25.3 IWDG functional description

25.3.1 IWDG block diagram

Figure 207 shows the functional blocks of the independent watchdog module.

Figure 207. Independent watchdog block diagram

1. The register interface is located in the CORE voltage domain. The watchdog function is located in the VDD
voltage domain, still functional in Stop and Standby modes.

IWDG reset
prescaler

IWDG_PR
Prescaler register

IWDG_RLR
Reload register

8-bitLSI
(40 kHz)

IWDG_KR
Key register

CORE

 VDD voltage domain

IWDG_SR
Status register

MS19944V2

12-bit reload value

12-bit downcounter

RM0367 Rev 8 635/1040

RM0367 Independent watchdog (IWDG)

642

When the independent watchdog is started by writing the value 0x0000 CCCC in the IWDG
key register (IWDG_KR), the counter starts counting down from the reset value of 0xFFF.
When it reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0x0000 AAAA is written in the IWDG key register (IWDG_KR), the
IWDG_RLR value is reloaded in the counter and the watchdog reset is prevented.

Once running, the IWDG cannot be stopped.

25.3.2 Window option

The IWDG can also work as a window watchdog by setting the appropriate window in the
IWDG window register (IWDG_WINR).

If the reload operation is performed while the counter is greater than the value stored in the
IWDG window register (IWDG_WINR), then a reset is provided.

The default value of the IWDG window register (IWDG_WINR) is 0x0000 0FFF, so if it is not
updated, the window option is disabled.

As soon as the window value is changed, a reload operation is performed in order to reset
the downcounter to the IWDG reload register (IWDG_RLR) value and ease the cycle
number calculation to generate the next reload.

Configuring the IWDG when the window option is enabled

1. Enable the IWDG by writing 0x0000 CCCC in the IWDG key register (IWDG_KR).

2. Enable register access by writing 0x0000 5555 in the IWDG key register (IWDG_KR).

3. Write the IWDG prescaler by programming IWDG prescaler register (IWDG_PR) from
0 to 7.

4. Write the IWDG reload register (IWDG_RLR).

5. Wait for the registers to be updated (IWDG_SR = 0x0000 0000).

6. Write to the IWDG window register (IWDG_WINR). This automatically refreshes the
counter value in the IWDG reload register (IWDG_RLR).

Note: Writing the window value allows the counter value to be refreshed by the RLR when IWDG
status register (IWDG_SR) is set to 0x0000 0000.

For code example, refer to A.13.2: IWDG configuration with window code example.

Configuring the IWDG when the window option is disabled

When the window option it is not used, the IWDG can be configured as follows:

1. Enable the IWDG by writing 0x0000 CCCC in the IWDG key register (IWDG_KR).

2. Enable register access by writing 0x0000 5555 in the IWDG key register (IWDG_KR).

3. Write the prescaler by programming the IWDG prescaler register (IWDG_PR) from 0 to
7.

4. Write the IWDG reload register (IWDG_RLR).

5. Wait for the registers to be updated (IWDG_SR = 0x0000 0000).

6. Refresh the counter value with IWDG_RLR (IWDG_KR = 0x0000 AAAA).

For code example, refer to A.13.1: IWDG configuration code example.

Independent watchdog (IWDG) RM0367

636/1040 RM0367 Rev 8

25.3.3 Hardware watchdog

If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and generates a reset unless the IWDG key register
(IWDG_KR) is written by the software before the counter reaches end of count or if the
downcounter is reloaded inside the window.

25.3.4 Register access protection

Write access to IWDG prescaler register (IWDG_PR), IWDG reload register (IWDG_RLR)
and IWDG window register (IWDG_WINR) is protected. To modify them, the user must first
write the code 0x0000 5555 in the IWDG key register (IWDG_KR). A write access to this
register with a different value breaks the sequence and register access is protected again.
This is the case of the reload operation (writing 0x0000 AAAA).

A status register is available to indicate that an update of the prescaler or of the
downcounter reload value or of the window value is ongoing.

25.3.5 Debug mode

When the device enters Debug mode (core halted), the IWDG counter either continues to
work normally or stops, depending on the configuration of the corresponding bit in
DBGCMU freeze register.

RM0367 Rev 8 637/1040

RM0367 Independent watchdog (IWDG)

642

25.4 IWDG registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

25.4.1 IWDG key register (IWDG_KR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 KEY[15:0]: Key value (write only, read 0x0000)

These bits must be written by software at regular intervals with the key value 0xAAAA,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 0x5555 to enable access to the IWDG_PR, IWDG_RLR and
IWDG_WINR registers (see Section 25.3.4: Register access protection)
Writing the key value 0xCCCC starts the watchdog (except if the hardware watchdog option
is selected)

Independent watchdog (IWDG) RM0367

638/1040 RM0367 Rev 8

25.4.2 IWDG prescaler register (IWDG_PR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PR[2:0]

rw rw rw

Bits 31:3 Reserved, must be kept at reset value.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected see Section 25.3.4: Register access protection. They
are written by software to select the prescaler divider feeding the counter clock. PVU bit of
the IWDG status register (IWDG_SR) must be reset in order to be able to change the
prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256

Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG
status register (IWDG_SR) is reset.

RM0367 Rev 8 639/1040

RM0367 Independent watchdog (IWDG)

642

25.4.3 IWDG reload register (IWDG_RLR)

Address offset: 0x08

Reset value: 0x0000 0FFF (reset by Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. RL[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 RL[11:0]: Watchdog counter reload value

These bits are write access protected see Register access protection. They are written by
software to define the value to be loaded in the watchdog counter each time the value
0xAAAA is written in the IWDG key register (IWDG_KR). The watchdog counter counts
down from this value. The timeout period is a function of this value and the clock prescaler.
Refer to the datasheet for the timeout information.
The RVU bit in the IWDG status register (IWDG_SR) must be reset to be able to change the
reload value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on it. For this
reason the value read from this register is valid only when the RVU bit in the IWDG
status register (IWDG_SR) is reset.

Independent watchdog (IWDG) RM0367

640/1040 RM0367 Rev 8

25.4.4 IWDG status register (IWDG_SR)

Address offset: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

Note: If several reload, prescaler, or window values are used by the application, it is mandatory to
wait until RVU bit is reset before changing the reload value, to wait until PVU bit is reset
before changing the prescaler value, and to wait until WVU bit is reset before changing the
window value. However, after updating the prescaler and/or the reload/window value it is not
necessary to wait until RVU or PVU or WVU is reset before continuing code execution
except in case of low-power mode entry.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WVU RVU PVU

r r r

Bits 31:3 Reserved, must be kept at reset value.

Bit 2 WVU: Watchdog counter window value update

This bit is set by hardware to indicate that an update of the window value is ongoing. It is
reset by hardware when the reload value update operation is completed in the VDD voltage
domain (takes up to five RC 40 kHz cycles).
Window value can be updated only when WVU bit is reset.

Bit 1 RVU: Watchdog counter reload value update

This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to five RC 40 kHz cycles).
Reload value can be updated only when RVU bit is reset.

Bit 0 PVU: Watchdog prescaler value update

This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to five RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is reset.

RM0367 Rev 8 641/1040

RM0367 Independent watchdog (IWDG)

642

25.4.5 IWDG window register (IWDG_WINR)

Address offset: 0x10

Reset value: 0x0000 0FFF (reset by Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. WIN[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 WIN[11:0]: Watchdog counter window value

These bits are write access protected, see Section 25.3.4, they contain the high limit of the
window value to be compared with the downcounter.
To prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x0
The WVU bit in the IWDG status register (IWDG_SR) must be reset in order to be able to
change the reload value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be valid if a write operation to this register is ongoing. For this reason the value
read from this register is valid only when the WVU bit in the IWDG status register
(IWDG_SR) is reset.

Independent watchdog (IWDG) RM0367

642/1040 RM0367 Rev 8

25.4.6 IWDG register map

The following table gives the IWDG register map and reset values.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 114. IWDG register map and reset values

Offset
Register

name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
IWDG_KR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

KEY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
IWDG_PR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PR[2:0]

Reset value 0 0 0

0x08
IWDG_RLR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RL[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x0C
IWDG_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
V

U

R
V

U

P
V

U

Reset value 0 0 0

0x10
IWDG_WINR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WIN[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

RM0367 Rev 8 643/1040

RM0367 System window watchdog (WWDG)

648

26 System window watchdog (WWDG)

26.1 Introduction

The system window watchdog (WWDG) is used to detect the occurrence of a software fault,
usually generated by external interference or by unforeseen logical conditions, which
causes the application program to abandon its normal sequence. The watchdog circuit
generates an MCU reset on expiry of a programmed time period, unless the program
refreshes the contents of the down-counter before the T6 bit becomes cleared. An MCU
reset is also generated if the 7-bit down-counter value (in the control register) is refreshed
before the down-counter has reached the window register value. This implies that the
counter must be refreshed in a limited window.

The WWDG clock is prescaled from the APB1 clock and has a configurable time-window
that can be programmed to detect abnormally late or early application behavior.

The WWDG is best suited for applications which require the watchdog to react within an
accurate timing window.

26.2 WWDG main features

• Programmable free-running down-counter

• Conditional reset

– Reset (if watchdog activated) when the down-counter value becomes lower than
0x40

– Reset (if watchdog activated) if the down-counter is reloaded outside the window
(see Figure 209)

• Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the down-counter is equal to 0x40.

26.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit down-counter (T[6:0] bits) is decremented from 0x40 to 0x3F (T6 becomes cleared), it
initiates a reset. If the software reloads the counter while the counter is greater than the
value stored in the window register, then a reset is generated.

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value and higher than 0x3F. The value to be stored
in the WWDG_CR register must be between 0xFF and 0xC0.

Refer to Figure 208 for the WWDG block diagram.

System window watchdog (WWDG) RM0367

644/1040 RM0367 Rev 8

26.3.1 WWDG block diagram

Figure 208. Watchdog block diagram

26.3.2 Enabling the watchdog

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the
WWDG_CR register, then it cannot be disabled again except by a reset.

26.3.3 Controlling the down-counter

This down-counter is free-running, counting down even if the watchdog is disabled. When
the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.

The T[5:0] bits contain the number of increments that represent the time delay before the
watchdog produces a reset. The timing varies between a minimum and a maximum value
due to the unknown status of the prescaler when writing to the WWDG_CR register (see
Figure 209). The WWDG configuration register (WWDG_CFR) contains the high limit of the
window: to prevent a reset, the down-counter must be reloaded when its value is lower than
the window register value and greater than 0x3F. Figure 209 describes the window
watchdog process.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

26.3.4 How to program the watchdog timeout

Use the formula in Figure 209 to calculate the WWDG timeout.

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.

MS47214V1

7-bit DownCounter (CNT)

WWDG

pclk

A
P

B
 b

us

÷ 4096 ÷ 2WDGTB

Write to WWDG_CR

CMP = 1 when
T[6:0] > W[6:0]

C
M

P
T[6:0]

preload

WWDG_CR

wwdg_out_rst

wwdg_it
= 0x40 ?

readback

WWDG_CFR
W[6:0]

cnt_out

Register interface

WWDG_SR

T6T[6:0]

WDGA

EWI

Logic

EWIF

RM0367 Rev 8 645/1040

RM0367 System window watchdog (WWDG)

648

Figure 209. Window watchdog timing diagram

The formula to calculate the timeout value is given by:

where:

tWWDG: WWDG timeout

tPCLK: APB1 clock period measured in ms

4096: value corresponding to internal divider

As an example, if APB1 frequency is 32 MHz, WDGTB[1:0] is set to 3 and T[5:0] is set to 63:

Refer to the datasheet for the minimum and maximum values of tWWDG.

For code example, refer to A.14.1: WWDG configuration code example.

MS47266V1

W[6:0]

0x3F

0x41
0x40
0x3F

wwdg_ewit

wwdg_rst

Refresh not allowed Refresh allowed

Time

T[6:0]

Tpclk x 4096 x 2WDGTB

CNT DownCounter

T6 bit

EWIF = 0

tWWDG tPCLK1 4096 2
WDGTB[1:0]

T 5:0[] 1+()×××= ms()

tWWDG 1 32000⁄() 4096 2
3×× 63 1+()× 65.54ms= =

System window watchdog (WWDG) RM0367

646/1040 RM0367 Rev 8

26.3.5 Debug mode

When the device enters debug mode (processor halted), the WWDG counter either
continues to work normally or stops, depending on the configuration bit in DBG module. For
more details refer to Section 33.9.2: Debug support for timers, watchdog and I2C.

26.4 WWDG interrupts

The early wakeup interrupt (EWI) can be used if specific safety operations or data logging
must be performed before the actual reset is generated. The EWI interrupt is enabled by
setting the EWI bit in the WWDG_CFR register. When the down-counter reaches the value
0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR)
can be used to trigger specific actions (such as communications or data logging) before
resetting the device.

In some applications the EWI interrupt can be used to manage a software system check
and/or system recovery/graceful degradation, without generating a WWDG reset. In this
case the corresponding ISR has to reload the WWDG counter to avoid the WWDG reset,
then trigger the required actions.

The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note: When the EWI interrupt cannot be served (e.g. due to a system lock in a higher priority task)
the WWDG reset is eventually generated.

26.5 WWDG registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by halfwords (16-bit) or words (32-bit).

26.5.1 WWDG control register (WWDG_CR)

Address offset: 0x000

Reset value: 0x0000 007F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. WDGA T[6:0]

rs rw rw rw rw rw rw rw

RM0367 Rev 8 647/1040

RM0367 System window watchdog (WWDG)

648

26.5.2 WWDG configuration register (WWDG_CFR)

Address offset: 0x004

Reset value: 0x0000 007F

26.5.3 WWDG status register (WWDG_SR)

Address offset: 0x008

Reset value: 0x0000 0000

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 WDGA: Activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter, decremented every
(4096 x 2WDGTB[1:0]) PCLK cycles. A reset is produced when it is decremented from 0x40 to
0x3F (T6 becomes cleared).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. EWI WDGTB[1:0] W[6:0]

rs rw rw rw rw rw rw rw rw rw

Bits 31:10 Reserved, must be kept at reset value.

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is
only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:
00: CK counter clock (PCLK div 4096) div 1
01: CK counter clock (PCLK div 4096) div 2
10: CK counter clock (PCLK div 4096) div 4
11: CK counter clock (PCLK div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared with the down-counter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWIF

rc_w0

System window watchdog (WWDG) RM0367

648/1040 RM0367 Rev 8

26.5.4 WWDG register map

The following table gives the WWDG register map and reset values.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 EWIF: Early wakeup interrupt flag

This bit is set by hardware when the counter has reached the value 0x40. It must be cleared
by software by writing 0. Writing 1 has no effect. This bit is also set if the interrupt is not
enabled.

Table 115. WWDG register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
WWDG_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
D

G
A

T[6:0]

Reset value 0 1 1 1 1 1 1 1

0x004
WWDG_CFR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
W

I

W
D

G
T

B
1

W
D

G
T

B
0

W[6:0]

Reset value 0 0 0 1 1 1 1 1 1 1

0x008
WWDG_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
W

IF

Reset value 0

RM0367 Rev 8 649/1040

RM0367 Real-time clock (RTC)

692

27 Real-time clock (RTC)

27.1 Introduction

The RTC provides an automatic wakeup to manage all low-power modes.

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar with programmable alarm interrupts.

The RTC includes also a periodic programmable wakeup flag with interrupt capability.

Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day
of week), date (day of month), month, and year, expressed in binary coded decimal format
(BCD). The sub-seconds value is also available in binary format.

Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed
automatically. Daylight saving time compensation can also be performed.

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.

A digital calibration feature is available to compensate for any deviation in crystal oscillator
accuracy.

After RTC domain reset, all RTC registers are protected against possible parasitic write
accesses.

As long as the supply voltage remains in the operating range, the RTC never stops,
regardless of the device status (Run mode, low-power mode or under reset).

Real-time clock (RTC) RM0367

650/1040 RM0367 Rev 8

27.2 RTC main features

The RTC unit main features are the following (see Figure 210: RTC block diagram):

• Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of
week), date (day of month), month, and year.

• Daylight saving compensation programmable by software.

• Programmable alarm with interrupt function. The alarm can be triggered by any
combination of the calendar fields.

• Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup
interrupt.

• Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.

• Accurate synchronization with an external clock using the subsecond shift feature.

• Digital calibration circuit (periodic counter correction): 0.95 ppm accuracy, obtained in a
calibration window of several seconds

• Time-stamp function for event saving

• Tamper detection event with configurable filter and internal pull-up

• Maskable interrupts/events:

– Alarm A

– Alarm B

– Wakeup interrupt

– Time-stamp

– Tamper detection

• 5 backup registers.

27.3 RTC implementation

Table 116. RTC implementation(1)

1. X = supported, ‘-’= not supported.

RTC Features Category 3 Category 5

Periodic wakeup timer X X

RTC_TAMP1 - -

RTC_TAMP2 X X

RTC_TAMP3 - X

Alarm A X X

Alarm B X X

RM0367 Rev 8 651/1040

RM0367 Real-time clock (RTC)

692

27.4 RTC functional description

27.4.1 RTC block diagram

Figure 210. RTC block diagram

1. RTC_TAMP3 is available only on category 5 devices.

MS33460V5

Calendar

HSE
prescaled

LSE (32.768 Hz)

LSI

Synchronous
15-bit prescaler
(default = 256)

ALRAF

RTC_PRER

Backup registers
and RTC tamper
control registers

TAMPxF

Time stamp
registers TSF

Ouput
control

Smooth
calibration

=

RTC_PRERRTC_CALR

Shadow registers
RTC_TR,
RTC_DR

RTC_ALRMAR
RTC_ALRMASSR

Shadow register
RTC_SSR

RTC_ALRMBR
RTC_ALRMBSSR

= ALRBF

Prescaler
2, 4, 8, 16

WUCKSEL[1:0]

16-bit wakeup
auto reload timer

RTC_WUTR

WUTF

OSEL[1:0]

RTC_TAMP2

RTC_TAMP1

RTC_TS

RTC_REFIN

RTCCLK

Asynchronous
7-bit prescaler
(default = 128)

ck_apre
(default 256 Hz)

ck_spre
(default 1 Hz)

Alarm A

Alarm B

RTC_OUT

RTC_CALIB

RTC_ALARM

RTC_TAMP3

Real-time clock (RTC) RM0367

652/1040 RM0367 Rev 8

The RTC includes:

• Two alarms

• Up to three tamper events from I/Os

– Tamper detection erases the backup registers.

• One timestamp event from I/O

• Tamper event detection can generate a timestamp event

• 5 x 32-bit backup registers

• Output functions: RTC_OUT which selects one of the following two outputs:

– RTC_CALIB: 512 Hz or 1Hz clock output (with an LSE frequency of 32.768 kHz).
This output is enabled by setting the COE bit in the RTC_CR register.

– RTC_ALARM: This output is enabled by configuring the OSEL[1:0] bits in the
RTC_CR register which select the Alarm A, Alarm B or Wakeup outputs.

• Input functions:

– RTC_TS: timestamp event

– RTC_TAMP1: tamper1 event detection

– RTC_TAMP2: tamper2 event detection

– RTC_TAMP3: tamper3 event detection (only on category 5 devices).

– RTC_REFIN: 50 or 60 Hz reference clock input

27.4.2 GPIOs controlled by the RTC

RTC_OUT, RTC_TS and RTC_TAMP1 are mapped on the same pin (PC13). PC13 pin
configuration is controlled by the RTC, whatever the PC13 GPIO configuration, except for
the RTC_ALARM output open-drain mode.

The output mechanism follows the priority order shown in Table 117.

Table 117. RTC pin PC13 configuration(1)

PC13 Pin
configuration
and function

OSEL[1:0]
bits

(RTC_ALARM
output
enable)

COE bit
(RTC_CALIB

output
enable)

RTC_OUT

_RMP
bit

RTC_ALARM
_TYPE

bit

TAMP1E bit
(RTC_TAMP1

input
enable)

TSE bit

(RTC_TS
input

enable)

RTC_ALARM
output OD

01 or 10 or 11 Don’t care
0

0 Don’t care Don’t care
1

RTC_ALARM
output PP

01 or 10 or 11 Don’t care
0

1 Don’t care Don’t care
1

RTC_CALIB
output PP

00 1 0 Don’t care Don’t care Don’t care

RTC_TAMP1
input floating

00 0 Don’t care

Don’t care 1 000 1
1

01 or 10 or 11 0

RM0367 Rev 8 653/1040

RM0367 Real-time clock (RTC)

692

In addition, it is possible to remap RTC_OUT on PB14 pin thanks to RTC_OUT_RMP bit. In
this case it is mandatory to configure PB14 GPIO registers as alternate function with the
correct type. The remap functions are shown in Table 118.

27.4.3 Clock and prescalers

The RTC clock source (RTCCLK) is selected through the clock controller among the LSE
clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock
source configuration, refer to Section 7: Reset and clock control (RCC).

RTC_TS and
RTC_TAMP1
input floating

00 0 Don’t care

Don’t care 1 100 1
1

01 or 10 or 11 0

RTC_TS input
floating

00 0 Don’t care

Don’t care 0 100 1
1

01 or 10 or 11 0

Wakeup pin or
Standard
GPIO

00 0 Don’t care

Don’t care 0 000 1
1

01 or 10 or 11 0

1. OD: open drain; PP: push-pull.

Table 117. RTC pin PC13 configuration(1) (continued)

PC13 Pin
configuration
and function

OSEL[1:0]
bits

(RTC_ALARM
output
enable)

COE bit
(RTC_CALIB

output
enable)

RTC_OUT

_RMP
bit

RTC_ALARM
_TYPE

bit

TAMP1E bit
(RTC_TAMP1

input
enable)

TSE bit

(RTC_TS
input

enable)

Table 118. RTC_OUT mapping

OSEL[1:0] bits

(RTC_ALARM
output enable)

COE bit
(RTC_CALIB output

enable)

RTC_OUT_RMP
bit

RTC_OUT on PC13 RTC_OUT on PB14

00 0

0

- -

00 1 RTC_CALIB -

01 or 10 or 11 Don’t care RTC_ALARM -

00 0

1

- -

00 1 - RTC_CALIB

01 or 10 or 11 0 - RTC_ALARM

01 or 10 or 11 1 RTC_ALARM RTC_CALIB

Real-time clock (RTC) RM0367

654/1040 RM0367 Rev 8

A programmable prescaler stage generates a 1 Hz clock which is used to update the
calendar. To minimize power consumption, the prescaler is split into 2 programmable
prescalers (see Figure 210: RTC block diagram):

• A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the
RTC_PRER register.

• A 15-bit synchronous prescaler configured through the PREDIV_S bits of the
RTC_PRER register.

Note: When both prescalers are used, it is recommended to configure the asynchronous prescaler
to a high value to minimize consumption.

The asynchronous prescaler division factor is set to 128, and the synchronous division
factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency
of 32.768 kHz.

The minimum division factor is 1 and the maximum division factor is 222.

This corresponds to a maximum input frequency of around 4 MHz.

fck_apre is given by the following formula:

The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it
reaches 0, RTC_SSR is reloaded with the content of PREDIV_S.

fck_spre is given by the following formula:

The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit
wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload
timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous
prescaler (see Section 27.4.6: Periodic auto-wakeup for details).

27.4.4 Real-time clock and calendar

The RTC calendar time and date registers are accessed through shadow registers which
are synchronized with PCLK (APB clock). They can also be accessed directly in order to
avoid waiting for the synchronization duration.

• RTC_SSR for the subseconds

• RTC_TR for the time

• RTC_DR for the date

Every RTCCLK period, the current calendar value is copied into the shadow registers, and
the RSF bit of RTC_ISR register is set (see Section 27.7.4: RTC initialization and status
register (RTC_ISR)). The copy is not performed in Stop and Standby mode. When exiting
these modes, the shadow registers are updated after up to 1 RTCCLK period.

When the application reads the calendar registers, it accesses the content of the shadow
registers. It is possible to make a direct access to the calendar registers by setting the

fCK_APRE

fRTCCLK

PREDIV_A 1+
---------------------------------------=

fCK_SPRE

fRTCCLK

PREDIV_S 1+() PREDIV_A 1+()×
--=

RM0367 Rev 8 655/1040

RM0367 Real-time clock (RTC)

692

BYPSHAD control bit in the RTC_CR register. By default, this bit is cleared, and the user
accesses the shadow registers.

When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the
frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock
(fRTCCLK).

The shadow registers are reset by system reset.

27.4.5 Programmable alarms

The RTC unit provides programmable alarm: Alarm A and Alarm B. The description below is
given for Alarm A, but can be translated in the same way for Alarm B.

The programmable alarm function is enabled through the ALRAE bit in the RTC_CR
register. The ALRAF is set to 1 if the calendar subseconds, seconds, minutes, hours, date
or day match the values programmed in the alarm registers RTC_ALRMASSR and
RTC_ALRMAR. Each calendar field can be independently selected through the MSKx bits
of the RTC_ALRMAR register, and through the MASKSSx bits of the RTC_ALRMASSR
register. The alarm interrupt is enabled through the ALRAIE bit in the RTC_CR register.

Caution: If the seconds field is selected (MSK1 bit reset in RTC_ALRMAR), the synchronous
prescaler division factor set in the RTC_PRER register must be at least 3 to ensure correct
behavior.

Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the
RTC_ALARM output. RTC_ALARM output polarity can be configured through bit POL the
RTC_CR register.

27.4.6 Periodic auto-wakeup

The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter.
The wakeup timer range can be extended to 17 bits.

The wakeup function is enabled through the WUTE bit in the RTC_CR register.

The wakeup timer clock input can be:

• RTC clock (RTCCLK) divided by 2, 4, 8, or 16.

When RTCCLK is LSE(32.768kHz), this allows to configure the wakeup interrupt period
from 122 µs to 32 s, with a resolution down to 61 µs.

• ck_spre (usually 1 Hz internal clock)

When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
around 36 hours with one-second resolution. This large programmable time range is
divided in 2 parts:

– from 1s to 18 hours when WUCKSEL [2:1] = 10

– and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
added to the 16-bit counter current value.When the initialization sequence is
complete (see Programming the wakeup timer on page 657), the timer starts
counting down.When the wakeup function is enabled, the down-counting remains
active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in
the RTC_ISR register, and the wakeup counter is automatically reloaded with its
reload value (RTC_WUTR register value).

The WUTF flag must then be cleared by software.

Real-time clock (RTC) RM0367

656/1040 RM0367 Rev 8

When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR
register, it can exit the device from low-power modes.

The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been
enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM output polarity can be
configured through the POL bit in the RTC_CR register.

System reset, as well as low-power modes (Sleep, Stop and Standby) have no influence on
the wakeup timer.

27.4.7 RTC initialization and configuration

RTC register access

The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC
register accesses except on read accesses to calendar shadow registers when
BYPSHAD=0.

RTC register write protection

After system reset, the RTC registers are protected against parasitic write access by
clearing the DBP bit in the PWR_CR register (refer to the power control section). DBP bit
must be set in order to enable RTC registers write access.

After RTC domain reset, all the RTC registers are write-protected. Writing to the RTC
registers is enabled by writing a key into the Write Protection register, RTC_WPR.

The following steps are required to unlock the write protection on all the RTC registers
except for RTC_TAMPCR, RTC_BKPxR, RTC_OR and RTC_ISR[13:8].

1. Write ‘0xCA’ into the RTC_WPR register.

2. Write ‘0x53’ into the RTC_WPR register.

Writing a wrong key reactivates the write protection.

The protection mechanism is not affected by system reset.

Calendar initialization and configuration

To program the initial time and date calendar values, including the time format and the
prescaler configuration, the following sequence is required:

1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the
calendar counter is stopped and its value can be updated.

2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when
INITF is set to 1. It takes around 2 RTCCLK clock cycles (due to clock synchronization).

3. To generate a 1 Hz clock for the calendar counter, program both the prescaler factors in
RTC_PRER register.

4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR),
and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR
register.

5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is
then automatically loaded and the counting restarts after 4 RTCCLK clock cycles.

When the initialization sequence is complete, the calendar starts counting.

RM0367 Rev 8 657/1040

RM0367 Real-time clock (RTC)

692

Note: After a system reset, the application can read the INITS flag in the RTC_ISR register to
check if the calendar has been initialized or not. If this flag equals 0, the calendar has not
been initialized since the year field is set at its RTC domain reset default value (0x00).

To read the calendar after initialization, the software must first check that the RSF flag is set
in the RTC_ISR register.

For code example, refer to A.15.1: RTC calendar configuration code example.

Daylight saving time

The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP
of the RTC_CR register.

Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one
single operation without going through the initialization procedure.

In addition, the software can use the BKP bit to memorize this operation.

Programming the alarm

A similar procedure must be followed to program or update the programmable alarms. The
procedure below is given for Alarm A but can be translated in the same way for Alarm B.

1. Clear ALRAE in RTC_CR to disable Alarm A.

2. Program the Alarm A registers (RTC_ALRMASSR/RTC_ALRMAR).

3. Set ALRAE in the RTC_CR register to enable Alarm A again.

Note: Each change of the RTC_CR register is taken into account after around 2 RTCCLK clock
cycles due to clock synchronization.

For code example, refer to A.15.2: RTC alarm configuration code example.

Programming the wakeup timer

The following sequence is required to configure or change the wakeup timer auto-reload
value (WUT[15:0] in RTC_WUTR):

1. Clear WUTE in RTC_CR to disable the wakeup timer.

2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload
counter and to WUCKSEL[2:0] bits is allowed. It takes around 2 RTCCLK clock cycles
(due to clock synchronization).

3. Program the wakeup auto-reload value WUT[15:0], and the wakeup clock selection
(WUCKSEL[2:0] bits in RTC_CR). Set WUTE in RTC_CR to enable the timer again.
The wakeup timer restarts down-counting. The WUTWF bit is cleared up to 2 RTCCLK
clock cycles after WUTE is cleared, due to clock synchronization.

For code example, refer to A.15.3: RTC WUT configuration code example.

27.4.8 Reading the calendar

When BYPSHAD control bit is cleared in the RTC_CR register

To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB1
clock frequency (fPCLK) must be equal to or greater than seven times the RTC clock
frequency (fRTCCLK). This ensures a secure behavior of the synchronization mechanism.

Real-time clock (RTC) RM0367

658/1040 RM0367 Rev 8

If the APB1 clock frequency is less than seven times the RTC clock frequency, the software
must read the calendar time and date registers twice. If the second read of the RTC_TR
gives the same result as the first read, this ensures that the data is correct. Otherwise a third
read access must be done. In any case the APB1 clock frequency must never be lower than
the RTC clock frequency.

The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the
RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every
RTCCLK cycle. To ensure consistency between the 3 values, reading either RTC_SSR or
RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is
read. In case the software makes read accesses to the calendar in a time interval smaller
than 1 RTCCLK period: RSF must be cleared by software after the first calendar read, and
then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR
and RTC_DR registers.

After waking up from low-power mode (Stop or Standby), RSF must be cleared by software.
The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and
RTC_DR registers.

The RSF bit must be cleared after wakeup and not before entering low-power mode.

After a system reset, the software must wait until RSF is set before reading the RTC_SSR,
RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to
their default values.

After an initialization (refer to Calendar initialization and configuration on page 656): the
software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR
registers.

After synchronization (refer to Section 27.4.10: RTC synchronization): the software must
wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers.

For code example, refer to A.15.4: RTC read calendar code example.

When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow
registers)

Reading the calendar registers gives the values from the calendar counters directly, thus
eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting
from low-power modes (STOP or Standby), since the shadow registers are not updated
during these modes.

When the BYPSHAD bit is set to 1, the results of the different registers might not be
coherent with each other if an RTCCLK edge occurs between two read accesses to the
registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge
occurs during the read operation. The software must read all the registers twice, and then
compare the results to confirm that the data is coherent and correct. Alternatively, the
software can just compare the two results of the least-significant calendar register.

Note: While BYPSHAD=1, instructions which read the calendar registers require one extra APB
cycle to complete.

27.4.9 Resetting the RTC

The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the
RTC status register (RTC_ISR) are reset to their default values by all available system reset
sources.

RM0367 Rev 8 659/1040

RM0367 Real-time clock (RTC)

692

On the contrary, the following registers are reset to their default values by a RTC domain
reset and are not affected by a system reset: the RTC current calendar registers, the RTC
control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration register
(RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC timestamp registers
(RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper configuration register
(RTC_TAMPCR), the RTC backup registers (RTC_BKPxR), the wakeup timer register
(RTC_WUTR), the Alarm A and Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR and
RTC_ALRMBSSR/RTC_ALRMBR), and the Option register (RTC_OR).

In addition, when it is clocked by the LSE, the RTC keeps on running under system reset if
the reset source is different from the RTC domain reset one (refer to the RTC clock section
of the Reset and clock controller for details on the list of RTC clock sources not affected by
system reset). When a RTC domain reset occurs, the RTC is stopped and all the RTC
registers are set to their reset values.

27.4.10 RTC synchronization

The RTC can be synchronized to a remote clock with a high degree of precision. After
reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the
precise offset between the times being maintained by the remote clock and the RTC. The
RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a
second using RTC_SHIFTR.

RTC_SSR contains the value of the synchronous prescaler counter. This allows one to
calculate the exact time being maintained by the RTC down to a resolution of
1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by
increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution
allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF.

However, increasing PREDIV_S means that PREDIV_A must be decreased in order to
maintain the synchronous prescaler output at 1 Hz. In this way, the frequency of the
asynchronous prescaler output increases, which may increase the RTC dynamic
consumption.

The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing
to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a
resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the
SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock.
If at the same time the ADD1S bit is set, this results in adding one second and at the same
time subtracting a fraction of second, so this will advance the clock.

Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that
no overflow will occur.

As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF
flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by
hardware as soon as the shift operation has completed.

Caution: This synchronization feature is not compatible with the reference clock detection feature:
firmware must not write to RTC_SHIFTR when REFCKON=1.

27.4.11 RTC reference clock detection

The update of the RTC calendar can be synchronized to a reference clock, RTC_REFIN,
which is usually the mains frequency (50 or 60 Hz). The precision of the RTC_REFIN
reference clock should be higher than the 32.768 kHz LSE clock. When the RTC_REFIN

Real-time clock (RTC) RM0367

660/1040 RM0367 Rev 8

detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the
LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update
frequency (1 Hz).

Each 1 Hz clock edge is compared to the nearest RTC_REFIN clock edge (if one is found
within a given time window). In most cases, the two clock edges are properly aligned. When
the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts
the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism,
the calendar becomes as precise as the reference clock.

The RTC detects if the reference clock source is present by using the 256 Hz clock
(ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time
window around each of the calendar updates (every 1 s). The window equals 7 ck_apre
periods when detecting the first reference clock edge. A smaller window of 3 ck_apre
periods is used for subsequent calendar updates.

Each time the reference clock is detected in the window, the synchronous prescaler which
outputs the ck_spre clock is forced to reload. This has no effect when the reference clock
and the 1 Hz clock are aligned because the prescaler is being reloaded at the same
moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little
for them to be aligned with the reference clock.

If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window),
the calendar is updated continuously based solely on the LSE clock. The RTC then waits for
the reference clock using a large 7 ck_apre period detection window centered on the
ck_spre edge.

When the RTC_REFIN detection is enabled, PREDIV_A and PREDIV_S must be set to their
default values:

• PREDIV_A = 0x007F

• PREVID_S = 0x00FF

Note: RTC_REFIN clock detection is not available in Standby mode.

27.4.12 RTC smooth digital calibration

The RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a
range from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using
series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These
adjustments are fairly well distributed so that the RTC is well calibrated even when observed
over short durations of time.

The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or
32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit
counter, cal_cnt[19:0], clocked by RTCCLK.

The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles
to be masked during the 32-second cycle:

• Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32-

second cycle.

• Setting CALM[1] to 1 causes two additional cycles to be masked

• Setting CALM[2] to 1 causes four additional cycles to be masked

• and so on up to CALM[8] set to 1 which causes 256 clocks to be masked.

RM0367 Rev 8 661/1040

RM0367 Real-time clock (RTC)

692

Note: CALM[8:0] (RTC_CALR) specifies the number of RTCCLK pulses to be masked during the
32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked
during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1
causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1
causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000);
and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800).

While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine
resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP
to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means
that 512 clocks are added during every 32-second cycle.

Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can
be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm
to +488.5 ppm with a resolution of about 0.954 ppm.

The formula to calculate the effective calibrated frequency (FCAL) given the input frequency
(FRTCCLK) is as follows:

FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)]

Calibration when PREDIV_A<3

The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in
RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are
set to a value less than 3, CALP is ignored and the calibration operates as if CALP was
equal to 0.

To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value
(PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock
cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result,
between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to
244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits.

With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor
of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other
interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather
than 32767 (8 less).

If PREDIV_S is reduced in this way, the formula given the effective frequency of the

calibrated input clock is as follows:

FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)]

In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct
setting if RTCCLK is exactly 32768.00 Hz.

Verifying the RTC calibration

RTC precision is ensured by measuring the precise frequency of RTCCLK and calculating
the correct CALM value and CALP values. An optional 1 Hz output is provided to allow
applications to measure and verify the RTC precision.

Measuring the precise frequency of the RTC over a limited interval can result in a
measurement error of up to 2 RTCCLK clock cycles over the measurement period,
depending on how the digital calibration cycle is aligned with the measurement period.

Real-time clock (RTC) RM0367

662/1040 RM0367 Rev 8

However, this measurement error can be eliminated if the measurement period is the same
length as the calibration cycle period. In this case, the only error observed is the error due to
the resolution of the digital calibration.

• By default, the calibration cycle period is 32 seconds.

Using this mode and measuring the accuracy of the 1 Hz output over exactly 32 seconds
guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32 seconds, due
to the limitation of the calibration resolution).

• CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration
cycle period.

In this case, the RTC precision can be measured during 16 seconds with a maximum error
of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the calibration
resolution is reduced, the long term RTC precision is also reduced to 0.954 ppm: CALM[0]
bit is stuck at 0 when CALW16 is set to 1.

• CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration
cycle period.

In this case, the RTC precision can be measured during 8 seconds with a maximum error of
1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also reduced to
1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1.

Re-calibration on-the-fly

The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by
using the follow process:

1. Poll the RTC_ISR/RECALPF (re-calibration pending flag).

2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then
automatically set to 1

3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration
settings take effect.

For code example, refer to A.15.5: RTC calibration code example.

27.4.13 Time-stamp function

Time-stamp is enabled by setting the TSE bit of RTC_CR register to 1.

The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR)
when a time-stamp event is detected on the RTC_TS pin.

When a time-stamp event occurs, the time-stamp flag bit (TSF) in RTC_ISR register is set.

By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a time-stamp
event occurs.

If a new time-stamp event is detected while the time-stamp flag (TSF) is already set, the
time-stamp overflow flag (TSOVF) flag is set and the time-stamp registers (RTC_TSTR and
RTC_TSDR) maintain the results of the previous event.

RM0367 Rev 8 663/1040

RM0367 Real-time clock (RTC)

692

Note: TSF is set 2 ck_apre cycles after the time-stamp event occurs due to synchronization
process.

There is no delay in the setting of TSOVF. This means that if two time-stamp events are
close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is
recommended to poll TSOVF only after TSF has been set.

Caution: If a time-stamp event occurs immediately after the TSF bit is supposed to be cleared, then
both TSF and TSOVF bits are set.To avoid masking a time-stamp event occurring at the
same moment, the application must not write ‘0’ into TSF bit unless it has already read it to
‘1’.

Optionally, a tamper event can cause a time-stamp to be recorded. See the description of
the TAMPTS control bit in Section 27.7.16: RTC tamper configuration register
(RTC_TAMPCR).

27.4.14 Tamper detection

The RTC_TAMPx input events can be configured either for edge detection, or for level
detection with filtering.

The tamper detection can be configured for the following purposes:

• erase the RTC backup registers (default configuration)

• generate an interrupt, capable to wakeup from Stop and Standby modes

• generate a hardware trigger for the low-power timers

RTC backup registers

The backup registers (RTC_BKPxR) are not reset by system reset or when the device
wakes up from Standby mode.

The backup registers are reset when a tamper detection event occurs (see Section 27.7.20:
RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 663)
except if the TAMPxNOERASE bit is set, or if TAMPxMF is set in the RTC_TAMPCR
register.

Tamper detection initialization

Each input can be enabled by setting the corresponding TAMPxE bits to 1 in the
RTC_TAMPCR register.

Each RTC_TAMPx tamper detection input is associated with a flag TAMPxF in the RTC_ISR
register.

When TAMPxMF is cleared:

The TAMPxF flag is asserted after the tamper event on the pin, with the latency provided
below:

• 3 ck_apre cycles when TAMPFLT differs from 0x0 (Level detection with filtering)

• 3 ck_apre cycles when TAMPTS=1 (Timestamp on tamper event)

• No latency when TAMPFLT=0x0 (Edge detection) and TAMPTS=0

A new tamper occurring on the same pin during this period and as long as TAMPxF is set
cannot be detected.

When TAMPxMF is set:

Real-time clock (RTC) RM0367

664/1040 RM0367 Rev 8

A new tamper occurring on the same pin cannot be detected during the latency described
above and 2.5 ck_rtc additional cycles.

By setting the TAMPIE bit in the RTC_TAMPCR register, an interrupt is generated when a
tamper detection event occurs (when TAMPxF is set). Setting TAMPIE is not allowed when
one or more TAMPxMF is set.

When TAMPIE is cleared, each tamper pin event interrupt can be individually enabled by
setting the corresponding TAMPxIE bit in the RTC_TAMPCR register. Setting TAMPxIE is
not allowed when the corresponding TAMPxMF is set.

Trigger output generation on tamper event

The tamper event detection can be used as trigger input by the low-power timers.

When TAMPxMF bit in cleared in RTC_TAMPCR register, the TAMPxF flag must be cleared
by software in order to allow a new tamper detection on the same pin.

When TAMPxMF bit is set, the TAMPxF flag is masked, and kept cleared in RTC_ISR
register. This configuration allows to trig automatically the low-power timers in Stop mode,
without requiring the system wakeup to perform the TAMPxF clearing. In this case, the
backup registers are not cleared.

Timestamp on tamper event

With TAMPTS set to ‘1’, any tamper event causes a timestamp to occur. In this case, either
the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as if a normal
timestamp event occurs. The affected tamper flag register TAMPxF is set at the same time
that TSF or TSOVF is set.

Edge detection on tamper inputs

If the TAMPFLT bits are “00”, the RTC_TAMPx pins generate tamper detection events when
either a rising edge or a falling edge is observed depending on the corresponding
TAMPxTRG bit. The internal pull-up resistors on the RTC_TAMPx inputs are deactivated
when edge detection is selected.

Caution: When using the edge detection, it is recommended to check by software the tamper pin
level just after enabling the tamper detection (by reading the GPIO registers), and before
writing sensitive values in the backup registers, to ensure that an active edge did not occur
before enabling the tamper event detection.
When TAMPFLT="00" and TAMPxTRG = 0 (rising edge detection), a tamper event may be
detected by hardware if the tamper input is already at high level before enabling the tamper
detection.

After a tamper event has been detected and cleared, the RTC_TAMPx should be disabled
and then re-enabled (TAMPxE set to 1) before re-programming the backup registers
(RTC_BKPxR). This prevents the application from writing to the backup registers while the
RTC_TAMPx input value still indicates a tamper detection. This is equivalent to a level
detection on the RTC_TAMPx input.

Level detection with filtering on RTC_TAMPx inputs

Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper
detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive
samples are observed at the level designated by the TAMPxTRG bits.

RM0367 Rev 8 665/1040

RM0367 Real-time clock (RTC)

692

The RTC_TAMPx inputs are precharged through the I/O internal pull-up resistance before
its state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the
precharge is determined by the TAMPPRCH bits, allowing for larger capacitances on the
RTC_TAMPx inputs.

The trade-off between tamper detection latency and power consumption through the pull-up
can be optimized by using TAMPFREQ to determine the frequency of the sampling for level
detection.

Note: Refer to the datasheets for the electrical characteristics of the pull-up resistors.

For code example, refer to A.15.6: RTC tamper and time stamp configuration code example.

27.4.15 Calibration clock output

When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the
RTC_CALIB device output.

If the COSEL bit in the RTC_CR register is reset and PREDIV_A = 0x7F, the RTC_CALIB
frequency is fRTCCLK/64. This corresponds to a calibration output at 512 Hz for an RTCCLK
frequency at 32.768 kHz. The RTC_CALIB duty cycle is irregular: there is a light jitter on
falling edges. It is therefore recommended to use rising edges.

When COSEL is set and “PREDIV_S+1” is a non-zero multiple of 256 (i.e: PREDIV_S[7:0] =
0xFF), the RTC_CALIB frequency is fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a
calibration output at 1 Hz for prescaler default values (PREDIV_A = Ox7F, PREDIV_S =
0xFF), with an RTCCLK frequency at 32.768 kHz. The 1 Hz output is affected when a shift
operation is on going and may toggle during the shift operation (SHPF=1).

Note: When COSEL bit is cleared, the RTC_CALIB output is the output of the 6th stage of the
asynchronous prescaler.

When COSEL bit is set, the RTC_CALIB output is the output of the 8th stage of the
synchronous prescaler.

For code example, refer to A.15.7: RTC tamper and time stamp code example.

27.4.16 Alarm output

The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm output
RTC_ALARM, and to select the function which is output. These functions reflect the
contents of the corresponding flags in the RTC_ISR register.

The polarity of the output is determined by the POL control bit in RTC_CR so that the
opposite of the selected flag bit is output when POL is set to 1.

Alarm output

The RTC_ALARM pin can be configured in output open drain or output push-pull using the
control bit RTC_ALARM_TYPE in the RTC_OR register.

Note: Once the RTC_ALARM output is enabled, it has priority over RTC_CALIB (COE bit is don't
care and must be kept cleared).

Real-time clock (RTC) RM0367

666/1040 RM0367 Rev 8

27.5 RTC low-power modes

27.6 RTC interrupts

All RTC interrupts are connected to the EXTI controller. Refer to Section 13.5: EXTI
registers.

To enable RTC interrupt(s), the following sequence is required:

1. Configure and enable the NVIC line(s) corresponding to the RTC event(s) in interrupt
mode and select the rising edge sensitivity.

2. Configure and enable the RTC IRQ channel in the NVIC.

3. Configure the RTC to generate RTC interrupt(s).

Table 119. Effect of low-power modes on RTC

Mode Description

Sleep
No effect
RTC interrupts cause the device to exit the Sleep mode.

Stop
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC timestamp event, and RTC Wakeup cause the device to exit the Stop
mode.

Standby
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC timestamp event, and RTC Wakeup cause the device to exit the
Standby mode.

Table 120. Interrupt control bits

Interrupt event Event flag
Enable
control

bit

Exit from
Sleep
mode

Exit from
Stop
mode

Exit from
Standby

mode

Alarm A ALRAF ALRAIE Yes Yes(1)

1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI.

Yes(1)

Alarm B ALRBF ALRBIE Yes Yes(1) Yes(1)

RTC_TS input (timestamp) TSF TSIE Yes Yes(1) Yes(1)

RTC_TAMP1 input detection TAMP1F TAMPIE Yes Yes(1) Yes(1)

RTC_TAMP2 input detection TAMP2F TAMPIE Yes Yes(1) Yes(1)

Wakeup timer interrupt WUTF WUTIE Yes Yes(1) Yes(1)

RM0367 Rev 8 667/1040

RM0367 Real-time clock (RTC)

692

27.7 RTC registers

Refer to Section 1.2 on page 52 of the reference manual for a list of abbreviations used in
register descriptions.

The peripheral registers can be accessed by words (32-bit).

27.7.1 RTC time register (RTC_TR)

The RTC_TR is the calendar time shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration on page 656 and
Reading the calendar on page 657.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x00

RTC domain reset value: 0x0000 0000

System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. MNT[2:0] MNU[3:0] Res. ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bits 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

Real-time clock (RTC) RM0367

668/1040 RM0367 Rev 8

27.7.2 RTC date register (RTC_DR)

The RTC_DR is the calendar date shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration on page 656 and
Reading the calendar on page 657.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x04

RTC domain reset value: 0x0000 2101

System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. YT[3:0] YU[3:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[2:0] MT MU[3:0] Res. Res. DT[1:0] DU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:20 YT[3:0]: Year tens in BCD format

Bits 19:16 YU[3:0]: Year units in BCD format

Bits 15:13 WDU[2:0]: Week day units

000: forbidden
001: Monday
...
111: Sunday

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU[3:0]: Month units in BCD format

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bits 3:0 DU[3:0]: Date units in BCD format

RM0367 Rev 8 669/1040

RM0367 Real-time clock (RTC)

692

27.7.3 RTC control register (RTC_CR)

Address offset: 0x08

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. COE OSEL[1:0] POL COSEL BKP SUB1H ADD1H

rw rw rw rw rw rw w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSIE WUTIE ALRBIE ALRAIE TSE WUTE ALRBE ALRAE Res. FMT
BYPS
HAD

REFCKON TSEDGE WUCKSEL[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 COE: Calibration output enable

This bit enables the RTC_CALIB output

0: Calibration output disabled
1: Calibration output enabled

Bits 22:21 OSEL[1:0]: Output selection

These bits are used to select the flag to be routed to RTC_ALARM output

00: Output disabled
01: Alarm A output enabled
10: Alarm B output enabled
11: Wakeup output enabled

Bit 20 POL: Output polarity

This bit is used to configure the polarity of RTC_ALARM output

0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0])
1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]).

Bit 19 COSEL: Calibration output selection

When COE=1, this bit selects which signal is output on RTC_CALIB.

0: Calibration output is 512 Hz (with default prescaler setting)
1: Calibration output is 1 Hz (with default prescaler setting)

These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values
(PREDIV_A=127 and PREDIV_S=255). Refer to Section 27.4.15: Calibration clock output

Bit 18 BKP: Backup

This bit can be written by the user to memorize whether the daylight saving time change has
been performed or not.

Bit 17 SUB1H: Subtract 1 hour (winter time change)

When this bit is set, 1 hour is subtracted to the calendar time if the current hour is not 0. This
bit is always read as 0.

Setting this bit has no effect when current hour is 0.

0: No effect
1: Subtracts 1 hour to the current time. This can be used for winter time change outside
initialization mode.

Real-time clock (RTC) RM0367

670/1040 RM0367 Rev 8

Bit 16 ADD1H: Add 1 hour (summer time change)

When this bit is set, 1 hour is added to the calendar time. This bit is always read as 0.

0: No effect
1: Adds 1 hour to the current time. This can be used for summer time change outside
initialization mode.

Bit 15 TSIE: Time-stamp interrupt enable

0: Time-stamp Interrupt disable
1: Time-stamp Interrupt enable

Bit 14 WUTIE: Wakeup timer interrupt enable

0: Wakeup timer interrupt disabled
1: Wakeup timer interrupt enabled

Bit 13 ALRBIE: Alarm B interrupt enable

0: Alarm B Interrupt disable
1: Alarm B Interrupt enable

Bit 12 ALRAIE: Alarm A interrupt enable

0: Alarm A interrupt disabled
1: Alarm A interrupt enabled

Bit 11 TSE: timestamp enable

0: timestamp disable
1: timestamp enable

Bit 10 WUTE: Wakeup timer enable

0: Wakeup timer disabled
1: Wakeup timer enabled

Note: When the wakeup timer is disabled, wait for WUTWF=1 before enabling it again.

Bit 9 ALRBE: Alarm B enable

0: Alarm B disabled
1: Alarm B enabled

Bit 8 ALRAE: Alarm A enable

0: Alarm A disabled
1: Alarm A enabled

Bit 7 Reserved, must be kept at reset value.

Bit 6 FMT: Hour format

0: 24 hour/day format
1: AM/PM hour format

Bit 5 BYPSHAD: Bypass the shadow registers

0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from
the shadow registers, which are updated once every two RTCCLK cycles.
1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken
directly from the calendar counters.

Note: If the frequency of the APB1 clock is less than seven times the frequency of RTCCLK,
BYPSHAD must be set to ‘1’.

RM0367 Rev 8 671/1040

RM0367 Real-time clock (RTC)

692

Note: Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1).

WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when
WUCKSEL[2:1 = 11].

Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR
WUTWF bit = 1.

It is recommended not to change the hour during the calendar hour increment as it could
mask the incrementation of the calendar hour.

ADD1H and SUB1H changes are effective in the next second.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Caution: TSE must be reset when TSEDGE is changed to avoid spuriously setting of TSF.

Bit 4 REFCKON: RTC_REFIN reference clock detection enable (50 or 60 Hz)

0: RTC_REFIN detection disabled
1: RTC_REFIN detection enabled

Note: PREDIV_S must be 0x00FF.

Bit 3 TSEDGE: Time-stamp event active edge

0: RTC_TS input rising edge generates a time-stamp event
1: RTC_TS input falling edge generates a time-stamp event
TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting.

Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection

000: RTC/16 clock is selected
001: RTC/8 clock is selected
010: RTC/4 clock is selected
011: RTC/2 clock is selected
10x: ck_spre (usually 1 Hz) clock is selected
11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
(see note below)

Real-time clock (RTC) RM0367

672/1040 RM0367 Rev 8

27.7.4 RTC initialization and status register (RTC_ISR)

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 656.

Address offset: 0x0C

RTC domain reset value: 0x0000 0007

System reset: not affected except INIT, INITF, and RSF bits which are cleared to ‘0’

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RECALPF

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP3F TAMP2F TAMP1F TSOVF TSF WUTF ALRBF ALRAF INIT INITF RSF INITS SHPF WUTWF
ALRB
WF

ALRAWF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r r

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration settings
are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly.

Bit 15 TAMP3F: RTC_TAMP3 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3
input.
It is cleared by software writing 0

Bit 14 TAMP2F: RTC_TAMP2 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2
input.

It is cleared by software writing 0

Bit 13 TAMP1F: RTC_TAMP1 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP1
input.

It is cleared by software writing 0

Bit 12 TSOVF: Time-stamp overflow flag

This flag is set by hardware when a time-stamp event occurs while TSF is already set.

This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a time-
stamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Time-stamp flag

This flag is set by hardware when a time-stamp event occurs.

This flag is cleared by software by writing 0.

Bit 10 WUTF: Wakeup timer flag

This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.

RM0367 Rev 8 673/1040

RM0367 Real-time clock (RTC)

692

Bit 9 ALRBF: Alarm B flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm B register (RTC_ALRMBR).
This flag is cleared by software by writing 0.

Bit 8 ALRAF: Alarm A flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm A register (RTC_ALRMAR).

This flag is cleared by software by writing 0.

Bit 7 INIT: Initialization mode

0: Free running mode
1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and
prescaler register (RTC_PRER). Counters are stopped and start counting from the new
value when INIT is reset.

Bit 6 INITF: Initialization flag

When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler
registers can be updated.

0: Calendar registers update is not allowed
1: Calendar registers update is allowed

Bit 5 RSF: Registers synchronization flag

This bit is set by hardware each time the calendar registers are copied into the shadow
registers (RTC_SSR, RTC_TR and RTC_DR). This bit is cleared by hardware in initialization
mode, while a shift operation is pending (SHPF=1), or when in bypass shadow register mode
(BYPSHAD=1). This bit can also be cleared by software.

It is cleared either by software or by hardware in initialization mode.

0: Calendar shadow registers not yet synchronized
1: Calendar shadow registers synchronized

Bit 4 INITS: Initialization status flag

This bit is set by hardware when the calendar year field is different from 0 (RTC domain reset
state).

0: Calendar has not been initialized
1: Calendar has been initialized

Bit 3 SHPF: Shift operation pending

0: No shift operation is pending
1: A shift operation is pending

This flag is set by hardware as soon as a shift operation is initiated by a write to the
RTC_SHIFTR register. It is cleared by hardware when the corresponding shift operation has
been executed. Writing to the SHPF bit has no effect.

Real-time clock (RTC) RM0367

674/1040 RM0367 Rev 8

Note: The bits ALRAF, ALRBF, WUTF and TSF are cleared 2 APB clock cycles after programming
them to 0.

Bit 2 WUTWF: Wakeup timer write flag

This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in
RTC_CR, and is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The
wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set.
0: Wakeup timer configuration update not allowed
1: Wakeup timer configuration update allowed

Bit 1 ALRBWF: Alarm B write flag

This bit is set by hardware when Alarm B values can be changed, after the ALRBE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm B update not allowed
1: Alarm B update allowed

Bit 0 ALRAWF: Alarm A write flag

This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has
been set to 0 in RTC_CR.

It is cleared by hardware in initialization mode.

0: Alarm A update not allowed
1: Alarm A update allowed

RM0367 Rev 8 675/1040

RM0367 Real-time clock (RTC)

692

27.7.5 RTC prescaler register (RTC_PRER)

This register must be written in initialization mode only. The initialization must be performed
in two separate write accesses. Refer to Calendar initialization and configuration on
page 656.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x10

RTC domain reset value: 0x007F 00FF

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PREDIV_A[6:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. PREDIV_S[14:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor

This is the asynchronous division factor:
ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)

Bit 15 Reserved, must be kept at reset value.

Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor

This is the synchronous division factor:

ck_spre frequency = ck_apre frequency/(PREDIV_S+1)

Real-time clock (RTC) RM0367

676/1040 RM0367 Rev 8

27.7.6 RTC wakeup timer register (RTC_WUTR)

This register can be written only when WUTWF is set to 1 in RTC_ISR.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x14

RTC domain reset value: 0x0000 FFFF

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits

When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0]
+ 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the
RTC_CR register
When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively
becomes WUT[16] the most-significant bit to be reloaded into the timer.
The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting
WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden.

RM0367 Rev 8 677/1040

RM0367 Real-time clock (RTC)

692

27.7.7 RTC alarm A register (RTC_ALRMAR)

This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x1C

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm A date mask

0: Alarm A set if the date/day match
1: Date/day don’t care in Alarm A comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format.

Bits 27:24 DU[3:0]: Date units or day in BCD format.

Bit 23 MSK3: Alarm A hours mask

0: Alarm A set if the hours match
1: Hours don’t care in Alarm A comparison

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 MSK2: Alarm A minutes mask

0: Alarm A set if the minutes match
1: Minutes don’t care in Alarm A comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 MSK1: Alarm A seconds mask

0: Alarm A set if the seconds match
1: Seconds don’t care in Alarm A comparison

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

Real-time clock (RTC) RM0367

678/1040 RM0367 Rev 8

27.7.8 RTC alarm B register (RTC_ALRMBR)

This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x20

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm B date mask

0: Alarm B set if the date and day match
1: Date and day don’t care in Alarm B comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format

Bits 27:24 DU[3:0]: Date units or day in BCD format

Bit 23 MSK3: Alarm B hours mask

0: Alarm B set if the hours match
1: Hours don’t care in Alarm B comparison

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 MSK2: Alarm B minutes mask

0: Alarm B set if the minutes match
1: Minutes don’t care in Alarm B comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bits 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 MSK1: Alarm B seconds mask

0: Alarm B set if the seconds match
1: Seconds don’t care in Alarm B comparison

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

RM0367 Rev 8 679/1040

RM0367 Real-time clock (RTC)

692

27.7.9 RTC write protection register (RTC_WPR)

Address offset: 0x24

Reset value: 0x0000 0000

27.7.10 RTC sub second register (RTC_SSR)

Address offset: 0x28

RTC domain reset value: 0x0000 0000

System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. KEY[7:0]

w w w w w w w w

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 KEY[7:0]: Write protection key

This byte is written by software.

Reading this byte always returns 0x00.

Refer to RTC register write protection for a description of how to unlock RTC register write
protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 SS[15:0]: Sub second value

SS[15:0] is the value in the synchronous prescaler counter. The fraction of a second is given by
the formula below:

Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1)

Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct
time/date is one second less than as indicated by RTC_TR/RTC_DR.

Real-time clock (RTC) RM0367

680/1040 RM0367 Rev 8

27.7.11 RTC shift control register (RTC_SHIFTR)

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x2C

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADD1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SUBFS[14:0]

w w w w w w w w w w w w w w w

Bit 31 ADD1S: Add one second

0: No effect
1: Add one second to the clock/calendar

This bit is write only and is always read as zero. Writing to this bit has no effect when a shift
operation is pending (when SHPF=1, in RTC_ISR).

This function is intended to be used with SUBFS (see description below) in order to effectively
add a fraction of a second to the clock in an atomic operation.

Bits 30:15 Reserved, must be kept at reset value.

Bits 14:0 SUBFS[14:0]: Subtract a fraction of a second

These bits are write only and is always read as zero. Writing to this bit has no effect when a
shift operation is pending (when SHPF=1, in RTC_ISR).

The value which is written to SUBFS is added to the synchronous prescaler counter. Since this
counter counts down, this operation effectively subtracts from (delays) the clock by:

Delay (seconds) = SUBFS / (PREDIV_S + 1)

A fraction of a second can effectively be added to the clock (advancing the clock) when the
ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by:

Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))).

Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be
sure that the shadow registers have been updated with the shifted time.

RM0367 Rev 8 681/1040

RM0367 Real-time clock (RTC)

692

27.7.12 RTC timestamp time register (RTC_TSTR)

The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

Address offset: 0x30

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PM HT[1:0] HU[3:0]

r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. MNT[2:0] MNU[3:0] Res. ST[2:0] SU[3:0]

r r r r r r r r r r r r r r

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

Real-time clock (RTC) RM0367

682/1040 RM0367 Rev 8

27.7.13 RTC timestamp date register (RTC_TSDR)

The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

Address offset: 0x34

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[2:0] MT MU[3:0] Res. Res. DT[1:0] DU[3:0]

r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:13 WDU[2:0]: Week day units

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU[3:0]: Month units in BCD format

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bits 3:0 DU[3:0]: Date units in BCD format

RM0367 Rev 8 683/1040

RM0367 Real-time clock (RTC)

692

27.7.14 RTC time-stamp sub second register (RTC_TSSSR)

The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the
RTC_ISR/TSF bit is reset.

Address offset: 0x38

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 SS[15:0]: Sub second value

SS[15:0] is the value of the synchronous prescaler counter when the timestamp event
occurred.

Real-time clock (RTC) RM0367

684/1040 RM0367 Rev 8

27.7.15 RTC calibration register (RTC_CALR)

This register is write protected. The write access procedure is described in RTC register
write protection on page 656.

Address offset: 0x3C

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CALP CALW8
CALW

16
Res. Res. Res. Res. CALM[8:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bit 15 CALP: Increase frequency of RTC by 488.5 ppm

0: No RTCCLK pulses are added.
1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by
488.5 ppm).

This feature is intended to be used in conjunction with CALM, which lowers the frequency of
the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of RTCCLK
pulses added during a 32-second window is calculated as follows: (512 * CALP) - CALM.

Refer to Section 27.4.12: RTC smooth digital calibration.

Bit 14 CALW8: Use an 8-second calibration cycle period

When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected.

Note: CALM[1:0] are stuck at “00” when CALW8=’1’. Refer to Section 27.4.12: RTC smooth
digital calibration.

Bit 13 CALW16: Use a 16-second calibration cycle period

When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected.This bit must
not be set to ‘1’ if CALW8=1.

Note: CALM[0] is stuck at ‘0’ when CALW16=’1’. Refer to Section 27.4.12: RTC smooth
digital calibration.

Bits 12:9 Reserved, must be kept at reset value.

Bits 8:0 CALM[8:0]: Calibration minus

The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32
seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar
with a resolution of 0.9537 ppm.

To increase the frequency of the calendar, this feature should be used in conjunction with
CALP. See Section 27.4.12: RTC smooth digital calibration on page 660.

RM0367 Rev 8 685/1040

RM0367 Real-time clock (RTC)

692

27.7.16 RTC tamper configuration register (RTC_TAMPCR)

Address offset: 0x40

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res.
TAMP3

MF

TAMP3
NO

ERASE

TAMP3
IE

TAMP2
MF

TAMP2
NO

ERASE

TAMP2
IE

TAMP1
MF

TAMP1
NO

ERASE

TAMP1
IE

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP
PUDIS

TAMPPRCH
[1:0]

TAMPFLT[1:0] TAMPFREQ[2:0]
TAMP

TS
TAMP3

TRG
TAMP3

E
TAMP2

TRG
TAMP2

E
TAMPI

E
TAMP1

TRG
TAMP1

E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 TAMP3MF: Tamper 3 mask flag

0: Tamper 3 event generates a trigger event and TAMP3F must be cleared by software to
allow next tamper event detection.
1: Tamper 3 event generates a trigger event. TAMP3F is masked and internally cleared by
hardware. The backup registers are not erased.

Note: The Tamper 3 interrupt must not be enabled when TAMP3MF is set.

Bit 23 TAMP3NOERASE: Tamper 3 no erase

0: Tamper 3 event erases the backup registers.
1: Tamper 3 event does not erase the backup registers.

Bit 22 TAMP3IE: Tamper 3 interrupt enable

0: Tamper 3 interrupt is disabled if TAMPIE = 0.
1: Tamper 3 interrupt enabled.

Bit 21 TAMP2MF: Tamper 2 mask flag

0: Tamper 2 event generates a trigger event and TAMP2F must be cleared by software to
allow next tamper event detection.
1: Tamper 2 event generates a trigger event. TAMP2F is masked and internally cleared by
hardware. The backup registers are not erased.

Note: The Tamper 2 interrupt must not be enabled when TAMP2MF is set.

Bit 20 TAMP2NOERASE: Tamper 2 no erase

0: Tamper 2 event erases the backup registers.
1: Tamper 2 event does not erase the backup registers.

Bit 19 TAMP2IE: Tamper 2 interrupt enable

0: Tamper 2 interrupt is disabled if TAMPIE = 0.
1: Tamper 2 interrupt enabled.

Bit 18 TAMP1MF: Tamper 1 mask flag

0: Tamper 1 event generates a trigger event and TAMP1F must be cleared by software to
allow next tamper event detection.
1: Tamper 1 event generates a trigger event. TAMP1F is masked and internally cleared by
hardware.The backup registers are not erased.

Note: The Tamper 1 interrupt must not be enabled when TAMP1MF is set.

Real-time clock (RTC) RM0367

686/1040 RM0367 Rev 8

Bit 17 TAMP1NOERASE: Tamper 1 no erase

0: Tamper 1 event erases the backup registers.
1: Tamper 1 event does not erase the backup registers.

Bit 16 TAMP1IE: Tamper 1 interrupt enable

0: Tamper 1 interrupt is disabled if TAMPIE = 0.

1: Tamper 1 interrupt enabled.

Bit 15 TAMPPUDIS: RTC_TAMPx pull-up disable

This bit determines if each of the RTC_TAMPx pins are precharged before each sample.

0: Precharge RTC_TAMPx pins before sampling (enable internal pull-up)
1: Disable precharge of RTC_TAMPx pins.

Bits 14:13 TAMPPRCH[1:0]: RTC_TAMPx precharge duration

These bit determines the duration of time during which the pull-up/is activated before each
sample. TAMPPRCH is valid for each of the RTC_TAMPx inputs.

0x0: 1 RTCCLK cycle
0x1: 2 RTCCLK cycles
0x2: 4 RTCCLK cycles
0x3: 8 RTCCLK cycles

Bits 12:11 TAMPFLT[1:0]: RTC_TAMPx filter count

These bits determines the number of consecutive samples at the specified level (TAMP*TRG)
needed to activate a Tamper event. TAMPFLT is valid for each of the RTC_TAMPx inputs.

0x0: Tamper event is activated on edge of RTC_TAMPx input transitions to the active level
(no internal pull-up on RTC_TAMPx input).
0x1: Tamper event is activated after 2 consecutive samples at the active level.
0x2: Tamper event is activated after 4 consecutive samples at the active level.
0x3: Tamper event is activated after 8 consecutive samples at the active level.

Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency

Determines the frequency at which each of the RTC_TAMPx inputs are sampled.

0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz)
0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz)
0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz)
0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz)
0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz)
0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz)
0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz)
0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz)

Bit 7 TAMPTS: Activate timestamp on tamper detection event

0: Tamper detection event does not cause a timestamp to be saved
1: Save timestamp on tamper detection event

TAMPTS is valid even if TSE=0 in the RTC_CR register.

Bit 6 TAMP3TRG: Active level for RTC_TAMP3 input

if TAMPFLT ≠ 00:
0: RTC_TAMP3 input staying low triggers a tamper detection event.
1: RTC_TAMP3 input staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: RTC_TAMP3 input rising edge triggers a tamper detection event.
1: RTC_TAMP3 input falling edge triggers a tamper detection event.

RM0367 Rev 8 687/1040

RM0367 Real-time clock (RTC)

692

Caution: When TAMPFLT = 0, TAMPxE must be reset when TAMPxTRG is changed to avoid
spuriously setting TAMPxF.

Bit 5 TAMP3E: RTC_TAMP3 detection enable

0: RTC_TAMP3 input detection disabled
1: RTC_TAMP3 input detection enabled

Bit 4 TAMP2TRG: Active level for RTC_TAMP2 input

if TAMPFLT != 00:
0: RTC_TAMP2 input staying low triggers a tamper detection event.
1: RTC_TAMP2 input staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: RTC_TAMP2 input rising edge triggers a tamper detection event.
1: RTC_TAMP2 input falling edge triggers a tamper detection event.

Bit 3 TAMP2E: RTC_TAMP2 input detection enable

0: RTC_TAMP2 detection disabled
1: RTC_TAMP2 detection enabled

Bit 2 TAMPIE: Tamper interrupt enable

0: Tamper interrupt disabled
1: Tamper interrupt enabled.

Note: This bit enables the interrupt for all tamper pins events, whatever TAMPxIE level. If this
bit is cleared, each tamper event interrupt can be individually enabled by setting
TAMPxIE.

Bit 1 TAMP1TRG: Active level for RTC_TAMP1 input

If TAMPFLT != 00

0: RTC_TAMP1 input staying low triggers a tamper detection event.
1: RTC_TAMP1 input staying high triggers a tamper detection event.

if TAMPFLT = 00:

0: RTC_TAMP1 input rising edge triggers a tamper detection event.
1: RTC_TAMP1 input falling edge triggers a tamper detection event.

Bit 0 TAMP1E: RTC_TAMP1 input detection enable

0: RTC_TAMP1 detection disabled
1: RTC_TAMP1 detection enabled

Real-time clock (RTC) RM0367

688/1040 RM0367 Rev 8

27.7.17 RTC alarm A sub second register (RTC_ALRMASSR)

This register can be written only when ALRAE is reset in RTC_CR register, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 656

Address offset: 0x44

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. MASKSS[3:0] Res. Res. Res. Res. Res. Res. Res. Res.

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SS[14:0]

rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit

0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared.
2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared.
3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared.
...
12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared.
13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared.
14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared.
15: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.

Bits 23:15 Reserved, must be kept at reset value.

Bits 14:0 SS[14:0]: Sub seconds value

This value is compared with the contents of the synchronous prescaler counter to determine if
Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared.

RM0367 Rev 8 689/1040

RM0367 Real-time clock (RTC)

692

27.7.18 RTC alarm B sub second register (RTC_ALRMBSSR)

This register can be written only when ALRBE is reset in RTC_CR register, or in initialization
mode.

This register is write protected.The write access procedure is described in Section : RTC
register write protection.

Address offset: 0x48

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. MASKSS[3:0] Res. Res. Res. Res. Res. Res. Res. Res.

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SS[14:0]

rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit

0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared.
0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared.
0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared.
...
0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared.
0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared.
0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared.
0xF: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.

Bits 23:15 Reserved, must be kept at reset value.

Bits 14:0 SS[14:0]: Sub seconds value

This value is compared with the contents of the synchronous prescaler counter to determine
if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared.

Real-time clock (RTC) RM0367

690/1040 RM0367 Rev 8

27.7.19 RTC option register (RTC_OR)

Address offset: 0x4C

RTC domain reset value: 0x0000 0000

System reset: not affected

27.7.20 RTC backup registers (RTC_BKPxR)

Address offset: 0x50 to 0x60

RTC domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
RTC_
OUT_
RMP

RTC_
ALARM
_TYPE

rw rw

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 RTC_OUT_RMP: RTC_OUT remap

Setting this bit allows to remap the RTC outputs on PB14 as follows:
RTC_OUT_RMP = ‘0’:
If OSEL/= ‘00’: RTC_ALARM is output on PC13
If OSEL= ‘00’ and COE = ‘1’: RTC_CALIB is output on PC13
RTC_OUT_RMP = ‘1’:
If OSEL /= ‘00’ and COE = ‘0’: RTC_ALARM is output on PB14
If OSEL = ‘00’ and COE = ‘1’: RTC_CALIB is output on PB14
If OSEL /= ‘00’ and COE = ‘1’: RTC_CALIB is output on PB14 and RTC_ALARM is output
on PC13.

Bit 0 RTC_ALARM_TYPE: RTC_ALARM output type on PC13

This bit is set and cleared by software
0: RTC_ALARM, when mapped on PC13, is open-drain output
1: RTC_ALARM, when mapped on PC13, is push-pull output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BKP[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BKP[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:0 BKP[31:0]

The application can write or read data to and from these registers.

RM0367 Rev 8 691/1040

RM0367 Real-time clock (RTC)

692

27.7.21 RTC register map

Table 121. RTC register map and reset values

Offset
Register

name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
RTC_TR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
M

H
T

[1
:0

]

HU[3:0]

R
es

.

MNT[2:0] MNU[3:0]

R
es

.

ST[2:0] SU[3:0]

Reset value 0

0x04
RTC_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

YT[3:0] YU[3:0] WDU[2:0] M
T MU[3:0]

R
es

.

R
es

.

D
T

[1
:0

]

DU[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0x08
RTC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
O

E

O
S

E
L

[1
:0

]

P
O

L

C
O

S
E

L

B
K

P

S
U

B
1

H

A
D

D
1H

T
S

IE

W
U

T
IE

A
LR

B
IE

A
LR

A
IE

T
S

E

W
U

T
E

A
L

R
B

E

A
L

R
A

E

R
es

.

F
M

T

B
Y

P
S

H
A

D

R
E

F
C

K
O

N

T
S

E
D

G
E

W
U

C
K

S
E

L
[2

:0
]

Reset value 0

0x0C
RTC_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

C
A

LP
F

TA
M

P
3

F

.T
A

M
P

2
F

TA
M

P
1

F

T
S

O
V

F

T
S

F

W
U

T
F

A
LR

B
F

A
LR

A
F

IN
IT

IN
IT

F

R
S

F

IN
IT

S

S
H

P
F

W
U

T
 W

F

A
LR

B
W

F

A
L

R
A

W
F

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x10
RTC_PRER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PREDIV_A[6:0] PREDIV_S[14:0]

Reset value 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0x14
RTC_WUTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WUT[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x1C
RTC_ALRMAR

M
S

K
4

W
D

S
E

L

D
T

[1
:0

]

DU[3:0]

M
S

K
3

P
M

H
T

[1
:0

]

HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
1

ST[2:0] SU[3:0]

Reset value 0

0x20
RTC_ALRMBR

M
S

K
4

W
D

S
E

L

D
T

[1
:0

]

DU[3:0]

M
S

K
3

P
M

H
T

[1
:0

]

HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
2

ST[2:0] SU[3:0]

Reset value 0

0x24
RTC_WPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

KEY

Reset value 0 0 0 0 0 0 0 0

0x28
RTC_SSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
RTC_SHIFTR

A
D

D
1

S

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SUBFS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30
RTC_TSTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
M

H
T

[1
:0

]

HU[3:0]

R
es

.

M
N

T
[2

:0
]

MNU[3:0]

R
es

.

ST[2:0] SU[3:0]

Reset value 0

Real-time clock (RTC) RM0367

692/1040 RM0367 Rev 8

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x34
RTC_TSDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WDU[1:0] M
T MU[3:0]

R
es

.

R
es

.

D
T

[1
:0

]

DU[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
RTC_TSSSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
RTC_ CALR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
A

L
P

C
A

LW
8

C
A

LW
1

6

R
es

.

R
es

.

R
es

.

R
es

.

CALM[8:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x40
RTC_TAMPCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
A

M
P

3
M

F

T
A

M
P

3
N

O
E

R
A

S
E

T
A

M
P

3I
E

T
A

M
P

2
M

F

T
A

M
P

2
N

O
E

R
A

S
E

T
A

M
P

2I
E

T
A

M
P

1
M

F

T
A

M
P

1
N

O
E

R
A

S
E

T
A

M
P

1I
E

TA
M

P
P

U
D

IS

TA
M

P
P

R
C

H
[1

:0
]

TA
M

P
F

LT
[1

:0
]

TA
M

P
F

R
E

Q
[2

:0
]

TA
M

P
T

S

TA
M

P
3

T
R

G

TA
M

P
3

E

TA
M

P
2

T
R

G

.T
A

M
P

2
E

.T
A

M
P

IE

TA
M

P
1

T
R

G

TA
M

P
1

E

Reset value 0

0x44

RTC_
ALRMASSR R

es
.

R
es

.

R
es

.

R
es

. MASKSS
[3:0] R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48

RTC_
ALRMBSSR R

es
.

R
es

.

R
es

.

R
es

. MASKSS
[3:0] R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
RTC_ OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
T

C
_O

U
T

_R
M

P

R
T

C
_

A
L

A
R

M
_T

Y
P

E

Reset value 0 0

0x50
to 0x60

RTC_BKP0R BKP[31:0]

Reset value 0

to
RTC_BKP4R

BKP[31:0]

Reset value 0

Table 121. RTC register map and reset values (continued)

Offset
Register

name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 693/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28 Inter-integrated circuit (I2C) interface

28.1 Introduction

The I2C (inter-integrated circuit) bus interface handles communications between the
microcontroller and the serial I2C bus. It provides multimaster capability, and controls all I2C
bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm),
Fast-mode (Fm) and Fast-mode Plus (Fm+).

It is also SMBus (system management bus) and PMBus (power management bus)
compatible.

DMA can be used to reduce CPU overload.

28.2 I2C main features

• I2C bus specification rev03 compatibility:

– Slave and master modes

– Multimaster capability

– Standard-mode (up to 100 kHz)

– Fast-mode (up to 400 kHz)

– Fast-mode Plus (up to 1 MHz)

– 7-bit and 10-bit addressing mode

– Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask)

– All 7-bit addresses acknowledge mode

– General call

– Programmable setup and hold times

– Easy to use event management

– Optional clock stretching

– Software reset

• 1-byte buffer with DMA capability

• Programmable analog and digital noise filters

Inter-integrated circuit (I2C) interface RM0367

694/1040 RM0367 Rev 8

The following additional features are also available depending on the product
implementation (see Section 28.3: I2C implementation):

• SMBus specification rev 3.0 compatibility:

– Hardware PEC (packet error checking) generation and verification with ACK
control

– Command and data acknowledge control

– Address resolution protocol (ARP) support

– Host and Device support

– SMBus alert

– Timeouts and idle condition detection

• PMBus rev 1.3 standard compatibility

• Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming

• Wakeup from Stop mode on address match.

28.3 I2C implementation

This manual describes the full set of features implemented in I2C1, I2C3. I2C2 supports a
smaller set of features, but is otherwise identical to I2C1/I2C3. The differences are listed
below.

28.4 I2C functional description

In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to
1 MHz) I2C bus.

This interface can also be connected to a SMBus with the data pin (SDA) and clock pin
(SCL).

Table 122. STM32L0x3 I2C features

I2C features(1) I2C1 I2C2 I2C3

7-bit addressing mode X X X

10-bit addressing mode X X X

Standard-mode (up to 100 kbit/s) X X X

Fast-mode (up to 400 kbit/s) X X X

Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)(2) X X X

Independent clock X - X

Wakeup from Stop mode X - X

SMBus/PMBus X - X

1. X = supported.

2. Refer to the datasheet for the list of I/Os that support this feature.

RM0367 Rev 8 695/1040

RM0367 Inter-integrated circuit (I2C) interface

761

If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also
available.

28.4.1 I2C1/3 block diagram

The block diagram of the I2C1 interface is shown in Figure 211.

Figure 211. I2C1/3 block diagram

The I2C1/3 is clocked by an independent clock source which allows the I2C to operate
independently from the PCLK frequency.

For I2C I/Os supporting 20mA output current drive for Fast-mode Plus operation, the driving
capability is enabled through control bits in the system configuration controller (SYSCFG).
Refer to Section 28.3: I2C implementation.

MSv46198V2

I2CCLK

Wakeup
on

address
match

SMBUS
PEC

generation/
check

Shift register

Data control

SMBus
Timeout
check

Clock control

Master clock
generation

Slave clock
stretching

SMBus Alert
control/status

Digital
noise
filter I2C_SCL

I2C_SMBA

Registers

APB bus

GPIO
logic

Analog
noise
filter

Digital
noise
filter I2C_SDAGPIO

logic

Analog
noise
filter

i2c_pclk

i2c_ker_ck

PCLK

Inter-integrated circuit (I2C) interface RM0367

696/1040 RM0367 Rev 8

28.4.2 I2C2 block diagram

The block diagram of the I2C2 interface is shown in Figure 212.

Figure 212. I2C2 block diagram

For I2C I/Os supporting 20 mA output current drive for Fast-mode Plus operation, the driving
capability is enabled through control bits in the system configuration controller (SYSCFG).
Refer to Section 28.3: I2C implementation.

MSv46199V2

Wakeup
on

address
match

SMBUS
PEC

generation/
check

Shift register

Data control

SMBus
Timeout
check

Clock control

Master clock
generation

Slave clock
stretching

SMBus Alert
control/status

Digital
noise
filter I2C1_SCL

I2C1_SMBA

Registers

APB bus

GPIO
logic

Analog
noise
filter

Digital
noise
filter I2C1_SDAGPIO

logic

Analog
noise
filter

PCLK
I2CCLK

RM0367 Rev 8 697/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.4.3 I2C pins and internal signals

28.4.4 I2C clock requirements

The I2C kernel is clocked by I2CCLK.

The I2CCLK period tI2CCLK must respect the following conditions:

tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH

with:

tLOW: SCL low time and tHIGH: SCL high time

tfilters: when enabled, sum of the delays brought by the analog filter and by the digital filter.

Analog filter delay is maximum 260 ns. Digital filter delay is DNF x tI2CCLK.

The PCLK clock period tPCLK must respect the following condition:

tPCLK < 4/3 tSCL

with tSCL: SCL period

Caution: When the I2C kernel is clocked by PCLK, this clock must respect the conditions for tI2CCLK.

28.4.5 Mode selection

The interface can operate in one of the four following modes:

• Slave transmitter

• Slave receiver

• Master transmitter

• Master receiver

Table 123. I2C input/output pins

Pin name Signal type Description

I2C_SDA Bidirectional I2C data

I2C_SCL Bidirectional I2C clock

I2C_SMBA Bidirectional SMBus alert

Table 124. I2C internal input/output signals

Internal signal name Signal type Description

i2c_ker_ck Input
I2C kernel clock, also named I2CCLK in this
document

i2c_pclk Input I2C APB clock

i2c_it Output
I2C interrupts, refer to Table 137: I2C Interrupt
requests for the full list of interrupt sources

i2c_rx_dma Output I2C receive data DMA request (I2C_RX)

i2c_tx_dma Output I2C transmit data DMA request (I2C_TX)

Inter-integrated circuit (I2C) interface RM0367

698/1040 RM0367 Rev 8

By default, it operates in slave mode. The interface automatically switches from slave to
master when it generates a START condition, and from master to slave if an arbitration loss
or a STOP generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a START condition and ends with a STOP condition.
Both START and STOP conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the general call address. The general call address detection can be enabled or disabled by
software. The reserved SMBus addresses can also be enabled by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address
is always transmitted in Master mode.

A ninth clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver
must send an acknowledge bit to the transmitter. Refer to the following figure.

Figure 213. I2C bus protocol

Acknowledge can be enabled or disabled by software. The I2C interface addresses can be
selected by software.

28.4.6 I2C initialization

Enabling and disabling the peripheral

The I2C peripheral clock must be configured and enabled in the clock controller.

Then the I2C can be enabled by setting the PE bit in the I2C_CR1 register.

When the I2C is disabled (PE = 0), the I2C performs a software reset. Refer to
Section 28.4.7: Software reset for more details.

Noise filters

Before enabling the I2C peripheral by setting the PE bit in I2C_CR1 register, the user must
configure the noise filters, if needed. By default, an analog noise filter is present on the SDA
and SCL inputs. This analog filter is compliant with the I2C specification which requires the

MS19854V1

SDA

SCL

Start
condition

Stop
condition

MSB ACK

1 2 8 9

RM0367 Rev 8 699/1040

RM0367 Inter-integrated circuit (I2C) interface

761

suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fast-mode Plus. The
user can disable this analog filter by setting the ANFOFF bit, and/or select a digital filter by
configuring the DNF[3:0] bit in the I2C_CR1 register.

When the digital filter is enabled, the level of the SCL or the SDA line is internally changed
only if it remains stable for more than DNF x I2CCLK periods. This allows spikes with a
programmable length of 1 to 15 I2CCLK periods to be suppressed.

Caution: Changing the filter configuration is not allowed when the I2C is enabled.

Table 125. Comparison of analog vs. digital filters

- Analog filter Digital filter

Pulse width of
suppressed spikes

≥ 50 ns
Programmable length from 1 to 15 I2C peripheral
clocks

Benefits Available in Stop mode
– Programmable length: extra filtering capability

versus standard requirements

– Stable length

Drawbacks
Variation vs. temperature,

voltage, process
Wakeup from Stop mode on address match is not
available when digital filter is enabled

Inter-integrated circuit (I2C) interface RM0367

700/1040 RM0367 Rev 8

I2C timings

The timings must be configured in order to guarantee a correct data hold and setup time,
used in master and slave modes. This is done by programming the PRESC[3:0],
SCLDEL[3:0] and SDADEL[3:0] bits in the I2C_TIMINGR register.

The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
configuration window

Figure 214. Setup and hold timings

MSv40108V1

tSYNC1

SCL falling edge internal
detection

SDADEL: SCL stretched low by the I2C

SDA output delay
SCL

SDA

DATA HOLD TIME

tHD;DAT

SCLDEL
SCL stretched low by the I2C

SCL

SDA

DATA SETUP TIME

tSU;STA

Data hold time: in case of transmission, the data is sent on SDA output after
the SDADEL delay, if it is already available in I2C_TXDR.

Data setup time: in case of transmission, the SCLDEL counter starts
when the data is sent on SDA output. MS49608V1

tSYNC1

SCL falling edge internal
detection

SDADEL: SCL stretched low by the I2C

SDA output delay
SCL

SDA

DATA HOLD TIME

tHD;DAT

SCLDEL
SCL stretched low by the I2C

SCL

SDA

DATA SETUP TIME

tSU;DAT

Data hold time: in case of transmission, the data is sent on SDA output after
the SDADEL delay, if it is already available in I2C_TXDR.

Data setup time: in case of transmission, the SCLDEL counter starts
when the data is sent on SDA output.

RM0367 Rev 8 701/1040

RM0367 Inter-integrated circuit (I2C) interface

761

• When the SCL falling edge is internally detected, a delay is inserted before sending
SDA output. This delay is tSDADEL = SDADEL x tPRESC + tI2CCLK where tPRESC = (PRESC+1)
x tI2CCLK.

TSDADEL impacts the hold time tHD;DAT.

The total SDA output delay is:

tSYNC1 + {[SDADEL x (PRESC+1) + 1] x tI2CCLK }

tSYNC1 duration depends on these parameters:

– SCL falling slope

– When enabled, input delay brought by the analog filter: tAF(min) < tAF < tAF(max)

– When enabled, input delay brought by the digital filter: tDNF = DNF x tI2CCLK

– Delay due to SCL synchronization to I2CCLK clock (2 to 3 I2CCLK periods)

In order to bridge the undefined region of the SCL falling edge, the user must program
SDADEL in such a way that:

{tf (max) +tHD;DAT (min) -tAF(min) - [(DNF +3) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } ≤ SDADEL

SDADEL ≤ {tHD;DAT (max) -tAF(max) - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }

Note: tAF(min) / tAF(max) are part of the equation only when the analog filter is enabled. Refer to
device datasheet for tAF values.

The maximum tHD;DAT can be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode
and Fast-mode Plus, but must be less than the maximum of tVD;DAT by a transition time.
This maximum must only be met if the device does not stretch the LOW period (tLOW) of the
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before
it releases the clock.

The SDA rising edge is usually the worst case, so in this case the previous equation
becomes:

SDADEL ≤ {tVD;DAT (max) -tr (max) -260 ns - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }.

Note: This condition can be violated when NOSTRETCH = 0, because the device stretches SCL
low to guarantee the set-up time, according to the SCLDEL value.

Refer to Table 126: I2C-SMBus specification data setup and hold times for tf, tr, tHD;DAT and
tVD;DAT standard values.

• After tSDADEL delay, or after sending SDA output in case the slave had to stretch the
clock because the data was not yet written in I2C_TXDR register, SCL line is kept at
low level during the setup time. This setup time is tSCLDEL = (SCLDEL+1) x tPRESC where
tPRESC = (PRESC+1) x tI2CCLK.

tSCLDEL impacts the setup time tSU;DAT .

In order to bridge the undefined region of the SDA transition (rising edge usually worst
case), the user must program SCLDEL in such a way that:

{[tr (max) + tSU;DAT (min)] / [(PRESC+1)] x tI2CCLK]} - 1 <= SCLDEL

Refer to Table 126: I2C-SMBus specification data setup and hold times for tr and tSU;DAT
standard values.

The SDA and SCL transition time values to be used are the ones in the application. Using
the maximum values from the standard increases the constraints for the SDADEL and
SCLDEL calculation, but ensures the feature whatever the application.

Inter-integrated circuit (I2C) interface RM0367

702/1040 RM0367 Rev 8

Note: At every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL
low during at least [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK, in both transmission
and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR
when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data
is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts,
continuing stretching SCL low to guarantee the data setup time.

If NOSTRETCH = 1 in slave mode, the SCL is not stretched. Consequently the SDADEL
must be programmed in such a way to guarantee also a sufficient setup time.

Additionally, in master mode, the SCL clock high and low levels must be configured by
programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the I2C_TIMINGR register.

• When the SCL falling edge is internally detected, a delay is inserted before releasing
the SCL output. This delay is tSCLL = (SCLL+1) x tPRESC where tPRESC = (PRESC+1) x
tI2CCLK.

tSCLL impacts the SCL low time tLOW .

• When the SCL rising edge is internally detected, a delay is inserted before forcing the
SCL output to low level. This delay is tSCLH = (SCLH+1) x tPRESC where tPRESC =
(PRESC+1) x tI2CCLK. tSCLH impacts the SCL high time tHIGH .

Refer to I2C master initialization for more details.

Caution: Changing the timing configuration is not allowed when the I2C is enabled.

The I2C slave NOSTRETCH mode must also be configured before enabling the peripheral.
Refer to I2C slave initialization for more details.

Caution: Changing the NOSTRETCH configuration is not allowed when the I2C is enabled.

Table 126. I2C-SMBus specification data setup and hold times

Symbol Parameter

Standard-mode
(Sm)

Fast-mode
(Fm)

Fast-mode Plus
(Fm+)

SMBus
Unit

Min. Max Min. Max Min. Max Min. Max

tHD;DAT Data hold time 0 - 0 - 0 - 0.3 -
µs

tVD;DAT Data valid time - 3.45 - 0.9 - 0.45 - -

tSU;DAT Data setup time 250 - 100 - 50 - 250 -

ns
tr

Rise time of both SDA
and SCL signals

- 1000 - 300 - 120 - 1000

tf
Fall time of both SDA
and SCL signals

- 300 - 300 - 120 - 300

RM0367 Rev 8 703/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Figure 215. I2C initialization flow

28.4.7 Software reset

A software reset can be performed by clearing the PE bit in the I2C_CR1 register. In that
case I2C lines SCL and SDA are released. Internal states machines are reset and
communication control bits, as well as status bits come back to their reset value. The
configuration registers are not impacted.

Here is the list of impacted register bits:

1. I2C_CR2 register: START, STOP, NACK

2. I2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF, BERR,
ARLO, OVR

and in addition when the SMBus feature is supported:

1. I2C_CR2 register: PECBYTE

2. I2C_ISR register: PECERR, TIMEOUT, ALERT

PE must be kept low during at least three APB clock cycles in order to perform the software
reset. This is ensured by writing the following software sequence:

1. Write PE = 0

2. Check PE = 0

3. Write PE = 1.

MS19847V2

Clear PE bit in I2C_CR1

Initial settings

Configure ANFOFF and DNF[3:0] in I2C_CR1

Configure PRESC[3:0],

SDADEL[3:0], SCLDEL[3:0], SCLH[7:0],
SCLL[7:0] in I2C_TIMINGR

Configure NOSTRETCH in I2C_CR1

Set PE bit in I2C_CR1

End

Inter-integrated circuit (I2C) interface RM0367

704/1040 RM0367 Rev 8

28.4.8 Data transfer

The data transfer is managed through transmit and receive data registers and a shift
register.

Reception

The SDA input fills the shift register. After the eighth SCL pulse (when the complete data
byte is received), the shift register is copied into I2C_RXDR register if it is empty (RXNE =
0). If RXNE = 1, meaning that the previous received data byte has not yet been read, the
SCL line is stretched low until I2C_RXDR is read. The stretch is inserted between the eighth
and ninth SCL pulse (before the acknowledge pulse).

Figure 216. Data reception

xxShift register data1

data1

xx data2

RXNE

ACK pulse

data0 data2

ACK pulse

xx

I2C_RXDR

rd data1rd data0

SCL
legend:

SCL
stretch

MS19848V1

RM0367 Rev 8 705/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Transmission

If the I2C_TXDR register is not empty (TXE=0), its content is copied into the shift register
after the ninth SCL pulse (the Acknowledge pulse). Then the shift register content is shifted
out on SDA line. If TXE = 1, meaning that no data is written yet in I2C_TXDR, SCL line is
stretched low until I2C_TXDR is written. The stretch is done after the ninth SCL pulse.

Figure 217. Data transmission

Hardware transfer management

The I2C has a byte counter embedded in hardware in order to manage byte transfer and to
close the communication in various modes such as:

– NACK, STOP and ReSTART generation in master mode

– ACK control in slave receiver mode

– PEC generation/checking when SMBus feature is supported

The byte counter is always used in master mode. By default it is disabled in slave mode, but
it can be enabled by software by setting the SBC (Slave Byte Control) bit in the I2C_CR2
register.

The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the
I2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than 255, or
if a receiver wants to control the acknowledge value of a received data byte, the reload
mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this mode,
the TCR flag is set when the number of bytes programmed in NBYTES is transferred, and
an interrupt is generated if TCIE is set. SCL is stretched as long as TCR flag is set. TCR is
cleared by software when NBYTES is written to a non-zero value.

When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be
cleared.

MS19849V1

xxShift register

da
ta

1

data1

xx

da
ta

2

TXE

ACK pulse

data0 data2

ACK pulse

xx

I2C_TXDR

wr data1 wr data2

SCL legend:
SCL
stretch

Inter-integrated circuit (I2C) interface RM0367

706/1040 RM0367 Rev 8

When RELOAD=0 in master mode, the counter can be used in 2 modes:

• Automatic end mode (AUTOEND = ‘1’ in the I2C_CR2 register). In this mode, the
master automatically sends a STOP condition once the number of bytes programmed
in the NBYTES[7:0] bit field is transferred.

• Software end mode (AUTOEND = ‘0’ in the I2C_CR2 register). In this mode, software
action is expected once the number of bytes programmed in the NBYTES[7:0] bit field
is transferred; the TC flag is set and an interrupt is generated if the TCIE bit is set. The
SCL signal is stretched as long as the TC flag is set. The TC flag is cleared by software
when the START or STOP bit is set in the I2C_CR2 register. This mode must be used
when the master wants to send a RESTART condition.

Caution: The AUTOEND bit has no effect when the RELOAD bit is set.

28.4.9 I2C slave mode

I2C slave initialization

In order to work in slave mode, the user must enable at least one slave address. Two
registers I2C_OAR1 and I2C_OAR2 are available in order to program the slave own
addresses OA1 and OA2.

• OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by
setting the OA1MODE bit in the I2C_OAR1 register.

OA1 is enabled by setting the OA1EN bit in the I2C_OAR1 register.

• If additional slave addresses are required, the second slave address OA2 can be
configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in
the I2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only OA2[7:2],
OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the received
address. As soon as OA2MSK is not equal to 0, the address comparator for OA2
excludes the I2C reserved addresses (0000 XXX and 1111 XXX), which are not
acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged (except
reserved addresses). OA2 is always a 7-bit address.

These reserved addresses can be acknowledged if they are enabled by the specific
enable bit, if they are programmed in the I2C_OAR1 or I2C_OAR2 register with
OA2MSK=0.

OA2 is enabled by setting the OA2EN bit in the I2C_OAR2 register.

• The general call address is enabled by setting the GCEN bit in the I2C_CR1 register.

When the I2C is selected by one of its enabled addresses, the ADDR interrupt status flag is
set, and an interrupt is generated if the ADDRIE bit is set.

Table 127. I2C configuration

Function SBC bit RELOAD bit AUTOEND bit

Master Tx/Rx NBYTES + STOP x 0 1

Master Tx/Rx + NBYTES + RESTART x 0 0

Slave Tx/Rx

all received bytes ACKed
0 x x

Slave Rx with ACK control 1 1 x

RM0367 Rev 8 707/1040

RM0367 Inter-integrated circuit (I2C) interface

761

By default, the slave uses its clock stretching capability, which means that it stretches the
SCL signal at low level when needed, in order to perform software actions. If the master
does not support clock stretching, the I2C must be configured with NOSTRETCH = 1 in the
I2C_CR1 register.

After receiving an ADDR interrupt, if several addresses are enabled the user must read the
ADDCODE[6:0] bits in the I2C_ISR register in order to check which address matched. DIR
flag must also be checked in order to know the transfer direction.

Slave clock stretching (NOSTRETCH = 0)

In default mode, the I2C slave stretches the SCL clock in the following situations:

• When the ADDR flag is set: the received address matches with one of the enabled
slave addresses. This stretch is released when the ADDR flag is cleared by software
setting the ADDRCF bit.

• In transmission, if the previous data transmission is completed and no new data is
written in I2C_TXDR register, or if the first data byte is not written when the ADDR flag
is cleared (TXE = 1). This stretch is released when the data is written to the I2C_TXDR
register.

• In reception when the I2C_RXDR register is not read yet and a new data reception is
completed. This stretch is released when I2C_RXDR is read.

• When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1),
meaning that the last data byte has been transferred. This stretch is released when
then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field.

• After SCL falling edge detection, the I2C stretches SCL low during
[(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK.

Slave without clock stretching (NOSTRETCH = 1)

When NOSTRETCH = 1 in the I2C_CR1 register, the I2C slave does not stretch the SCL
signal.

• The SCL clock is not stretched while the ADDR flag is set.

• In transmission, the data must be written in the I2C_TXDR register before the first SCL
pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR flag is
set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the
I2C_CR1 register. The OVR flag is also set when the first data transmission starts and
the STOPF bit is still set (has not been cleared). Therefore, if the user clears the
STOPF flag of the previous transfer only after writing the first data to be transmitted in
the next transfer, he ensures that the OVR status is provided, even for the first data to
be transmitted.

• In reception, the data must be read from the I2C_RXDR register before the ninth SCL
pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR flag
is set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the
I2C_CR1 register.

Inter-integrated circuit (I2C) interface RM0367

708/1040 RM0367 Rev 8

Slave byte control mode

In order to allow byte ACK control in slave reception mode, The Slave byte control mode
must be enabled by setting the SBC bit in the I2C_CR1 register. This is required to be
compliant with SMBus standards.

The Reload mode must be selected in order to allow byte ACK control in slave reception
mode (RELOAD = 1). To get control of each byte, NBYTES must be initialized to 0x1 in the
ADDR interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is
received, the TCR bit is set, stretching the SCL signal low between the eighth and ninth SCL
pulses. The user can read the data from the I2C_RXDR register, and then decide to
acknowledge it or not by configuring the ACK bit in the I2C_CR2 register. The SCL stretch is
released by programming NBYTES to a non-zero value: the acknowledge or not-
acknowledge is sent and next byte can be received.

NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is
continuous during NBYTES data reception.

Note: The SBC bit must be configured when the I2C is disabled, or when the slave is not
addressed, or when ADDR = 1.

The RELOAD bit value can be changed when ADDR = 1, or when TCR = 1.

Caution: The Slave byte control mode is not compatible with NOSTRETCH mode. Setting SBC when
NOSTRETCH = 1 is not allowed.

Figure 218. Slave initialization flow

MS19850V2

Initial settings

Slave
initialization

Clear {OA1EN, OA2EN} in I2C_OAR1 and I2C_OAR2

Configure {OA1[9:0], OA1MODE, OA1EN,
OA2[6:0], OA2MSK[2:0], OA2EN, GCEN}

Configure SBC in I2C_CR1*

Enable interrupts and/or
DMA in I2C_CR1

End

*SBC must be set to support SMBus features

RM0367 Rev 8 709/1040

RM0367 Inter-integrated circuit (I2C) interface

761

For code example, refer to A.16.1: I2C configured in slave mode code example.

Slave transmitter

A transmit interrupt status (TXIS) is generated when the I2C_TXDR register becomes
empty. An interrupt is generated if the TXIE bit is set in the I2C_CR1 register.

The TXIS bit is cleared when the I2C_TXDR register is written with the next data byte to be
transmitted.

When a NACK is received, the NACKF bit is set in the I2C_ISR register and an interrupt is
generated if the NACKIE bit is set in the I2C_CR1 register. The slave automatically releases
the SCL and SDA lines in order to let the master perform a STOP or a RESTART condition.
The TXIS bit is not set when a NACK is received.

When a STOP is received and the STOPIE bit is set in the I2C_CR1 register, the STOPF
flag is set in the I2C_ISR register and an interrupt is generated. In most applications, the
SBC bit is usually programmed to ‘0’. In this case, If TXE = 0 when the slave address is
received (ADDR = 1), the user can choose either to send the content of the I2C_TXDR
register as the first data byte, or to flush the I2C_TXDR register by setting the TXE bit in
order to program a new data byte.

In Slave byte control mode (SBC = 1), the number of bytes to be transmitted must be
programmed in NBYTES in the address match interrupt subroutine (ADDR = 1). In this
case, the number of TXIS events during the transfer corresponds to the value programmed
in NBYTES.

Caution: When NOSTRETCH = 1, the SCL clock is not stretched while the ADDR flag is set, so the
user cannot flush the I2C_TXDR register content in the ADDR subroutine, in order to
program the first data byte. The first data byte to be sent must be previously programmed in
the I2C_TXDR register:

• This data can be the data written in the last TXIS event of the previous transmission
message.

• If this data byte is not the one to be sent, the I2C_TXDR register can be flushed by
setting the TXE bit in order to program a new data byte. The STOPF bit must be
cleared only after these actions, in order to guarantee that they are executed before the
first data transmission starts, following the address acknowledge.

If STOPF is still set when the first data transmission starts, an underrun error is
generated (the OVR flag is set).

If a TXIS event is needed, (transmit interrupt or transmit DMA request), the user must
set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event.

Inter-integrated circuit (I2C) interface RM0367

710/1040 RM0367 Rev 8

Figure 219. Transfer sequence flow for I2C slave transmitter, NOSTRETCH = 0

MS19851V2

Slave initialization

Slave
transmission

Read ADDCODE and DIR in I2C_ISR
Optional: Set I2C_ISR.TXE = 1

Set I2C_ICR.ADDRCF

Write I2C_TXDR.TXDATA

I2C_ISR.ADDR
=1?

No

Yes

I2C_ISR.TXIS
=1?

Yes

No

SCL
stretched

RM0367 Rev 8 711/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Figure 220. Transfer sequence flow for I2C slave transmitter, NOSTRETCH = 1

MS19852V2

Slave initialization

Slave
transmission

Optional: Set I2C_ISR.TXE = 1
and I2C_ISR.TXIS=1

Write I2C_TXDR.TXDATA

I2C_ISR.STOPF
=1?

No

Yes

I2C_ISR.TXIS
=1?

Yes

No

Set I2C_ICR.STOPCF

Inter-integrated circuit (I2C) interface RM0367

712/1040 RM0367 Rev 8

Figure 221. Transfer bus diagrams for I2C slave transmitter

For code example, refer to A.16.2: I2C slave transmitter code example.

MS19853V2

Example I2C slave transmitter 3 bytes with 1st data flushed,
NOSTRETCH=0:

EV1: ADDR ISR: check ADDCODE and DIR, set TXE, set ADDRCF

EV2: TXIS ISR: wr data1

EV3: TXIS ISR: wr data2

EV4: TXIS ISR: wr data3

EV5: TXIS ISR: wr data4 (not sent)

ADDR

A

TXIS

A

TXIS

NA

TXIS

TXE

P

legend:

transmission

reception

SCL stretch

EV1 EV2 EV4 EV5

Example I2C slave transmitter 3 bytes, NOSTRETCH=1:

EV1: wr data1

EV2: TXIS ISR: wr data2

EV3: TXIS ISR: wr data3

EV4: TXIS ISR: wr data4 (not sent)

EV5: STOPF ISR: (optional: set TXE and TXIS), set STOPCF

A

TXIS TXIS

TXE

legend:

transmission

reception

SCL stretch

EV2 EV3 EV4

TXIS

EV1

STOPF

EV5

Example I2C slave transmitter 3 bytes without 1st data flush,
NOSTRETCH=0:

EV1: ADDR ISR: check ADDCODE and DIR, set ADDRCF

EV2: TXIS ISR: wr data2

EV3: TXIS ISR: wr data3

EV4: TXIS ISR: wr data4 (not sent)

ADDR TXIS TXIS TXIS

TXE

legend :

transmission

reception

SCL stretch

EV1 EV2 EV3 EV4

TXIS

EV3

S Address data1 A data2 data3A NA P

S Address A data1 A data2 A data3 NA P

A data3data2data1S Address

RM0367 Rev 8 713/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Slave receiver

RXNE is set in I2C_ISR when the I2C_RXDR is full, and generates an interrupt if RXIE is
set in I2C_CR1. RXNE is cleared when I2C_RXDR is read.

When a STOP is received and STOPIE is set in I2C_CR1, STOPF is set in I2C_ISR and an
interrupt is generated.

Figure 222. Transfer sequence flow for slave receiver with NOSTRETCH = 0

MS19855V2

Slave initialization

Slave reception

Read ADDCODE and DIR in I2C_ISR
Set I2C_ICR.ADDRCF

Write I2C_RXDR.RXDATA

I2C_ISR.ADDR
=1?

No

Yes

I2C_ISR.RXNE
=1?

Yes

No

SCL
stretched

Inter-integrated circuit (I2C) interface RM0367

714/1040 RM0367 Rev 8

Figure 223. Transfer sequence flow for slave receiver with NOSTRETCH = 1

Figure 224. Transfer bus diagrams for I2C slave receiver

For code example, refer to A.16.3: I2C slave receiver code example.

MS19856V2

Slave initialization

Slave reception

Read I2C_RXDR.RXDATA

I2C_ISR.STOPF
=1?

No

Yes

I2C_ISR.RXNE
=1?

Yes

No

Set I2C_ICR.STOPCF

MS19857V3

EV1: ADDR ISR: check ADDCODE and DIR, set ADDRCF

EV2: RXNE ISR: rd data1

EV3 : RXNE ISR: rd data2

EV4: RXNE ISR: rd data3

A

ADDR

A A

RXNE

A

RXNE

RXNE

legend:

transmission

reception

SCL stretch

EV1 EV2 EV3

EV1: RXNE ISR: rd data1

EV2: RXNE ISR: rd data2

EV3: RXNE ISR: rd data3

EV4: STOPF ISR: set STOPCF

A A A A

RXNE

legend:

transmission

reception

SCL stretch

RXNE

EV4

Example I2C slave receiver 3 bytes, NOSTRETCH=1:

S Address data 1 data 2 data 3 P

Example I2C slave receiver 3 bytes, NOSTRETCH=0:

S Address data1 data2 data3

EV3EV2EV1

RXNE RXNE RXNE

RM0367 Rev 8 715/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.4.10 I2C master mode

I2C master initialization

Before enabling the peripheral, the I2C master clock must be configured by setting the
SCLH and SCLL bits in the I2C_TIMINGR register.

The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
Configuration window.

A clock synchronization mechanism is implemented in order to support multi-master
environment and slave clock stretching.

In order to allow clock synchronization:

• The low level of the clock is counted using the SCLL counter, starting from the SCL low
level internal detection.

• The high level of the clock is counted using the SCLH counter, starting from the SCL
high level internal detection.

The I2C detects its own SCL low level after a tSYNC1 delay depending on the SCL falling
edge, SCL input noise filters (analog + digital) and SCL synchronization to the I2CxCLK
clock. The I2C releases SCL to high level once the SCLL counter reaches the value
programmed in the SCLL[7:0] bits in the I2C_TIMINGR register.

The I2C detects its own SCL high level after a tSYNC2 delay depending on the SCL rising
edge, SCL input noise filters (analog + digital) and SCL synchronization to I2CxCLK clock.
The I2C ties SCL to low level once the SCLH counter is reached reaches the value
programmed in the SCLH[7:0] bits in the I2C_TIMINGR register.

Consequently the master clock period is:

tSCL = tSYNC1 + tSYNC2 + {[(SCLH+1) + (SCLL+1)] x (PRESC+1) x tI2CCLK}

The duration of tSYNC1 depends on these parameters:

– SCL falling slope

– When enabled, input delay induced by the analog filter.

– When enabled, input delay induced by the digital filter: DNF x tI2CCLK

– Delay due to SCL synchronization with I2CCLK clock (2 to 3 I2CCLK periods)

The duration of tSYNC2 depends on these parameters:

– SCL rising slope

– When enabled, input delay induced by the analog filter.

– When enabled, input delay induced by the digital filter: DNF x tI2CCLK

– Delay due to SCL synchronization with I2CCLK clock (2 to 3 I2CCLK periods)

Inter-integrated circuit (I2C) interface RM0367

716/1040 RM0367 Rev 8

Figure 225. Master clock generation

Caution: In order to be I2C or SMBus compliant, the master clock must respect the timings given the
table below.

MS19858V1

tSYNC1

SCL high level detected
SCLH counter starts

SCLH

SCL

SCL master clock generation

SCL released SCL low level detected
SCLL counter starts

SCL driven low

SCLL
tSYNC2

SCL master clock synchronization

SCLL

SCL driven low by
another device

SCL low level detected
SCLL counter starts SCL released

SCLHSCLH

SCL high level detected
SCLH counter starts

SCL high level detected
SCLH counter starts

SCL low level detected
SCLL counter starts

SCLL

SCL driven low by
another device

SCLH

SCL high level detected
SCLH counter starts

RM0367 Rev 8 717/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Note: SCLL is also used to generate the tBUF and tSU:STA timings.

SCLH is also used to generate the tHD:STA and tSU:STO timings.

Refer to Section 28.4.11: I2C_TIMINGR register configuration examples for examples of
I2C_TIMINGR settings vs. I2CCLK frequency.

Master communication initialization (address phase)

In order to initiate the communication, the user must program the following parameters for
the addressed slave in the I2C_CR2 register:

• Addressing mode (7-bit or 10-bit): ADD10

• Slave address to be sent: SADD[9:0]

• Transfer direction: RD_WRN

• In case of 10-bit address read: HEAD10R bit. HEAD10R must be configure to indicate
if the complete address sequence must be sent, or only the header in case of a
direction change.

• The number of bytes to be transferred: NBYTES[7:0]. If the number of bytes is equal to
or greater than 255 bytes, NBYTES[7:0] must initially be filled with 0xFF.

The user must then set the START bit in I2C_CR2 register. Changing all the above bits is
not allowed when START bit is set.

Then the master automatically sends the START condition followed by the slave address as
soon as it detects that the bus is free (BUSY = 0) and after a delay of tBUF.

In case of an arbitration loss, the master automatically switches back to slave mode and can
acknowledge its own address if it is addressed as a slave.

Note: The START bit is reset by hardware when the slave address has been sent on the bus,
whatever the received acknowledge value. The START bit is also reset by hardware if an
arbitration loss occurs.
In 10-bit addressing mode, when the Slave Address first 7 bits is NACKed by the slave, the

Table 128. I2C-SMBus specification clock timings

Symbol Parameter

Standard-
mode (Sm)

Fast-mode
(Fm)

Fast-mode
Plus (Fm+)

SMBus
Unit

Min Max Min Max Min Max Min Max

fSCL SCL clock frequency - 100 - 400 - 1000 - 100 kHz

tHD:STA Hold time (repeated) START condition 4.0 - 0.6 - 0.26 - 4.0 - µs

tSU:STA
Set-up time for a repeated START
condition

4.7 - 0.6 - 0.26 - 4.7 - µs

tSU:STO Set-up time for STOP condition 4.0 - 0.6 - 0.26 - 4.0 - µs

tBUF
Bus free time between a STOP and
START condition

4.7 - 1.3 - 0.5 - 4.7 - µs

tLOW Low period of the SCL clock 4.7 - 1.3 - 0.5 - 4.7 - µs

tHIGH Period of the SCL clock 4.0 - 0.6 - 0.26 - 4.0 50 µs

tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 - 1000 ns

tf Fall time of both SDA and SCL signals - 300 - 300 - 120 - 300 ns

Inter-integrated circuit (I2C) interface RM0367

718/1040 RM0367 Rev 8

master re-launches automatically the slave address transmission until ACK is received. In
this case ADDRCF must be set if a NACK is received from the slave, in order to stop
sending the slave address.
If the I2C is addressed as a slave (ADDR = 1) while the START bit is set, the I2C switches to
slave mode and the START bit is cleared, when the ADDRCF bit is set.

Note: The same procedure is applied for a Repeated Start condition. In this case BUSY = 1.

Figure 226. Master initialization flow

For code example, refer to A.16.4: I2C configured in master mode to receive code example
andA.16.5: I2C configured in master mode to transmit code example.

Initialization of a master receiver addressing a 10-bit address slave

• If the slave address is in 10-bit format, the user can choose to send the complete read
sequence by clearing the HEAD10R bit in the I2C_CR2 register. In this case the master
automatically sends the following complete sequence after the START bit is set:
(Re)Start + Slave address 10-bit header Write + Slave address second byte + REStart
+ Slave address 10-bit header Read

Figure 227. 10-bit address read access with HEAD10R = 0

MS19859V2

Initial settings

Master
initialization

Enable interrupts and/or DMA in I2C_CR1

End

MSv41066V1

DATA A PADATASlave address
2nd byte

Slave address
1st 7 bitsSrA2A1 R/WR/WSlave address

1st 7 bitsS A3

1 1 1 1 0 X X 1 1 1 1 1 0 X X 0

Write Read

RM0367 Rev 8 719/1040

RM0367 Inter-integrated circuit (I2C) interface

761

• If the master addresses a 10-bit address slave, transmits data to this slave and then
reads data from the same slave, a master transmission flow must be done first. Then a
repeated start is set with the 10 bit slave address configured with HEAD10R = 1. In this
case the master sends this sequence: ReStart + Slave address 10-bit header Read.

Figure 228. 10-bit address read access with HEAD10R = 1

Master transmitter

In the case of a write transfer, the TXIS flag is set after each byte transmission, after the
ninth SCL pulse when an ACK is received.

A TXIS event generates an interrupt if the TXIE bit is set in the I2C_CR1 register. The flag is
cleared when the I2C_TXDR register is written with the next data byte to be transmitted.

The number of TXIS events during the transfer corresponds to the value programmed in
NBYTES[7:0]. If the total number of data bytes to be sent is greater than 255, reload mode
must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when
NBYTES data have been transferred, the TCR flag is set and the SCL line is stretched low
until NBYTES[7:0] is written to a non-zero value.

The TXIS flag is not set when a NACK is received.

• When RELOAD=0 and NBYTES data have been transferred:

– In automatic end mode (AUTOEND=1), a STOP is automatically sent.

– In software end mode (AUTOEND=0), the TC flag is set and the SCL line is
stretched low in order to perform software actions:

A RESTART condition can be requested by setting the START bit in the I2C_CR2
register with the proper slave address configuration, and number of bytes to be
transferred. Setting the START bit clears the TC flag and the START condition is
sent on the bus.

A STOP condition can be requested by setting the STOP bit in the I2C_CR2
register. Setting the STOP bit clears the TC flag and the STOP condition is sent on
the bus.

• If a NACK is received: the TXIS flag is not set, and a STOP condition is automatically
sent after the NACK reception. the NACKF flag is set in the I2C_ISR register, and an
interrupt is generated if the NACKIE bit is set.

MS19823V1

DATADATASlave address
2nd byte

Slave address
1st 7 bitsSr

AA

R/W

Slave address
1st 7 bitsS A

1 1 1 1 0 X X 1

1 1 1 1 0 X X 0

Write

Read

DATA A PADATAA

A/AR/W

Inter-integrated circuit (I2C) interface RM0367

720/1040 RM0367 Rev 8

Figure 229. Transfer sequence flow for I2C master transmitter for N≤255 bytes

MS19860V2

Master initialization

Master
transmission

Write I2C_TXDR

I2C_ISR.TXIS
=1?

No

Yes

I2C_ISR.NACKF =
1?

Yes

No

NBYTES = N
AUTOEND = 0 for RESTART; 1 for STOP

Configure slave address
Set I2C_CR2.START

End

NBYTES
transmitted?

I2C_ISR.TC =
1?

Yes

End

No

Yes

No Set I2C_CR2.START with
slave addess NBYTES ...

RM0367 Rev 8 721/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Figure 230. Transfer sequence flow for I2C master transmitter for N>255 bytes

MS19861V3

Master initialization

Master
transmission

Write I2C_TXDR

I2C_ISR.TXIS
= 1?

No

Yes

I2C_ISR.NACKF
= 1?

Yes

No

NBYTES = 0xFF; N=N-255
RELOAD = 1

Configure slave address
Set I2C_CR2.START

End

NBYTES
transmitted ?

I2C_ISR.TC
= 1?

Yes

End

No

Yes

No
Set I2C_CR2.START

with slave addess
NBYTES ...

I2C_ISR.TCR
= 1?

Yes

IF N< 256
NBYTES = N; N = 0; RELOAD = 0
AUTOEND = 0 for RESTART; 1 for STOP

ELSE
NBYTES = 0xFF; N = N-255
RELOAD = 1

Inter-integrated circuit (I2C) interface RM0367

722/1040 RM0367 Rev 8

Figure 231. Transfer bus diagrams for I2C master transmitter

For code example, refer to A.16.6: I2C master transmitter code example.

MS19862V2

Example I2C master transmitter 2 bytes, automatic end mode (STOP)

INIT: program Slave address, program NBYTES = 2, AUTOEND=1, set START

EV1: TXIS ISR: wr data1

EV2: TXIS ISR: wr data2

TXISTXIS

legend:

transmission

reception

SCL stretch

EV1 EV2

xx 2

INIT

Example I2C master transmitter 2 bytes, software end mode (RESTART)

INIT: program Slave address, program NBYTES = 2, AUTOEND=0, set START

EV1: TXIS ISR: wr data1

EV2: TXIS ISR: wr data2

EV3: TC ISR: program Slave address, program NBYTES = N, set START

TXIS TXIS legend:

transmission

reception

SCL stretchEV1 EV2INIT

TC

TXE

TXE

EV3

NBYTES

NBYTES 2xx

S Address A data1 A data2 ReS AddressA

S Address A data1 A data2 A P

RM0367 Rev 8 723/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Master receiver

In the case of a read transfer, the RXNE flag is set after each byte reception, after the eighth
SCL pulse. An RXNE event generates an interrupt if the RXIE bit is set in the I2C_CR1
register. The flag is cleared when I2C_RXDR is read.

If the total number of data bytes to be received is greater than 255, reload mode must be
selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when
NBYTES[7:0] data have been transferred, the TCR flag is set and the SCL line is stretched
low until NBYTES[7:0] is written to a non-zero value.

• When RELOAD=0 and NBYTES[7:0] data have been transferred:

– In automatic end mode (AUTOEND=1), a NACK and a STOP are automatically
sent after the last received byte.

– In software end mode (AUTOEND=0), a NACK is automatically sent after the last
received byte, the TC flag is set and the SCL line is stretched low in order to allow
software actions:

A RESTART condition can be requested by setting the START bit in the I2C_CR2
register with the proper slave address configuration, and number of bytes to be
transferred. Setting the START bit clears the TC flag and the START condition,
followed by slave address, are sent on the bus.

A STOP condition can be requested by setting the STOP bit in the I2C_CR2
register. Setting the STOP bit clears the TC flag and the STOP condition is sent on
the bus.

Inter-integrated circuit (I2C) interface RM0367

724/1040 RM0367 Rev 8

Figure 232. Transfer sequence flow for I2C master receiver for N≤255 bytes

MS19863V2

Master initialization

Master reception

Read I2C_RXDR

I2C_ISR.RXNE
=1?

No

Yes

NBYTES = N
AUTOEND = 0 for RESTART; 1 for STOP

Configure slave address
Set I2C_CR2.START

NBYTES
received?

I2C_ISR.TC =
1?

Yes

End

No

Yes

No Set I2C_CR2.START with
slave addess NBYTES ...

RM0367 Rev 8 725/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Figure 233. Transfer sequence flow for I2C master receiver for N >255 bytes

MS19864V2

Master initialization

Master reception

Read I2C_RXDR

I2C_ISR.RXNE
=1?

No

Yes

NBYTES = 0xFF; N=N-255
RELOAD =1

Configure slave address
Set I2C_CR2.START

NBYTES
received?

I2C_ISR.TC =
1?

Yes

End

No

Yes

NoSet I2C_CR2.START with
slave addess NBYTES ...

I2C_ISR.TCR
= 1?

Yes
IF N< 256

NBYTES =N; N=0;RELOAD=0
AUTOEND=0 for RESTART; 1 for STOP

ELSE
NBYTES =0xFF;N=N-255
RELOAD=1

No

Inter-integrated circuit (I2C) interface RM0367

726/1040 RM0367 Rev 8

Figure 234. Transfer bus diagrams for I2C master receiver

For code example refer to A.16.7: I2C master receiver code example.

MS19865V1

Example I2C master receiver 2 bytes, automatic end mode (STOP)

INIT: program Slave address, program NBYTES = 2, AUTOEND=1, set START

EV1: RXNE ISR: rd data1

EV2: RXNE ISR: rd data2

A

RXNE RXNE

NBYTES

legend:

transmission

reception

SCL stretch
EV1

xx 2

INIT

Example I2C master receiver 2 bytes, software end mode (RESTART)

INIT: program Slave address, program NBYTES = 2, AUTOEND=0, set START

EV1: RXNE ISR: rd data1

EV2: RXNE ISR: read data2

EV3: TC ISR: program Slave address, program NBYTES = N, set START

A

RXNE RXNE

NBYTES

legend:

transmission

reception

SCL stretchEV1 EV2

xx

INIT

N

EV2

2

TC

AddressS A data1 data2 NA ReS Address

S Address A data1 data2 NA P

RM0367 Rev 8 727/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.4.11 I2C_TIMINGR register configuration examples

The tables below provide examples of how to program the I2C_TIMINGR to obtain timings
compliant with the I2C specification. In order to get more accurate configuration values, the
STM32CubeMX tool (I2C Configuration window) must be used.

Table 129. Examples of timing settings for fI2CCLK = 8 MHz

Parameter
Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+)

10 kHz 100 kHz 400 kHz 500 kHz

PRESC 1 1 0 0

SCLL 0xC7 0x13 0x9 0x6

tSCLL 200 x 250 ns = 50 µs 20 x 250 ns = 5.0 µs 10 x 125 ns = 1250 ns 7 x 125 ns = 875 ns

SCLH 0xC3 0xF 0x3 0x3

tSCLH 196 x 250 ns = 49 µs 16 x 250 ns = 4.0µs 4 x 125 ns = 500 ns 4 x 125 ns = 500 ns

tSCL
(1) ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~2000 ns(4)

SDADEL 0x2 0x2 0x1 0x0

tSDADEL 2 x 250 ns = 500 ns 2 x 250 ns = 500 ns 1 x 125 ns = 125 ns 0 ns

SCLDEL 0x4 0x4 0x3 0x1

tSCLDEL 5 x 250 ns = 1250 ns 5 x 250 ns = 1250 ns 4 x 125 ns = 500 ns 2 x 125 ns = 250 ns

1. SCL period tSCL is greater than tSCLL + tSCLH due to SCL internal detection delay. Values provided for tSCL are examples
only.

2. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 1000 ns.

3. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 750 ns.

4. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 655 ns.

Table 130. Examples of timings settings for fI2CCLK = 16 MHz

Parameter
Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+)

10 kHz 100 kHz 400 kHz 1000 kHz

PRESC 3 3 1 0

SCLL 0xC7 0x13 0x9 0x4

tSCLL 200 x 250 ns = 50 µs 20 x 250 ns = 5.0 µs 10 x 125 ns = 1250 ns 5 x 62.5 ns = 312.5 ns

SCLH 0xC3 0xF 0x3 0x2

tSCLH 196 x 250 ns = 49 µs 16 x 250 ns = 4.0 µs 4 x 125 ns = 500 ns 3 x 62.5 ns = 187.5 ns

tSCL
(1) ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~1000 ns(4)

SDADEL 0x2 0x2 0x2 0x0

tSDADEL 2 x 250 ns = 500 ns 2 x 250 ns = 500 ns 2 x 125 ns = 250 ns 0 ns

SCLDEL 0x4 0x4 0x3 0x2

tSCLDEL 5 x 250 ns = 1250 ns 5 x 250 ns = 1250 ns 4 x 125 ns = 500 ns 3 x 62.5 ns = 187.5 ns

1. SCL period tSCL is greater than tSCLL + tSCLH due to SCL internal detection delay. Values provided for tSCL are examples
only.

Inter-integrated circuit (I2C) interface RM0367

728/1040 RM0367 Rev 8

28.4.12 SMBus specific features

This section is relevant only when SMBus feature is supported. Refer to Section 28.3: I2C
implementation.

Introduction

The system management bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. The SMBus provides a control bus for system and power
management related tasks.

This peripheral is compatible with the SMBus specification (http://smbus.org).

The System Management Bus Specification refers to three types of devices.

• A slave is a device that receives or responds to a command.

• A master is a device that issues commands, generates the clocks and terminates the
transfer.

• A host is a specialized master that provides the main interface to the system’s CPU. A
host must be a master-slave and must support the SMBus host notify protocol. Only
one host is allowed in a system.

This peripheral can be configured as master or slave device, and also as a host.

Bus protocols

There are eleven possible command protocols for any given device. A device may use any
or all of the eleven protocols to communicate. The protocols are Quick Command, Send
Byte, Receive Byte, Write Byte, Write Word, Read Byte, Read Word, Process Call, Block
Read, Block Write and Block Write-Block Read Process Call. These protocols should be
implemented by the user software.

For more details of these protocols, refer to SMBus specification (http://smbus.org).

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. In order to provide a mechanism to isolate each device for the
purpose of address assignment each device must implement a unique device identifier
(UDID). This 128-bit number is implemented by software.

This peripheral supports the Address Resolution Protocol (ARP). The SMBus Device
Default Address (0b1100 001) is enabled by setting SMBDEN bit in I2C_CR1 register. The
ARP commands should be implemented by the user software.

Arbitration is also performed in slave mode for ARP support.

For more details of the SMBus address resolution protocol, refer to SMBus specification
(http://smbus.org).

2. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 1000 ns.

3. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 750 ns.

4. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 500 ns.

RM0367 Rev 8 729/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Received command and data acknowledge control

A SMBus receiver must be able to NACK each received command or data. In order to allow
the ACK control in slave mode, the Slave Byte Control mode must be enabled by setting
SBC bit in I2C_CR1 register. Refer to Slave byte control mode on page 708 for more details.

Host notify protocol

This peripheral supports the host notify protocol by setting the SMBHEN bit in the I2C_CR1
register. In this case the host acknowledges the SMBus host address (0b0001 000).

When this protocol is used, the device acts as a master and the host as a slave.

SMBus alert

The SMBus ALERT optional signal is supported. A slave-only device can signal the host
through the SMBALERT# pin that it wants to talk. The host processes the interrupt and
simultaneously accesses all SMBALERT# devices through the alert response address
(0b0001 100). Only the device(s) which pulled SMBALERT# low acknowledges the alert
response address.

When configured as a slave device(SMBHEN=0), the SMBA pin is pulled low by setting the
ALERTEN bit in the I2C_CR1 register. The Alert Response Address is enabled at the same
time.

When configured as a host (SMBHEN=1), the ALERT flag is set in the I2C_ISR register
when a falling edge is detected on the SMBA pin and ALERTEN=1. An interrupt is
generated if the ERRIE bit is set in the I2C_CR1 register. When ALERTEN=0, the ALERT
line is considered high even if the external SMBA pin is low.

If the SMBus ALERT pin is not needed, the SMBA pin can be used as a standard GPIO if
ALERTEN=0.

Packet error checking

A packet error checking mechanism has been introduced in the SMBus specification to
improve reliability and communication robustness. The packet error checking is
implemented by appending a packet error code (PEC) at the end of each message transfer.
The PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial on all the
message bytes (including addresses and read/write bits).

The peripheral embeds a hardware PEC calculator and allows a not acknowledge to be sent
automatically when the received byte does not match with the hardware calculated PEC.

Timeouts

This peripheral embeds hardware timers in order to be compliant with the 3 timeouts defined
in SMBus specification.

Table 131. SMBus timeout specifications

Symbol Parameter
Limits

Unit
Min Max

tTIMEOUT Detect clock low timeout 25 35 ms

Inter-integrated circuit (I2C) interface RM0367

730/1040 RM0367 Rev 8

Figure 235. Timeout intervals for tLOW:SEXT, tLOW:MEXT.

tLOW:SEXT
(1) Cumulative clock low extend time (slave device) - 25 ms

tLOW:MEXT
(2) Cumulative clock low extend time (master device) - 10 ms

1. tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message
from the initial START to the STOP. It is possible that, another slave device or the master also extends the
clock causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this parameter is
measured with the slave device as the sole target of a full-speed master.

2. tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a
message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device
or another master also extends the clock causing the combined clock low time to be greater than tLOW:MEXT
on a given byte. Therefore, this parameter is measured with a full speed slave device as the sole target of
the master.

Table 131. SMBus timeout specifications (continued)

Symbol Parameter
Limits

Unit
Min Max

MS19866V1

Start Stop
tLOW:SEXT

tLOW:MEXT tLOW:MEXT tLOW:MEXT

ClkAck ClkAck

SMBCLK

SMBDAT

RM0367 Rev 8 731/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Bus idle detection

A master can assume that the bus is free if it detects that the clock and data signals have
been high for tIDLE greater than tHIGH,MAX. (refer to Table 126: I2C-SMBus specification data
setup and hold times)

This timing parameter covers the condition where a master has been dynamically added to
the bus and may not have detected a state transition on the SMBCLK or SMBDAT lines. In
this case, the master must wait long enough to ensure that a transfer is not currently in
progress. The peripheral supports a hardware bus idle detection.

28.4.13 SMBus initialization

This section is relevant only when SMBus feature is supported. Refer to Section 28.3: I2C
implementation.

In addition to I2C initialization, some other specific initialization must be done in order to
perform SMBus communication:

Received command and data acknowledge control (Slave mode)

A SMBus receiver must be able to NACK each received command or data. In order to allow
ACK control in slave mode, the Slave byte control mode must be enabled by setting the
SBC bit in the I2C_CR1 register. Refer to Slave byte control mode on page 708 for more
details.

Specific address (Slave mode)

The specific SMBus addresses must be enabled if needed. Refer to Bus idle detection on
page 731 for more details.

• The SMBus device default address (0b1100 001) is enabled by setting the SMBDEN
bit in the I2C_CR1 register.

• The SMBus host address (0b0001 000) is enabled by setting the SMBHEN bit in the
I2C_CR1 register.

• The alert response address (0b0001100) is enabled by setting the ALERTEN bit in the
I2C_CR1 register.

Packet error checking

PEC calculation is enabled by setting the PECEN bit in the I2C_CR1 register. Then the PEC
transfer is managed with the help of a hardware byte counter: NBYTES[7:0] in the I2C_CR2
register. The PECEN bit must be configured before enabling the I2C.

The PEC transfer is managed with the hardware byte counter, so the SBC bit must be set
when interfacing the SMBus in slave mode. The PEC is transferred after NBYTES - 1 data
have been transferred when the PECBYTE bit is set and the RELOAD bit is cleared. If
RELOAD is set, PECBYTE has no effect.

Caution: Changing the PECEN configuration is not allowed when the I2C is enabled.

Inter-integrated circuit (I2C) interface RM0367

732/1040 RM0367 Rev 8

Timeout detection

The timeout detection is enabled by setting the TIMOUTEN and TEXTEN bits in the
I2C_TIMEOUTR register. The timers must be programmed in such a way that they detect a
timeout before the maximum time given in the SMBus specification.

• tTIMEOUT check

In order to enable the tTIMEOUT check, the 12-bit TIMEOUTA[11:0] bits must be
programmed with the timer reload value in order to check the tTIMEOUT parameter. The
TIDLE bit must be configured to ‘0’ in order to detect the SCL low level timeout.

Then the timer is enabled by setting the TIMOUTEN in the I2C_TIMEOUTR register.

If SCL is tied low for a time greater than (TIMEOUTA+1) x 2048 x tI2CCLK, the TIMEOUT
flag is set in the I2C_ISR register.

Refer to Table 133: Examples of TIMEOUTA settings for various I2CCLK frequencies
(max tTIMEOUT = 25 ms).

Caution: Changing the TIMEOUTA[11:0] bits and TIDLE bit configuration is not allowed when the
TIMEOUTEN bit is set.

• tLOW:SEXT and tLOW:MEXT check

Depending on if the peripheral is configured as a master or as a slave, The 12-bit
TIMEOUTB timer must be configured in order to check tLOW:SEXT for a slave and
tLOW:MEXT for a master. As the standard specifies only a maximum, the user can choose
the same value for the both.

Then the timer is enabled by setting the TEXTEN bit in the I2C_TIMEOUTR register.

If the SMBus peripheral performs a cumulative SCL stretch for a time greater than
(TIMEOUTB+1) x 2048 x tI2CCLK, and in the timeout interval described in Bus idle
detection on page 731 section, the TIMEOUT flag is set in the I2C_ISR register.

Refer to Table 134: Examples of TIMEOUTB settings for various I2CCLK frequencies

Caution: Changing the TIMEOUTB configuration is not allowed when the TEXTEN bit is set.

Bus idle detection

In order to enable the tIDLE check, the 12-bit TIMEOUTA[11:0] field must be programmed
with the timer reload value in order to obtain the tIDLE parameter. The TIDLE bit must be
configured to ‘1 in order to detect both SCL and SDA high level timeout.

Then the timer is enabled by setting the TIMOUTEN bit in the I2C_TIMEOUTR register.

If both the SCL and SDA lines remain high for a time greater than (TIMEOUTA+1) x 4 x
tI2CCLK, the TIMEOUT flag is set in the I2C_ISR register.

Refer to Table 135: Examples of TIMEOUTA settings for various I2CCLK frequencies (max
tIDLE = 50 µs)

Table 132. SMBus with PEC configuration

Mode SBC bit RELOAD bit AUTOEND bit PECBYTE bit

Master Tx/Rx NBYTES + PEC+ STOP x 0 1 1

Master Tx/Rx NBYTES + PEC + ReSTART x 0 0 1

Slave Tx/Rx with PEC 1 0 x 1

RM0367 Rev 8 733/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Caution: Changing the TIMEOUTA and TIDLE configuration is not allowed when the TIMEOUTEN is
set.

28.4.14 SMBus: I2C_TIMEOUTR register configuration examples

This section is relevant only when SMBus feature is supported. Refer to Section 28.3: I2C
implementation.

• Configuring the maximum duration of tTIMEOUT to 25 ms:

• Configuring the maximum duration of tLOW:SEXT and tLOW:MEXT to 8 ms:

• Configuring the maximum duration of tIDLE to 50 µs

28.4.15 SMBus slave mode

This section is relevant only when the SMBus feature is supported. Refer to Section 28.3:
I2C implementation.

In addition to I2C slave transfer management (refer to Section 28.4.9: I2C slave mode)
some additional software flows are provided to support the SMBus.

SMBus slave transmitter

When the IP is used in SMBus, SBC must be programmed to ‘1’ in order to allow the PEC
transmission at the end of the programmed number of data bytes. When the PECBYTE bit
is set, the number of bytes programmed in NBYTES[7:0] includes the PEC transmission. In

Table 133. Examples of TIMEOUTA settings for various I2CCLK frequencies
(max tTIMEOUT = 25 ms)

 fI2CCLK TIMEOUTA[11:0] bits TIDLE bit TIMEOUTEN bit tTIMEOUT

8 MHz 0x61 0 1 98 x 2048 x 125 ns = 25 ms

16 MHz 0xC3 0 1 196 x 2048 x 62.5 ns = 25 ms

32 MHz 0x186 0 1 391 x 2048 x 31.25 ns = 25 ms

Table 134. Examples of TIMEOUTB settings for various I2CCLK frequencies

 fI2CCLK TIMEOUTB[11:0] bits TEXTEN bit tLOW:EXT

8 MHz 0x1F 1 32 x 2048 x 125 ns = 8 ms

16 MHz 0x3F 1 64 x 2048 x 62.5 ns = 8 ms

32 MHz 0x7C 1 125 x 2048 x 31.25 ns = 8 ms

Table 135. Examples of TIMEOUTA settings for various I2CCLK frequencies
(max tIDLE = 50 µs)

 fI2CCLK TIMEOUTA[11:0] bits TIDLE bit TIMEOUTEN bit tTIDLE

8 MHz 0x63 1 1 100 x 4 x 125 ns = 50 µs

16 MHz 0xC7 1 1 200 x 4 x 62.5 ns = 50 µs

32 MHz 0x18F 1 1 400 x 4 x 31.25 ns = 50 µs

Inter-integrated circuit (I2C) interface RM0367

734/1040 RM0367 Rev 8

that case the total number of TXIS interrupts is NBYTES - 1 and the content of the
I2C_PECR register is automatically transmitted if the master requests an extra byte after the
NBYTES - 1 data transfer.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Figure 236. Transfer sequence flow for SMBus slave transmitter N bytes + PEC

MS19867V2

Slave initialization

SMBus slave
transmission

Write I2C_TXDR.TXDATA

I2C_ISR.TXIS
=1?

No

Yes

I2C_ISR.ADDR =
1?

Yes

No

Read ADDCODE and DIR in I2C_ISR
I2C_CR2.NBYTES = N + 1

PECBYTE=1
Set I2C_ICR.ADDRCF

SCL
stretched

RM0367 Rev 8 735/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Figure 237. Transfer bus diagrams for SMBus slave transmitter (SBC=1)

SMBus Slave receiver

When the I2C is used in SMBus mode, SBC must be programmed to ‘1’ in order to allow the
PEC checking at the end of the programmed number of data bytes. In order to allow the
ACK control of each byte, the reload mode must be selected (RELOAD=1). Refer to Slave
byte control mode on page 708 for more details.

In order to check the PEC byte, the RELOAD bit must be cleared and the PECBYTE bit
must be set. In this case, after NBYTES - 1 data have been received, the next received byte
is compared with the internal I2C_PECR register content. A NACK is automatically
generated if the comparison does not match, and an ACK is automatically generated if the
comparison matches, whatever the ACK bit value. Once the PEC byte is received, it is
copied into the I2C_RXDR register like any other data, and the RXNE flag is set.

In the case of a PEC mismatch, the PECERR flag is set and an interrupt is generated if the
ERRIE bit is set in the I2C_CR1 register.

If no ACK software control is needed, the user can program PECBYTE=1 and, in the same
write operation, program NBYTES with the number of bytes to be received in a continuous
flow. After NBYTES - 1 are received, the next received byte is checked as being the PEC.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

MS19869V2

Example SMBus slave transmitter 2 bytes + PEC,

EV1: ADDR ISR: check ADDCODE, program NBYTES=3, set PECBYTE, set ADDRCF

EV2: TXIS ISR: wr data1

EV3: TXIS ISR: wr data2

ADDR

legend:

transmission

reception

SCL stretch

EV1 EV2

TXIS TXIS

EV3

NBYTES 3

S Address A Adata1 data2 PECA NA P

Inter-integrated circuit (I2C) interface RM0367

736/1040 RM0367 Rev 8

Figure 238. Transfer sequence flow for SMBus slave receiver N Bytes + PEC

MS19868V2

Slave initialization

SMBus slave
reception

Read I2C_RXDR.RXDATA

I2C_ISR.RXNE =1?
I2C_ISR.TCR = 1?

No

Yes

I2C_ISR.ADDR =
1?

Yes

No

Read ADDCODE and DIR in I2C_ISR
I2C_CR2.NBYTES = 1, RELOAD =1

PECBYTE=1
Set I2C_ICR.ADDRCF

SCL
stretched

Read I2C_RXDR.RXDATA
Program I2C_CR2.NACK = 0

I2C_CR2.NBYTES = 1
N = N - 1

N = 1?

Read I2C_RXDR.RXDATA
Program RELOAD = 0

NACK = 0 and NBYTES = 1

I2C_ISR.RXNE =1?
No

End

No

Yes

Yes

RM0367 Rev 8 737/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Figure 239. Bus transfer diagrams for SMBus slave receiver (SBC=1)

This section is relevant only when the SMBus feature is supported. Refer to Section 28.3:
I2C implementation.

In addition to I2C master transfer management (refer to Section 28.4.10: I2C master mode),
some additional software flows are provided to support the SMBus.

SMBus master transmitter

When the SMBus master wants to transmit the PEC, the PECBYTE bit must be set and the
number of bytes must be programmed in the NBYTES[7:0] field, before setting the START
bit. In this case the total number of TXIS interrupts is NBYTES - 1. So if the PECBYTE bit is
set when NBYTES = 0x1, the content of the I2C_PECR register is automatically transmitted.

If the SMBus master wants to send a STOP condition after the PEC, automatic end mode
must be selected (AUTOEND = 1). In this case, the STOP condition automatically follows
the PEC transmission.

MS19870V2

Example SMBus slave receiver 2 bytes + PEC

AddressS

EV1: ADDR ISR: check ADDCODE and DIR, program NBYTES = 3, PECBYTE=1, RELOAD=0, set ADDRCF

EV2: RXNE ISR: rd data1

EV3: RXNE ISR: rd data2

EV4: RXNE ISR: rd PEC

A data1 A data2 A

RXNE

PEC A

RXNE

P

legend:

transmission

reception

SCL stretch

EV1 EV2 EV3 EV4

ADDR RXNE

NBYTES

Example SMBus slave receiver 2 bytes + PEC, with ACK control
(RELOAD=1/0)

AddressS

EV1: ADDR ISR: check ADDCODE and DIR, program NBYTES = 1, PECBYTE=1, RELOAD=1, set ADDRCF

EV2: RXNE-TCR ISR: rd data1, program NACK=0 and NBYTES = 1

EV3: RXNE-TCR ISR: rd data2, program NACK=0, NBYTES = 1 and RELOAD=0

EV4: RXNE-TCR ISR: rd PEC

A

ADDR

data1 A data2 A

RXNE,TCR

PEC A

RXNE,TCR

P

legend :

transmission

reception

SCL stretch

3VE2VE1VE

RXNE

EV4

NBYTES 1

3

Inter-integrated circuit (I2C) interface RM0367

738/1040 RM0367 Rev 8

When the SMBus master wants to send a RESTART condition after the PEC, software
mode must be selected (AUTOEND=0). In this case, once NBYTES - 1 have been
transmitted, the I2C_PECR register content is transmitted and the TC flag is set after the
PEC transmission, stretching the SCL line low. The RESTART condition must be
programmed in the TC interrupt subroutine.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Figure 240. Bus transfer diagrams for SMBus master transmitter

MS19871V2

Example SMBus master transmitter 2 bytes + PEC, automatic end mode (STOP)

AddressS

INIT: program Slave address, program NBYTES = 3, AUTOEND=1, set PECBYTE, set START

EV1: TXIS ISR: wr data1

EV2: TXIS ISR: wr data2

A data1 A

TXIS TXIS

data2 A

NBYTES

A

legend:

transmission

reception

SCL stretch
EV1

xx 3

INIT

Example SMBus master transmitter 2 bytes + PEC, software end mode (RESTART)

INIT: program Slave address, program NBYTES = 3, AUTOEND=0, set PECBYTE, set START

EV1: TXIS ISR: wr data1

EV2: TXIS ISR: wr data2

EV3: TC ISR: program Slave address, program NBYTES = N, set START

NBYTES

Rstart

legend:

transmission

reception

SCL stretch

xx

Address

N

PEC P

EV2

A

3

TXE

AddressS A data1 A

TXIS TXIS

data2 A

EV1INIT

PEC

EV2

TC

EV3

RM0367 Rev 8 739/1040

RM0367 Inter-integrated circuit (I2C) interface

761

SMBus master receiver

When the SMBus master wants to receive the PEC followed by a STOP at the end of the
transfer, automatic end mode can be selected (AUTOEND = 1). The PECBYTE bit must be
set and the slave address must be programmed, before setting the START bit. In this case,
after NBYTES - 1 data have been received, the next received byte is automatically checked
versus the I2C_PECR register content. A NACK response is given to the PEC byte, followed
by a STOP condition.

When the SMBus master receiver wants to receive the PEC byte followed by a RESTART
condition at the end of the transfer, software mode must be selected (AUTOEND=0). The
PECBYTE bit must be set and the slave address must be programmed, before setting the
START bit. In this case, after NBYTES - 1 data have been received, the next received byte
is automatically checked versus the I2C_PECR register content. The TC flag is set after the
PEC byte reception, stretching the SCL line low. The RESTART condition can be
programmed in the TC interrupt subroutine.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Inter-integrated circuit (I2C) interface RM0367

740/1040 RM0367 Rev 8

Figure 241. Bus transfer diagrams for SMBus master receiver

MS19872V2

Example SMBus master receiver 2 bytes + PEC, automatic end mode (STOP)

AddressS

INIT: program Slave address, program NBYTES = 3, AUTOEND=1, set PECBYTE, set START

EV1: RXNE ISR: rd data1

EV2: RXNE ISR: rd data2

EV3: RXNE ISR: rd PEC

A data1 A

RXNE RXNE

data2 A

NBYTES

NA

legend:

transmission

reception

SCL stretch
3VE1VE

xx 3

INIT

Example SMBus master receiver 2 bytes + PEC, software end mode (RESTART)

AddressS

INIT: program Slave address, program NBYTES = 3, AUTOEND=0, set PECBYTE, set START

EV1: RXNE ISR: rd data1

EV2: RXNE ISR: rd data2

EV3: RXNE ISR: read PEC

EV4: TC ISR: program Slave address, program NBYTES = N, set START

A data1 A

RXNE RXNE

data2 A

NBYTES

Restart

legend:

transmission

reception

SCL stretchEV1 EV2

xx

INIT

Address

N

PEC P

RXNE

EV2

NAPEC

RXNE

3

EV3

TC

EV4

RM0367 Rev 8 741/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.4.16 Wakeup from Stop mode on address match

This section is relevant only when wakeup from Stop mode feature is supported. Refer to
Section 28.3: I2C implementation.

The I2C is able to wakeup the MCU from Stop mode (APB clock is off), when it is
addressed. All addressing modes are supported.

Wakeup from Stop mode is enabled by setting the WUPEN bit in the I2C_CR1 register. The
HSI16 oscillator must be selected as the clock source for I2CCLK in order to allow wakeup
from Stop mode.

During Stop mode, the HSI16 is switched off. When a START is detected, the I2C interface
switches the HSI16 on, and stretches SCL low until HSI16 is woken up.

HSI16 is then used for the address reception.

In case of an address match, the I2C stretches SCL low during MCU wakeup time. The
stretch is released when ADDR flag is cleared by software, and the transfer goes on
normally.

If the address does not match, the HSI16 is switched off again and the MCU is not woken
up.

Note: If the I2C clock is the system clock, or if WUPEN = 0, the HSI16 is not switched on after a
START is received.

Only an ADDR interrupt can wakeup the MCU. Therefore do not enter Stop mode when the
I2C is performing a transfer as a master, or as an addressed slave after the ADDR flag is
set. This can be managed by clearing SLEEPDEEP bit in the ADDR interrupt routine and
setting it again only after the STOPF flag is set.

Caution: The digital filter is not compatible with the wakeup from Stop mode feature. If the DNF bit is
not equal to 0, setting the WUPEN bit has no effect.

Caution: This feature is available only when the I2C clock source is the HSI16 oscillator.

Caution: Clock stretching must be enabled (NOSTRETCH = 0) to ensure proper operation of the
wakeup from Stop mode feature.

Caution: If wakeup from Stop mode is disabled (WUPEN = 0), the I2C peripheral must be disabled
before entering Stop mode (PE = 0).

28.4.17 Error conditions

The following errors are the error conditions which may cause communication to fail.

Bus error (BERR)

A bus error is detected when a START or a STOP condition is detected and is not located
after a multiple of 9 SCL clock pulses. A START or a STOP condition is detected when a
SDA edge occurs while SCL is high.

The bus error flag is set only if the I2C is involved in the transfer as master or addressed
slave (i.e not during the address phase in slave mode).

In case of a misplaced START or RESTART detection in slave mode, the I2C enters
address recognition state like for a correct START condition.

When a bus error is detected, the BERR flag is set in the I2C_ISR register, and an interrupt
is generated if the ERRIE bit is set in the I2C_CR1 register.

Inter-integrated circuit (I2C) interface RM0367

742/1040 RM0367 Rev 8

Arbitration lost (ARLO)

An arbitration loss is detected when a high level is sent on the SDA line, but a low level is
sampled on the SCL rising edge.

• In master mode, arbitration loss is detected during the address phase, data phase and
data acknowledge phase. In this case, the SDA and SCL lines are released, the
START control bit is cleared by hardware and the master switches automatically to
slave mode.

• In slave mode, arbitration loss is detected during data phase and data acknowledge
phase. In this case, the transfer is stopped, and the SCL and SDA lines are released.

When an arbitration loss is detected, the ARLO flag is set in the I2C_ISR register, and an
interrupt is generated if the ERRIE bit is set in the I2C_CR1 register.

Overrun/underrun error (OVR)

An overrun or underrun error is detected in slave mode when NOSTRETCH = 1 and:

• In reception when a new byte is received and the RXDR register has not been read yet.
The new received byte is lost, and a NACK is automatically sent as a response to the
new byte.

• In transmission:

– When STOPF=1 and the first data byte should be sent. The content of the
I2C_TXDR register is sent if TXE=0, 0xFF if not.

– When a new byte must be sent and the I2C_TXDR register has not been written
yet, 0xFF is sent.

When an overrun or underrun error is detected, the OVR flag is set in the I2C_ISR register,
and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register.

Packet error checking error (PECERR)

This section is relevant only when the SMBus feature is supported. Refer to Section 28.3:
I2C implementation.

A PEC error is detected when the received PEC byte does not match with the I2C_PECR
register content. A NACK is automatically sent after the wrong PEC reception.

When a PEC error is detected, the PECERR flag is set in the I2C_ISR register, and an
interrupt is generated if the ERRIE bit is set in the I2C_CR1 register.

Timeout Error (TIMEOUT)

This section is relevant only when the SMBus feature is supported. Refer to Section 28.3:
I2C implementation.

A timeout error occurs for any of these conditions:

• TIDLE=0 and SCL remained low for the time defined in the TIMEOUTA[11:0] bits: this is
used to detect a SMBus timeout.

• TIDLE=1 and both SDA and SCL remained high for the time defined in the TIMEOUTA
[11:0] bits: this is used to detect a bus idle condition.

• Master cumulative clock low extend time reached the time defined in the
TIMEOUTB[11:0] bits (SMBus tLOW:MEXT parameter)

• Slave cumulative clock low extend time reached the time defined in TIMEOUTB[11:0]
bits (SMBus tLOW:SEXT parameter)

RM0367 Rev 8 743/1040

RM0367 Inter-integrated circuit (I2C) interface

761

When a timeout violation is detected in master mode, a STOP condition is automatically
sent.

When a timeout violation is detected in slave mode, SDA and SCL lines are automatically
released.

When a timeout error is detected, the TIMEOUT flag is set in the I2C_ISR register, and an
interrupt is generated if the ERRIE bit is set in the I2C_CR1 register.

Alert (ALERT)

This section is relevant only when the SMBus feature is supported. Refer to Section 28.3:
I2C implementation.

The ALERT flag is set when the I2C interface is configured as a Host (SMBHEN=1), the
alert pin detection is enabled (ALERTEN=1) and a falling edge is detected on the SMBA pin.
An interrupt is generated if the ERRIE bit is set in the I2C_CR1 register.

28.4.18 DMA requests

Transmission using DMA

DMA (direct memory access) can be enabled for transmission by setting the TXDMAEN bit
in the I2C_CR1 register. Data is loaded from an SRAM area configured using the DMA
peripheral (see Section 11: Direct memory access controller (DMA) on page 361) to the
I2C_TXDR register whenever the TXIS bit is set.

Only the data are transferred with DMA.

• In master mode: the initialization, the slave address, direction, number of bytes and
START bit are programmed by software (the transmitted slave address cannot be
transferred with DMA). When all data are transferred using DMA, the DMA must be
initialized before setting the START bit. The end of transfer is managed with the
NBYTES counter. Refer to Master transmitter on page 719.

For code example refer to A.16.8: I2C configured in master mode to transmit with DMA code
example.

• In slave mode:

– With NOSTRETCH = 0, when all data are transferred using DMA, the DMA must
be initialized before the address match event, or in ADDR interrupt subroutine,
before clearing ADDR.

– With NOSTRETCH = 1, the DMA must be initialized before the address match
event.

• For instances supporting SMBus: the PEC transfer is managed with NBYTES counter.
Refer to SMBus slave transmitter on page 733 and SMBus master transmitter on
page 737.

Note: If DMA is used for transmission, the TXIE bit does not need to be enabled.

Inter-integrated circuit (I2C) interface RM0367

744/1040 RM0367 Rev 8

Reception using DMA

DMA (direct memory access) can be enabled for reception by setting the RXDMAEN bit in
the I2C_CR1 register. Data is loaded from the I2C_RXDR register to an SRAM area
configured using the DMA peripheral (refer to Section 11: Direct memory access controller
(DMA) on page 264) whenever the RXNE bit is set. Only the data (including PEC) are
transferred with DMA.

• In Master mode, the initialization, the slave address, direction, number of bytes and
START bit are programmed by software. When all data are transferred using DMA, the
DMA must be initialized before setting the START bit. The end of transfer is managed
with the NBYTES counter. For code example refer to A.16.9: I2C configured in slave
mode to receive with DMA code example.

• In Slave mode with NOSTRETCH = 0, when all data are transferred using DMA, the
DMA must be initialized before the address match event, or in the ADDR interrupt
subroutine, before clearing the ADDR flag.

• If SMBus is supported (see Section 28.3: I2C implementation): the PEC transfer is
managed with the NBYTES counter. Refer to SMBus Slave receiver on page 735 and
SMBus master receiver on page 739.

Note: If DMA is used for reception, the RXIE bit does not need to be enabled.

28.4.19 Debug mode

When the microcontroller enters debug mode (core halted), the SMBus timeout either
continues to work normally or stops, depending on the DBG_I2Cx_SMBUS_TIMEOUT
configuration bits in the DBG module.

28.5 I2C low-power modes

Table 136. Effect of low-power modes on the I2C

Mode Description

Sleep No effect. I2C interrupts cause the device to exit the Sleep mode.

Stop(1)

1. Refer to Section 28.3: I2C implementation for information about the Stop modes supported by each
instance. If wakeup from a specific Stop mode is not supported, the instance must be disabled before
entering this Stop mode.

The I2C registers content is kept. If WUPEN = 1 and I2C is clocked by an internal
oscillator (HSI16): the address recognition is functional. The I2C address match
condition causes the device to exit the Stop mode. If WUPEN=0: the I2C must be
disabled before entering Stop mode

Standby
The I2C peripheral is powered down and must be reinitialized after exiting
Standby mode.

RM0367 Rev 8 745/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.6 I2C interrupts

The table below gives the list of I2C interrupt requests.

Table 137. I2C Interrupt requests

Interrupt
acronym

Interrupt
event

Event
flag

Enable
control bit

Interrupt clear
method

Exit the
Sleep
mode

Exit the
Stop
mode

Exit the
Standby

mode

I2C

I2C_EV

Receive buffer
not empty

RXNE RXIE
Read I2C_RXDR

register

Yes

No

No

Transmit buffer
interrupt status

TXIS TXIE
Write I2C_TXDR

register

Stop detection
interrupt flag

STOPF STOPIE
Write

STOPCF=1

Transfer
complete
reload

TCR

TCIE

Write I2C_CR2
with

NBYTES[7:0] ≠ 0

Transfer
complete

TC
Write START=1

or STOP=1

Address
matched

ADDR ADDRIE
Write

ADDRCF=1
Yes(1)

NACK
reception

NACKF NACKIE
Write

NACKCF=1
No

I2C_ER

Bus error BERR

ERRIE

Write
BERRCF=1

Yes No No

Arbitration loss ARLO
Write

ARLOCF=1

Overrun/
Underrun

OVR Write OVRCF=1

PEC error PECERR
Write

PECERRCF=1

Timeout/
tLOW error

TIMEOUT
Write

TIMEOUTCF=1

SMBus alert ALERT
Write

ALERTCF=1

1. The ADDR match event can wake up the device from Stop mode only if the I2C instance supports the Wakeup from Stop
mode feature. Refer to Section 28.3: I2C implementation.

Inter-integrated circuit (I2C) interface RM0367

746/1040 RM0367 Rev 8

28.7 I2C registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers are accessed by words (32-bit).

28.7.1 I2C control register 1 (I2C_CR1)

Address offset: 0x00

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to
2 x PCLK1 + 6 x I2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. PECEN
ALERT

EN
SMBD

EN
SMBH

EN
GCEN

WUPE
N

NOSTR
ETCH

SBC

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDMA
EN

TXDMA
EN

Res.
ANF
OFF

DNF[3:0] ERRIE TCIE
STOP

IE
NACK

IE
ADDR

IE
RXIE TXIE PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 PECEN: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 22 ALERTEN: SMBus alert enable

0: The SMBus alert pin (SMBA) is not supported in host mode (SMBHEN=1). In device mode
(SMBHEN=0), the SMBA pin is released and the Alert Response Address header is disabled
(0001100x followed by NACK).
1: The SMBus alert pin is supported in host mode (SMBHEN=1). In device mode
(SMBHEN=0), the SMBA pin is driven low and the Alert Response Address header is
enabled (0001100x followed by ACK).

Note: When ALERTEN=0, the SMBA pin can be used as a standard GPIO.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 21 SMBDEN: SMBus device default address enable

0: Device default address disabled. Address 0b1100001x is NACKed.
1: Device default address enabled. Address 0b1100001x is ACKed.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 20 SMBHEN: SMBus host address enable

0: Host address disabled. Address 0b0001000x is NACKed.
1: Host address enabled. Address 0b0001000x is ACKed.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

RM0367 Rev 8 747/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Bit 19 GCEN: General call enable

0: General call disabled. Address 0b00000000 is NACKed.
1: General call enabled. Address 0b00000000 is ACKed.

Bit 18 WUPEN: Wakeup from Stop mode enable

0: Wakeup from Stop mode disable.
1: Wakeup from Stop mode enable.

Note: If the Wakeup from Stop mode feature is not supported, this bit is reserved and forced
by hardware to ‘0’. Refer to Section 28.3: I2C implementation.

Note: WUPEN can be set only when DNF = ‘0000’

Bit 17 NOSTRETCH: Clock stretching disable

This bit is used to disable clock stretching in slave mode. It must be kept cleared in master
mode.
0: Clock stretching enabled
1: Clock stretching disabled

Note: This bit can only be programmed when the I2C is disabled (PE = 0).

Bit 16 SBC: Slave byte control

This bit is used to enable hardware byte control in slave mode.
0: Slave byte control disabled
1: Slave byte control enabled

Bit 15 RXDMAEN: DMA reception requests enable

0: DMA mode disabled for reception
1: DMA mode enabled for reception

Bit 14 TXDMAEN: DMA transmission requests enable

0: DMA mode disabled for transmission
1: DMA mode enabled for transmission

Bit 13 Reserved, must be kept at reset value.

Bit 12 ANFOFF: Analog noise filter OFF

0: Analog noise filter enabled
1: Analog noise filter disabled

Note: This bit can only be programmed when the I2C is disabled (PE = 0).

Bits 11:8 DNF[3:0]: Digital noise filter

These bits are used to configure the digital noise filter on SDA and SCL input. The digital
filter, filters spikes with a length of up to DNF[3:0] * tI2CCLK
0000: Digital filter disabled
0001: Digital filter enabled and filtering capability up to 1 tI2CCLK

...
1111: digital filter enabled and filtering capability up to15 tI2CCLK

Note: If the analog filter is also enabled, the digital filter is added to the analog filter.

This filter can only be programmed when the I2C is disabled (PE = 0).

Inter-integrated circuit (I2C) interface RM0367

748/1040 RM0367 Rev 8

Bit 7 ERRIE: Error interrupts enable

0: Error detection interrupts disabled
1: Error detection interrupts enabled

Note: Any of these errors generate an interrupt:

Arbitration Loss (ARLO)

Bus Error detection (BERR)

Overrun/Underrun (OVR)

Timeout detection (TIMEOUT)

PEC error detection (PECERR)

Alert pin event detection (ALERT)

Bit 6 TCIE: Transfer Complete interrupt enable

0: Transfer Complete interrupt disabled
1: Transfer Complete interrupt enabled

Note: Any of these events generate an interrupt:

Transfer Complete (TC)

Transfer Complete Reload (TCR)

Bit 5 STOPIE: Stop detection Interrupt enable

0: Stop detection (STOPF) interrupt disabled
1: Stop detection (STOPF) interrupt enabled

Bit 4 NACKIE: Not acknowledge received Interrupt enable

0: Not acknowledge (NACKF) received interrupts disabled
1: Not acknowledge (NACKF) received interrupts enabled

Bit 3 ADDRIE: Address match Interrupt enable (slave only)

0: Address match (ADDR) interrupts disabled
1: Address match (ADDR) interrupts enabled

Bit 2 RXIE: RX Interrupt enable

0: Receive (RXNE) interrupt disabled
1: Receive (RXNE) interrupt enabled

Bit 1 TXIE: TX Interrupt enable

0: Transmit (TXIS) interrupt disabled
1: Transmit (TXIS) interrupt enabled

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable

Note: When PE = 0, the I2C SCL and SDA lines are released. Internal state machines and
status bits are put back to their reset value. When cleared, PE must be kept low for at
least 3 APB clock cycles.

RM0367 Rev 8 749/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.7.2 I2C control register 2 (I2C_CR2)

Address offset: 0x04

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
I2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res.
PEC

BYTE
AUTOE

ND
RE

LOAD
NBYTES[7:0]

rs rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NACK STOP START
HEAD1

0R
ADD10

RD_
WRN

SADD[9:0]

rs rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved, must be kept at reset value.

Bit 26 PECBYTE: Packet error checking byte

This bit is set by software, and cleared by hardware when the PEC is transferred, or when a
STOP condition or an Address matched is received, also when PE = 0.
0: No PEC transfer.
1: PEC transmission/reception is requested

Note: Writing ‘0’ to this bit has no effect.

This bit has no effect when RELOAD is set.

This bit has no effect is slave mode when SBC=0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 25 AUTOEND: Automatic end mode (master mode)

This bit is set and cleared by software.
0: software end mode: TC flag is set when NBYTES data are transferred, stretching SCL low.
1: Automatic end mode: a STOP condition is automatically sent when NBYTES data are
transferred.

Note: This bit has no effect in slave mode or when the RELOAD bit is set.

Bit 24 RELOAD: NBYTES reload mode

This bit is set and cleared by software.
0: The transfer is completed after the NBYTES data transfer (STOP or RESTART follows).
1: The transfer is not completed after the NBYTES data transfer (NBYTES is reloaded). TCR
flag is set when NBYTES data are transferred, stretching SCL low.

Bits 23:16 NBYTES[7:0]: Number of bytes

The number of bytes to be transmitted/received is programmed there. This field is don’t care
in slave mode with SBC=0.

Note: Changing these bits when the START bit is set is not allowed.

Inter-integrated circuit (I2C) interface RM0367

750/1040 RM0367 Rev 8

Bit 15 NACK: NACK generation (slave mode)

The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP
condition or an Address matched is received, or when PE = 0.
0: an ACK is sent after current received byte.
1: a NACK is sent after current received byte.

Note: Writing ‘0’ to this bit has no effect.

This bit is used in slave mode only: in master receiver mode, NACK is automatically
generated after last byte preceding STOP or RESTART condition, whatever the NACK
bit value.

When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is
automatically generated whatever the NACK bit value.

When hardware PEC checking is enabled (PECBYTE=1), the PEC acknowledge value
does not depend on the NACK value.

Bit 14 STOP: Stop generation (master mode)

The bit is set by software, cleared by hardware when a STOP condition is detected, or when
PE = 0.
In Master Mode:
0: No Stop generation.
1: Stop generation after current byte transfer.

Note: Writing ‘0’ to this bit has no effect.

Bit 13 START: Start generation

This bit is set by software, and cleared by hardware after the Start followed by the address
sequence is sent, by an arbitration loss, by a timeout error detection, or when PE = 0. It can
also be cleared by software by writing ‘1’ to the ADDRCF bit in the I2C_ICR register.
0: No Start generation.
1: Restart/Start generation:
If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a
Repeated Start condition when RELOAD=0, after the end of the NBYTES transfer.
Otherwise setting this bit generates a START condition once the bus is free.

Note: Writing ‘0’ to this bit has no effect.

The START bit can be set even if the bus is BUSY or I2C is in slave mode.

This bit has no effect when RELOAD is set.

Bit 12 HEAD10R: 10-bit address header only read direction (master receiver mode)

0: The master sends the complete 10 bit slave address read sequence: Start + 2 bytes 10bit
address in write direction + Restart + 1st 7 bits of the 10 bit address in read direction.
1: The master only sends the 1st 7 bits of the 10 bit address, followed by Read direction.

Note: Changing this bit when the START bit is set is not allowed.

Bit 11 ADD10: 10-bit addressing mode (master mode)

0: The master operates in 7-bit addressing mode,
1: The master operates in 10-bit addressing mode

Note: Changing this bit when the START bit is set is not allowed.

Bit 10 RD_WRN: Transfer direction (master mode)

0: Master requests a write transfer.
1: Master requests a read transfer.

Note: Changing this bit when the START bit is set is not allowed.

RM0367 Rev 8 751/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.7.3 I2C own address 1 register (I2C_OAR1)

Address offset: 0x08

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
I2CCLK.

Bits 9:0 SADD[9:0]: Slave address (master mode)

In 7-bit addressing mode (ADD10 = 0):
SADD[7:1] should be written with the 7-bit slave address to be sent. The bits SADD[9],
SADD[8] and SADD[0] are don't care.
In 10-bit addressing mode (ADD10 = 1):
SADD[9:0] should be written with the 10-bit slave address to be sent.

Note: Changing these bits when the START bit is set is not allowed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OA1EN Res. Res. Res. Res.
OA1

MODE
OA1[9:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bit 15 OA1EN: Own Address 1 enable

0: Own address 1 disabled. The received slave address OA1 is NACKed.
1: Own address 1 enabled. The received slave address OA1 is ACKed.

Bits 14:11 Reserved, must be kept at reset value.

Bit 10 OA1MODE: Own Address 1 10-bit mode

0: Own address 1 is a 7-bit address.
1: Own address 1 is a 10-bit address.

Note: This bit can be written only when OA1EN=0.

Bits 9:0 OA1[9:0]: Interface own slave address

7-bit addressing mode: OA1[7:1] contains the 7-bit own slave address. The bits OA1[9],
OA1[8] and OA1[0] are don't care.
10-bit addressing mode: OA1[9:0] contains the 10-bit own slave address.

Note: These bits can be written only when OA1EN=0.

Inter-integrated circuit (I2C) interface RM0367

752/1040 RM0367 Rev 8

28.7.4 I2C own address 2 register (I2C_OAR2)

Address offset: 0x0C

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
I2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OA2EN Res. Res. Res. Res. OA2MSK[2:0] OA2[7:1] Res.

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bit 15 OA2EN: Own Address 2 enable

0: Own address 2 disabled. The received slave address OA2 is NACKed.
1: Own address 2 enabled. The received slave address OA2 is ACKed.

Bits 14:11 Reserved, must be kept at reset value.

Bits 10:8 OA2MSK[2:0]: Own Address 2 masks

000: No mask
001: OA2[1] is masked and don’t care. Only OA2[7:2] are compared.
010: OA2[2:1] are masked and don’t care. Only OA2[7:3] are compared.
011: OA2[3:1] are masked and don’t care. Only OA2[7:4] are compared.
100: OA2[4:1] are masked and don’t care. Only OA2[7:5] are compared.
101: OA2[5:1] are masked and don’t care. Only OA2[7:6] are compared.
110: OA2[6:1] are masked and don’t care. Only OA2[7] is compared.
111: OA2[7:1] are masked and don’t care. No comparison is done, and all (except reserved)
7-bit received addresses are acknowledged.

Note: These bits can be written only when OA2EN=0.

As soon as OA2MSK is not equal to 0, the reserved I2C addresses (0b0000xxx and
0b1111xxx) are not acknowledged even if the comparison matches.

Bits 7:1 OA2[7:1]: Interface address

7-bit addressing mode: 7-bit address

Note: These bits can be written only when OA2EN=0.

Bit 0 Reserved, must be kept at reset value.

RM0367 Rev 8 753/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.7.5 I2C timing register (I2C_TIMINGR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: No wait states

Note: This register must be configured when the I2C is disabled (PE = 0).

Note: The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
Configuration window.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRESC[3:0] Res. Res. Res. Res. SCLDEL[3:0] SDADEL[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCLH[7:0] SCLL[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 PRESC[3:0]: Timing prescaler

This field is used to prescale I2CCLK in order to generate the clock period tPRESC used for
data setup and hold counters (refer to I2C timings on page 700) and for SCL high and low
level counters (refer to I2C master initialization on page 715).
tPRESC = (PRESC+1) x tI2CCLK

Bits 27:24 Reserved, must be kept at reset value.

Bits 23:20 SCLDEL[3:0]: Data setup time

This field is used to generate a delay tSCLDEL between SDA edge and SCL rising edge. In
master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during
tSCLDEL.
tSCLDEL = (SCLDEL+1) x tPRESC

Note: tSCLDEL is used to generate tSU:DAT timing.

Bits 19:16 SDADEL[3:0]: Data hold time

This field is used to generate the delay tSDADEL between SCL falling edge and SDA edge. In
master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during
tSDADEL.
tSDADEL= SDADEL x tPRESC

Note: SDADEL is used to generate tHD:DAT timing.

Bits 15:8 SCLH[7:0]: SCL high period (master mode)

This field is used to generate the SCL high period in master mode.
tSCLH = (SCLH+1) x tPRESC

Note: SCLH is also used to generate tSU:STO and tHD:STA timing.

Bits 7:0 SCLL[7:0]: SCL low period (master mode)

This field is used to generate the SCL low period in master mode.
tSCLL = (SCLL+1) x tPRESC

Note: SCLL is also used to generate tBUF and tSU:STA timings.

Inter-integrated circuit (I2C) interface RM0367

754/1040 RM0367 Rev 8

28.7.6 I2C timeout register (I2C_TIMEOUTR)

Address offset: 0x14

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
I2CCLK.

Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to
“0x00000000”. Refer to Section 28.3: I2C implementation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TEXTEN Res. Res. Res. TIMEOUTB[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIMOUTEN Res. Res. TIDLE TIMEOUTA[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 TEXTEN: Extended clock timeout enable

0: Extended clock timeout detection is disabled
1: Extended clock timeout detection is enabled. When a cumulative SCL stretch for more
than tLOW:EXT is done by the I2C interface, a timeout error is detected (TIMEOUT=1).

Bits 30:28 Reserved, must be kept at reset value.

Bits 27:16 TIMEOUTB[11:0]: Bus timeout B

This field is used to configure the cumulative clock extension timeout:
In master mode, the master cumulative clock low extend time (tLOW:MEXT) is detected
In slave mode, the slave cumulative clock low extend time (tLOW:SEXT) is detected
tLOW:EXT= (TIMEOUTB+1) x 2048 x tI2CCLK

Note: These bits can be written only when TEXTEN=0.

Bit 15 TIMOUTEN: Clock timeout enable

0: SCL timeout detection is disabled
1: SCL timeout detection is enabled: when SCL is low for more than tTIMEOUT (TIDLE=0) or
high for more than tIDLE (TIDLE=1), a timeout error is detected (TIMEOUT=1).

Bits 14:13 Reserved, must be kept at reset value.

Bit 12 TIDLE: Idle clock timeout detection

0: TIMEOUTA is used to detect SCL low timeout
1: TIMEOUTA is used to detect both SCL and SDA high timeout (bus idle condition)

Note: This bit can be written only when TIMOUTEN=0.

Bits 11:0 TIMEOUTA[11:0]: Bus Timeout A

This field is used to configure:
The SCL low timeout condition tTIMEOUT when TIDLE=0
tTIMEOUT= (TIMEOUTA+1) x 2048 x tI2CCLK
The bus idle condition (both SCL and SDA high) when TIDLE=1
tIDLE= (TIMEOUTA+1) x 4 x tI2CCLK

Note: These bits can be written only when TIMOUTEN=0.

RM0367 Rev 8 755/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.7.7 I2C interrupt and status register (I2C_ISR)

Address offset: 0x18

Reset value: 0x0000 0001

Access: No wait states

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. ADDCODE[6:0] DIR

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BUSY Res. ALERT
TIME
OUT

PEC
ERR

OVR ARLO BERR TCR TC STOPF NACKF ADDR RXNE TXIS TXE

r r r r r r r r r r r r r rs rs

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:17 ADDCODE[6:0]: Address match code (Slave mode)

These bits are updated with the received address when an address match event occurs
(ADDR = 1).
In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the 2
MSBs of the address.

Bit 16 DIR: Transfer direction (Slave mode)

This flag is updated when an address match event occurs (ADDR = 1).
0: Write transfer, slave enters receiver mode.
1: Read transfer, slave enters transmitter mode.

Bit 15 BUSY: Bus busy

This flag indicates that a communication is in progress on the bus. It is set by hardware
when a START condition is detected. It is cleared by hardware when a STOP condition is
detected, or when PE = 0.

Bit 14 Reserved, must be kept at reset value.

Bit 13 ALERT: SMBus alert

This flag is set by hardware when SMBHEN=1 (SMBus host configuration), ALERTEN=1
and a SMBALERT event (falling edge) is detected on SMBA pin. It is cleared by software by
setting the ALERTCF bit.

Note: This bit is cleared by hardware when PE = 0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 12 TIMEOUT: Timeout or tLOW detection flag

This flag is set by hardware when a timeout or extended clock timeout occurred. It is cleared
by software by setting the TIMEOUTCF bit.

Note: This bit is cleared by hardware when PE = 0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Inter-integrated circuit (I2C) interface RM0367

756/1040 RM0367 Rev 8

Bit 11 PECERR: PEC Error in reception

This flag is set by hardware when the received PEC does not match with the PEC register
content. A NACK is automatically sent after the wrong PEC reception. It is cleared by
software by setting the PECCF bit.

Note: This bit is cleared by hardware when PE = 0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 10 OVR: Overrun/Underrun (slave mode)

This flag is set by hardware in slave mode with NOSTRETCH = 1, when an
overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit.

Note: This bit is cleared by hardware when PE = 0.

Bit 9 ARLO: Arbitration lost

This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the
ARLOCF bit.

Note: This bit is cleared by hardware when PE = 0.

Bit 8 BERR: Bus error

This flag is set by hardware when a misplaced Start or STOP condition is detected whereas
the peripheral is involved in the transfer. The flag is not set during the address phase in slave
mode. It is cleared by software by setting BERRCF bit.

Note: This bit is cleared by hardware when PE = 0.

Bit 7 TCR: Transfer Complete Reload

This flag is set by hardware when RELOAD=1 and NBYTES data have been transferred. It is
cleared by software when NBYTES is written to a non-zero value.

Note: This bit is cleared by hardware when PE = 0.

This flag is only for master mode, or for slave mode when the SBC bit is set.

Bit 6 TC: Transfer Complete (master mode)

This flag is set by hardware when RELOAD=0, AUTOEND=0 and NBYTES data have been
transferred. It is cleared by software when START bit or STOP bit is set.

Note: This bit is cleared by hardware when PE = 0.

Bit 5 STOPF: Stop detection flag

This flag is set by hardware when a STOP condition is detected on the bus and the
peripheral is involved in this transfer:

– either as a master, provided that the STOP condition is generated by the peripheral.

– or as a slave, provided that the peripheral has been addressed previously during
this transfer.

It is cleared by software by setting the STOPCF bit.

Note: This bit is cleared by hardware when PE = 0.

Bit 4 NACKF: Not Acknowledge received flag

This flag is set by hardware when a NACK is received after a byte transmission. It is cleared
by software by setting the NACKCF bit.

Note: This bit is cleared by hardware when PE = 0.

Bit 3 ADDR: Address matched (slave mode)

This bit is set by hardware as soon as the received slave address matched with one of the
enabled slave addresses. It is cleared by software by setting ADDRCF bit.

Note: This bit is cleared by hardware when PE = 0.

RM0367 Rev 8 757/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.7.8 I2C interrupt clear register (I2C_ICR)

Address offset: 0x1C

Reset value: 0x0000 0000

Access: No wait states

Bit 2 RXNE: Receive data register not empty (receivers)

This bit is set by hardware when the received data is copied into the I2C_RXDR register, and
is ready to be read. It is cleared when I2C_RXDR is read.

Note: This bit is cleared by hardware when PE = 0.

Bit 1 TXIS: Transmit interrupt status (transmitters)

This bit is set by hardware when the I2C_TXDR register is empty and the data to be
transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be
sent is written in the I2C_TXDR register.
This bit can be written to ‘1’ by software when NOSTRETCH = 1 only, in order to generate a
TXIS event (interrupt if TXIE=1 or DMA request if TXDMAEN = 1).

Note: This bit is cleared by hardware when PE = 0.

Bit 0 TXE: Transmit data register empty (transmitters)

This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next
data to be sent is written in the I2C_TXDR register.
This bit can be written to ‘1’ by software in order to flush the transmit data register
I2C_TXDR.

Note: This bit is set by hardware when PE = 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.
ALERT

CF
TIMOU

TCF
PECCF OVRCF

ARLOC
F

BERRC
F

Res. Res.
STOPC

F
NACKC

F
ADDR

CF
Res. Res. Res.

w w w w w w w w w

Bits 31:14 Reserved, must be kept at reset value.

Bit 13 ALERTCF: Alert flag clear

Writing 1 to this bit clears the ALERT flag in the I2C_ISR register.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 12 TIMOUTCF: Timeout detection flag clear

Writing 1 to this bit clears the TIMEOUT flag in the I2C_ISR register.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Bit 11 PECCF: PEC Error flag clear

Writing 1 to this bit clears the PECERR flag in the I2C_ISR register.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 28.3: I2C implementation.

Inter-integrated circuit (I2C) interface RM0367

758/1040 RM0367 Rev 8

28.7.9 I2C PEC register (I2C_PECR)

Address offset: 0x20

Reset value: 0x0000 0000

Access: No wait states

Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to
“0x00000000”. Refer to Section 28.3: I2C implementation.

Bit 10 OVRCF: Overrun/Underrun flag clear

Writing 1 to this bit clears the OVR flag in the I2C_ISR register.

Bit 9 ARLOCF: Arbitration lost flag clear

Writing 1 to this bit clears the ARLO flag in the I2C_ISR register.

Bit 8 BERRCF: Bus error flag clear

Writing 1 to this bit clears the BERRF flag in the I2C_ISR register.

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 STOPCF: STOP detection flag clear

Writing 1 to this bit clears the STOPF flag in the I2C_ISR register.

Bit 4 NACKCF: Not Acknowledge flag clear

Writing 1 to this bit clears the NACKF flag in I2C_ISR register.

Bit 3 ADDRCF: Address matched flag clear

Writing 1 to this bit clears the ADDR flag in the I2C_ISR register. Writing 1 to this bit also
clears the START bit in the I2C_CR2 register.

Bits 2:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. PEC[7:0]

r r r r r r r r

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 PEC[7:0]: Packet error checking register

This field contains the internal PEC when PECEN=1.
The PEC is cleared by hardware when PE = 0.

RM0367 Rev 8 759/1040

RM0367 Inter-integrated circuit (I2C) interface

761

28.7.10 I2C receive data register (I2C_RXDR)

Address offset: 0x24

Reset value: 0x0000 0000

Access: No wait states

28.7.11 I2C transmit data register (I2C_TXDR)

Address offset: 0x28

Reset value: 0x0000 0000

Access: No wait states

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. RXDATA[7:0]

r r r r r r r r

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 RXDATA[7:0]: 8-bit receive data

Data byte received from the I2C bus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TXDATA[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 TXDATA[7:0]: 8-bit transmit data

Data byte to be transmitted to the I2C bus

Note: These bits can be written only when TXE = 1.

Inter-integrated circuit (I2C) interface RM0367

760/1040 RM0367 Rev 8

28.7.12 I2C register map

The table below provides the I2C register map and reset values.

Table 138. I2C register map and reset values

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x0
I2C_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
E

C
E

N

A
L

E
R

T
E

N

S
M

B
D

E
N

S
M

B
H

E
N

G
C

E
N

W
U

P
E

N

N
O

S
T

R
E

T
C

H

S
B

C

R
X

D
M

A
E

N

T
X

D
M

A
E

N

R
es

.

A
N

F
O

F
F

DNF[3:0]

E
R

R
IE

T
C

IE

S
T

O
P

IE

N
A

C
K

IE

A
D

D
R

IE

R
X

IE

T
X

IE

P
E

Reset value 0

0x4
I2C_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
E

C
B

Y
T

E

A
U

T
O

E
N

D

R
E

L
O

A
D

NBYTES[7:0]

N
A

C
K

S
T

O
P

S
TA

R
T

H
E

A
D

1
0

R

A
D

D
1

0

R
D

_W
R

N

SADD[9:0]

Reset value 0

0x8
I2C_OAR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
A

1
E

N

R
es

.

R
es

.

R
es

.

R
es

.

O
A

1
M

O
D

E

OA1[9:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0xC
I2C_OAR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
A

2
E

N

R
es

.

R
es

.

R
es

.

R
es

. OA2MS
K [2:0]

OA2[7:1]

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x10

I2C_
TIMINGR

PRESC[3:0]

R
es

.

R
es

.

R
es

.

R
es

. SCLDEL
[3:0]

SDADEL
[3:0]

SCLH[7:0] SCLL[7:0]

Reset value 0

0x14

I2C_
TIMEOUTR

T
E

X
T

E
N

R
es

.

R
es

.

R
es

.

TIMEOUTB[11:0]

T
IM

O
U

T
E

N

R
es

.

R
es

.

T
ID

LE TIMEOUTA[11:0]

Reset value 0

0x18
I2C_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ADDCODE[6:0] D
IR

B
U

S
Y

R
es

.

A
LE

R
T

T
IM

E
O

U
T

P
E

C
E

R
R

O
V

R

A
R

LO

B
E

R
R

T
C

R

T
C

S
T

O
P

F

N
A

C
K

F

A
D

D
R

R
X

N
E

T
X

IS

T
X

E

Reset value 0 1

0x1C
I2C_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
L

E
R

T
C

F

T
IM

O
U

T
C

F

P
E

C
C

F

O
V

R
C

F

A
R

LO
C

F

B
E

R
R

C
F

R
es

.

R
es

.

S
T

O
P

C
F

N
A

C
K

C
F

A
D

D
R

C
F

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0

0x20
I2C_PECR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PEC[7:0]

Reset value 0 0 0 0 0 0 0 0

0x24
I2C_RXDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RXDATA[7:0]

Reset value 0 0 0 0 0 0 0 0

RM0367 Rev 8 761/1040

RM0367 Inter-integrated circuit (I2C) interface

761

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x28
I2C_TXDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TXDATA[7:0]

Reset value 0 0 0 0 0 0 0 0

Table 138. I2C register map and reset values (continued)

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

762/1040 RM0367 Rev 8

29 Universal synchronous/asynchronous receiver
transmitter (USART/UART)

29.1 Introduction

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of Full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. The USART offers a very wide range of baud rates
using a programmable baud rate generator.

It supports synchronous one-way communication and Half-duplex Single-wire
communication, as well as multiprocessor communications. It also supports the LIN (Local
Interconnect Network), Smartcard protocol and IrDA (Infrared Data Association) SIR
ENDEC specifications and Modem operations (CTS/RTS).

High speed data communication is possible by using the DMA (direct memory access) for
multibuffer configuration.

29.2 USART main features

• Full-duplex asynchronous communications

• NRZ standard format (mark/space)

• Configurable oversampling method by 16 or 8 to give flexibility between speed and
clock tolerance

• A common programmable transmit and receive baud rate of up to 4 Mbit/s when the
clock frequency is 32 MHz and oversampling is by 8

• Dual clock domain allowing:

– USART functionality and wakeup from Stop mode

– Convenient baud rate programming independent from the PCLK reprogramming

• Auto baud rate detection

• Programmable data word length (7, 8 or 9 bits)

• Programmable data order with MSB-first or LSB-first shifting

• Configurable stop bits (1 or 2 stop bits)

• Synchronous mode and clock output for synchronous communications

• Single-wire Half-duplex communications

• Continuous communications using DMA

• Received/transmitted bytes are buffered in reserved SRAM using centralized DMA

• Separate enable bits for transmitter and receiver

• Separate signal polarity control for transmission and reception

• Swappable Tx/Rx pin configuration

• Hardware flow control for modem and RS-485 transceiver

RM0367 Rev 8 763/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

• Communication control/error detection flags

• Parity control:

– Transmits parity bit

– Checks parity of received data byte

• Fourteen interrupt sources with flags

• Multiprocessor communications

The USART enters Mute mode if the address does not match.

• Wakeup from Mute mode (by idle line detection or address mark detection)

29.3 USART extended features

• LIN master synchronous break send capability and LIN slave break detection capability

– 13-bit break generation and 10/11-bit break detection when USART is hardware
configured for LIN

• IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode

• Smartcard mode

– Supports the T=0 and T=1 asynchronous protocols for smartcards as defined in
the ISO/IEC 7816-3 standard

– 0.5 and 1.5 stop bits for smartcard operation

• Support for ModBus communication

– Timeout feature

– CR/LF character recognition

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

764/1040 RM0367 Rev 8

29.4 USART implementation

29.5 USART functional description

Any USART bidirectional communication requires a minimum of two pins: Receive data In
(RX) and Transmit data Out (TX):

• RX: Receive data Input.

This is the serial data input. Oversampling techniques are used for data recovery by
discriminating between valid incoming data and noise.

• TX: Transmit data Output.

When the transmitter is disabled, the output pin returns to its I/O port configuration.
When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high
level. In Single-wire and Smartcard modes, this I/O is used to transmit and receive the
data.

Table 139. STM32L0x3 USART/LPUART features(1)

USART modes/features USART1/2 USART4 USART5 LPUART1

Hardware flow control for modem X X - X

Continuous communication using DMA X X X X

Multiprocessor communication X X X X

Synchronous mode X X X -

Smartcard mode X - - -

Single-wire Half-duplex communication X X X X

Ir SIR ENDEC block X - - -

LIN mode X - - -

Dual clock domain and wakeup from Stop mode X - - X

Receiver timeout interrupt X - - -

Modbus communication X - - -

Auto baud rate detection X - - -

Driver Enable X X X X

USART/LPUART data length 7(2), 8 and 9 bits

1. X = supported.

2. In 7-bit data length mode, Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames) detection are not
supported.

RM0367 Rev 8 765/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Serial data are transmitted and received through these pins in normal USART mode. The
frames are comprised of:

• An Idle Line prior to transmission or reception

• A start bit

• A data word (7, 8 or 9 bits) least significant bit first

• 0.5, 1, 1.5, 2 stop bits indicating that the frame is complete

• The USART interface uses a baud rate generator

• A status register (USART_ISR)

• Receive and transmit data registers (USART_RDR, USART_TDR)

• A baud rate register (USART_BRR)

• A guard-time register (USART_GTPR) in case of Smartcard mode.

Refer to Section 29.8: USART registers on page 806 for the definitions of each bit.

The following pin is required to interface in synchronous mode and Smartcard mode:

• CK: Clock output. This pin outputs the transmitter data clock for synchronous
transmission corresponding to SPI master mode (no clock pulses on start bit and stop
bit, and a software option to send a clock pulse on the last data bit). In parallel, data
can be received synchronously on RX. This can be used to control peripherals that
have shift registers (e.g. LCD drivers). The clock phase and polarity are software
programmable. In Smartcard mode, CK output can provide the clock to the smartcard.

The following pins are required in RS232 Hardware flow control mode:

• CTS: Clear To Send blocks the data transmission at the end of the current transfer
(when high)

• RTS: Request to send indicates that the USART is ready to receive data (when low).

The following pin is required in RS485 Hardware control mode:

• DE: Driver Enable activates the transmission mode of the external transceiver.

Note: DE and RTS share the same pin.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

766/1040 RM0367 Rev 8

Figure 242. USART block diagram

1. For details on coding USARTDIV in the USART_BRR register, refer to Section 29.5.4: USART baud rate
generation.

2. fCK can be fLSE, fHSI, fPCLK, fSYS.

MS19821V8

BRR[15:0]

Write Read DR (data register)

(CPU or DMA) (CPU or DMA)

PRDATA PWDATA

USART_CR3 register

USART_CR2 register

RTS/
DE

CTS

Hardware
flow

controller

IrDA
SIR

ENDEC
block

Transmit
control

USART_CR1 register

Wakeup
unit

USART_CR1 register

USART_GTPR register
GT PSC CK control

USART_CR2 register

Receiver
control

Receiver
clock

USART_ISR register

USART
interrupt
control

USART_BRR register
Transmitter

rate controller

Receiver rate
controller

/USARTDIV or 2/USARTDIV
(depending on the

oversampling mode)
(Note 1)

fCK

Transmitter
clock

Conventional baud rate generator(Note 2)

TE

RE

CK

TX
RX

Transmit shift register

Transmit data register
(TDR)

Receive shift register

Receive data register
(RDR)

RM0367 Rev 8 767/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.5.1 USART character description

The word length can be selected as being either 7 or 8 or 9 bits by programming the M[1:0]
bits in the USART_CR1 register (see Figure 243).

• 7-bit character length: M[1:0] = 10

• 8-bit character length: M[1:0] = 00

• 9-bit character length: M[1:0] = 01

Note: The 7-bit mode is supported only on some USARTs. In addition, not all modes are
supported in 7-bit data length mode. Refer to Section 29.4: USART implementation for
additional information.

By default, the signal (TX or RX) is in low state during the start bit. It is in high state during
the stop bit.

These values can be inverted, separately for each signal, through polarity configuration
control.

An Idle character is interpreted as an entire frame of “1”s (the number of “1”s includes the
number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame, the transmitter inserts 2 stop bits.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

768/1040 RM0367 Rev 8

Figure 243. Word length programming

MS33194V2

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
bit

Stop
bit

Next
Start

bit

Idle frame

9-bit word length (M = 01), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame

Clock **

Start
bit

Stop
bit

Start
bit

Stop
bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
bit

Stop
bit

Next
Start

bit

Idle frame

8-bit word length (M = 00), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame

Clock **

Start
bit

Stop
bit

Start
bit

Stop
bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6
Start
bit

Stop
bit

Next
Start

bit

Idle frame

7-bit word length (M = 10), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame

Clock

** LBCL bit controls last data clock pulse

**

Start
bit

Stop
bit

Start
bit

Stop
bit

RM0367 Rev 8 769/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.5.2 USART transmitter

The transmitter can send data words of either 7, 8 or 9 bits depending on the M bits status.
The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The
data in the transmit shift register is output on the TX pin and the corresponding clock pulses
are output on the CK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first (default
configuration) on the TX pin. In this mode, the USART_TDR register consists of a buffer
(TDR) between the internal bus and the transmit shift register (see Figure 242).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.

Note: The TE bit must be set before writing the data to be transmitted to the USART_TDR.

The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.

An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

• 1 stop bit: This is the default value of number of stop bits.

• 2 stop bits: This will be supported by normal USART, Single-wire and Modem modes.

• 1.5 stop bits: To be used in Smartcard mode.

• 0.5 stop bit: To be used when receiving data in Smartcard mode.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits (when M[1:0] = 00) or 11 low bits (when M[1:0] = 01)
or 9 low bits (when M[1:0] = 10) followed by 2 stop bits (see Figure 244). It is not possible to
transmit long breaks (break of length greater than 9/10/11 low bits).

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

770/1040 RM0367 Rev 8

Figure 244. Configurable stop bits

Character transmission procedure

1. Program the M bits in USART_CR1 to define the word length.

2. Select the desired baud rate using the USART_BRR register.

3. Program the number of stop bits in USART_CR2.

4. Enable the USART by writing the UE bit in USART_CR1 register to 1.

5. Select DMA enable (DMAT) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication.

6. Set the TE bit in USART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the USART_TDR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

8. After writing the last data into the USART_TDR register, wait until TC=1. This indicates
that the transmission of the last frame is complete. This is required for instance when
the USART is disabled or enters the Halt mode to avoid corrupting the last
transmission.

For code example, refer to A.17.1: USART transmitter configuration code example.

Single byte communication

Clearing the TXE bit is always performed by a write to the transmit data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from the USART_TDR register to the shift register and the
data transmission has started.

• The USART_TDR register is empty.

• The next data can be written in the USART_TDR register without overwriting the
previous data.

For code example, refer to A.17.2: USART transmit byte code example.

This flag generates an interrupt if the TXEIE bit is set.

MSv31887V1

** LBCL bit controls last data clock pulse

Bit7Start bit Stop
bit

Next
start
bit

Possible
parity bitData frame Next data frame

CLOCK **

Next data frame

8-bit data, 1 Stop bit

8-bit data, 1 1/2 Stop bits

8-bit data, 2 Stop bits

Bit6Bit5Bit4Bit3Bit2Bit1Bit0

Bit7Start bit 1.5
Stop
bits

Next
start
bit

Possible
parity bitData frame

Bit6Bit5Bit4Bit3Bit2Bit1Bit0

Next data frame
Bit7Start bit 2

Stop
bits

Next
start
bit

Possible
parity bitData frame

Bit6Bit5Bit4Bit3Bit2Bit1Bit0

RM0367 Rev 8 771/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

When a transmission is taking place, a write instruction to the USART_TDR register stores
the data in the TDR register; next, the data is copied in the shift register at the end of the
currently ongoing transmission.

When no transmission is taking place, a write instruction to the USART_TDR register places
the data in the shift register, the data transmission starts, and the TXE bit is set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the USART_CR1 register.

After writing the last data in the USART_TDR register, it is mandatory to wait for TC=1
before disabling the USART or causing the microcontroller to enter the low-power mode
(see Figure 245: TC/TXE behavior when transmitting).

Figure 245. TC/TXE behavior when transmitting

For code example, refer to A.17.3: USART transfer complete code example.

Break characters

Setting the SBKRQ bit transmits a break character. The break frame length depends on the
M bits (see Figure 243).

If a ‘1’ is written to the SBKRQ bit, a break character is sent on the TX line after completing
the current character transmission. The SBKF bit is set by the write operation and it is reset
by hardware when the break character is completed (during the stop bits after the break
character). The USART inserts a logic 1 signal (STOP) for the duration of 2 bits at the end of
the break frame to guarantee the recognition of the start bit of the next frame.

In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the TXE
flag assertion before setting the SBKRQ bit.

Idle characters

Setting the TE bit drives the USART to send an idle frame before the first data frame.

TX line

USART_DR

Frame 1

TXE flag

F2

TC flag

F3

Frame 2

Software waits until
TXE=1 and writes
F3 into DR

TC is not set
because TXE=0

Software waits until TC=1

Frame 3

TC is set
because TXE=1

Set by hardware
cleared by software

Set by hardware
cleared by software Set by hardware

Set by hardware

Idle preamble

F1

TC is not set
because TXE=0

Software waits until TXE=1
and writes F1 into DR

Software
enables the

USART

Software waits until TXE=1
and writes F2 into DR

ai17121b

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

772/1040 RM0367 Rev 8

29.5.3 USART receiver

The USART can receive data words of either 7, 8 or 9 bits depending on the M bits in the
USART_CR1 register.

Start bit detection

The start bit detection sequence is the same when oversampling by 16 or by 8.

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0X 0X 0 X 0X 0.

Figure 246. Start bit detection when oversampling by 16 or 8

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set), where it waits for a falling edge.

The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled
bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second
sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0).

The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NF noise
flag is set if,

a) for both samplings, 2 out of the 3 sampled bits are at 0 (sampling on the 3rd, 5th
and 7th bits and sampling on the 8th, 9th and 10th bits)

or

b) for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the
8th, 9th and 10th bits), 2 out of the 3 bits are found at 0.

RM0367 Rev 8 773/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

If neither conditions a. or b. are met, the start detection aborts and the receiver returns to the
idle state (no flag is set).

Character reception

During an USART reception, data shifts in least significant bit first (default configuration)
through the RX pin. In this mode, the USART_RDR register consists of a buffer (RDR)
between the internal bus and the receive shift register.

Character reception procedure

1. Program the M bits in USART_CR1 to define the word length.

2. Select the desired baud rate using the baud rate register USART_BRR

3. Program the number of stop bits in USART_CR2.

4. Enable the USART by writing the UE bit in USART_CR1 register to 1.

5. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication.

6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a
start bit.

For code example, refer to A.17.4: USART receiver configuration code example.

When a character is received:

• The RXNE bit is set to indicate that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

• An interrupt is generated if the RXNEIE bit is set.

• The error flags can be set if a frame error, noise or an overrun error has been detected
during reception. PE flag can also be set with RXNE.

• In multibuffer, RXNE is set after every byte received and is cleared by the DMA read of
the Receive data Register.

• In single buffer mode, clearing the RXNE bit is performed by a software read to the
USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ
in the USART_RQR register. The RXNE bit must be cleared before the end of the
reception of the next character to avoid an overrun error.

For code example, refer to A.17.5: USART receive byte code example.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as for a received data
character plus an interrupt if the IDLEIE bit is set.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

774/1040 RM0367 Rev 8

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

• The ORE bit is set.

• The RDR content will not be lost. The previous data is available when a read to
USART_RDR is performed.

• The shift register will be overwritten. After that point, any data received during overrun
is lost.

• An interrupt is generated if either the RXNEIE bit is set or EIE bit is set.

• The ORE bit is reset by setting the ORECF bit in the ICR register.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

- if RXNE=1, then the last valid data is stored in the receive register RDR and can be read,

- if RXNE=0, then it means that the last valid data has already been read and thus there is
nothing to be read in the RDR. This case can occur when the last valid data is read in the
RDR at the same time as the new (and lost) data is received.

Selecting the proper oversampling method

 When the dual clock domain with the wakeup from Stop mode is supported, the clock
source can be one of the following sources: PCLK (default), LSE, HSI16 or SYSCLK.
Otherwise, the USART clock source is PCLK.

Choosing LSE or HSI16 as clock source may allow the USART to receive data while the
MCU is in low-power mode. Depending on the received data and wakeup mode selection,
the USART wakes up the MCU, when needed, in order to transfer the received data by
software reading the USART_RDR register or by DMA.

For the other clock sources, the system must be active in order to allow USART
communication.

The receiver implements different user-configurable oversampling techniques for data
recovery by discriminating between valid incoming data and noise. This allows a trade-off
between the maximum communication speed and noise/clock inaccuracy immunity.

The oversampling method can be selected by programming the OVER8 bit in the
USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 247 and
Figure 248).

Depending on the application:

• Select oversampling by 8 (OVER8=1) to achieve higher speed (up to fCK/8). In this
case the maximum receiver tolerance to clock deviation is reduced (refer to
Section 29.5.5: Tolerance of the USART receiver to clock deviation on page 779)

• Select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to
clock deviations. In this case, the maximum speed is limited to maximum fCK/16 where
fCK is the clock source frequency.

RM0367 Rev 8 775/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Programming the ONEBIT bit in the USART_CR3 register selects the method used to
evaluate the logic level. There are two options:

• The majority vote of the three samples in the center of the received bit. In this case,
when the 3 samples used for the majority vote are not equal, the NF bit is set

• A single sample in the center of the received bit

Depending on the application:

– select the three samples’ majority vote method (ONEBIT=0) when operating in a
noisy environment and reject the data when a noise is detected (refer to
Figure 140) because this indicates that a glitch occurred during the sampling.

– select the single sample method (ONEBIT=1) when the line is noise-free to
increase the receiver’s tolerance to clock deviations (see Section 29.5.5:
Tolerance of the USART receiver to clock deviation on page 779). In this case the
NF bit will never be set.

When noise is detected in a frame:

• The NF bit is set at the rising edge of the RXNE bit.

• The invalid data is transferred from the Shift register to the USART_RDR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The NF bit is reset by setting NFCF bit in ICR register.

Note: Oversampling by 8 is not available in LIN, Smartcard and IrDA modes. In those modes, the
OVER8 bit is forced to ‘0’ by hardware.

Figure 247. Data sampling when oversampling by 16

MSv31152V1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

6/16

7/167/16

One bit time

Sample clock

RX line

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

776/1040 RM0367 Rev 8

Figure 248. Data sampling when oversampling by 8

Framing error

A framing error is detected when the stop bit is not recognized on reception at the expected
time, following either a de-synchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware

• The invalid data is transferred from the Shift register to the USART_RDR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The FE bit is reset by writing 1 to the FECF in the USART_ICR register.

Table 140. Noise detection from sampled data

Sampled value NE status Received bit value

000 0 0

001 1 0

010 1 0

011 1 1

100 1 0

101 1 1

110 1 1

111 0 1

MSv31153V1

1 2 3 4 5 6 7

sampled values

2/8

3/83/8

One bit time

Sample
clock (x8)

RX line

8

RM0367 Rev 8 777/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.

• 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.

• 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

• 1.5 stop bits (Smartcard mode): When transmitting in Smartcard mode, the device
must check that the data is correctly sent. Thus the receiver block must be enabled (RE
=1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has
detected a parity error. In the event of a parity error, the smartcard forces the data
signal low during the sampling - NACK signal-, which is flagged as a framing error.
Then, the FE flag is set with the RXNE at the end of the 1.5 stop bits. Sampling for 1.5
stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the
beginning of the stop bit). The 1.5 stop bits can be decomposed into 2 parts: one 0.5
baud clock period during which nothing happens, followed by 1 normal stop bit period
during which sampling occurs halfway through. Refer to Section 29.5.13: USART
Smartcard mode on page 791 for more details.

• 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit. If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.

29.5.4 USART baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the USART_BRR register.

Equation 1: Baud rate for standard USART (SPI mode included) (OVER8 = 0 or 1)

In case of oversampling by 16, the equation is:

In case of oversampling by 8, the equation is:

Equation 2: Baud rate in Smartcard, LIN and IrDA modes (OVER8 = 0)

In Smartcard, LIN and IrDA modes, only Oversampling by 16 is supported:

Tx/Rx baud
fCK

USARTDIV
--------------------------------=

Tx/Rx baud
2 fCK×

USARTDIV
--------------------------------=

Tx/Rx baud
fCK

USARTDIV
--------------------------------=

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

778/1040 RM0367 Rev 8

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

• When OVER8 = 0, BRR = USARTDIV.

• When OVER8 = 1

– BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.

– BRR[3] must be kept cleared.

– BRR[15:4] = USARTDIV[15:4]

Note: The baud counters are updated to the new value in the baud registers after a write operation
to USART_BRR. Hence the baud rate register value should not be changed during
communication.

In case of oversampling by 16 or 8, USARTDIV must be greater than or equal to 16d.

How to derive USARTDIV from USART_BRR register values

Example 1

To obtain 9600 baud with fCK = 8 MHz.

• In case of oversampling by 16:

USARTDIV = 8 000 000/9600

BRR = USARTDIV = 833d = 0341h

• In case of oversampling by 8:

USARTDIV = 2 * 8 000 000/9600

USARTDIV = 1666,66 (1667d = 683h)

BRR[3:0] = 3h >> 1 = 1h

BRR = 0x681

Example 2

To obtain 921.6 kbaud with fCK = 32 MHz.

• In case of oversampling by 16:

USARTDIV = 32 000 000/921 600

BRR = USARTDIV = 35d = 23h

• In case of oversampling by 8:

USARTDIV = 2 * 32 000 000/921 600

USARTDIV = 70d = 46h

BRR[3:0] = USARTDIV[3:0] >> 1 = 6h >> 1 = 3h

BRR = 0x43

RM0367 Rev 8 779/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.5.5 Tolerance of the USART receiver to clock deviation

The asynchronous receiver of the USART works correctly only if the total clock system
deviation is less than the tolerance of the USART receiver. The causes which contribute to
the total deviation are:

• DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

• DQUANT: Error due to the baud rate quantization of the receiver

• DREC: Deviation of the receiver’s local oscillator

• DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

Table 141. Error calculation for programmed baud rates at fCK = 32 MHz in both cases of
oversampling by 16 or by 8(1)

Baud rate Oversampling by 16 (OVER8 = 0) Oversampling by 8 (OVER8 = 1)

S.No Desired Actual BRR

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual BRR % Error

1 2.4 kbaud 2.4 kbaud 0x3415 0 2.4 kbaud 0x6825 0

2 9.6 kbaud 9.6 kbaud 0xD05 0 9.6 kbaud 0x1A05 0

3 19.2 kbaud 19.19 kbaud 0x683 0.02 19.2 kbaud 0xD02 0

4 38.4 kbaud 38.41 kbaud 0x341 0.04 38.39 kbaud 0x681 0.02

5 57.6 kbaud 57.55 kbaud 0x22C 0.08 57.6 kbaud 0x453 0

6 115.2 kbaud 115.1 kbaud 0x116 0.08 115.11 kbaud 0x226 0.08

7 230.4 kbaud 230.21 kbaud 0x8B 0.08 230.21 kbaud 0x113 0.08

8 460.8 kbaud 463.76 kbaud 0x045 0.64 460.06 kbaud 0x85 0.08

9 921.6 kbaud 914.28 kbaud 0x23 0.79 927.5 kbaud 0x42 0.79

10 2 Mbaud 2 Mbaud 0x10 0 2 Mbaud 0x20 0

12 4Mbaud 4Mbaud NA NA 4Mbaud 0x10 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

DTRA DQUANT DREC DTCL DWU+ + + + USART receiver′s tolerance<

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

780/1040 RM0367 Rev 8

where

DWU is the error due to sampling point deviation when the wakeup from Stop mode is
used.

when M[1:0] = 01:

when M[1:0] = 00:

when M[1:0] = 10:

tWUUSART is the time between:

– The detection of start bit falling edge

– The instant when clock (requested by the peripheral) is ready and reaching the
peripheral and regulator is ready.

 tWUUSART corresponds to tWUSTOP value provided in the datasheet.

The USART receiver can receive data correctly at up to the maximum tolerated
deviation specified in Table 142 and Table 143 depending on the following choices:

• 9-, 10- or 11-bit character length defined by the M bits in the USART_CR1 register

• Oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register

• Bits BRR[3:0] of USART_BRR register are equal to or different from 0000.

• Use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in
the USART_CR3 register.

Table 142. Tolerance of the USART receiver when BRR [3:0] = 0000

M bits
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

00 3.75% 4.375% 2.50% 3.75%

01 3.41% 3.97% 2.27% 3.41%

10 4.16% 4.86% 2.77% 4.16%

Table 143. Tolerance of the USART receiver when BRR [3:0] is different from 0000

M bits
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

00 3.33% 3.88% 2% 3%

01 3.03% 3.53% 1.82% 2.73%

10 3.7% 4.31% 2.22% 3.33%

DWU
tWUUSART

11 Tbit×
---------------------------=

DWU
tWUUSART

10 Tbit×
---------------------------=

DWU
tWUUSART

9 Tbit×
---------------------------=

RM0367 Rev 8 781/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Note: The data specified in Table 142 and Table 143 may slightly differ in the special case when
the received frames contain some Idle frames of exactly 10-bit durations when M bits = 00
(11-bit durations when M bits =01 or 9- bit durations when M bits = 10).

29.5.6 USART auto baud rate detection

The USART is able to detect and automatically set the USART_BRR register value based
on the reception of one character. Automatic baud rate detection is useful under two
circumstances:

• The communication speed of the system is not known in advance

• The system is using a relatively low accuracy clock source and this mechanism allows
the correct baud rate to be obtained without measuring the clock deviation.

The clock source frequency must be compatible with the expected communication speed
(when oversampling by 16, the baud rate is between fCK/65535 and fCK/16. when
oversampling by 8, the baud rate is between fCK/65535 and fCK/8).

Before activating the auto baud rate detection, the auto baud rate detection mode must be
chosen. There are various modes based on different character patterns.

They can be chosen through the ABRMOD[1:0] field in the USART_CR2 register. In these
auto baud rate modes, the baud rate is measured several times during the synchronization
data reception and each measurement is compared to the previous one.

These modes are:

• Mode 0: Any character starting with a bit at 1. In this case the USART measures the
duration of the Start bit (falling edge to rising edge).

• Mode 1: Any character starting with a 10xx bit pattern. In this case, the USART
measures the duration of the Start and of the 1st data bit. The measurement is done
falling edge to falling edge, ensuring better accuracy in the case of slow signal slopes.

• Mode 2: A 0x7F character frame (it may be a 0x7F character in LSB first mode or a
0xFE in MSB first mode). In this case, the baud rate is updated first at the end of the
start bit (BRs), then at the end of bit 6 (based on the measurement done from falling
edge to falling edge: BR6). Bit 0 to bit 6 are sampled at BRs while further bits of the
character are sampled at BR6.

• Mode 3: A 0x55 character frame. In this case, the baud rate is updated first at the end
of the start bit (BRs), then at the end of bit 0 (based on the measurement done from
falling edge to falling edge: BR0), and finally at the end of bit 6 (BR6). Bit 0 is sampled
at BRs, bit 1 to bit 6 are sampled at BR0, and further bits of the character are sampled
at BR6.

In parallel, another check is performed for each intermediate transition of RX line. An
error is generated if the transitions on RX are not sufficiently synchronized with the
receiver (the receiver being based on the baud rate calculated on bit 0).

Prior to activating auto baud rate detection, the USART_BRR register must be initialized by
writing a non-zero baud rate value.

The automatic baud rate detection is activated by setting the ABREN bit in the USART_CR2
register. The USART will then wait for the first character on the RX line. The auto baud rate
operation completion is indicated by the setting of the ABRF flag in the USART_ISR
register. If the line is noisy, the correct baud rate detection cannot be guaranteed. In this
case the BRR value may be corrupted and the ABRE error flag will be set. This also
happens if the communication speed is not compatible with the automatic baud rate

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

782/1040 RM0367 Rev 8

detection range (bit duration not between 16 and 65536 clock periods (oversampling by 16)
and not between 8 and 65536 clock periods (oversampling by 8)).

The RXNE interrupt will signal the end of the operation.

At any later time, the auto baud rate detection may be relaunched by resetting the ABRF
flag (by writing a 0).

Note: If the USART is disabled (UE=0) during an auto baud rate operation, the BRR value may be
corrupted.

29.5.7 Multiprocessor communication using USART

In multiprocessor communication, the following bits are to be kept cleared:

• LINEN bit in the USART_CR2 register,

• HDSEL, IREN and SCEN bits in the USART_CR3 register.

It is possible to perform multiprocessor communication with the USART (with several
USARTs connected in a network). For instance one of the USARTs can be the master, its TX
output connected to the RX inputs of the other USARTs. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In order to use the mute mode feature, the MME bit must be set in the USART_CR1
register.

In mute mode:

• None of the reception status bits can be set.

• All the receive interrupts are inhibited.

• The RWU bit in USART_ISR register is set to 1. RWU can be controlled automatically
by hardware or by software, through the MMRQ bit in the USART_RQR register, under
certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

• Idle Line detection if the WAKE bit is reset,

• Address Mark detection if the WAKE bit is set.

RM0367 Rev 8 783/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Idle line detection (WAKE=0)

The USART enters mute mode when the MMRQ bit is written to 1 and the RWU is
automatically set.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_ISR register. An example of mute mode behavior using
Idle line detection is given in Figure 249.

Figure 249. Mute mode using Idle line detection

Note: If the MMRQ is set while the IDLE character has already elapsed, mute mode will not be
entered (RWU is not set).

If the USART is activated while the line is IDLE, the idle state is detected after the duration
of one IDLE frame (not only after the reception of one character frame).

4-bit/7-bit address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1’ otherwise they are
considered as data. In an address byte, the address of the targeted receiver is put in the 4
or 7 LSBs. The choice of 7 or 4-bit address detection is done using the ADDM7 bit. This 4-
bit/7-bit word is compared by the receiver with its own address which is programmed in the
ADD bits in the USART_CR2 register.

Note: In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses
(ADD[5:0] and ADD[7:0]) respectively.

The USART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE
flag is not set for this address byte and no interrupt or DMA request is issued when the
USART enters mute mode.

The USART also enters mute mode when the MMRQ bit is written to 1. The RWU bit is also
automatically set in this case.

The USART exits from mute mode when an address character is received which matches
the programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.

An example of mute mode behavior using address mark detection is given in Figure 250.

MSv31154V1

Data 1 Data 2 IDLEData 3 Data 4 Data 6

Idle frame detectedMMRQ written to 1

RWU

RX

Mute mode Normal mode

RXNE RXNE

Data 5

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

784/1040 RM0367 Rev 8

Figure 250. Mute mode using address mark detection

29.5.8 Modbus communication using USART

The USART offers basic support for the implementation of Modbus/RTU and Modbus/ASCII
protocols. Modbus/RTU is a half duplex, block transfer protocol. The control part of the
protocol (address recognition, block integrity control and command interpretation) must be
implemented in software.

The USART offers basic support for the end of the block detection, without software
overhead or other resources.

Modbus/RTU

In this mode, the end of one block is recognized by a “silence” (idle line) for more than 2
character times. This function is implemented through the programmable timeout function.

The timeout function and interrupt must be activated, through the RTOEN bit in the
USART_CR2 register and the RTOIE in the USART_CR1 register. The value corresponding
to a timeout of 2 character times (for example 22 x bit duration) must be programmed in the
RTO register. when the receive line is idle for this duration, after the last stop bit is received,
an interrupt is generated, informing the software that the current block reception is
completed.

Modbus/ASCII

In this mode, the end of a block is recognized by a specific (CR/LF) character sequence.
The USART manages this mechanism using the character match function.

By programming the LF ASCII code in the ADD[7:0] field and by activating the character
match interrupt (CMIE=1), the software is informed when a LF has been received and can
check the CR/LF in the DMA buffer.

MSv31155V1

IDLE Addr=0 Data 1 Data 2 IDLE Addr=1 Data 3 Data 4 Addr=2 Data 5

In this example, the current address of the receiver is 1
(programmed in the USART_CR2 register)

RXNE

Non-matching addressMatching address

Non-matching address

MMRQ written to 1
(RXNE was cleared)

RWU

RX

Mute mode Mute modeNormal mode

RXNE RXNE

RM0367 Rev 8 785/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.5.9 USART parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bits, the possible USART frame formats are as listed in Table 144.

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame of the 6, 7 or 8
LSB bits (depending on M bits values) and the parity bit.

As an example, if data=00110101, and 4 bits are set, then the parity bit will be 0 if even
parity is selected (PS bit in USART_CR1 = 0).

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 6, 7
or 8 LSB bits (depending on M bits values) and the parity bit.

As an example, if data=00110101 and 4 bits set, then the parity bit will be 1 if odd parity is
selected (PS bit in USART_CR1 = 1).

Parity checking in reception

If the parity check fails, the PE flag is set in the USART_ISR register and an interrupt is
generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by software
writing 1 to the PECF in the USART_ICR register.

Parity generation in transmission

If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register
is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected
(PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

Table 144. Frame formats

M bits PCE bit USART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit. In the data register, the PB is always taking the MSB
position (9th, 8th or 7th, depending on the M bits value).

00 0 | SB | 8-bit data | STB |

00 1 | SB | 7-bit data | PB | STB |

01 0 | SB | 9-bit data | STB |

01 1 | SB | 8-bit data | PB | STB |

10 0 | SB | 7-bit data | STB |

10 1 | SB | 6-bit data | PB | STB |

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

786/1040 RM0367 Rev 8

29.5.10 USART LIN (local interconnection network) mode

This section is relevant only when LIN mode is supported. Please refer to Section 29.4:
USART implementation on page 764.

The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN
mode, the following bits must be kept cleared:

• STOP[1:0] and CLKEN in the USART_CR2 register,

• SCEN, HDSEL and IREN in the USART_CR3 register.

For code example, refer to A.17.6: USART LIN mode code example.

LIN transmission

The procedure explained in Section 29.5.2: USART transmitter has to be applied for LIN
Master transmission. It must be the same as for normal USART transmission with the
following differences:

• Clear the M bits to configure 8-bit word length.

• Set the LINEN bit to enter LIN mode. In this case, setting the SBKRQ bit sends 13 ‘0’
bits as a break character. Then 2 bits of value ‘1’ are sent to allow the next start
detection.

LIN reception

When LIN mode is enabled, the break detection circuit is activated. The detection is totally
independent from the normal USART receiver. A break can be detected whenever it occurs,
during Idle state or during a frame.

When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0,
and are followed by a delimiter character, the LBDF flag is set in USART_ISR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.

If a ‘1’ is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.

If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.

If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit
detected at ‘0’, which will be the case for any break frame), the receiver stops until the break
detection circuit receives either a ‘1’, if the break word was not complete, or a delimiter
character if a break has been detected.

The behavior of the break detector state machine and the break flag is shown on the
Figure 251: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 787.

Examples of break frames are given on Figure 252: Break detection in LIN mode vs.
Framing error detection on page 788.

RM0367 Rev 8 787/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Figure 251. Break detection in LIN mode (11-bit break length - LBDL bit is set)

MSv31156V1

Idle Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 Bit10 Idle

0 0 0 0 0 0 0 0 0 0 1

Case 1: break signal not long enough => break discarded, LBDF is not set

RX line

Capture strobe

Break state
machine

Read samples

Idle Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 B10 Idle

0 0 0 0 0 0 0 0 0 0 0

Case 2: break signal just long enough => break detected, LBDF is set

RX line

Capture strobe

Break state
machine

Read samples

Break frame

Break frame

Delimiter is immediate

LBDF

Idle Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 Bit10 Idle

0 0 0 0 0 0 0 0 0 0 0

Case 3: break signal long enough => break detected, LBDF is set

RX line

Capture strobe

Break state
machine

Read samples

Break frame

LBDF

wait delimiter

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

788/1040 RM0367 Rev 8

Figure 252. Break detection in LIN mode vs. Framing error detection

29.5.11 USART synchronous mode

The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• SCEN, HDSEL and IREN bits in the USART_CR3 register.

In this mode, the USART can be used to control bidirectional synchronous serial
communications in master mode. The CK pin is the output of the USART transmitter clock.
No clock pulses are sent to the CK pin during start bit and stop bit. Depending on the state
of the LBCL bit in the USART_CR2 register, clock pulses are, or are not, generated during
the last valid data bit (address mark). The CPOL bit in the USART_CR2 register is used to
select the clock polarity, and the CPHA bit in the USART_CR2 register is used to select the
phase of the external clock (see Figure 253, Figure 254 and Figure 255).

During the Idle state, preamble and send break, the external CK clock is not activated.

In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as CK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.

In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on CK (rising or falling edge, depending
on CPOL and CPHA), without any oversampling. A setup and a hold time must be
respected (which depends on the baud rate: 1/16 bit duration).

MSv31157V1

data 1 IDLE BREAK data 2 (0x55) data 3 (header)

1 data time 1 data time

RX line

RXNE /FE

LBDF

Case 1: break occurring after an Idle

data 1 data2 BREAK data 2 (0x55) data 3 (header)

1 data time 1 data time

RX line

RXNE /FE

LBDF

Case 2: break occurring while data is being received

RM0367 Rev 8 789/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Note: The CK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and data is being transmitted (the data register USART_TDR
written). This means that it is not possible to receive synchronous data without transmitting
data.

The LBCL, CPOL and CPHA bits have to be selected when the USART is disabled (UE=0)
to ensure that the clock pulses function correctly.

For code example, refer to A.17.6: USART LIN mode code example.

Figure 253. USART example of synchronous transmission

Figure 254. USART data clock timing diagram (M bits = 00)

MSv31158V2

USART Synchronous device
(slave SPI)

RX
TX

Data out
Data in

ClockCK

MSv34709V2

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

*

*

*

*

MSB

MSBLSB

LSBStart

Start Stop
Idle or preceding
transmission

Idle or next
transmission

*

*LBCL bit controls last data pulse
Capture strobe

Data on RX
(from slave)

Data on TX
(from master)

Clock (CPOL=1, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=0, CPHA=0)

Stop

M bits = 00 (8 data bits)

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

790/1040 RM0367 Rev 8

Figure 255. USART data clock timing diagram (M bits = 01)

Figure 256. RX data setup/hold time

Note: The function of CK is different in Smartcard mode. Refer to Section 29.5.13: USART
Smartcard mode for more details.

MSv34710V1

0 1 2 3 4 5 6 8

0 1 2 3 4 5 6 8

*

*

*

*

MSB

MSBLSB

LSBStart

Start Stop
Idle or
preceding
transmission

Idle or next
transmission

*

*LBCL bit controls last data pulse

Capture
strobe

Data on RX
(from slave)

Data on TX
(from master)

Clock (CPOL=1,
CPHA=1)

Clock (CPOL=1,
CPHA=0)

Clock (CPOL=0,
CPHA=1)

Clock (CPOL=0,
CPHA=0)

Stop

M bits =01 (9 data bits)

7

7

MSv31161V2

Data on RX (from slave)

CK
(capture strobe on CK rising

edge in this example)

Valid DATA bit

tSETUP tHOLD

tSETUP=tHOLD 1/16 bit time

RM0367 Rev 8 791/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.5.12 USART Single-wire Half-duplex communication

Single-wire Half-duplex mode is selected by setting the HDSEL bit in the USART_CR3
register. In this mode, the following bits must be kept cleared:

• LINEN and CLKEN bits in the USART_CR2 register,

• SCEN and IREN bits in the USART_CR3 register.

The USART can be configured to follow a Single-wire Half-duplex protocol where the TX
and RX lines are internally connected. The selection between half- and Full-duplex
communication is made with a control bit HDSEL in USART_CR3.

As soon as HDSEL is written to 1:

• The TX and RX lines are internally connected

• The RX pin is no longer used

• The TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as alternate function open-drain with an external pull-up.

Apart from this, the communication protocol is similar to normal USART mode. Any conflicts
on the line must be managed by software (by the use of a centralized arbiter, for instance).
In particular, the transmission is never blocked by hardware and continues as soon as data
is written in the data register while the TE bit is set.

For code example, refer to A.17.8: USART single-wire half-duplex code example.

29.5.13 USART Smartcard mode

This section is relevant only when Smartcard mode is supported. Please refer to
Section 29.4: USART implementation on page 764.

Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In
Smartcard mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• HDSEL and IREN bits in the USART_CR3 register.

Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.

The smartcard interface is designed to support asynchronous protocol for smartcards as
defined in the ISO 7816-3 standard. Both T=0 (character mode) and T=1 (block mode) are
supported.

The USART should be configured as:

• 8 bits plus parity: where word length is set to 8 bits and PCE=1 in the USART_CR1
register

• 1.5 stop bits: where STOP=11 in the USART_CR2 register. It is also possible to choose
0.5 stop bit for receiving.

For code example, refer to A.17.9: USART smartcard mode code example.

In T=0 (character) mode, the parity error is indicated at the end of each character during the
guard time period.

Figure 257 shows examples of what can be seen on the data line with and without parity
error.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

792/1040 RM0367 Rev 8

Figure 257. ISO 7816-3 asynchronous protocol

When connected to a smartcard, the TX output of the USART drives a bidirectional line that
is also driven by the smartcard. The TX pin must be configured as open drain.

Smartcard mode implements a single wire half duplex communication protocol.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register starts
shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

• In transmission, if the smartcard detects a parity error, it signals this condition to the
USART by driving the line low (NACK). This NACK signal (pulling transmit line low for 1
baud clock) causes a framing error on the transmitter side (configured with 1.5 stop
bits). The USART can handle automatic re-sending of data according to the protocol.
The number of retries is programmed in the SCARCNT bit field. If the USART
continues receiving the NACK after the programmed number of retries, it stops
transmitting and signals the error as a framing error. The TXE bit can be set using the
TXFRQ bit in the USART_RQR register.

• Smartcard auto-retry in transmission: a delay of 2.5 baud periods is inserted between
the NACK detection by the USART and the start bit of the repeated character. The TC
bit is set immediately at the end of reception of the last repeated character (no guard-
time). If the software wants to repeat it again, it must insure the minimum 2 baud
periods required by the standard.

• If a parity error is detected during reception of a frame programmed with a 1.5 stop bits
period, the transmit line is pulled low for a baud clock period after the completion of the
receive frame. This is to indicate to the smartcard that the data transmitted to the
USART has not been correctly received. A parity error is NACKed by the receiver if the
NACK control bit is set, otherwise a NACK is not transmitted (to be used in T=1 mode).
If the received character is erroneous, the RXNE/receive DMA request is not activated.
According to the protocol specification, the smartcard must resend the same character.
If the received character is still erroneous after the maximum number of retries
specified in the SCARCNT bit field, the USART stops transmitting the NACK and
signals the error as a parity error.

• Smartcard auto-retry in reception: the BUSY flag remains set if the USART NACKs the
card but the card doesn’t repeat the character.

MSv31162V1

Without Parity error

p76543210S

Guard time

WithParity error

p76543210S

Guard time

Start bit

Start bit Line pulled low by receiver
during stop in case of parity error

RM0367 Rev 8 793/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

• In transmission, the USART inserts the Guard Time (as programmed in the Guard Time
register) between two successive characters. As the Guard Time is measured after the
stop bit of the previous character, the GT[7:0] register must be programmed to the
desired CGT (Character Guard Time, as defined by the 7816-3 specification) minus 12
(the duration of one character).

• The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the Guard Time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the Guard Time counter
reaches the programmed value TC is asserted high.

• The de-assertion of TC flag is unaffected by Smartcard mode.

• If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK is not detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

• On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
does not detect the NACK as a start bit.

Note: A break character is not significant in Smartcard mode. A 0x00 data with a framing error is
treated as data and not as a break.

No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 258 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 258. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the CK output. In Smartcard
mode, CK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the
prescaler register USART_GTPR. CK frequency can be programmed from fCK/2 to fCK/62,
where fCK is the peripheral input clock.

MSv31163V1

Bit 7 Parity bit 1.5 Stop bit

1 bit time 1.5 bit time

0.5 bit time

Sampling at
8th, 9th, 10th

Sampling at
8th, 9th, 10th

Sampling at
8th, 9th, 10th

Sampling at
8th, 9th, 10th

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

794/1040 RM0367 Rev 8

Block mode (T=1)

In T=1 (block) mode, the parity error transmission is deactivated, by clearing the NACK bit in
the UART_CR3 register.

When requesting a read from the smartcard, in block mode, the software must enable the
receiver Timeout feature by setting the RTOEN bit in the USART_CR2 register and program
the RTO bits field in the RTOR register to the BWT (block wait time) - 11 value. If no answer
is received from the card before the expiration of this period, the RTOF flag will be set and a
timeout interrupt will be generated (if RTOIE bit in the USART_CR1 register is set). If the
first character is received before the expiration of the period, it is signaled by the RXNE
interrupt.

Note: The RXNE interrupt must be enabled even when using the USART in DMA mode to read
from the smartcard in block mode. In parallel, the DMA must be enabled only after the first
received byte.

After the reception of the first character (RXNE interrupt), the RTO bit fields in the RTOR
register must be programmed to the CWT (character wait time) - 11 value, in order to allow
the automatic check of the maximum wait time between two consecutive characters. This
time is expressed in baudtime units. If the smartcard does not send a new character in less
than the CWT period after the end of the previous character, the USART signals this to the
software through the RTOF flag and interrupt (when RTOIE bit is set).

Note: The RTO counter starts counting:

- From the end of the stop bit in case STOP = 00.

- From the end of the second stop bit in case of STOP = 10.

- 1 bit duration after the beginning of the STOP bit in case STOP = 11.

- From the beginning of the STOP bit in case STOP = 01.

As in the Smartcard protocol definition, the BWT/CWT values are defined from the
beginning (start bit) of the last character. The RTO register must be programmed to BWT -
11 or CWT -11, respectively, taking into account the length of the last character itself.

A block length counter is used to count all the characters received by the USART. This
counter is reset when the USART is transmitting (TXE=0). The length of the block is
communicated by the smartcard in the third byte of the block (prologue field). This value
must be programmed to the BLEN field in the USART_RTOR register. when using DMA
mode, before the start of the block, this register field must be programmed to the minimum
value (0x0). with this value, an interrupt is generated after the 4th received character. The
software must read the LEN field (third byte), its value must be read from the receive buffer.

In interrupt driven receive mode, the length of the block may be checked by software or by
programming the BLEN value. However, before the start of the block, the maximum value of
BLEN (0xFF) may be programmed. The real value will be programmed after the reception of
the third character.

If the block is using the LRC longitudinal redundancy check (1 epilogue byte), the
BLEN=LEN. If the block is using the CRC mechanism (2 epilogue bytes), BLEN=LEN+1
must be programmed. The total block length (including prologue, epilogue and information
fields) equals BLEN+4. The end of the block is signaled to the software through the EOBF
flag and interrupt (when EOBIE bit is set).

In case of an error in the block length, the end of the block is signaled by the RTO interrupt
(Character wait Time overflow).

RM0367 Rev 8 795/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Note: The error checking code (LRC/CRC) must be computed/verified by software.

Direct and inverse convention

The Smartcard protocol defines two conventions: direct and inverse.

The direct convention is defined as: LSB first, logical bit value of 1 corresponds to a H state
of the line and parity is even. In order to use this convention, the following control bits must
be programmed: MSBFIRST=0, DATAINV=0 (default values).

The inverse convention is defined as: MSB first, logical bit value 1 corresponds to an L state
on the signal line and parity is even. In order to use this convention, the following control bits
must be programmed: MSBFIRST=1, DATAINV=1.

Note: When logical data values are inverted (0=H, 1=L), the parity bit is also inverted in the same
way.

In order to recognize the card convention, the card sends the initial character, TS, as the
first character of the ATR (Answer To Reset) frame. The two possible patterns for the TS
are: LHHL LLL LLH and LHHL HHH LLH.

• (H) LHHL LLL LLH sets up the inverse convention: state L encodes value 1 and
moment 2 conveys the most significant bit (MSB first). when decoded by inverse
convention, the conveyed byte is equal to '3F'.

• (H) LHHL HHH LLH sets up the direct convention: state H encodes value 1 and
moment 2 conveys the least significant bit (LSB first). when decoded by direct
convention, the conveyed byte is equal to '3B'.

Character parity is correct when there is an even number of bits set to 1 in the nine
moments 2 to 10.

As the USART does not know which convention is used by the card, it needs to be able to
recognize either pattern and act accordingly. The pattern recognition is not done in
hardware, but through a software sequence. Moreover, supposing that the USART is
configured in direct convention (default) and the card answers with the inverse convention,
TS = LHHL LLL LLH => the USART received character will be ‘03’ and the parity will be odd.

Therefore, two methods are available for TS pattern recognition:

Method 1

The USART is programmed in standard Smartcard mode/direct convention. In this case, the
TS pattern reception generates a parity error interrupt and error signal to the card.

• The parity error interrupt informs the software that the card didn’t answer correctly in
direct convention. Software then reprograms the USART for inverse convention

• In response to the error signal, the card retries the same TS character, and it will be
correctly received this time, by the reprogrammed USART

Alternatively, in answer to the parity error interrupt, the software may decide to reprogram
the USART and to also generate a new reset command to the card, then wait again for the
TS.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

796/1040 RM0367 Rev 8

Method 2

The USART is programmed in 9-bit/no-parity mode, no bit inversion. In this mode it receives
any of the two TS patterns as:

(H) LHHL LLL LLH = 0x103 -> inverse convention to be chosen

(H) LHHL HHH LLH = 0x13B -> direct convention to be chosen

The software checks the received character against these two patterns and, if any of them
match, then programs the USART accordingly for the next character reception.

If none of the two is recognized, a card reset may be generated in order to restart the
negotiation.

29.5.14 USART IrDA SIR ENDEC block

This section is relevant only when IrDA mode is supported. Please refer to Section 29.4:
USART implementation on page 764.

IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA mode,
the following bits must be kept cleared:

• LINEN, STOP and CLKEN bits in the USART_CR2 register,

• SCEN and HDSEL bits in the USART_CR3 register.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 259).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2 Kbps for the SIR ENDEC. In
normal mode the transmitted pulse width is specified as 3/16 of a bit period.

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to the USART. The decoder input is
normally high (marking state) in the Idle state. The transmit encoder output has the opposite
polarity to the decoder input. A start bit is detected when the decoder input is low.

• IrDA is a half duplex communication protocol. If the Transmitter is busy (when the
USART is sending data to the IrDA encoder), any data on the IrDA receive line is
ignored by the IrDA decoder and if the Receiver is busy (when the USART is receiving
decoded data from the IrDA decoder), data on the TX from the USART to IrDA is not
encoded. while receiving data, transmission should be avoided as the data to be
transmitted could be corrupted.

• A 0 is transmitted as a high pulse and a 1 is transmitted as a 0. The width of the pulse
is specified as 3/16th of the selected bit period in normal mode (see Figure 260).

• The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.

• The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

• The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when Idle.

RM0367 Rev 8 797/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

• The IrDA specification requires the acceptance of pulses greater than 1.41 µs. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the USART_GTPR). Pulses of width less than 1 PSC period are always
rejected, but those of width greater than one and less than two periods may be
accepted or rejected, those greater than 2 periods will be accepted as a pulse. The
IrDA encoder/decoder doesn’t work when PSC=0.

• The receiver can communicate with a low-power transmitter.

• In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop
bit”.

For code example, refer to A.17.10: USART IrDA mode code example.

IrDA low-power mode

Transmitter

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.

Generally, this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1 PSC period. A valid low is accepted
only if its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
the USART_GTPR).

Note: A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Figure 259. IrDA SIR ENDEC- block diagram

SIREN

MSv31164V2

USART

OR

SIR
Transmit
Encoder

SIR
Receive
DEcoder

TX

RX

USART_RX

IrDA_IN

IrDA_OUT

USART_TX

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

798/1040 RM0367 Rev 8

Figure 260. IrDA data modulation (3/16) -Normal Mode

29.5.15 USART continuous communication in DMA mode

The USART is capable of performing continuous communication using the DMA. The DMA
requests for Rx buffer and Tx buffer are generated independently.

Note: Please refer to Section 29.4: USART implementation on page 764 to determine if the DMA
mode is supported. If DMA is not supported, use the USART as explained in Section 29.5.2:
USART transmitter or Section 29.5.3: USART receiver. To perform continuous
communication, the user can clear the TXE/ RXNE flags In the USART_ISR register.

For code example, refer to A.17.11: USART DMA code example.

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to
Section 11: Direct memory access controller (DMA) on page 264) to the USART_TDR
register whenever the TXE bit is set. To map a DMA channel for USART transmission, use
the following procedure (x denotes the channel number):

1. Write the USART_TDR register address in the DMA control register to configure it as
the destination of the transfer. The data is moved to this address from memory after
each TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data is loaded into the USART_TDR register from this memory area
after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clear the TC flag in the USART_ISR register by setting the TCCF bit in the
USART_ICR register.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

MSv31165V1

TX

Start
bit
0 1 0 1 0 0 1 1 0 1

Stop
bit

Bit period
IrDA_OUT

IrDA_IN

RX

3/16

0 1 0 1 0 0 1 1 0 1

RM0367 Rev 8 799/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or entering Stop mode. Software must wait until TC=1. The TC flag
remains cleared during all data transfers and it is set by hardware at the end of transmission
of the last frame.

Figure 261. Transmission using DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data is loaded from the USART_RDR register to a SRAM area configured using the DMA
peripheral (refer to Section 11: Direct memory access controller (DMA) on page 264)
whenever a data byte is received. To map a DMA channel for USART reception, use the
following procedure:

1. Write the USART_RDR register address in the DMA control register to configure it as
the source of the transfer. The data is moved from this address to the memory after
each RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data is loaded from USART_RDR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

F2 F3F1

ai17192b

Software
configures DMA
 to send 3 data

 blocks and
enables USART

The DMA
 transfer is
complete
(TCIF=1 in
DMA_ISR)

DMA writes
F1 into

 USART_TDR

DMA writes
F2 into

 USART_TDR

DMA writes
F3 into

 USART_TDR
Software waits until TC=1

Set by hardware

Cleared
by
software

Set by
hardware

TX line

TXE flag

USART_TDR

DMA request

DMA writes
USART_TDR

DMA TCIF flag
(transfer
complete)

TC flag

Frame 1 Frame 2 Frame 3Idle preamble

Set by hardware
cleared by DMA read

Set by hardware
cleared by DMA read Set by hardware

Ignored by the DMA because
 the transfer is complete

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

800/1040 RM0367 Rev 8

Figure 262. Reception using DMA

Error flagging and interrupt generation in multibuffer communication

In multibuffer communication if any error occurs during the transaction the error flag is
asserted after the current byte. An interrupt is generated if the interrupt enable flag is set.
For framing error, overrun error and noise flag which are asserted with RXNE in single byte
reception, there is a separate error flag interrupt enable bit (EIE bit in the USART_CR3
register), which, if set, enables an interrupt after the current byte if any of these errors occur.

29.5.16 RS232 hardware flow control and RS485 driver enable
using USART

It is possible to control the serial data flow between 2 devices by using the CTS input and
the RTS output. The Figure 263 shows how to connect 2 devices in this mode:

Figure 263. Hardware flow control between 2 USARTs

TX line
Frame 1

F2 F3

Set by hardware
cleared by DMA read

F1

ai17193c

Frame 2 Frame 3

RXNE flag

USART_RDR

DMA request

DMA reads
USART_RDR

DMA TCIF flag
(transfer complete)

Software configures the
DMA to receive 3 data
blocks and enables
the USART

DMA reads F3
from USART_RDR

The DMA transfer
is complete
(TCIF=1 in
DMA_ISR)

Set by hardware
Cleared
by
software

DMA reads F2
from USART_RDR

DMA reads F1
from USART_RDR

MSv31169V2

TX circuit

USART 1

TX

RX circuit

RX circuit

USART 2

TX circuit
TX

CTS

CTSRTS

RX

RTS

RX

RM0367 Rev 8 801/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and
CTSE bits respectively to 1 (in the USART_CR3 register).

RS232 RTS flow control

If the RTS flow control is enabled (RTSE=1), then RTS is deasserted (tied low) as long as
the USART receiver is ready to receive a new data. When the receive register is full, RTS is
asserted, indicating that the transmission is expected to stop at the end of the current frame.
Figure 264 shows an example of communication with RTS flow control enabled.

Figure 264. RS232 RTS flow control

RS232 CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input
before transmitting the next frame. If CTS is deasserted (tied low), then the next data is
transmitted (assuming that data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. when CTS is asserted during a transmission, the current
transmission is completed before the transmitter stops.

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. Figure 265
shows an example of communication with CTS flow control enabled.

MSv68794V1

Start
bit

Start
bit

Stop
bit Idle Stop

bitRX

RTS

Data 1 read
Data 2 can now be transmitted

RXNE RXNE

Data 1 Data 2

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

802/1040 RM0367 Rev 8

Figure 265. RS232 CTS flow control

Note: For correct behavior, CTS must be deasserted at least 3 USART clock source periods
before the end of the current character. In addition it should be noted that the CTSCF flag
may not be set for pulses shorter than 2 x PCLK periods.

For code example, refer to A.17.12: USART hardware flow control code example.

RS485 Driver Enable

The driver enable feature is enabled by setting bit DEM in the USART_CR3 control register.
This allows the user to activate the external transceiver control, through the DE (Driver
Enable) signal. The assertion time is the time between the activation of the DE signal and
the beginning of the START bit. It is programmed using the DEAT [4:0] bit fields in the
USART_CR1 control register. The de-assertion time is the time between the end of the last
stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed
using the DEDT [4:0] bit fields in the USART_CR1 control register. The polarity of the DE
signal can be configured using the DEP bit in the USART_CR3 control register.

In USART, the DEAT and DEDT are expressed in sample time units (1/8 or 1/16 bit duration,
depending on the oversampling rate).

29.5.17 Wakeup from Stop mode using USART

The USART is able to wake up the MCU from Stopmode when the UESM bit is set and the
USART clock is set to HSI or LSE (refer to Section Reset and clock control (RCC)).

• USART source clock is HSI

If during Stop mode the HSI clock is switched OFF, when a falling edge on the USART
receive line is detected, the USART interface requests the HSI clock to be switched
ON. The HSI clock is then used for the frame reception.

– If the wakeup event is verified, the MCU wakes up from low-power mode and data
reception goes on normally.

– If the wakeup event is not verified, the HSI clock is switched OFF again, the MCU
is not waken up and stays in low-power mode and the clock request is released.

MSv68793V1

Start
bit

Stop
bit

TX

TDR

CTS

Data 1

Data 2

Stop
bit Idle Start

bitData 2 Data 3

Data 3empty empty

CTS

CTS

Transmit data register

Writing data 3 in TDR Transmission of Data 3 is
delayed until CTS = 0

RM0367 Rev 8 803/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Note: If the USART kernel clock is kept ON during Stop mode, there is no constraint on the
maximum baud rate that allows waking up from Stop mode. It is the same as in Run mode.

• USART source clock is LSE

Same principle as described in case of USART source clock is HSI with the difference
that the LSE is ON in Stop mode, but the LSE clock is not propagated to USART if the
USART is not requesting it. The LSE clock is not OFF but there is a clock gating to
avoid useless consumption.

When the USART clock source is configured to be fLSE or fHSI, it is possible to keep enabled
this clock during STOP mode by setting the UCESM bit in USART_CR3 control register.

The MCU wakeup from Stop mode can be done using the standard RXNE interrupt. In this
case, the RXNEIE bit must be set before entering Stop mode.

Alternatively, a specific interrupt may be selected through the WUS bit fields.

In order to be able to wake up the MCU from Stop mode, the UESM bit in the USART_CR1
control register must be set prior to entering Stop mode.

When the wakeup event is detected, the WUF flag is set by hardware and a wakeup
interrupt is generated if the WUFIE bit is set.

Note: Before entering Stop mode, the user must ensure that the USART is not performing a
transfer. BUSY flag cannot ensure that Stop mode is never entered during a running
reception.

The WUF flag is set when a wakeup event is detected, independently of whether the MCU is
in Stop or in an active mode.

When entering Stop mode just after having initialized and enabled the receiver, the REACK
bit must be checked to ensure the USART is actually enabled.

When DMA is used for reception, it must be disabled before entering Stop mode and re-
enabled upon exit from Stop mode.

The wakeup from Stop mode feature is not available for all modes. For example it doesn’t
work in SPI mode because the SPI operates in master mode only.

Using Mute mode with Stop mode

If the USART is put into Mute mode before entering Stop mode:

• Wakeup from Mute mode on idle detection must not be used, because idle detection
cannot work in Stop mode.

• If the wakeup from Mute mode on address match is used, then the source of wake-up
from Stop mode must also be the address match. If the RXNE flag is set when entering
the Stop mode, the interface will remain in mute mode upon address match and wake
up from Stop.

• If the USART is configured to wake up the MCU from Stop mode on START bit
detection, the WUF flag is set, but the RXNE flag is not set.

Determining the maximum USART baud rate allowing to wakeup correctly
from Stop mode when the USART clock source is the HSI clock

The maximum baud rate allowing to wakeup correctly from Stop mode depends on:

• the parameter tWUUSART provided in the device datasheet

• the USART receiver tolerance provided in the Section 29.5.5: Tolerance of the USART
receiver to clock deviation.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

804/1040 RM0367 Rev 8

Let us take this example: OVER8 = 0, M bits = 10, ONEBIT = 1, BRR [3:0] = 0000.

In these conditions, according to Table 142: Tolerance of the USART receiver when BRR
[3:0] = 0000, the USART receiver tolerance is 4.86 %.

DTRA + DQUANT + DREC + DTCL + DWU < USART receiver's tolerance

DWU max = tWUUSART / (9 x Tbit Min)

Tbit Min = tWUUSART / (9 x DWU max)

If we consider an ideal case where the parameters DTRA, DQUANT, DREC and DTCL are
at 0%, the DWU max is 4.86 %. In reality, we need to consider at least the HSI inaccuracy.

Let us consider HSI inaccuracy = 1 %, tWUUSART = 8.1 μs (in case of Stop mode with main
regulator in Run mode, Range 1):

DWU max = 4.86 % - 1 % = 3.86 %

Tbit min = 8.1 µs / (9 ₓ 3.86 %) = 23.31 μs.

In these conditions, the maximum baud rate allowing to wakeup correctly from Stop mode is
1/23.31 μs = 42 kbaud.

29.6 USART in low-power modes

29.7 USART interrupts

Table 145. Effect of low-power modes on the USART

Mode Description

Sleep No effect. USART interrupt causes the device to exit Sleep mode.

Low-power run No effect.

Low-power sleep
No effect. USART interrupt causes the device to exit Low-power sleep
mode.

Stop

The USART is able to wake up the MCU from Stop mode when the UESM
bit is set and the USART clock is set to HSI16 or LSE.

The MCU wakeup from Stop mode can be done using the standard RXNE
interrupt.

Standby
The USART is powered down and must be reinitialized when the device
has exited from Standby mode.

Table 146. USART interrupt requests

Interrupt event Event flag
Enable Control

bit

Transmit data register empty TXE TXEIE

CTS interrupt CTSIF CTSIE

Transmission Complete TC TCIE

Receive data register not empty (data ready to be read) RXNE
RXNEIE

Overrun error detected ORE

RM0367 Rev 8 805/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

The USART interrupt events are connected to the same interrupt vector (see Figure 266).

• During transmission: Transmission Complete, Clear to Send, Transmit data Register
empty or Framing error (in Smartcard mode) interrupt.

• During reception: Idle Line detection, Overrun error, Receive data register not empty,
Parity error, LIN break detection, Noise Flag, Framing Error, Character match, etc.

These events generate an interrupt if the corresponding Enable Control Bit is set.

Figure 266. USART interrupt mapping diagram

Idle line detected IDLE IDLEIE

Parity error PE PEIE

LIN break LBDF LBDIE

Noise Flag, Overrun error and Framing Error in multibuffer
communication.

NF or ORE or FE EIE

Character match CMF CMIE

Receiver timeout RTOF RTOIE

End of Block EOBF EOBIE

Wakeup from Stop mode WUF(1) WUFIE

1. The WUF interrupt is active only in Stop mode.

Table 146. USART interrupt requests (continued)

Interrupt event Event flag
Enable Control

bit

MSv19820V1

TC
TCIE
TXE

TXEIE
CTSIF
CTSIE

IDLE
IDLEIE

RXNEIE
ORE

RXNEIE
RXNE

PE
PEIE

LBDF
LBDIE

CMF
CMIE

EOBF
EOBIE

WUF
WUFIE

FE
NF

ORE

RTOF
RTOIE

EIE

USART
interrupt

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

806/1040 RM0367 Rev 8

29.8 USART registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32 bits).

29.8.1 USART control register 1 (USART_CR1)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. M1 EOBIE RTOIE DEAT[4:0] DEDT[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVER8 CMIE MME M0 WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE UESM UE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 Reserved, must be kept at reset value.

Bit 28 M1: Word length

This bit, with bit 12 (M0), determines the word length. It is set or cleared by software.
M[1:0] = 00: 1 Start bit, 8 data bits, n stop bits
M[1:0] = 01: 1 Start bit, 9 data bits, n stop bits
M[1:0] = 10: 1 Start bit, 7 data bits, n stop bits
This bit can only be written when the USART is disabled (UE=0).

Note: Not all modes are supported In 7-bit data length mode. Refer to Section 29.4: USART
implementation for details.

Bit 27 EOBIE: End of Block interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated when the EOBF flag is set in the USART_ISR register.

Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept
at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 26 RTOIE: Receiver timeout interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated when the RTOF bit is set in the USART_ISR register.

Note: If the USART does not support the Receiver timeout feature, this bit is reserved and
must be kept at reset value. Section 29.4: USART implementation on page 764.

Bits 25:21 DEAT[4:0]: Driver Enable assertion time

This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and
the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit duration,
depending on the oversampling rate).
This bit field can only be written when the USART is disabled (UE=0).

Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at
reset value. Please refer to Section 29.4: USART implementation on page 764.

RM0367 Rev 8 807/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Bits 20:16 DEDT[4:0]: Driver Enable de-assertion time

This 5-bit value defines the time between the end of the last stop bit, in a transmitted
message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample
time units (1/8 or 1/16 bit duration, depending on the oversampling rate).
If the USART_TDR register is written during the DEDT time, the new data is transmitted only
when the DEDT and DEAT times have both elapsed.
This bit field can only be written when the USART is disabled (UE=0).

Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at
reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 15 OVER8: Oversampling mode

0: Oversampling by 16
1: Oversampling by 8
This bit can only be written when the USART is disabled (UE=0).

Note: In LIN, IrDA and modes, this bit must be kept at reset value.

Bit 14 CMIE: Character match interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated when the CMF bit is set in the USART_ISR register.

Bit 13 MME: Mute mode enable

This bit activates the mute mode function of the USART. when set, the USART can switch
between the active and mute modes, as defined by the WAKE bit. It is set and cleared by
software.
0: Receiver in active mode permanently
1: Receiver can switch between mute mode and active mode.

Bit 12 M0: Word length

This bit, with bit 28 (M1), determines the word length. It is set or cleared by software. See Bit
28 (M1) description.
This bit can only be written when the USART is disabled (UE=0).

Bit 11 WAKE: Receiver wakeup method

This bit determines the USART wakeup method from Mute mode. It is set or cleared by
software.
0: Idle line
1: Address mark
This bit field can only be written when the USART is disabled (UE=0).

Bit 10 PCE: Parity control enable

This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled
This bit field can only be written when the USART is disabled (UE=0).

Bit 9 PS: Parity selection

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity
This bit field can only be written when the USART is disabled (UE=0).

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

808/1040 RM0367 Rev 8

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever PE=1 in the USART_ISR register

Bit 7 TXEIE: interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever TXE=1 in the USART_ISR register

Bit 6 TCIE: Transmission complete interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever TC=1 in the USART_ISR register

Bit 5 RXNEIE: RXNE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_ISR
register

Bit 4 IDLEIE: IDLE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A USART interrupt is generated whenever IDLE=1 in the USART_ISR register

Bit 3 TE: Transmitter enable

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in Smartcard mode. In order to generate an idle
character, the TE must not be immediately written to 1. In order to ensure the required
duration, the software can poll the TEACK bit in the USART_ISR register.

In Smartcard mode, when TE is set there is a 1 bit-time delay before the transmission
starts.

RM0367 Rev 8 809/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.8.2 USART control register 2 (USART_CR2)

Address offset: 0x04

Reset value: 0x0000 0000

Bit 2 RE: Receiver enable

This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 UESM: USART enable in Stop mode

When this bit is cleared, the USART is not able to wake up the MCU from Stop mode.
When this bit is set, the USART is able to wake up the MCU from Stop mode, provided that
the USART clock selection is HSI16 or LSE in the RCC.
This bit is set and cleared by software.
0: USART not able to wake up the MCU from Stop mode.
1: USART able to wake up the MCU from Stop mode. When this function is active, the clock
source for the USART must be HSI16 or LSE (see Section Reset and clock control
(RCC).

Note: It is recommended to set the UESM bit just before entering Stop mode and clear it on
exit from Stop mode.

If the USART does not support the wakeup from Stop feature, this bit is reserved and
must be kept at reset value. Please refer to Section 29.4: USART implementation on
page 764.

Bit 0 UE: USART enable

When this bit is cleared, the USART prescalers and outputs are stopped immediately, and
current operations are discarded. The configuration of the USART is kept, but all the status
flags, in the USART_ISR are set to their default values. This bit is set and cleared by
software.
0: USART prescaler and outputs disabled, low-power mode
1: USART enabled

Note: In order to go into low-power mode without generating errors on the line, the TE bit
must be reset before and the software must wait for the TC bit in the USART_ISR to be
set before resetting the UE bit.

The DMA requests are also reset when UE = 0 so the DMA channel must be disabled
before resetting the UE bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADD[7:4] ADD[3:0] RTOEN ABRMOD[1:0] ABREN
MSBFI
RST

DATAINV TXINV RXINV

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWAP LINEN STOP[1:0] CLKEN CPOL CPHA LBCL Res. LBDIE LBDL ADDM7 Res. Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

810/1040 RM0367 Rev 8

Bits 31:28 ADD[7:4]: Address of the USART node

This bit-field gives the address of the USART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with 7-
bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1.
It may also be used for character detection during normal reception, Mute mode inactive (for
example, end of block detection in ModBus protocol). In this case, the whole received character (8-
bit) is compared to the ADD[7:0] value and CMF flag is set on match.
This bit field can only be written when reception is disabled (RE = 0) or the USART is disabled
(UE=0)

Bits 27:24 ADD[3:0]: Address of the USART node

This bit-field gives the address of the USART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with
address mark detection.
This bit field can only be written when reception is disabled (RE = 0) or the USART is disabled
(UE=0)

Bit 23 RTOEN: Receiver timeout enable

This bit is set and cleared by software.
0: Receiver timeout feature disabled.
1: Receiver timeout feature enabled.
When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle
(no reception) for the duration programmed in the RTOR (receiver timeout register).

Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be
kept at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bits 22:21 ABRMOD[1:0]: Auto baud rate mode

These bits are set and cleared by software.
00: Measurement of the start bit is used to detect the baud rate.
01: Falling edge to falling edge measurement. (the received frame must start with a single bit = 1 ->
Frame = Start10xxxxxx)
10: 0x7F frame detection.
11: 0x55 frame detection
This bit field can only be written when ABREN = 0 or the USART is disabled (UE=0).

Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example
0xAA for MSBFIRST)

If the USART does not support the auto baud rate feature, this bit is reserved and must be kept
at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 20 ABREN: Auto baud rate enable

This bit is set and cleared by software.
0: Auto baud rate detection is disabled.
1: Auto baud rate detection is enabled.

Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept
at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 19 MSBFIRST: Most significant bit first

This bit is set and cleared by software.
0: data is transmitted/received with data bit 0 first, following the start bit.
1: data is transmitted/received with the MSB (bit 7/8/9) first, following the start bit.
This bit field can only be written when the USART is disabled (UE=0).

RM0367 Rev 8 811/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Bit 18 DATAINV: Binary data inversion

This bit is set and cleared by software.
0: Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L)
1: Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The
parity bit is also inverted.
This bit field can only be written when the USART is disabled (UE=0).

Bit 17 TXINV: TX pin active level inversion

This bit is set and cleared by software.
0: TX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: TX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the TX line.
This bit field can only be written when the USART is disabled (UE=0).

Bit 16 RXINV: RX pin active level inversion

This bit is set and cleared by software.
0: RX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: RX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the RX line.
This bit field can only be written when the USART is disabled (UE=0).

Bit 15 SWAP: Swap TX/RX pins

This bit is set and cleared by software.
0: TX/RX pins are used as defined in standard pinout
1: The TX and RX pins functions are swapped. This allows to work in the case of a cross-wired
connection to another USART.
This bit field can only be written when the USART is disabled (UE=0).

Bit 14 LINEN: LIN mode enable

This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN synchronous breaks (13 low bits) using the
SBKRQ bit in the USART_RQR register, and to detect LIN Sync breaks.
This bit field can only be written when the USART is disabled (UE=0).

Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bits 13:12 STOP[1:0]: STOP bits

These bits are used for programming the stop bits.
00: 1 stop bit
01: 0.5 stop bit
10: 2 stop bits
11: 1.5 stop bits
This bit field can only be written when the USART is disabled (UE=0).

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

812/1040 RM0367 Rev 8

Bit 11 CLKEN: Clock enable

This bit allows the user to enable the CK pin.
0: CK pin disabled
1: CK pin enabled
This bit can only be written when the USART is disabled (UE=0).

Note: If neither synchronous mode nor Smartcard mode is supported, this bit is reserved and must
be kept at reset value. Please refer to Section 29.4: USART implementation on page 764.

In order to provide correctly the CK clock to the Smartcard when CK is always available When
CLKEN = 1, regardless of the UE bit value, the steps below must be respected:
- UE = 0
- SCEN = 1
- GTPR configuration (If PSC needs to be configured, it is recommended to configure PSC and
GT in a single access to USART_ GTPR register).
- CLKEN= 1
- UE = 1

Bit 10 CPOL: Clock polarity

This bit allows the user to select the polarity of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on CK pin outside transmission window
1: Steady high value on CK pin outside transmission window
This bit can only be written when the USART is disabled (UE=0).

Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 9 CPHA: Clock phase

This bit is used to select the phase of the clock output on the CK pin in synchronous mode. It works
in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure 254 and
Figure 255)
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge
This bit can only be written when the USART is disabled (UE=0).

Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 8 LBCL: Last bit clock pulse

This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB)
has to be output on the CK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the CK pin
1: The clock pulse of the last data bit is output to the CK pin

Caution: The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit
format selected by the M bits in the USART_CR1 register.

This bit can only be written when the USART is disabled (UE=0).

Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 7 Reserved, must be kept at reset value.

Bit 6 LBDIE: LIN break detection interrupt enable

Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBDF=1 in the USART_ISR register

Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Please refer
to Section 29.4: USART implementation on page 764.

RM0367 Rev 8 813/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Note: The 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

29.8.3 USART control register 3 (USART_CR3)

Address offset: 0x08

Reset value: 0x0000 0000

Bit 5 LBDL: LIN break detection length

This bit is for selection between 11 bit or 10 bit break detection.
0: 10-bit break detection
1: 11-bit break detection
This bit can only be written when the USART is disabled (UE=0).

Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Please refer
to Section 29.4: USART implementation on page 764.

Bit 4 ADDM7:7-bit Address Detection/4-bit Address Detection

This bit is for selection between 4-bit address detection or 7-bit address detection.
0: 4-bit address detection
1: 7-bit address detection (in 8-bit data mode)
This bit can only be written when the USART is disabled (UE=0)

Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address
(ADD[5:0] and ADD[7:0]) respectively.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. UCESM WUFIE WUS1 WUS0
SCARC

NT2
SCARC

NT1
SCARC

NT0
Res.

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DEP DEM DDRE
OVRDI

S
ONEBI

T
CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 Reserved, must be kept at reset value.

Bit 23 UCESM: USART Clock Enable in Stop mode.

This bit is set and cleared by software.
0: USART Clock is disabled in STOP mode.
1: USART Clock is enabled in STOP mode.

Bit 22 WUFIE: Wakeup from Stop mode interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever WUF=1 in the USART_ISR register

Note: WUFIE must be set before entering in Stop mode.

The WUF interrupt is active only in Stop mode.

If the USART does not support the wakeup from Stop feature, this bit is reserved and
must be kept at reset value.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

814/1040 RM0367 Rev 8

Bits 21:20 WUS[1:0]: Wakeup from Stop mode interrupt flag selection

This bit-field specify the event which activates the WUF (wakeup from Stop mode flag).
00: WUF active on address match (as defined by ADD[7:0] and ADDM7)
01:Reserved.
10: WuF active on Start bit detection
11: WUF active on RXNE.
This bit field can only be written when the USART is disabled (UE=0).

Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and
must be kept at reset value.

Bits 19:17 SCARCNT[2:0]: Smartcard auto-retry count

This bit-field specifies the number of retries in transmit and receive, in Smartcard mode.
In transmission mode, it specifies the number of automatic retransmission retries, before
generating a transmission error (FE bit set).
In reception mode, it specifies the number or erroneous reception trials, before generating a
reception error (RXNE and PE bits set).
This bit field must be programmed only when the USART is disabled (UE=0).
When the USART is enabled (UE=1), this bit field may only be written to 0x0, in order to stop
retransmission.
0x0: retransmission disabled - No automatic retransmission in transmit mode.
0x1 to 0x7: number of automatic retransmission attempts (before signaling error)

Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset
value. Please refer to Section 29.4: USART implementation on page 764.

Bit 16 Reserved, must be kept at reset value.

Bit 15 DEP: Driver enable polarity selection

0: DE signal is active high.
1: DE signal is active low.
This bit can only be written when the USART is disabled (UE=0).

Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at
reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 14 DEM: Driver enable mode

This bit allows the user to activate the external transceiver control, through the DE signal.
0: DE function is disabled.
1: DE function is enabled. The DE signal is output on the RTS pin.
This bit can only be written when the USART is disabled (UE=0).

Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at
reset value. Section 29.4: USART implementation on page 764.

Bit 13 DDRE: DMA Disable on Reception Error

0: DMA is not disabled in case of reception error. The corresponding error flag is set but
RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not
asserted, so the erroneous data is not transferred (no DMA request), but next correct
received data will be transferred (used for Smartcard mode).
1: DMA is disabled following a reception error. The corresponding error flag is set, as well as
RXNE. The DMA request is masked until the error flag is cleared. This means that the
software must first disable the DMA request (DMAR = 0) or clear RXNE before clearing the
error flag.
This bit can only be written when the USART is disabled (UE=0).

Note: The reception errors are: parity error, framing error or noise error.

RM0367 Rev 8 815/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Bit 12 OVRDIS: Overrun Disable

This bit is used to disable the receive overrun detection.
0: Overrun Error Flag, ORE, is set when received data is not read before receiving new data.
1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set
the ORE flag is not set and the new received data overwrites the previous content of the
USART_RDR register.
This bit can only be written when the USART is disabled (UE=0).

Note: This control bit allows checking the communication flow without reading the data.

Bit 11 ONEBIT: One sample bit method enable

This bit allows the user to select the sample method. When the one sample bit method is
selected the noise detection flag (NF) is disabled.
0: Three sample bit method
1: One sample bit method
This bit can only be written when the USART is disabled (UE=0).

Note: ONEBIT feature applies only to data bits, It does not apply to Start bit.

Bit 10 CTSIE: CTS interrupt enable

0: Interrupt is inhibited
1: An interrupt is generated whenever CTSIF=1 in the USART_ISR register

Note: If the hardware flow control feature is not supported, this bit is reserved and must be
kept at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 9 CTSE: CTS enable

0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the CTS input is deasserted (tied to 0).
If the CTS input is asserted while data is being transmitted, then the transmission is
completed before stopping. If data is written into the data register while CTS is asserted, the
transmission is postponed until CTS is deasserted.
This bit can only be written when the USART is disabled (UE=0)

Note: If the hardware flow control feature is not supported, this bit is reserved and must be
kept at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 8 RTSE: RTS enable

0: RTS hardware flow control disabled
1: RTS output enabled, data is only requested when there is space in the receive buffer. The
transmission of data is expected to cease after the current character has been transmitted.
The RTS output is deasserted (pulled to 0) when data can be received.
This bit can only be written when the USART is disabled (UE=0).

Note: If the hardware flow control feature is not supported, this bit is reserved and must be
kept at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 7 DMAT: DMA enable transmitter

This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

816/1040 RM0367 Rev 8

Bit 5 SCEN: Smartcard mode enable

This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled
This bit field can only be written when the USART is disabled (UE=0).

Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept
at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 4 NACK: Smartcard NACK enable

0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled
This bit field can only be written when the USART is disabled (UE=0).

Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept
at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected
This bit can only be written when the USART is disabled (UE=0).

Bit 2 IRLP: IrDA low-power

This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode
This bit can only be written when the USART is disabled (UE=0).

Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 1 IREN: IrDA mode enable

This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled
This bit can only be written when the USART is disabled (UE=0).

Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 0 EIE: Error interrupt enable

Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_ISR register).
0: Interrupt is inhibited
1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USART_ISR register.

RM0367 Rev 8 817/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.8.4 USART baud rate register (USART_BRR)

This register can only be written when the USART is disabled (UE=0). It may be
automatically updated by hardware in auto baud rate detection mode.

Address offset: 0x0C

Reset value: 0x0000 0000

29.8.5 USART guard time and prescaler register (USART_GTPR)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 BRR[15:4]

BRR[15:4] = USARTDIV[15:4]

Bits 3:0 BRR[3:0]

When OVER8 = 0, BRR[3:0] = USARTDIV[3:0].
When OVER8 = 1:
BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.
BRR[3] must be kept cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GT[7:0] PSC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

818/1040 RM0367 Rev 8

29.8.6 USART receiver timeout register (USART_RTOR)

Address offset: 0x14

Reset value: 0x0000 0000

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 GT[7:0]: Guard time value

This bit-field is used to program the Guard time value in terms of number of baud clock
periods.
This is used in Smartcard mode. The Transmission Complete flag is set after this guard time
value.
This bit field can only be written when the USART is disabled (UE=0).

Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bits 7:0 PSC[7:0]: Prescaler value

In IrDA Low-power and normal IrDA mode:
PSC[7:0] = IrDA Normal and Low-Power Baud Rate
Used for programming the prescaler for dividing the USART source clock to achieve the low-
power frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...
In Smartcard mode:
PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the USART source clock to provide the
Smartcard clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...
This bit field can only be written when the USART is disabled (UE=0).

Note: Bits [7:5] must be kept at reset value if Smartcard mode is used.

This bit field is reserved and must be kept at reset value when the Smartcard and IrDA
modes are not supported. Please refer to Section 29.4: USART implementation on
page 764.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BLEN[7:0] RTO[23:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTO[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0367 Rev 8 819/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Note: RTOR can be written on the fly. If the new value is lower than or equal to the counter, the
RTOF flag is set.

This register is reserved and forced by hardware to “0x00000000” when the Receiver
timeout feature is not supported. Please refer to Section 29.4: USART implementation on
page 764.

29.8.7 USART request register (USART_RQR)

Address offset: 0x18

Reset value: 0x0000 0000

Bits 31:24 BLEN[7:0]: Block Length

This bit-field gives the Block length in Smartcard T=1 Reception. Its value equals the number
of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1.
Examples:
BLEN = 0 -> 0 information characters + LEC
BLEN = 1 -> 0 information characters + CRC
BLEN = 255 -> 254 information characters + CRC (total 256 characters))
In Smartcard mode, the Block length counter is reset when TXE=0.
This bit-field can be used also in other modes. In this case, the Block length counter is reset
when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1.

Note: This value can be programmed after the start of the block reception (using the data
from the LEN character in the Prologue Field). It must be programmed only once per
received block.

Bits 23:0 RTO[23:0]: Receiver timeout value

This bit-field gives the Receiver timeout value in terms of number of bit duration.
In standard mode, the RTOF flag is set if, after the last received character, no new start bit is
detected for more than the RTO value.
In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard
section for more details.
In this case, the timeout measurement is done starting from the Start Bit of the last received
character.

Note: This value must only be programmed once per received character.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TXFRQ RXFRQ MMRQ SBKRQ ABRRQ

w w w w w

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

820/1040 RM0367 Rev 8

29.8.8 USART interrupt and status register (USART_ISR)

Address offset: 0x1C

Reset value: 0x0200 00C0

Bits 31:5 Reserved, must be kept at reset value.

Bit 4 TXFRQ: Transmit data flush request

Writing 1 to this bit sets the TXE flag.
This allows to discard the transmit data. This bit must be used only in Smartcard mode,
when data has not been sent due to errors (NACK) and the FE flag is active in the
USART_ISR register.
If the USART does not support Smartcard mode, this bit is reserved and must be kept at
reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 3 RXFRQ: Receive data flush request

Writing 1 to this bit clears the RXNE flag.
This allows to discard the received data without reading it, and avoid an overrun condition.

Bit 2 MMRQ: Mute mode request

Writing 1 to this bit puts the USART in mute mode and sets the RWU flag.

Bit 1 SBKRQ: Send break request

Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as
the transmit machine is available.

Note: In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the
TXE flag assertion before setting the SBKRQ bit.

Bit 0 ABRRQ: Auto baud rate request

Writing 1 to this bit resets the ABRF and ABRE flags in the USART_ISR and request an
automatic baud rate measurement on the next received data frame.

Note: If the USART does not support the auto baud rate feature, this bit is reserved and must
be kept at reset value. Please refer to Section 29.4: USART implementation on
page 764.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. REACK TEACK WUF RWU SBKF CMF BUSY

r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABRF ABRE Res. EOBF RTOF CTS CTSIF LBDF TXE TC RXNE IDLE ORE NF FE PE

r r r r r r r r r r r r r r r

Bits 31:25 Reserved, must be kept at reset value.

Bits 24:23 Reserved, must be kept at reset value.

RM0367 Rev 8 821/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Bit 22 REACK: Receive enable acknowledge flag

This bit is set/reset by hardware, when the Receive Enable value is taken into account by
the USART.
When the wakeup from Stop mode is supported, the REACK flag can be used to verify that
the USART is ready for reception before entering Stop mode.

Bit 21 TEACK: Transmit enable acknowledge flag

This bit is set/reset by hardware, when the Transmit Enable value is taken into account by
the USART.
It can be used when an idle frame request is generated by writing TE=0, followed by TE=1
in the USART_CR1 register, in order to respect the TE=0 minimum period.

Bit 20 WUF: Wakeup from Stop mode flag

This bit is set by hardware, when a wakeup event is detected. The event is defined by the
WUS bit field. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register.

An interrupt is generated if WUFIE=1 in the USART_CR3 register.

Note: When UESM is cleared, WUF flag is also cleared.

The WUF interrupt is active only in Stop mode.

If the USART does not support the wakeup from Stop feature, this bit is reserved and
kept at reset value.

Bit 19 RWU: Receiver wakeup from Mute mode

This bit indicates if the USART is in mute mode. It is cleared/set by hardware when a
wakeup/mute sequence is recognized. The mute mode control sequence (address or IDLE)
is selected by the WAKE bit in the USART_CR1 register.
When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the
MMRQ bit in the USART_RQR register.
0: Receiver in active mode
1: Receiver in mute mode

Bit 18 SBKF: Send break flag

This bit indicates that a send break character was requested. It is set by software, by writing
1 to the SBKRQ bit in the USART_RQR register. It is automatically reset by hardware during
the stop bit of break transmission.
0: No break character is transmitted
1: Break character will be transmitted

Bit 17 CMF: Character match flag

This bit is set by hardware, when the character defined by ADD[7:0] is received. It is cleared
by software, writing 1 to the CMCF in the USART_ICR register.
An interrupt is generated if CMIE=1in the USART_CR1 register.
0: No Character match detected
1: Character Match detected

Bit 16 BUSY: Busy flag

This bit is set and reset by hardware. It is active when a communication is ongoing on the
RX line (successful start bit detected). It is reset at the end of the reception (successful or
not).
0: USART is idle (no reception)
1: Reception on going

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

822/1040 RM0367 Rev 8

Bit 15 ABRF: Auto baud rate flag

This bit is set by hardware when the automatic baud rate has been set (RXNE will also be
set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was
completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case)
It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to
the ABRRQ in the USART_RQR register.

Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept
at reset value.

Bit 14 ABRE: Auto baud rate error

This bit is set by hardware if the baud rate measurement failed (baud rate out of range or
character comparison failed)
It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register.

Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept
at reset value.

Bit 13 Reserved, must be kept at reset value.

Bit 12 EOBF: End of block flag

This bit is set by hardware when a complete block has been received (for example T=1
Smartcard mode). The detection is done when the number of received bytes (from the start
of the block, including the prologue) is equal or greater than BLEN + 4.
An interrupt is generated if EOBIE = 1 in the USART_CR1 register.
It is cleared by software, writing 1 to EOBCF in the USART_ICR register.
0: End of Block not reached
1: End of Block (number of characters) reached

Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Please
refer to Section 29.4: USART implementation on page 764.

Bit 11 RTOF: Receiver timeout

This bit is set by hardware when the timeout value, programmed in the RTOR register has
lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in
the USART_ICR register.
An interrupt is generated if RTOIE=1 in the USART_CR1 register.
In Smartcard mode, the timeout corresponds to the CWT or BWT timings.
0: Timeout value not reached
1: Timeout value reached without any data reception

Note: If a time equal to the value programmed in RTOR register separates 2 characters,
RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8,
depending on the oversampling method), RTOF flag is set.

The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has
already elapsed when RE is set, then RTOF will be set.

If the USART does not support the Receiver timeout feature, this bit is reserved and
kept at reset value.

Bit 10 CTS: CTS flag

This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin.
0: CTS line set
1: CTS line reset

Note: If the hardware flow control feature is not supported, this bit is reserved and kept at
reset value.

RM0367 Rev 8 823/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

Bit 9 CTSIF: CTS interrupt flag

This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software, by writing 1 to the CTSCF bit in the USART_ICR register.
An interrupt is generated if CTSIE=1 in the USART_CR3 register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line

Note: If the hardware flow control feature is not supported, this bit is reserved and kept at
reset value.

Bit 8 LBDF: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software, by
writing 1 to the LBDCF in the USART_ICR.
An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the USART_TDR register has been
transferred into the shift register. It is cleared by a write to the USART_TDR register.
The TXE flag can also be cleared by writing 1 to the TXFRQ in the USART_RQR register, in
order to discard the data (only in Smartcard T=0 mode, in case of transmission failure).
An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register.
0: data is not transferred to the shift register
1: data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete

This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by
software, writing 1 to the TCCF in the USART_ICR register or by a write to the USART_TDR
register.
An interrupt is generated if TCIE=1 in the USART_CR1 register.
0: Transmission is not complete
1: Transmission is complete

Note: If TE bit is reset and no transmission is on going, the TC bit will be set immediately.

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred
to the USART_RDR register. It is cleared by a read to the USART_RDR register. The RXNE
flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register.
An interrupt is generated if RXNEIE=1 in the USART_CR1 register.
0: data is not received
1: Received data is ready to be read.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

824/1040 RM0367 Rev 8

Bit 4 IDLE: Idle line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if
IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in
the USART_ICR register.
0: No Idle line is detected
1: Idle line is detected

Note: The IDLE bit will not be set again until the RXNE bit has been set (i.e. a new idle line
occurs).

If mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0),
whatever the mute mode selected by the WAKE bit. If RWU=1, IDLE is not set.

Bit 3 ORE: Overrun error

This bit is set by hardware when the data currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. It is cleared by a software,
writing 1 to the ORECF, in the USART_ICR register.
An interrupt is generated if RXNEIE=1 or EIE = 1 in the USART_CR1 register.
0: No overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content is not lost but the shift register is
overwritten. An interrupt is generated if the ORE flag is set during multibuffer
communication if the EIE bit is set.

This bit is permanently forced to 0 (no overrun detection) when the OVRDIS bit is set in
the USART_CR3 register.

Bit 2 NF: START bit Noise detection flag

This bit is set by hardware when noise is detected on a received frame. It is cleared by
software, writing 1 to the NFCF bit in the USART_ICR register.
0: No noise is detected
1: Noise is detected

Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. An interrupt is generated when the NF flag is set
during multibuffer communication if the EIE bit is set.

Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT
bit to 1 to increase the USART tolerance to deviations (Refer to Section 29.5.5:
Tolerance of the USART receiver to clock deviation on page 779).

Bit 1 FE: Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register.
In Smartcard mode, in transmission, this bit is set when the maximum number of transmit
attempts is reached without success (the card NACKs the data frame).
An interrupt is generated if EIE = 1 in the USART_CR1 register.
0: No Framing error is detected
1: Framing error or break character is detected

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by
software, writing 1 to the PECF in the USART_ICR register.
An interrupt is generated if PEIE = 1 in the USART_CR1 register.
0: No parity error
1: Parity error

RM0367 Rev 8 825/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.8.9 USART interrupt flag clear register (USART_ICR)

Address offset: 0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WUCF Res. Res. CMCF Res.

rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. EOBCF RTOCF Res. CTSCF LBDCF Res. TCCF Res. IDLECF ORECF NCF FECF PECF

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:21 Reserved, must be kept at reset value.

Bit 20 WUCF: Wakeup from Stop mode clear flag

Writing 1 to this bit clears the WUF flag in the USART_ISR register.

Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and
must be kept at reset value.

Bits 19:18 Reserved, must be kept at reset value.

Bit 17 CMCF: Character match clear flag

Writing 1 to this bit clears the CMF flag in the USART_ISR register.

Bits 16:13 Reserved, must be kept at reset value.

Bit 12 EOBCF: End of block clear flag

Writing 1 to this bit clears the EOBF flag in the USART_ISR register.

Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept
at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 11 RTOCF: Receiver timeout clear flag

Writing 1 to this bit clears the RTOF flag in the USART_ISR register.

Note: If the USART does not support the Receiver timeout feature, this bit is reserved and
must be kept at reset value. Please refer to Section 29.4: USART implementation on
page 764.

Bit 10 Reserved, must be kept at reset value.

Bit 9 CTSCF: CTS clear flag

Writing 1 to this bit clears the CTSIF flag in the USART_ISR register.

Note: If the hardware flow control feature is not supported, this bit is reserved and must be
kept at reset value. Please refer to Section 29.4: USART implementation on page 764.

Bit 8 LBDCF: LIN break detection clear flag

Writing 1 to this bit clears the LBDF flag in the USART_ISR register.

Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value.
Please refer to Section 29.4: USART implementation on page 764.

Bit 7 Reserved, must be kept at reset value.

Bit 6 TCCF: Transmission complete clear flag

Writing 1 to this bit clears the TC flag in the USART_ISR register.

Bit 5 Reserved, must be kept at reset value.

Bit 4 IDLECF: Idle line detected clear flag

Writing 1 to this bit clears the IDLE flag in the USART_ISR register.

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

826/1040 RM0367 Rev 8

29.8.10 USART receive data register (USART_RDR)

Address offset: 0x24

Reset value: 0x0000 0000

29.8.11 USART transmit data register (USART_TDR)

Address offset: 0x28

Reset value: 0x0000 0000

Bit 3 ORECF: Overrun error clear flag

Writing 1 to this bit clears the ORE flag in the USART_ISR register.

Bit 2 NCF: Noise detected clear flag

Writing 1 to this bit clears the NF flag in the USART_ISR register.

Bit 1 FECF: Framing error clear flag

Writing 1 to this bit clears the FE flag in the USART_ISR register.

Bit 0 PECF: Parity error clear flag

Writing 1 to this bit clears the PE flag in the USART_ISR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. RDR[8:0]

r r r r r r r r r

Bits 31:9 Reserved, must be kept at reset value.

Bits 8:0 RDR[8:0]: Receive data value

Contains the received data character.
The RDR register provides the parallel interface between the input shift register and the
internal bus (see Figure 242).
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. TDR[8:0]

rw rw rw rw rw rw rw rw rw

RM0367 Rev 8 827/1040

RM0367 Universal synchronous/asynchronous receiver transmitter (USART/UART)

870

29.8.12 USART register map

The table below gives the USART register map and reset values.

Bits 31:9 Reserved, must be kept at reset value.

Bits 8:0 TDR[8:0]: Transmit data value

Contains the data character to be transmitted.
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 242).
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register),
the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect
because it is replaced by the parity.

Note: This register must be written only when TXE=1.

Table 147. USART register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
USART_CR1

R
es

.

R
es

.

R
es

.

M
1

E
O

B
IE

R
T

O
IE

D
E

A
T

4

D
E

A
T

3

D
E

A
T

2

D
E

A
T

1

D
E

A
T

0

D
E

D
T

4

D
E

D
T

3

D
E

D
T

2

D
E

D
T

1

D
E

D
T

0

O
V

E
R

8

C
M

IE

M
M

E

M
0

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
L

E
IE

T
E

R
E

U
E

S
M

U
E

Reset value 0

0x04
USART_CR2 ADD[7:4] ADD[3:0]

R
T

O
E

N

A
B

R
M

O
D

1

A
B

R
M

O
D

0

A
B

R
E

N

M
S

B
F

IR
S

T

D
A

TA
IN

V

T
X

IN
V

R
X

IN
V

S
W

A
P

L
IN

E
N STOP

[1:0]

C
LK

E
N

C
P

O
L

C
P

H
A

L
B

C
L

R
es

.

L
B

D
IE

L
B

D
L

A
D

D
M

7

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0

0x08
USART_CR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
C

E
S

M

W
U

F
IE

W
U

S

S
C

A
R

C
N

T
2

:0
]

R
es

.

D
E

P

D
E

M

D
D

R
E

O
V

R
D

IS

O
N

E
B

IT

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

A
T

D
M

A
R

S
C

E
N

N
A

C
K

H
D

S
E

L

IR
L

P

IR
E

N

E
IE

Reset value 0

0x0C
USART_BRR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

BRR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USART_GTPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

GT[7:0] PSC[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USART_RTOR BLEN[7:0] RTO[23:0]

Reset value 0

0x18
USART_RQR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
X

F
R

Q

R
X

F
R

Q

M
M

R
Q

S
B

K
R

Q

A
B

R
R

Q

Reset value 0 0 0 0 0

Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0367

828/1040 RM0367 Rev 8

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x1C
USART_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

A
C

K

T
E

A
C

K

W
U

F

R
W

U

S
B

K
F

C
M

F

B
U

S
Y

A
B

R
F

A
B

R
E

R
es

.

E
O

B
F

R
T

O
F

C
T

S

C
T

S
IF

L
B

D
F

T
X

E

T
C

R
X

N
E

ID
L

E

O
R

E

N
F

F
E

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0x20
USART_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
U

C
F

R
es

.

R
es

.

C
M

C
F

R
es

.

R
es

.

R
es

.

R
es

.

E
O

B
C

F

R
T

O
C

F

R
es

.

C
T

S
C

F

L
B

D
C

F

R
es

.

T
C

C
F

R
es

.

ID
L

E
C

F

O
R

E
C

F

N
C

F

F
E

C
F

P
E

C
F

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
USART_RDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RDR[8:0]

Reset value X X X X X X X X X

0x28
USART_TDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TDR[8:0]

Reset value X X X X X X X X X

Table 147. USART register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0367 Rev 8 829/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30 Low-power universal asynchronous receiver
transmitter (LPUART)

30.1 Introduction

The low-power universal asynchronous receiver transmitted (LPUART) is an UART which
allows Full-duplex UART communications with a limited power consumption. Only
32.768 kHz LSE clock is required to allow UART communications up to 9600 baud. Higher
baud rates can be reached when the LPUART is clocked by clock sources different from the
LSE clock.

Even when the microcontroller is in Stop mode, the LPUART can wait for an incoming UART
frame while having an extremely low energy consumption. The LPUART includes all
necessary hardware support to make asynchronous serial communications possible with
minimum power consumption.

It supports Half-duplex Single-wire communications and Modem operations (CTS/RTS).

It also supports multiprocessor communications.

DMA (direct memory access) can be used for data transmission/reception.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

830/1040 RM0367 Rev 8

30.2 LPUART main features

• Full-duplex asynchronous communications

• NRZ standard format (mark/space)

• Programmable baud rate from 300 baud to 9600 baud using a 32.768 kHz clock
source. Higher baud rates can be achieved by using a higher frequency clock source

• Dual clock domain allowing

– UART functionality and wakeup from Stop mode

– Convenient baud rate programming independent from the PCLK reprogramming

• Programmable data word length (7 or 8 or 9 bits)

• Programmable data order with MSB-first or LSB-first shifting

• Configurable stop bits (1 or 2 stop bits)

• Single-wire Half-duplex communications

• Continuous communications using DMA

• Received/transmitted bytes are buffered in reserved SRAM using centralized DMA.

• Separate enable bits for transmitter and receiver

• Separate signal polarity control for transmission and reception

• Swappable Tx/Rx pin configuration

• Hardware flow control for modem and RS-485 transceiver

• Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– Busy and end of transmission flags

• Parity control:

– Transmits parity bit

– Checks parity of received data byte

• Four error detection flags:

– Overrun error

– Noise detection

– Frame error

– Parity error

• Fourteen interrupt sources with flags

• Multiprocessor communications

The LPUART enters mute mode if the address does not match.

• Wakeup from mute mode (by idle line detection or address mark detection)

30.3 LPUART implementation

The STM32L0x3 devices embed one LPUART. Refer to Section 29.4: USART
implementation for LPUART supported features.

RM0367 Rev 8 831/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.4 LPUART functional description

Any LPUART bidirectional communication requires a minimum of two pins: Receive data In
(RX) and Transmit data Out (TX):

• RX: Receive data Input.

This is the serial data input.

• TX: Transmit data Output.

When the transmitter is disabled, the output pin returns to its I/O port configuration.
When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high
level. In Single-wire mode, this I/O is used to transmit and receive the data.

Through these pins, serial data is transmitted and received in normal LPUART mode as
frames comprising:

• An Idle Line prior to transmission or reception

• A start bit

• A data word (7 or 8 or 9 bits) least significant bit first

• 1, 2 stop bits indicating that the frame is complete

• The LPUART interface uses a baud rate generator

• A status register (LPUART_ISR)

• Receive and transmit data registers (LPUART_RDR, LPUART_TDR)

• A baud rate register (LPUART_BRR)

Refer to Section 30.7: LPUART registers for the definitions of each bit.

Table 148. STM32L0x3 USART/LPUART features(1)

USART modes/features USART1/2 USART4 USART5 LPUART1

Hardware flow control for modem X X - X

Continuous communication using DMA X X X X

Multiprocessor communication X X X X

Synchronous mode X X X -

Smartcard mode X - - -

Single-wire Half-duplex communication X X X X

Ir SIR ENDEC block X - - -

LIN mode X - - -

Dual clock domain and wakeup from Stop mode X - - X

Receiver timeout interrupt X - - -

Modbus communication X - - -

Auto baud rate detection X - - -

Driver Enable X X X X

USART/LPUART data length 7(2), 8 and 9 bits

1. X = supported.

2. In 7-bit data length mode, Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames) detection are not
supported.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

832/1040 RM0367 Rev 8

The following pins are required in RS232 Hardware flow control mode:

• CTS: Clear To Send blocks the data transmission at the end of the current transfer
when high

• RTS: Request to send indicates that the LPUART is ready to receive data (when low).

The following pin is required in RS485 Hardware control mode:

• DE: Driver Enable activates the transmission mode of the external transceiver.

Note: DE and RTS share the same pin.

Figure 267. LPUART block diagram

MSv31884V6

BRR[19:0]

T

WriteRead DR (data register)

(CPU or DMA) (CPU or DMA)

PRDATA PWDATA

LPUARTx_CR3 register

LPUARTx_CR2 register

RTS/
DE

CTS

Hardware
flow

controller

Transmit
control

LPUARTx_CR1 register

Wakeup
unit

LPUARTx_CR1 register

LPUART_GTPR register
GT PSC CK control

LPUARTx_CR2 register

Receiver
control

Receiver
clock

LPUARTx_ISR register

LPUART
interrupt
control

LPUARTx_BRR register
Transmitter

rate controller

Receiver rate
controller

/LPUARTDIV

fCK (fLSE , fHSI,
fPCLK or fSYS)

Transmitter
clock

Conventional baud rate generator

CK

LPUARTDIV = BBR[19:0]

Receive shift register

R

TX

RX

Transmit shift register

Transmit data register
(TDR)

Receive data register
(RDR)

RM0367 Rev 8 833/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.4.1 LPUART character description

Word length may be selected as being either 7 or 8 or 9 bits by programming the M[1:0] bits
in the LPUART_CR1 register (see Figure 268).

• 7-bit character length: M[1:0] = 10

• 8-bit character length: M[1:0] = 00

• 9-bit character length: M[1:0] = 01

By default, the signal (TX or RX) is in low state during the start bit. It is in high state during
the stop bit.

These values can be inverted, separately for each signal, through polarity configuration
control.

An Idle character is interpreted as an entire frame of “1”s. (The number of “1”s includes the
number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame, the transmitter inserts 2 stop bits.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

834/1040 RM0367 Rev 8

Figure 268. Word length programming

MS33194V2

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
bit

Stop
bit

Next
Start

bit

Idle frame

9-bit word length (M = 01), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame

Clock **

Start
bit

Stop
bit

Start
bit

Stop
bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
bit

Stop
bit

Next
Start

bit

Idle frame

8-bit word length (M = 00), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame

Clock **

Start
bit

Stop
bit

Start
bit

Stop
bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6
Start
bit

Stop
bit

Next
Start

bit

Idle frame

7-bit word length (M = 10), 1 Stop bit
Possible

Parity
bit

Break frame

Data frame

Clock

** LBCL bit controls last data clock pulse

**

Start
bit

Stop
bit

Start
bit

Stop
bit

RM0367 Rev 8 835/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.4.2 LPUART transmitter

The transmitter can send data words of either 7 or 8 or 9 bits depending on the M bits status.
The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The
data in the transmit shift register is output on the TX pin.

Character transmission

During an LPUART transmission, data shifts out least significant bit first (default
configuration) on the TX pin. In this mode, the LPUART_TDR register consists of a buffer
(TDR) between the internal bus and the transmit shift register (see Figure 242).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by LPUART: 1 and 2 stop bits.

Note: The TE bit must be set before writing the data to be transmitted to the LPUART_TDR.

The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.

An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

• 1 stop bit: This is the default value of number of stop bits.

• 2 stop bits: This will be supported by normal LPUART, Single-wire and Modem
modes.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits (when M[1:0] = 00) or 11 low bits (when M[1:0] = 01)
or 9 low bits (when M[1:0] = 10) followed by 2 stop bits. It is not possible to transmit long
breaks (break of length greater than 9/10/11 low bits).

Figure 269. Configurable stop bits

MS31885V1

8-bit Word length (M[1:0]=00 bit is reset)

** LBCL bit controls last data clock pulse

Bit7Start bit Stop
bit

Next
start
bit

Possible
parity bitData frame Next data frame

CLOCK **

a) 1 Stop bit

b) 2 Stop bits

Bit6Bit5Bit4Bit3Bit2Bit1Bit0

Next data frame
Bit7Start bit 2

Stop
bits

Next
start
bit

Possible
parity bitData frame

Bit6Bit5Bit4Bit3Bit2Bit1Bit0

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

836/1040 RM0367 Rev 8

Character transmission procedure

1. Program the M bits in LPUART_CR1 to define the word length.

2. Select the desired baud rate using the LPUART_BRR register.

3. Program the number of stop bits in LPUART_CR2.

4. Enable the LPUART by writing the UE bit in LPUART_CR1 register to 1.

5. Select DMA enable (DMAT) in LPUART_CR3 if multibuffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

6. Set the TE bit in LPUART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the LPUART_TDR register (this clears the TXE bit). Repeat
this for each data to be transmitted in case of single buffer.

8. After writing the last data into the LPUART_TDR register, wait until TC=1. This
indicates that the transmission of the last frame is complete. This is required for
instance when the LPUART is disabled or enters the Halt mode to avoid corrupting the
last transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the transmit data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from the LPUART_TDR register to the shift register and the
data transmission has started.

• The LPUART_TDR register is empty.

• The next data can be written in the LPUART_TDR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

When a transmission is taking place, a write instruction to the LPUART_TDR register stores
the data in the TDR register; next, the data is copied in the shift register at the end of the
currently ongoing transmission.

When no transmission is taking place, a write instruction to the LPUART_TDR register
places the data in the shift register, the data transmission starts, and the TXE bit is set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the LPUART_CR1 register.

After writing the last data in the LPUART_TDR register, it is mandatory to wait for TC=1
before disabling the LPUART or causing the microcontroller to enter the low-power mode
(see Figure 245: TC/TXE behavior when transmitting).

RM0367 Rev 8 837/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Figure 270. TC/TXE behavior when transmitting

Break characters

Setting the SBKRQ bit transmits a break character. The break frame length depends on the
M bits (see Figure 268).

If a ‘1’ is written to the SBKRQ bit, a break character is sent on the TX line after completing
the current character transmission. The SBKF bit is set by the write operation and it is reset
by hardware when the break character is completed (during the stop bits after the break
character). The LPUART inserts a logic 1 signal (STOP) for the duration of 2 bits at the end
of the break frame to guarantee the recognition of the start bit of the next frame.

In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the TXE
flag assertion before setting the SBKRQ bit.

Idle characters

Setting the TE bit drives the LPUART to send an idle frame before the first data frame.

30.4.3 LPUART receiver

The LPUART can receive data words of either 7 or 8 or 9 bits depending on the M bits in the
LPUART_CR1 register.

Start bit detection

In LPUART, for START bit detection, a falling edge should be detected first on the Rx line,
then a sample is taken in the middle of the start bit to confirm that it is still ‘0’. If the start
sample is at ‘1’, then the noise error flag (NF) is set, then the START bit is discarded and the
receiver waits for a new START bit. Else, the receiver continues to sample all incoming bits
normally.

TX line

LPUART_DR

Frame 1

TXE flag

F2

TC flag

F3

Frame 2

Software waits until TXE=1
and writes F2 into DR

Software waits until
TXE=1 and writes
F3 into DR

TC is not set
because TXE=0

Software waits until TC=1

Frame 3

TC is set
because TXE=1

Set by hardware
cleared by software

Set by hardware
cleared by software Set by hardware

Set by hardware

Idle preamble

F1

Software
enables the

LPUART
TC is not set

because TXE=0

Software waits until TXE=1
and writes F1 into DR

MSv31889V1

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

838/1040 RM0367 Rev 8

Character reception

During an LPUART reception, data shifts in least significant bit first (default configuration)
through the RX pin. In this mode, the LPUART_RDR register consists of a buffer (RDR)
between the internal bus and the received shift register.

Character reception procedure

1. Program the M bits in LPUART_CR1 to define the word length.

2. Select the desired baud rate using the baud rate register LPUART_BRR

3. Program the number of stop bits in LPUART_CR2.

4. Enable the LPUART by writing the UE bit in LPUART_CR1 register to 1.

5. Select DMA enable (DMAR) in LPUART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication.

6. Set the RE bit LPUART_CR1. This enables the receiver which begins searching for a
start bit.

When a character is received

• The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

• An interrupt is generated if the RXNEIE bit is set.

• The error flags can be set if a frame error, noise or an overrun error has been detected
during reception. PE flag can also be set with RXNE.

• In multibuffer, RXNE is set after every byte received and is cleared by the DMA read of
the Receive data Register.

• In single buffer mode, clearing the RXNE bit is performed by a software read to the
LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ
in the LPUART_RQR register. The RXNE bit must be cleared before the end of the
reception of the next character to avoid an overrun error.

Break character

When a break character is received, the LPUART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as for a received data
character plus an interrupt if the IDLEIE bit is set.

RM0367 Rev 8 839/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

• The ORE bit is set.

• The RDR content will not be lost. The previous data is available when a read to
LPUART_RDR is performed.

• The shift register will be overwritten. After that point, any data received during overrun
is lost.

• An interrupt is generated if either the RXNEIE bit is set or EIE bit is set.

• The ORE bit is reset by setting the ORECF bit in the ICR register.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

- if RXNE=1, then the last valid data is stored in the receive register RDR and can be read,

- if RXNE=0, then it means that the last valid data has already been read and thus there is
nothing to be read in the RDR. This case can occur when the last valid data is read in the
RDR at the same time as the new (and lost) data is received.

Selecting the clock source

The choice of the clock source is done through the Reset and Clock Control system (RCC).
The clock source must be chosen before enabling the LPUART (by setting the UE bit).

The choice of the clock source must be done according to two criteria:

• Possible use of the LPUART in low-power mode

• Communication speed.

The clock source frequency is fCK.

When the dual clock domain and the wakeup from Stop mode features are supported, the
clock source can be one of the following sources: fPCLK (default), fLSE, fHSI or fSYS.
Otherwise, the LPUART clock source is fPCLK .

Choosing fLSE, fHSI as clock source may allow the LPUART to receive data while the MCU is
in low-power mode. Depending on the received data and wakeup mode selection, the
LPUART wakes up the MCU, when needed, in order to transfer the received data by
software reading the LPUART_RDR register or by DMA.

For the other clock sources, the system must be active in order to allow LPUART
communication.

The communication speed range (specially the maximum communication speed) is also
determined by the clock source.

The receiver samples each incoming bit as close as possible to the middle of the bit -period.
Only a single sample is taken of each of the incoming bit.

Note: There is no noise detection for data.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

840/1040 RM0367 Rev 8

Framing error

A framing error is detected when the stop bit is not recognized on reception at the expected
time, following either a de-synchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware.

• The invalid data is transferred from the Shift register to the LPUART_RDR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
LPUART_CR3 register.

The FE bit is reset by writing 1 to the FECF in the LPUART_ICR register.

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode.

• 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

• 2 stop bits: Sampling for the 2 stop bits is done in the middle of the second stop bit.
The RXNE and FE flags are set just after this sample i.e. during the second stop bit.
The first stop bit is not checked for framing error.

30.4.4 LPUART baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the LPUART_BRR register.

LPUARTDIV is coded on the LPUART_BRR register.

Note: The baud counters are updated to the new value in the baud registers after a write operation
to LPUART_BRR. Hence the baud rate register value should not be changed during
communication.

It is forbidden to write values less than 0x300 in the LPUART_BRR register.

fck must be in the range [3 x baud rate, 4096 x baud rate].

The maximum baud rate that can be reached when the LPUART clock source is the LSE, is
9600 baud. Higher baud rates can be reached when the LPUART is clocked by clock
sources different than the LSE clock. For example, if the USART clock source is the system
clock (maximum is 32 MHz), the maximum baud rate that can be reached is 10 Mbaud.

Tx/Rx baud
256 f× CK

LPUARTDIV
------------------------------------=

RM0367 Rev 8 841/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Table 149. Error calculation for programmed baud rates at fck = 32.768 kHz

Baud rate fCK = 32.768 kHz

S.No Desired Actual
Value programmed in the baud

rate register
% Error = (Calculated - Desired)

B.rate / Desired B.rate

1 300 baud 300 baud 0x6D3A 0

2 600 baud 600 baud 0x369D 0

3 1200 baud 1200.087 baud 0x1B4E 0.007

4 2400 baud 2400.17 baud 0xDA7 0.007

5 4800 baud 4801.72 baud 0x6D3 0.035

6 9600 baud 9608.94 baud 0x369 0.093

Table 150. Error calculation for programmed baud rates at fck = 32 MHz

Baud rate fCK = 32.768 kHz

Desired Actual
Value programmed in the baud

rate register
% Error = (Calculated - Desired)

B.rate / Desired B.rate

9600 baud 9608.94 baud D0555 0.00004

19200 19200,030 682AA 0,0001

38400 38400,06 34155 0,0001

57600 57600,09 22B8E 0,0001

115200 115200,18 115C7 0,0001

230400 230403,60 8AE3 0,0015

460800 460820,16 4571 0,004

921600 921692,17 22B8 0,01

4000000 4000000,00 800 0

10000000 10002442,00 333 0,024

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

842/1040 RM0367 Rev 8

30.4.5 Tolerance of the LPUART receiver to clock deviation

The asynchronous receiver of the LPUART works correctly only if the total clock system
deviation is less than the tolerance of the LPUART receiver. The causes which contribute to
the total deviation are:

• DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

• DQUANT: Error due to the baud rate quantization of the receiver

• DREC: Deviation of the receiver’s local oscillator

• DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

where

DWU is the error due to sampling point deviation when the wakeup from Stop mode is
used.

when M[1:0] = 01:

when M[1:0] = 00:

when M[1:0] = 10:

tWULPUART is the time between:

– The detection of start bit falling edge

– The instant when clock (requested by the peripheral) is ready and reaching the
peripheral and regulator is ready.

tWULPUART corresponds to tWUSTOP value provided in the datasheet.

The LPUART receiver can receive data correctly at up to the maximum tolerated deviation
specified in Table 151:

• 7, 8 or 9-bit character length defined by the M bits in the LPUARTx_CR1 register

• 1 or 2 stop bits

DTRA DQUANT DREC DTCL DWU+ + + + LPUART receiver tolerance<

DWU
tWULPUART

11 Tbit×
------------------------------=

DWU
tWULPUART

10 Tbit×
------------------------------=

DWU
tWULPUART

9 Tbit×
------------------------------=

Table 151. Tolerance of the LPUART receiver

M bits 768 ≤ BRR <1024 1024 ≤ BRR < 2048 2048 ≤ BRR < 4096 4096 ≤ BRR

8 bits (M=00), 1 stop bit 1.82% 2.56% 3.90% 4.42%

9 bits (M=01), 1 stop bit 1.69% 2.33% 2.53% 4.14%

7 bits (M=10), 1 stop bit 2.08% 2.86% 4.35% 4.42%

RM0367 Rev 8 843/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Note: The data specified in Table 151 may slightly differ in the special case when the received
frames contain some Idle frames of exactly 10-bit durations when M bits = 00 (11-bit
durations when M bits =01 or 9- bit durations when M bits = 10).

30.4.6 Multiprocessor communication using LPUART

It is possible to perform multiprocessor communication with the LPUART (with several
LPUARTs connected in a network). For instance one of the LPUARTs can be the master, its
TX output connected to the RX inputs of the other LPUARTs. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant
LPUART service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In order to use the mute mode feature, the MME bit must be set in the LPUART_CR1
register.

In mute mode:

• None of the reception status bits can be set.

• All the receive interrupts are inhibited.

• The RWU bit in LPUART_ISR register is set to 1. RWU can be controlled automatically
by hardware or by software, through the MMRQ bit in the LPUART_RQR register,
under certain conditions.

The LPUART can enter or exit from mute mode using one of two methods, depending on
the WAKE bit in the LPUART_CR1 register:

• Idle Line detection if the WAKE bit is reset,

• Address Mark detection if the WAKE bit is set.

Idle line detection (WAKE=0)

The LPUART enters mute mode when the MMRQ bit is written to 1 and the RWU is
automatically set.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the LPUART_ISR register. An example of mute mode behavior
using Idle line detection is given in Figure 249.

8 bits (M=00), 2 stop bit 2.08% 2.86% 4.35% 4.42%

9 bits (M=01), 2 stop bit 1.82% 2.56% 3.90% 4.42%

7 bits (M=10), 2stop bit 2.34% 3.23% 4.92% 4.42%

Table 151. Tolerance of the LPUART receiver (continued)

M bits 768 ≤ BRR <1024 1024 ≤ BRR < 2048 2048 ≤ BRR < 4096 4096 ≤ BRR

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

844/1040 RM0367 Rev 8

Figure 271. Mute mode using Idle line detection

Note: If the MMRQ is set while the IDLE character has already elapsed, mute mode will not be
entered (RWU is not set).

If the LPUART is activated while the line is IDLE, the idle state is detected after the duration
of one IDLE frame (not only after the reception of one character frame).

4-bit/7-bit address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1’ otherwise they are
considered as data. In an address byte, the address of the targeted receiver is put in the 4
or 7 LSBs. The choice of 7 or 4 bit address detection is done using the ADDM7 bit. This 4-
bit/7-bit word is compared by the receiver with its own address which is programmed in the
ADD bits in the LPUART_CR2 register.

Note: In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses
(ADD[5:0] and ADD[7:0]) respectively.

The LPUART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE
flag is not set for this address byte and no interrupt or DMA request is issued when the
LPUART enters mute mode.

The LPUART also enters mute mode when the MMRQ bit is written to 1. The RWU bit is
also automatically set in this case.

The LPUART exits from mute mode when an address character is received which matches
the programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.

An example of mute mode behavior using address mark detection is given in Figure 250.

MSv31154V1

Data 1 Data 2 IDLEData 3 Data 4 Data 6

Idle frame detectedMMRQ written to 1

RWU

RX

Mute mode Normal mode

RXNE RXNE

Data 5

RM0367 Rev 8 845/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Figure 272. Mute mode using address mark detection

30.4.7 LPUART parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the LPUART_CR1 register. Depending on the frame
length defined by the M bits, the possible LPUART frame formats are as listed in Table 144.

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame which is made
of the 6, 7 or 8 LSB bits (depending on M bits values) and the parity bit.

As an example, if data=00110101, and 4 bits are set, then the parity bit will be 0 if even
parity is selected (PS bit in LPUART_CR1 = 0).

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 6, 7
or 8 LSB bits (depending on M bits values) and the parity bit.

As an example, if data=00110101 and 4 bits set, then the parity bit will be 1 if odd parity is
selected (PS bit in LPUART_CR1 = 1).

MSv31888V2

IDLE Addr=0 Data 1 Data 2 IDLE Addr=1 Data 3 Data 4 Addr=2 Data 5

In this example, the current address of the receiver is 1
(programmed in the LPUART_CR2 register)

RXNE

Non-matching addressMatching address

Non-matching address

MMRQ written to 1
(RXNE was cleared)

RWU

RX

Mute mode Mute modeNormal mode

RXNE RXNE

Table 152. Frame formats

M bits PCE bit LPUART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit.

2. In the data register, the PB is always taking the MSB position (9th, 8th or 7th, depending on the M bits
value).

00 0 | SB | 8-bit data | STB |

00 1 | SB | 7-bit data | PB | STB |

01 0 | SB | 9-bit data | STB |

01 1 | SB | 8-bit data | PB | STB |

10 0 | SB | 7-bit data | STB |

10 1 | SB | 6-bit data | PB | STB |

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

846/1040 RM0367 Rev 8

Parity checking in reception

If the parity check fails, the PE flag is set in the LPUART_ISR register and an interrupt is
generated if PEIE is set in the LPUART_CR1 register. The PE flag is cleared by software
writing 1 to the PECF in the LPUART_ICR register.

Parity generation in transmission

If the PCE bit is set in LPUARTx_CR1, then the MSB bit of the data written in the data
register is transmitted but is changed by the parity bit (even number of “1s” if even parity is
selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

30.4.8 Single-wire Half-duplex communication using LPUART

Single-wire Half-duplex mode is selected by setting the HDSEL bit in the LPUART_CR3
register. In this mode, the following bits must be kept cleared:

• LINEN and CLKEN bits in the LPUART_CR2 register,

• SCEN and IREN bits in the LPUART_CR3 register.

The LPUART can be configured to follow a Single-wire Half-duplex protocol where the TX
and RX lines are internally connected. The selection between half- and Full-duplex
communication is made with a control bit HDSEL in LPUART_CR3.

As soon as HDSEL is written to 1:

• The TX and RX lines are internally connected

• The RX pin is no longer used

• The TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as alternate function open-drain with an external pull-up.

Apart from this, the communication protocol is similar to normal LPUART mode. Any
conflicts on the line must be managed by software (by the use of a centralized arbiter, for
instance). In particular, the transmission is never blocked by hardware and continues as
soon as data is written in the data register while the TE bit is set.

Note: In LPUART, in the case of 1-stop bit configuration, the RXNE flag is set in the middle of the
stop bit.

30.4.9 Continuous communication in DMA mode using LPUART

The LPUART is capable of performing continuous communication using the DMA. The DMA
requests for Rx buffer and Tx buffer are generated independently.

Note: Use the LPUART as explained in Section 30.4.3. To perform continuous communication,
you can clear the TXE/ RXNE flags In the LPUART_ISR register.

RM0367 Rev 8 847/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the LPUART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to
Section Direct memory access controller (DMA)) to the LPUART_TDR register whenever
the TXE bit is set. To map a DMA channel for LPUART transmission, use the following
procedure (x denotes the channel number):

1. Write the LPUART_TDR register address in the DMA control register to configure it as
the destination of the transfer. The data is moved to this address from memory after
each TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data is loaded into the LPUART_TDR register from this memory area
after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clear the TC flag in the LPUART_ISR register by setting the TCCF bit in the
LPUART_ICR register.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the
LPUART communication is complete. This is required to avoid corrupting the last
transmission before disabling the LPUART or entering Stop mode. Software must wait until
TC=1. The TC flag remains cleared during all data transfers and it is set by hardware at the
end of transmission of the last frame.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

848/1040 RM0367 Rev 8

Figure 273. Transmission using DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in LPUART_CR3 register.
Data is loaded from the LPUART_RDR register to a SRAM area configured using the DMA
peripheral (refer Section Direct memory access controller (DMA)) whenever a data byte is
received. To map a DMA channel for LPUART reception, use the following procedure:

1. Write the LPUART_RDR register address in the DMA control register to configure it as
the source of the transfer. The data is moved from this address to the memory after
each RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data is loaded from LPUART_RDR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

F2 F3F1

MSv31890V2

Software
configures

DMA to send 3
data blocks
and enables

LPUART

The DMA
transfer is
complete

(TCIF=1 in
DMA_ISR)

DMA writes F2
into

LPUART_TDR

DMA writes F3
into

LPUART_TDR
Software waits until TC=1

Set by hardware
Cleared by software

Set by hardware

TX line

TXE flag

LPUART_TDR

DMA request

DMA writes
LPUART_TDR

DMA TCIF flag(transfer complete)

TC flag

Frame 1 Frame 2 Frame 3Idle preamble

Set by hardware cleared
by DMA read

Set by hardware cleared by
DMA read

Set by hardware

Ignored by the DMA because the transfer
is complete a

DMA writes F1
into

LPUART_TDR

RM0367 Rev 8 849/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Figure 274. Reception using DMA

Error flagging and interrupt generation in multibuffer communication

In multibuffer communication if any error occurs during the transaction the error flag is
asserted after the current byte. An interrupt is generated if the interrupt enable flag is set.
For framing error, overrun error and noise flag which are asserted with RXNE in single byte
reception, there is a separate error flag interrupt enable bit (EIE bit in the LPUART_CR3
register), which, if set, enables an interrupt after the current byte if any of these errors occur.

30.4.10 RS232 Hardware flow control and RS485 Driver Enable
using LPUART

It is possible to control the serial data flow between 2 devices by using the CTS input and
the RTS output. The Figure 263 shows how to connect 2 devices in this mode:

Figure 275. Hardware flow control between 2 LPUARTs

RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and
CTSE bits respectively to 1 (in the LPUART_CR3 register).

MSv31891V3

TX line
Frame 1

F2 F3

Set by hardware
cleared by DMA read

F1

Frame 2 Frame 3

RXNE flag

LPUART_RDR

DMA request

DMA reads
LPUART_RDR

DMA TCIF flag
(transfer complete)

Set by hardware
Cleared by
software

Software configures
the DMA to receive 3

datablocks and
enables the LPUART

DMA reads F3
from

LPUART_RDR

DMA reads F2
from

LPUART_RDR

DMA reads F1
from

LPUART_RDR

DMA transfer is
complete

(TCIF=1 in
DMA_ISR)

MSv31892V2

TX circuit

LPUART 1
TX

RX circuit

RX circuit

LPUART 2

TX circuit
TX

CTS

CTSRTS

RX

RTS

RX

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

850/1040 RM0367 Rev 8

RS232 RTS flow control

If the RTS flow control is enabled (RTSE=1), then RTS is deasserted (tied low) as long as
the LPUART receiver is ready to receive a new data. when the receive register is full, RTS is
asserted, indicating that the transmission is expected to stop at the end of the current frame.
Figure 264 shows an example of communication with RTS flow control enabled.

Figure 276. RS232 RTS flow control

RS232 CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input
before transmitting the next frame. If CTS is deasserted (tied low), then the next data is
transmitted (assuming that data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. When CTS is asserted during a transmission, the current
transmission is completed before the transmitter stops.

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the LPUART_CR3 register is set. Figure 265
shows an example of communication with CTS flow control enabled.

MSv68794V1

Start
bit

Start
bit

Stop
bit Idle Stop

bitRX

RTS

Data 1 read
Data 2 can now be transmitted

RXNE RXNE

Data 1 Data 2

RM0367 Rev 8 851/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Figure 277. RS232 CTS flow control

Note: For correct behavior, CTS must be deasserted at least 3 LPUART clock source periods
before the end of the current character. In addition it should be noted that the CTSCF flag
may not be set for pulses shorter than 2 x PCLK periods.

RS485 Driver Enable

The driver enable feature is enabled by setting bit DEM in the LPUART_CR3 control
register. This allows the user to activate the external transceiver control, through the DE
(Driver Enable) signal. The assertion time is the time between the activation of the DE signal
and the beginning of the START bit. It is programmed using the DEAT [4:0] bit fields in the
LPUART_CR1 control register. The de-assertion time is the time between the end of the last
stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed
using the DEDT [4:0] bit fields in the LPUART_CR1 control register. The polarity of the DE
signal can be configured using the DEP bit in the LPUART_CR3 control register.

In LPUART, the DEAT and DEDT are expressed in USART clock source (fCK) cycles:

• The Driver enable assertion time =

– (1 + (DEAT x P)) x fCK , if P <> 0

– (1 + DEAT) x fCK , if P = 0

• The Driver enable de-assertion time =

– (1 + (DEDT x P)) x fCK , if P <> 0

– (1 + DEDT) x fCK , if P = 0

With P = BRR[14:11]

MSv68793V1

Start
bit

Stop
bit

TX

TDR

CTS

Data 1

Data 2

Stop
bit Idle Start

bitData 2 Data 3

Data 3empty empty

CTS

CTS

Transmit data register

Writing data 3 in TDR Transmission of Data 3 is
delayed until CTS = 0

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

852/1040 RM0367 Rev 8

30.4.11 Wakeup from Stop mode using LPUART

The LPUART is able to wake up the MCU from Stop modewhen the UESM bit is set and the
LPUART clock is set to HSI or LSE (refer to the Reset and clock control (RCC) section.

• LPUART source clock is HSI

If during Stop mode the HSI clock is switched OFF, when a falling edge on the LPUART
receive line is detected, the LPUART interface requests the HSI clock to be switched
ON. The HSI clock is then used for the frame reception.

– If the wakeup event is verified, the MCU wakes up from low-power mode and data
reception goes on normally.

– If the wakeup event is not verified, the HSI clock is switched OFF again, the MCU
is not waken up and stays in low-power mode and the clock request is released.

Note: If the LPUART kernel clock is kept ON during Stop mode, there is no constraint on the
maximum baud rate that allows waking up from Stop mode. It is the same as in Run mode.

• LPUART source clock is LSE

Same principle as described in case LPUART source clock is HSI with the difference
that the LSE is ON in Stop mode, but the LSE clock is not propagated to LPUART if the
LPUART is not requesting it. The LSE clock is not OFF but there is a clock gating to
avoid useless consumption.

When the LPUART clock source is configured to be fLSE or fHSI, it is possible to keep
enabled this clock during STOP mode by setting the UCESM bit in LPUART_CR3 control
register.

Note: When LPUART is used to wakeup from stop with LSE is selected as LPUART clock source,
and desired baud rate is 9600 baud, the bit UCESM bit in LPUART_CR3 control register
must be set.

The MCU wakeup from Stop mode can be done using the standard RXNE interrupt. In this
case, the RXNEIE bit must be set before entering Stop mode.

Alternatively, a specific interrupt may be selected through the WUS bit fields.

In order to be able to wake up the MCU from Stop mode, the UESM bit in the LPUART_CR1
control register must be set prior to entering Stop mode.

When the wakeup event is detected, the WUF flag is set by hardware and a wakeup
interrupt is generated if the WUFIE bit is set.

For code example, refer to A.18.1: LPUART receiver configuration code example and
A.18.2: LPUART receive byte code example.

Note: Before entering Stop mode, the user must ensure that the LPUART is not performing a
transfer. BUSY flag cannot ensure that Stop mode is never entered during a running
reception.

The WUF flag is set when a wakeup event is detected, independently of whether the MCU is
in Stop or in an active mode.

When entering Stop mode just after having initialized and enabled the receiver, the REACK
bit must be checked to ensure the LPUART is actually enabled.

When DMA is used for reception, it must be disabled before entering Stop mode and re-
enabled upon exit from Stop mode.

The wakeup from Stop mode feature is not available for all modes. For example it doesn’t
work in SPI mode because the SPI operates in master mode only.

RM0367 Rev 8 853/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Using Mute mode with Stop mode

If the LPUART is put into Mute mode before entering Stop mode:

• Wakeup from Mute mode on idle detection must not be used, because idle detection
cannot work in Stop mode.

• If the wakeup from Mute mode on address match is used, then the source of wake-up
from Stop mode must also be the address match. If the RXNE flag is set when entering
the Stop mode, the interface will remain in mute mode upon address match and wake
up from Stop.

• If the LPUART is configured to wake up the MCU from Stop mode on START bit
detection, the WUF flag is set, but the RXNE flag is not set.

Determining the maximum LPUART baud rate allowing to wakeup correctly
from Stop mode when the LPUART clock source is the HSI clock

The maximum baud rate allowing to wakeup correctly from Stop mode depends on:

• the parameter tWULPUART (wakeup time from Stop mode) provided in the device
datasheet

• the LPUART receiver tolerance provided in the Section 30.4.5: Tolerance of the
LPUART receiver to clock deviation.

Let us take this example: M bits = 01, 2 stop bits, BRR ≥ 4096.

In these conditions, according to Table 151: Tolerance of the LPUART receiver, the
LPUART receiver tolerance is 4.42 %.

DTRA + DQUANT + DREC + DTCL + DWU < LPUART receiver tolerance

DWU max = tWULPUART / (11 x Tbit Min)

Tbit Min = tWULPUART / (11 x DWU max)

If we consider an ideal case where the parameters DTRA, DQUANT, DREC and DTCL are
at 0%, the DWU max is 4.42 %. In reality, we need to consider at least the HSI inaccuracy.

Let us consider the HSI inaccuracy = 1 %, tWULPUART = 8.1 μs (in case of Stop mode with
main regulator in Run mode, Range 1):

DWU max = 4.42 % - 1 % = 3.42 %

Tbit min = 8.1 µs / (11 ₓ 3.42 %) = 2.5 μs.

In these conditions, the maximum baud rate allowing to wakeup correctly from Stop mode is
1/ 21.5 μs = 46 kbaud.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

854/1040 RM0367 Rev 8

30.5 LPUART in low-power mode

30.6 LPUART interrupts

The LPUART interrupt events are connected to the same interrupt vector (see Figure 266).

• During transmission: Transmission Complete, Clear to Send, Transmit data Register
empty or Framing error interrupt.

• During reception: Idle Line detection, Overrun error, Receive data register not empty,
Parity error, Noise Flag, Framing Error, Character match, etc.

These events generate an interrupt if the corresponding Enable Control Bit is set.

Table 153. Effect of low-power modes on the LPUART

Mode Description

Sleep No effect. USART interrupt causes the device to exit Sleep mode.

Low-power run No effect.

Low-power sleep
No effect. USART interrupt causes the device to exit Low-power sleep
mode.

Stop

The LPUART is able to wake up the MCU from Stop mode when the
UESM bit is set and the LPUART clock is set to HSI16 or LSE.

The MCU wakeup from Stop mode can be done using either the standard
RXNE or the WUF interrupt.

Standby
The LPUART is powered down and must be reinitialized when the device
has exited from Standby mode.

Table 154. LPUART interrupt requests

Interrupt event Event flag
Enable

Control bit

Transmit data register empty TXE TXEIE

CTS interrupt CTSIF CTSIE

Transmission Complete TC TCIE

Receive data register not empty (data ready to be read) RXNE
RXNEIE

Overrun error detected ORE

Idle line detected IDLE IDLEIE

Parity error PE PEIE

Noise Flag, Overrun error and Framing Error in multibuffer
communication.

NF or ORE or FE EIE

Character match CMF CMIE

Wakeup from Stop mode WUF(1)

1. The wUF interrupt is active only in Stop mode.

WUFIE

RM0367 Rev 8 855/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Figure 278. LPUART interrupt mapping diagram

MS31886V1

TC
TCIE
TXE

TXEIE
CTSIF
CTSIE

IDLE
IDLEIE

RXNEIE
ORE

RXNEIE
RXNE

PE
PEIE

LBDF
LBDIE

CMF
CMIE

FE
NF

ORE EIE

LPUART
interrupt

WUF
WUFIE

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

856/1040 RM0367 Rev 8

30.7 LPUART registers

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32 bits).

30.7.1 Control register 1 (LPUART_CR1)

Address offset: 0x00

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. M1 Res. Res. DEAT[4:0] DEDT[4:0]

rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. CMIE MME M0 WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE UESM UE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 Reserved, must be kept at reset value

Bit 28 M1: Word length

This bit, with bit 12 (M0) determines the word length. It is set or cleared by software.
M[1:0] = 00: 1 Start bit, 8 data bits, n stop bits
M[1:0] = 01: 1 Start bit, 9 data bits, n stop bits
M[1:0] = 10: 1 Start bit, 7 data bits, n stop bits
This bit can only be written when the LPUART is disabled (UE=0).

Bit 27 Reserved, must be kept at reset value

Bit 26 Reserved, must be kept at reset value

Bits 25:21 DEAT[4:0]: Driver Enable assertion time

This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and
the beginning of the start bit. It is expressed in UCLK (USART clock) clock cycles. For more
details, refer to RS485 Driver Enable paragraph.
This bit field can only be written when the LPUART is disabled (UE=0).

Bits 20:16 DEDT[4:0]: Driver Enable de-assertion time

This 5-bit value defines the time between the end of the last stop bit, in a transmitted
message, and the de-activation of the DE (Driver Enable) signal. It is expressed in UCLK
(USART clock) clock cycles. For more details, refer to RS485 Driver Enable paragraph.
If the LPUART_TDR register is written during the DEDT time, the new data is transmitted
only when the DEDT and DEAT times have both elapsed.
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 15 Reserved, must be kept at reset value

Bit 14 CMIE: Character match interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: A LPUART interrupt is generated when the CMF bit is set in the LPUART_ISR register.

RM0367 Rev 8 857/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Bit 13 MME: Mute mode enable

This bit activates the mute mode function of the LPUART. When set, the LPUART can switch
between the active and mute modes, as defined by the WAKE bit. It is set and cleared by
software.
0: Receiver in active mode permanently
1: Receiver can switch between mute mode and active mode.

Bit 12 M0: Word length

This bit, with bit 28 (M1) determines the word length. It is set or cleared by software. See Bit
28 (M1) description.
This bit can only be written when the LPUART is disabled (UE=0).

Bit 11 WAKE: Receiver wakeup method

This bit determines the LPUART wakeup method from Mute mode. It is set or cleared by
software.
0: Idle line
1: Address mark
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 10 PCE: Parity control enable

This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 9 PS: Parity selection

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever PE=1 in the LPUART_ISR register

Bit 7 TXEIE: interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever TXE=1 in the LPUART_ISR register

Bit 6 TCIE: Transmission complete interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever TC=1 in the LPUART_ISR register

Bit 5 RXNEIE: RXNE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever ORE=1 or RXNE=1 in the LPUART_ISR
register

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

858/1040 RM0367 Rev 8

Bit 4 IDLEIE: IDLE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever IDLE=1 in the LPUART_ISR register

Bit 3 TE: Transmitter enable

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word. In order to generate an idle character, the TE must not
be immediately written to 1. In order to ensure the required duration, the software can
poll the TEACK bit in the LPUART_ISR register.

When TE is set there is a 1 bit-time delay before the transmission starts.

Bit 2 RE: Receiver enable

This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 UESM: LPUART enable in Stop mode

When this bit is cleared, the LPUART is not able to wake up the MCU from Stop mode.
When this bit is set, the LPUART is able to wake up the MCU from Stop mode, provided that
the LPUART clock selection is HSI or LSE in the RCC.
This bit is set and cleared by software.
0: LPUART not able to wake up the MCU from Stop mode.
1: LPUART able to wake up the MCU from Stop mode. When this function is active, the
clock source for the LPUART must be HSI or LSE (see Section Reset and clock control
(RCC)).

Note: It is recommended to set the UESM bit just before entering Stop mode and clear it on
exit from Stop mode.

Bit 0 UE: LPUART enable

When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and
current operations are discarded. The configuration of the LPUART is kept, but all the status
flags, in the LPUART_ISR are reset. This bit is set and cleared by software.

0: LPUART prescaler and outputs disabled, low-power mode
1: LPUART enabled

Note: In order to go into low-power mode without generating errors on the line, the TE bit
must be reset before and the software must wait for the TC bit in the LPUART_ISR to
be set before resetting the UE bit.

The DMA requests are also reset when UE = 0 so the DMA channel must be disabled
before resetting the UE bit.

RM0367 Rev 8 859/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.7.2 Control register 2 (LPUART_CR2)

Address offset: 0x04

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADD[7:4] ADD[3:0] Res. Res. Res. Res.
MSBFI
RST

DATAINV TXINV RXINV

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWAP Res. STOP[1:0] Res. Res. Res. Res. Res. Res. Res. ADDM7 Res. Res. Res. Res.

rw rw rw rw

Bits 31:28 ADD[7:4]: Address of the LPUART node

This bit-field gives the address of the LPUART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with 7-
bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1.
It may also be used for character detection during normal reception, Mute mode inactive (for
example, end of block detection in Modbus protocol). In this case, the whole received character (8-
bit) is compared to the ADD[7:0] value and CMF flag is set on match.
This bit field can only be written when reception is disabled (RE = 0) or the LPUART is disabled
(UE=0)

Bits 27:24 ADD[3:0]: Address of the LPUART node

This bit-field gives the address of the LPUART node or a character code to be recognized.
This is used in multiprocessor communication during Mute mode or Stop mode, for wakeup with
address mark detection.
This bit field can only be written when reception is disabled (RE = 0) or the LPUART is disabled
(UE=0)

Bits 23:20 Reserved, must be kept at reset value

Bit 19 MSBFIRST: Most significant bit first

This bit is set and cleared by software.
0: data is transmitted/received with data bit 0 first, following the start bit.
1: data is transmitted/received with the MSB (bit 7/8/9) first, following the start bit.
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 18 DATAINV: Binary data inversion

This bit is set and cleared by software.
0: Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L)
1: Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The
parity bit is also inverted.
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 17 TXINV: TX pin active level inversion

This bit is set and cleared by software.
0: TX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: TX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the TX line.
This bit field can only be written when the LPUART is disabled (UE=0).

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

860/1040 RM0367 Rev 8

Bit 16 RXINV: RX pin active level inversion

This bit is set and cleared by software.
0: RX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark)
1: RX pin signal values are inverted. ((VDD =0/mark, Gnd=1/idle).
This allows the use of an external inverter on the RX line.
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 15 SWAP: Swap TX/RX pins

This bit is set and cleared by software.
0: TX/RX pins are used as defined in standard pinout
1: The TX and RX pins functions are swapped. This allows to work in the case of a cross-wired
connection to another UART.
This bit field can only be written when the LPUART is disabled (UE=0).

Bit 14 Reserved, must be kept at reset value

Bits 13:12 STOP[1:0]: STOP bits

These bits are used for programming the stop bits.
00: 1 stop bit
01: Reserved.
10: 2 stop bits
11: Reserved
This bit field can only be written when the LPUART is disabled (UE=0).

Bits 11:5 Reserved, must be kept at reset value

Bit 4 ADDM7:7-bit Address Detection/4-bit Address Detection

This bit is for selection between 4-bit address detection or 7-bit address detection.
0: 4-bit address detection
1: 7-bit address detection (in 8-bit data mode)
This bit can only be written when the LPUART is disabled (UE=0)

Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address
(ADD[5:0] and ADD[7:0]) respectively.

Bits 3:0 Reserved, must be kept at reset value.

RM0367 Rev 8 861/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.7.3 Control register 3 (LPUART_CR3)

Address offset: 0x08

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. UCESM WUFIE WUS[2:0] Res. Res. Res. Res.

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DEP DEM DDRE
OVR
DIS

Res. CTSIE CTSE RTSE DMAT DMAR Res. Res.
HD
SEL

Res. Res. EIE

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 UCESM: LPUART Clock Enable in Stop mode.

This bit is set and cleared by software.
0: LPUART Clock is disabled in STOP mode.
1: LPUART Clock is enabled in STOP mode.

Note: In order to be able to wakeup the MCU from Stop mode with LPUART at 9600 baud,
the UCESM bit must be set prior to entering the Stop mode.

Bit 22 WUFIE: Wakeup from Stop mode interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An LPUART interrupt is generated whenever WUF=1 in the LPUART_ISR register

Note: WUFIE must be set before entering in Stop mode.

The WUF interrupt is active only in Stop mode.

If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
must be kept at reset value.

Bits 21:20 WUS[1:0]: Wakeup from Stop mode interrupt flag selection

This bit-field specify the event which activates the WUF (wakeup from Stop mode flag).
00: WUF active on address match (as defined by ADD[7:0] and ADDM7)
01:Reserved.
10: WUF active on Start bit detection
11: WUF active on RXNE.
This bit field can only be written when the LPUART is disabled (UE=0).

Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
must be kept at reset value.

Bits 19:16 Reserved, must be kept at reset value.

Bit 15 DEP: Driver enable polarity selection

0: DE signal is active high.
1: DE signal is active low.
This bit can only be written when the LPUART is disabled (UE=0).

Bit 14 DEM: Driver enable mode

This bit allows the user to activate the external transceiver control, through the DE signal.
0: DE function is disabled.
1: DE function is enabled. The DE signal is output on the RTS pin.
This bit can only be written when the LPUART is disabled (UE=0).

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

862/1040 RM0367 Rev 8

Bit 13 DDRE: DMA Disable on Reception Error

0: DMA is not disabled in case of reception error. The corresponding error flag is set but
RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not
asserted, so the erroneous data is not transferred (no DMA request), but next correct
received data will be transferred.
1: DMA is disabled following a reception error. The corresponding error flag is set, as well
as RXNE. The DMA request is masked until the error flag is cleared. This means that the
software must first disable the DMA request (DMAR = 0) or clear RXNE before clearing the
error flag.
This bit can only be written when the LPUART is disabled (UE=0).

Note: The reception errors are: parity error, framing error or noise error.

Bit 12 OVRDIS: Overrun Disable

This bit is used to disable the receive overrun detection.
0: Overrun Error Flag, ORE, is set when received data is not read before receiving new
data.
1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set
the ORE flag is not set and the new received data overwrites the previous content of the
LPUART_RDR register.
This bit can only be written when the LPUART is disabled (UE=0).

Note: This control bit allows checking the communication flow without reading the data.

Bit 11 Reserved, must be kept at reset value.

Bit 10 CTSIE: CTS interrupt enable

0: Interrupt is inhibited
1: An interrupt is generated whenever CTSIF=1 in the LPUART_ISR register

Bit 9 CTSE: CTS enable

0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the CTS input is deasserted (tied to 0).
If the CTS input is asserted while data is being transmitted, then the transmission is
completed before stopping. If data is written into the data register while CTS is asserted, the
transmission is postponed until CTS is deasserted.
This bit can only be written when the LPUART is disabled (UE=0)

Bit 8 RTSE: RTS enable

0: RTS hardware flow control disabled
1: RTS output enabled, data is only requested when there is space in the receive buffer. The
transmission of data is expected to cease after the current character has been transmitted.
The RTS output is deasserted (pulled to 0) when data can be received.
This bit can only be written when the LPUART is disabled (UE=0).

Bit 7 DMAT: DMA enable transmitter

This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception

Bits 5:4 Reserved, must be kept at reset value.

RM0367 Rev 8 863/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.7.4 Baud rate register (LPUART_BRR)

This register can only be written when the LPUART is disabled (UE=0).

Address offset: 0x0C

Reset value: 0x0000

Note: It is forbidden to write values less than 0x300 in the LPUART_BRR register.

Provided that LPUARTx_BRR must be > = 0x300 and LPUART_BRR is 20-bit, a care
should be taken when generating high baud rates using high fck values. fck must be in the
range [3 x baud rate,.4096 x baud rate].

30.7.5 Request register (LPUART_RQR)

Address offset: 0x18

Reset value: 0x0000

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected
This bit can only be written when the LPUART is disabled (UE=0).

Bits 2:1 Reserved, must be kept at reset value.

Bit 0 EIE: Error interrupt enable

Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the LPUART_ISR register).
0: Interrupt is inhibited
1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the LPUART_ISR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BRR[19:16]

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BRR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 Reserved, must be kept at reset value.

Bits 19:0 BRR[19:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RXFRQ MMRQ SBKRQ Res.

w w w

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

864/1040 RM0367 Rev 8

30.7.6 Interrupt & status register (LPUART_ISR)

Address offset: 0x1C

Reset value: 0x00C0

Bits 31:4 Reserved, must be kept at reset value

Bit 3 RXFRQ: Receive data flush request

Writing 1 to this bit clears the RXNE flag.
This allows to discard the received data without reading it, and avoid an overrun condition.

Bit 2 MMRQ: Mute mode request

Writing 1 to this bit puts the LPUART in mute mode and resets the RWU flag.

Bit 1 SBKRQ: Send break request

Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as
the transmit machine is available.

Note: In the case the application needs to send the break character following all previously
inserted data, including the ones not yet transmitted, the software should wait for the
TXE flag assertion before setting the SBKRQ bit.

Bit 0 Reserved, must be kept at reset value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res.
RE

ACK
TE

ACK
WUF RWU SBKF CMF BUSY

r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. CTS CTSIF Res. TXE TC RXNE IDLE ORE NF FE PE

r r r r r r r r r r

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 REACK: Receive enable acknowledge flag

This bit is set/reset by hardware, when the Receive Enable value is taken into account by
the LPUART.
It can be used to verify that the LPUART is ready for reception before entering Stop mode.

Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
kept at reset value.

Bit 21 TEACK: Transmit enable acknowledge flag

This bit is set/reset by hardware, when the Transmit Enable value is taken into account by
the LPUART.
It can be used when an idle frame request is generated by writing TE=0, followed by TE=1
in the LPUART_CR1 register, in order to respect the TE=0 minimum period.

Bit 20 WUF: Wakeup from Stop mode flag

This bit is set by hardware, when a wakeup event is detected. The event is defined by the
WUS bit field. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register.

An interrupt is generated if WUFIE=1 in the LPUART_CR3 register.

Note: When UESM is cleared, WUF flag is also cleared.

The WUF interrupt is active only in Stop mode.

If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
kept at reset value.

RM0367 Rev 8 865/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Bit 19 RWU: Receiver wakeup from Mute mode

This bit indicates if the LPUART is in mute mode. It is cleared/set by hardware when a
wakeup/mute sequence is recognized. The mute mode control sequence (address or IDLE)
is selected by the WAKE bit in the LPUART_CR1 register.
When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the
MMRQ bit in the LPUART_RQR register.
0: Receiver in active mode
1: Receiver in mute mode

Bit 18 SBKF: Send break flag

This bit indicates that a send break character was requested. It is set by software, by writing
1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware
during the stop bit of break transmission.
0: No break character is transmitted
1: Break character will be transmitted

Bit 17 CMF: Character match flag

This bit is set by hardware, when the character defined by ADD[7:0] is received. It is cleared
by software, writing 1 to the CMCF in the LPUART_ICR register.
An interrupt is generated if CMIE=1in the LPUART_CR1 register.
0: No Character match detected
1: Character Match detected

Bit 16 BUSY: Busy flag

This bit is set and reset by hardware. It is active when a communication is ongoing on the
RX line (successful start bit detected). It is reset at the end of the reception (successful or
not).
0: LPUART is idle (no reception)
1: Reception on going

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 CTS: CTS flag

This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin.
0: CTS line set
1: CTS line reset

Note: If the hardware flow control feature is not supported, this bit is reserved and kept at
reset value.

Bit 9 CTSIF: CTS interrupt flag

This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software, by writing 1 to the CTSCF bit in the LPUART_ICR register.
An interrupt is generated if CTSIE=1 in the LPUART_CR3 register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line

Note: If the hardware flow control feature is not supported, this bit is reserved and kept at
reset value.

Bit 8 Reserved, must be kept at reset value.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

866/1040 RM0367 Rev 8

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the LPUART_TDR register has been
transferred into the shift register. It is cleared by a write to the LPUART_TDR register.
An interrupt is generated if the TXEIE bit =1 in the LPUART_CR1 register.
0: data is not transferred to the shift register
1: data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete

This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the LPUART_CR1 register. It is cleared by
software, writing 1 to the TCCF in the LPUART_ICR register or by a write to the
LPUART_TDR register.
An interrupt is generated if TCIE=1 in the LPUART_CR1 register.
0: Transmission is not complete
1: Transmission is complete

Note: If TE bit is reset and no transmission is on going, the TC bit will be set immediately.

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred
to the LPUART_RDR register. It is cleared by a read to the LPUART_RDR register. The
RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register.
An interrupt is generated if RXNEIE=1 in the LPUART_CR1 register.
0: data is not received
1: Received data is ready to be read.

Bit 4 IDLE: Idle line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if
IDLEIE=1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in
the LPUART_ICR register.
0: No Idle line is detected
1: Idle line is detected

Note: The IDLE bit will not be set again until the RXNE bit has been set (i.e. a new idle line
occurs).

If mute mode is enabled (MME=1), IDLE is set if the LPUART is not mute (RWU=0),
whatever the mute mode selected by the WAKE bit. If RWU=1, IDLE is not set.

Bit 3 ORE: Overrun error

This bit is set by hardware when the data currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. It is cleared by a software,
writing 1 to the ORECF, in the LPUART_ICR register.
An interrupt is generated if RXNEIE=1 or EIE = 1 in the LPUART_CR1 register.
0: No overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content is not lost but the shift register is
overwritten. An interrupt is generated if the ORE flag is set during multibuffer
communication if the EIE bit is set.

This bit is permanently forced to 0 (no overrun detection) when the OVRDIS bit is set in
the LPUART_CR3 register.

RM0367 Rev 8 867/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

30.7.7 Interrupt flag clear register (LPUART_ICR)

Address offset: 0x20

Reset value: 0x0000

Bit 2 NF: START bit Noise detection flag

This bit is set by hardware when noise is detected on the START bit of a received frame. It is
cleared by software, writing 1 to the NFCF bit in the LPUART_ICR register.
0: No noise is detected
1: Noise is detected

Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. An interrupt is generated when the NF flag is set
during multibuffer communication if the EIE bit is set.

Bit 1 FE: Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register.
An interrupt is generated if EIE = 1 in the LPUART_CR1 register.
0: No Framing error is detected
1: Framing error or break character is detected

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by
software, writing 1 to the PECF in the LPUART_ICR register.
An interrupt is generated if PEIE = 1 in the LPUART_CR1 register.
0: No parity error
1: Parity error

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WUCF Res. Res. CMCF Res.

w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CTSCF Res. Res. TCCF Res. IDLECF ORECF NCF FECF PECF

w w w w w w w

Bits 31:21 Reserved, must be kept at reset value.

Bit 20 WUCF: Wakeup from Stop mode clear flag

Writing 1 to this bit clears the WUF flag in the LPUART_ISR register.

Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and
kept at reset value.

Bits 19:18 Reserved, must be kept at reset value.

Bit 17 CMCF: Character match clear flag

Writing 1 to this bit clears the CMF flag in the LPUART_ISR register.

Bits 16:10 Reserved, must be kept at reset value.

Bit 9 CTSCF: CTS clear flag

Writing 1 to this bit clears the CTSIF flag in the LPUART_ISR register.

Bits 8:7 Reserved, must be kept at reset value.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

868/1040 RM0367 Rev 8

30.7.8 Receive data register (LPUART_RDR)

Address offset: 0x24

Reset value: Undefined

30.7.9 Transmit data register (LPUART_TDR)

Address offset: 0x28

Reset value: Undefined

Bit 6 TCCF: Transmission complete clear flag

Writing 1 to this bit clears the TC flag in the LPUART_ISR register.

Bit 5 Reserved, must be kept at reset value.

Bit 4 IDLECF: Idle line detected clear flag

Writing 1 to this bit clears the IDLE flag in the LPUART_ISR register.

Bit 3 ORECF: Overrun error clear flag

Writing 1 to this bit clears the ORE flag in the LPUART_ISR register.

Bit 2 NCF: Noise detected clear flag

Writing 1 to this bit clears the NF flag in the LPUART_ISR register.

Bit 1 FECF: Framing error clear flag

Writing 1 to this bit clears the FE flag in the LPUART_ISR register.

Bit 0 PECF: Parity error clear flag

Writing 1 to this bit clears the PE flag in the LPUART_ISR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. RDR[8:0]

r r r r r r r r r

Bits 31:9 Reserved, must be kept at reset value.

Bits 8:0 RDR[8:0]: Receive data value

Contains the received data character.
The RDR register provides the parallel interface between the input shift register and the
internal bus (see Figure 242).
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. TDR[8:0]

rw rw rw rw rw rw rw rw rw

RM0367 Rev 8 869/1040

RM0367 Low-power universal asynchronous receiver transmitter (LPUART)

870

Bits 31:9 Reserved, must be kept at reset value.

Bits 8:0 TDR[8:0]: Transmit data value

Contains the data character to be transmitted.
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 242).
When transmitting with the parity enabled (PCE bit set to 1 in the LPUART_CR1 register),
the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect
because it is replaced by the parity.

Note: This register must be written only when TXE=1.

Low-power universal asynchronous receiver transmitter (LPUART) RM0367

870/1040 RM0367 Rev 8

30.7.10 LPUART register map

The table below gives the LPUART register map and reset values.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 155. LPUART register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00

LPUART_
CR1 R

es
.

R
es

.

R
es

.

M
1

R
es

.

R
es

.

D
E

A
T

4

D
E

A
T

3

D
E

A
T

2

D
E

A
T

1

D
E

A
T

0

D
E

D
T

4

D
E

D
T

3

D
E

D
T

2

D
E

D
T

1

D
E

D
T

0

R
es

.

C
M

IE

M
M

E

M

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
L

E
IE

T
E

R
E

U
E

S
M

U
E

Reset value 0

0x04

LPUART_
CR2

ADD[7:4] ADD[3:0]

R
es

.

R
es

.

R
es

.

R
es

.

M
S

B
F

IR
S

T

D
A

TA
IN

V

T
X

IN
V

R
X

IN
V

S
W

A
P

R
es

. STOP
[1:0] R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
D

D
M

7

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08

LPUART_
CR3 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
C

E
S

M

W
U

F
IE WUS

[1:0] R
es

.

R
es

.

R
es

.

R
es

.

D
E

P

D
E

M

D
D

R
E

O
V

R
D

IS

R
es

.

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

A
T

D
M

A
R

R
es

.

R
es

.

H
D

S
E

L

R
es

.

R
es

.

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C

LPUART_
BRR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

BRR[19:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10-
0x14

Reserved

0x18

LPUART_
RQR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
X

F
R

Q

M
M

R
Q

S
B

K
R

Q

R
es

.

Reset value 0 0 0

0x1C
LPUART_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

A
C

K

T
E

A
C

K

W
U

F

R
W

U

S
B

K
F

C
M

F

B
U

S
Y

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

S

C
T

S
IF

R
es

.

T
X

E

T
C

R
X

N
E

ID
L

E

O
R

E

N
F

F
E

P
E

Reset value 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0x20
LPUART_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
U

C
F

R
es

.

R
es

.

C
M

C
F

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

S
C

F

R
es

.

R
es

.

T
C

C
F

R
es

.

R
es

.

O
R

E
C

F

N
C

F

F
E

C
F

P
E

C
F

Reset value 0 0 0 0 0 0 0 0

0x24

LPUART_
RDR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RDR[8:0]

Reset value X X X X X X X X X

0x28

LPUART_
TDR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TDR[8:0]

Reset value X X X X X X X X X

RM0367 Rev 8 871/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31 Serial peripheral interface/ inter-IC sound (SPI/I2S)

31.1 Introduction

The SPI/I²S interface can be used to communicate with external devices using the SPI
protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI mode is
selected by default after a device reset.

The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex
synchronous, serial communication with external devices. The interface can be configured
as master and in this case it provides the communication clock (SCK) to the external slave
device. The interface is also capable of operating in multimaster configuration.

The Inter-IC sound (I2S) protocol is also a synchronous serial communication interface. It
can operate in slave or master mode with half-duplex communication. Full duplex
operations are possible by combining two I2S blocks.

It can address four different audio standards including the Philips I2S standard, the MSB-
and LSB-justified standards and the PCM standard.

31.1.1 SPI main features

• Master or slave operation

• Full-duplex synchronous transfers on three lines

• Half-duplex synchronous transfer on two lines (with bidirectional data line)

• Simplex synchronous transfers on two lines (with unidirectional data line)

• 8-bit to 16-bit transfer frame format selection

• Multimaster mode capability

• 8 master mode baud rate prescalers up to fPCLK/2.

• Slave mode frequency up to fPCLK/2.

• NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations

• Programmable clock polarity and phase

• Programmable data order with MSB-first or LSB-first shifting

• Dedicated transmission and reception flags with interrupt capability

• SPI bus busy status flag

• SPI Motorola support

• Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– Automatic CRC error checking for last received byte

• Master mode fault, overrun flags with interrupt capability

• CRC Error flag

• 1-byte/word transmission and reception buffer with DMA capability: Tx and Rx requests

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

872/1040 RM0367 Rev 8

31.1.2 SPI extended features

• SPI TI mode support

31.1.3 I2S features

• Half-duplex communication (only transmitter or receiver)

• Master or slave operations

• 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from
8 kHz to 192 kHz)

• Data format may be 16-bit, 24-bit or 32-bit

• Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data
frame) by audio channel

• Programmable clock polarity (steady state)

• Underrun flag in slave transmission mode, overrun flag in reception mode (master and
slave) and Frame Error Flag in reception and transmitter mode (slave only)

• 16-bit register for transmission and reception with one data register for both channel
sides

• Supported I2S protocols:

– I2S Philips standard

– MSB-Justified standard (Left-Justified)

– LSB-Justified standard (Right-Justified)

– PCM standard (with short and long frame synchronization on 16-bit channel frame
or 16-bit data frame extended to 32-bit channel frame)

• Data direction is always MSB first

• DMA capability for transmission and reception (16-bit wide)

• Master clock can be output to drive an external audio component. Ratio is fixed at
256 × FS (where FS is the audio sampling frequency)

31.2 SPI/I2S implementation

This manual describes the full set of features implemented in SPI1 and SPI2.

Table 156. STM32L0x3 SPI implementation

SPI Features(1)

1. X = supported.

SPI1 SPI2

Hardware CRC calculation X X

I2S mode - X

TI mode X X

RM0367 Rev 8 873/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.3 SPI functional description

31.3.1 General description

The SPI allows synchronous, serial communication between the MCU and external devices.
Application software can manage the communication by polling the status flag or using
dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the
following block diagram Figure 279.

Figure 279. SPI block diagram

Four I/O pins are dedicated to SPI communication with external devices.

• MISO: Master In / Slave Out data. In the general case, this pin is used to transmit data
in slave mode and receive data in master mode.

• MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit data
in master mode and receive data in slave mode.

• SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves.

• NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be used to
either:

– select an individual slave device for communication

– synchronize the data frame or

– detect a conflict between multiple masters

See Section 31.3.5: Slave select (NSS) pin management for details.

The SPI bus allows the communication between one master device and one or more slave
devices. The bus consists of at least two wires - one for the clock signal and the other for
synchronous data transfer. Other signals can be added depending on the data exchange
between SPI nodes and their slave select signal management.

MSv33711V1

Shift register

Write

Read

Communication
controller

Address and data bus

CRC controller

Internal NSS

CRCEN
CRCNEXT

LSBFIRST
CPOL
CPHA
DFF

MOSI
MISO

SCK

NSS

Rx
buffer

TX
buffer

BR[2:0]

BIDIOE
BIDIMODE
RXOLNY

NSS
logic

Baud rate
generator

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

874/1040 RM0367 Rev 8

31.3.2 Communications between one master and one slave

The SPI allows the MCU to communicate using different configurations, depending on the
device targeted and the application requirements. These configurations use 2 or 3 wires
(with software NSS management) or 3 or 4 wires (with hardware NSS management).
Communication is always initiated by the master.

Full-duplex communication

By default, the SPI is configured for full-duplex communication. In this configuration, the
shift registers of the master and slave are linked using two unidirectional lines between the
MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the
SCK clock edges provided by the master. The master transmits the data to be sent to the
slave via the MOSI line and receives data from the slave via the MISO line. When the data
frame transfer is complete (all the bits are shifted) the information between the master and
slave is exchanged.

Figure 280. Full-duplex single master/ single slave application

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 31.3.5: Slave select (NSS) pin management.

Half-duplex communication

The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the
SPIx_CR1 register. In this configuration, one single cross connection line is used to link the
shift registers of the master and slave together. During this communication, the data is
synchronously shifted between the shift registers on the SCK clock edge in the transfer
direction selected reciprocally by both master and slave with the BDIOE bit in their
SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin
are free for other application uses and act as GPIOs.

Rx shift register

Tx shift register Rx shift register

Tx shift register

SPI clock
generator

Master Slave

MISO

MOSI

SCK

NSS

MISO

MOSI

SCK

NSS(1) (1)

MSv39623V1

RM0367 Rev 8 875/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Figure 281. Half-duplex single master/ single slave application

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 31.3.5: Slave select (NSS) pin management.

2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs.

3. A critical situation can happen when communication direction is changed not synchronously between two
nodes working at bidirectionnal mode and new transmitter accesses the common data line while former
transmitter still keeps an opposite value on the line (the value depends on SPI configuration and
communication data). Both nodes then fight while providing opposite output levels on the common line
temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial
resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing
between them at this situation.

Simplex communications

The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receive-
only using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is
used for the transfer between the shift registers of the master and slave. The remaining
MISO and MOSI pins pair is not used for communication and can be used as standard
GPIOs.

• Transmit-only mode (RXONLY=0): The configuration settings are the same as for full-
duplex. The application has to ignore the information captured on the unused input pin.
This pin can be used as a standard GPIO.

• Receive-only mode (RXONLY=1): The application can disable the SPI output function
by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the
pin can be used as a GPIO. The slave continues to receive data from the MOSI pin
while its slave select signal is active (see 31.3.5: Slave select (NSS) pin management).
Received data events appear depending on the data buffer configuration. In the master
configuration, the MOSI output is disabled and the pin can be used as a GPIO. The
clock signal is generated continuously as long as the SPI is enabled. The only way to
stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming
pattern from the MISO pin is finished and fills the data buffer structure, depending on its
configuration.

Rx shift register

Tx shift register Rx shift register

Tx shift register

SPI clock
generator

Master Slave

MISO

MOSI

SCK

NSS

MISO

MOSI

SCK

NSS(1) (1)

(2)

(2)1kΩ (3)

MSv39624V1

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

876/1040 RM0367 Rev 8

Figure 282. Simplex single master/single slave application (master in transmit-only/
slave in receive-only mode)

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 31.3.5: Slave select (NSS) pin management.

2. An accidental input information is captured at the input of transmitter Rx shift register. All the events
associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF
flag).

3. In this configuration, both the MISO pins can be used as GPIOs.

Note: Any simplex communication can be alternatively replaced by a variant of the half-duplex
communication with a constant setting of the transaction direction (bidirectional mode is
enabled while BDIO bit is not changed).

Rx shift register

Tx shift register Rx shift register

Tx shift register

SPI clock
generator

Master Slave

MISO

MOSI

SCK

NSS

MISO

MOSI

SCK

NSS(1) (1)

(2)

MSv39625V1

RM0367 Rev 8 877/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.3.3 Standard multi-slave communication

In a configuration with two or more independent slaves, the master uses GPIO pins to
manage the chip select lines for each slave (see Figure 283.). The master must select one
of the slaves individually by pulling low the GPIO connected to the slave NSS input. When
this is done, a standard master and dedicated slave communication is established.

Figure 283. Master and three independent slaves

1. NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to
prevent any MODF error.

2. As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their
MISO pin set as alternate function open-drain (see Section 9.3.7: I/O alternate function input/output on
page 242).

Rx shift register

Tx shift register Rx shift register

Tx shift register

SPI clock
generator

Master Slave 1

MISO

MOSI

SCK

NSS

MISO

MOSI

SCK

NSS

(1)

Rx shift register

Tx shift register

Slave 2

Rx shift register

Tx shift register

Slave 3

IO1

IO2

IO3

MISO

MOSI

SCK

NSS

MISO

MOSI

SCK

NSS

MSv39626V1

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

878/1040 RM0367 Rev 8

31.3.4 Multi-master communication

Unless SPI bus is not designed for a multi-master capability primarily, the user can use build
in feature which detects a potential conflict between two nodes trying to master the bus at
the same time. For this detection, NSS pin is used configured at hardware input mode.

The connection of more than two SPI nodes working at this mode is impossible as only one
node can apply its output on a common data line at time.

When nodes are non active, both stay at slave mode by default. Once one node wants to
overtake control on the bus, it switches itself into master mode and applies active level on
the slave select input of the other node via dedicated GPIO pin. After the session is
completed, the active slave select signal is released and the node mastering the bus
temporary returns back to passive slave mode waiting for next session start.

If potentially both nodes raised their mastering request at the same time a bus conflict event
appears (see mode fault MODF event). Then the user can apply some simple arbitration
process (e.g. to postpone next attempt by predefined different time-outs applied at both
nodes).

Figure 284. Multi-master application

1. The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line
output control as the passive node is configured as a slave.

31.3.5 Slave select (NSS) pin management

In slave mode, the NSS works as a standard “chip select” input and lets the slave
communicate with the master. In master mode, NSS can be used either as output or input.
As an input it can prevent multimaster bus collision, and as an output it can drive a slave
select signal of a single slave.

Hardware or software slave select management can be set using the SSM bit in the
SPIx_CR1 register:

• Software NSS management (SSM = 1): in this configuration, slave select information
is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is
free for other application uses.

• Hardware NSS management (SSM = 0): in this case, there are two possible
configurations. The configuration used depends on the NSS output configuration
(SSOE bit in register SPIx_CR1).

Rx (Tx) shift register

Tx (Rx) shift register Tx (Rx) shift register

Rx (Tx) shift register

SPI clock
generator

Master
(Slave)

Master
(Slave)

MISO

MOSI

SCK

NSS

MISO

MOSI

SCK

NSS

(1)

(1)

MSv39628V1

SPI clock
generator

GPIO

GPIO

RM0367 Rev 8 879/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

– NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the
MCU is set as master. The NSS pin is managed by the hardware. The NSS signal
is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept
low until the SPI is disabled (SPE =0).

– NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the
master on the bus, this configuration allows multimaster capability. If the NSS pin
is pulled low in this mode, the SPI enters master mode fault state and the device is
automatically reconfigured in slave mode. In slave mode, the NSS pin works as a
standard “chip select” input and the slave is selected while NSS line is at low level.

Figure 285. Hardware/software slave select management

1

0
NSS Input

SSM control bit

SSI control bit

SSOE control bit

NSS Output

NSS
pin

(used in Master mode & NSS
HW management only)

NSS
Output
Control

Master
mode Slave mode

Non activeOKVdd

NSS
Inp.

ActiveConflictVss

NSS external logic NSS internal logic

GPIO
logic

aiv14746e

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

880/1040 RM0367 Rev 8

31.3.6 Communication formats

During SPI communication, receive and transmit operations are performed simultaneously.
The serial clock (SCK) synchronizes the shifting and sampling of the information on the data
lines. The communication format depends on the clock phase, the clock polarity and the
data frame format. To be able to communicate together, the master and slaves devices must
follow the same communication format.

Clock phase and polarity controls

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.

If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted
(falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on
each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the
SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge
if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type.

The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 286, shows an SPI full-duplex transfer with the four combinations of the CPHA and
CPOL bits.

Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

RM0367 Rev 8 881/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Figure 286. Data clock timing diagram

Note: The order of data bits depends on LSBFIRST bit setting.

Data frame format

The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the
value of the LSBFIRST bit. Each data frame is 8 or 16 bit long depending on the size of the
data programmed using the DFF bit in the SPI_CR1 register. The selected data frame
format is applicable both for transmission and reception.

CPOL = 1

CPOL = 0

MSBit LSBit

MSBit LSBitMISO

MOSI

NSS
(to slave)

Capture strobe

CPHA =1

CPOL = 1

CPOL = 0

MSBit LSBit

MSBit LSBitMISO

MOSI

NSS
(to slave)

Capture strobe

CPHA =0

ai17154d

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

882/1040 RM0367 Rev 8

31.3.7 SPI configuration

The configuration procedure is almost the same for master and slave. For specific mode
setups, follow the dedicated chapters. When a standard communication is to be initialized,
perform these steps:

1. Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins.

2. Write to the SPI_CR1 register:

a) Configure the serial clock baud rate using the BR[2:0] bits (Note: 3).

b) Configure the CPOL and CPHA bits combination to define one of the four
relationships between the data transfer and the serial clock. (Note: 2 - except the
case when CRC is enabled at TI mode).

c) Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and
BIDIOE (RXONLY and BIDIMODE can't be set at the same time).

d) Configure the LSBFIRST bit to define the frame format (Note: 2).

e) Configure the CRCEN and CRCEN bits if CRC is needed (while SCK clock signal
is at idle state).

f) Configure SSM and SSI (Note: 2).

g) Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on
NSS if master is configured to prevent MODF error).

h) Set the DFF bit to configure the data frame format (8 or 16 bits).

3. Write to SPI_CR2 register:

a) Configure SSOE (Note: 1 & 2).

b) Set the FRF bit if the TI protocol is required.

4. Write to SPI_CRCPR register: Configure the CRC polynomial if needed.

5. Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in
DMA registers if the DMA streams are used.

Note: (1) Step is not required in slave mode.

(2) Step is not required in TI mode.

(3) The step is not required in slave mode except slave working at TI mode.

For code example, refer to A.19.1: SPI master configuration code example and A.19.2: SPI
slave configuration code example.

31.3.8 Procedure for enabling SPI

It is recommended to enable the SPI slave before the master sends the clock. Otherwise,
undesired data transmission might occur. The slave data register must already contain data
to be sent before starting communication with the master (either on the first edge of the
communication clock, or before the end of the ongoing communication if the clock signal is
continuous). The SCK signal must be settled at an idle state level corresponding to the
selected polarity before the SPI slave is enabled.

At full-duplex (or in any transmit-only mode), the master starts communicating when the SPI
is enabled and data to be sent is written in the Tx Buffer.

In any master receive-only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), the master
starts communicating and the clock starts running immediately after the SPI is enabled.

The slave starts communicating when it receives a correct clock signal from the master. The
slave software must write the data to be sent before the SPI master initiates the transfer.

RM0367 Rev 8 883/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Refer to Section 31.3.11: Communication using DMA (direct memory addressing) for details
on how to handle DMA.

31.3.9 Data transmission and reception procedures

Rx and Tx buffers

In reception, data are received and then stored into an internal Rx buffer while in
transmission, data are first stored into an internal Tx buffer before being transmitted. A read
access to the SPI_DR register returns the Rx buffered value whereas a write access to the
SPI_DR stores the written data into the Tx buffer.

Tx buffer handling

The data frame is loaded from the Tx buffer into the shift register during the first bit
transmission. Bits are then shifted out serially from the shift register to a dedicated output
pin depending on LSBFIRST bit setting.The TXE flag (Tx buffer empty) is set when the data
are transferred from the Tx buffer to the shift register. It indicates that the internal Tx buffer is
ready to be loaded with the next data. An interrupt can be generated if the TXEIE bit of the
SPI_CR2 register is set. Clearing the TXE bit is performed by writing to the SPI_DR register.

A continuous transmit stream can be achieved if the next data to be transmitted are stored
in the Tx buffer while previous frame transmission is still ongoing. When the software writes
to Tx buffer while the TXE flag is not set, the data waiting for transaction is overwritten.

Rx buffer handling

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
are transferred from the shift register to the Rx buffer. It indicates that data are ready to be
read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the
SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR
register.

If a device has not cleared the RXNE bit resulting from the previous data byte transmitted,
an overrun condition occurs when the next value is buffered. The OVR bit is set and an
interrupt is generated if the ERRIE bit is set.

Another way to manage the data exchange is to use DMA (see Section 11.2: DMA main
features).

Sequence handling

The BSY bit is set when a current data frame transaction is ongoing. When the clock signal
runs continuously, the BSY flag remains set between data frames on the master side.
However, on the slave side, it becomes low for a minimum duration of one SPI clock cycle
between each data frame transfer.

For some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

When a receive-only mode is configured on the master side, either in half-duplex
(BIDIMODE=1, BIDIOE=0) or simplex configuration (BIDIMODE=0, RXONLY=1), the
master starts the receive sequence as soon as the SPI is enabled. Then the clock signal is
provided by the master and it does not stop until either the SPI or the receive-only mode is
disabled by the master. The master receives data frames continuously up to this moment.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

884/1040 RM0367 Rev 8

While the master can provide all the transactions in continuous mode (SCK signal is
continuous), it has to respect slave capability to handle data flow and its content at anytime.
When necessary, the master must slow down the communication and provide either a
slower clock or separate frames or data sessions with sufficient delays. Be aware there is no
underflow error signal for slave operating in SPI mode, and that data from the slave are
always transacted and processed by the master even if the slave cannot not prepare them
correctly in time. It is preferable for the slave to use DMA, especially when data frames are
shorter and bus rate is high.

Each sequence must be encased by the NSS pulse in parallel with the multislave system to
select just one of the slaves for communication. In single slave systems, using NSS to
control the slave is not necessary. However, the NSS pulse can be used to synchronize the
slave with the beginning of each data transfer sequence. NSS can be managed either by
software or by hardware (see Section 31.3.4: Multi-master communication).

Refer to Figure 287 and Figure 288 for a description of continuous transfers in master / full-
duplex and slave full-duplex mode.

Figure 287. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0,
RXONLY=0) in the case of continuous transfers

For code example, refer to A.19.3: SPI full duplex communication code example.

MISO/MOSI (in)

Tx buffer

DATA 1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
into SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hardware

Example in Master mode with CPOL=1, CPHA=1

0xF1

 RXNE flag

(write SPI_DR)

Rx buffer

set by hardware

MISO/MOSI (out)
DATA1 = 0xF1 DATA2 = 0xF2 DATA3 = 0xF3

(read SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17343

RM0367 Rev 8 885/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Figure 288. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0,
RXONLY=0) in the case of continuous transfers

31.3.10 Procedure for disabling the SPI

When SPI is disabled, it is mandatory to follow the disable procedures described in this
paragraph. It is important to do this before the system enters a low-power mode when the
peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some
modes the disable procedure is the only way to stop continuous communication running.

Master in full-duplex or transmit only mode can finish any transaction when it stops
providing data for transmission. In this case, the clock stops after the last data transaction.

Standard disable procedure is based on pulling BSY status together with TXE flag to check
if a transmission session is fully completed. This check can be done in specific cases, too,
when it is necessary to identify the end of ongoing transactions, for example:

• When NSS signal is managed by an arbitrary GPIO toggle and the master has to
provide proper end of NSS pulse for slave, or

• When transactions’ streams from DMA are completed while the last data frame or CRC
frame transaction is still ongoing in the peripheral bus.

The correct disable procedure is (except when receive-only mode is used):

1. Wait until RXNE=1 to receive the last data.

2. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI.

3. Read received data.

0xF1

set by cleared by software

MISO/MOSI (in)

Tx buffer

DATA 1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
into SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hardware

Example in Slave mode with CPOL=1, CPHA=1

 RXNE flag

(write to SPI_DR)

Rx buffer

set by hardware

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

(read from SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17344

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

886/1040 RM0367 Rev 8

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to the SPI_DR register and BSY bit setting. As a consequence it is
mandatory to wait first until TXE is set and then until BSY is cleared after writing the last
data.

The correct disable procedure for certain receive-only modes is:

1. Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while
the last data frame is ongoing.

2. Wait until BSY=0 (the last data frame is processed).

3. Read received data.

Note: To stop a continuous receive sequence, a specific time window must be respected during
the reception of the last data frame. It starts when the first bit is sampled and ends before
the last bit transfer starts.

31.3.11 Communication using DMA (direct memory addressing)

To operate at its maximum speed and to facilitate the data register read/write process
required to avoid overrun, the SPI features a DMA capability, which implements a simple
request/acknowledge protocol.

A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is
set. Separate requests must be issued to the Tx and Rx buffers.

• In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
writes to the SPIx_DR register.

• In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads
the SPIx_DR register.

Refer to Figure 289 and Figure 290 for a description of the DMA transmission and reception
waveforms.

When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA
channel. In this case, the OVR flag is set because the data received is not read. When the
SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel.

In transmission mode, when the DMA has written all the data to be transmitted (the TCIF
flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI
communication is complete. This is required to avoid corrupting the last transmission before
disabling the SPI or entering the Stop mode. The software must first wait until TXE = 1 and
then until BSY = 0.

When starting communication using DMA, to prevent DMA channel management raising
error events, these steps must be followed in order:

1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is
used.

2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used.

3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used.

4. Enable the SPI by setting the SPE bit.

For code example, refer to A.19.4: SPI master configuration with DMA code example and
A.19.5: SPI slave configuration with DMA code example.

RM0367 Rev 8 887/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

To close communication it is mandatory to follow these steps in order:

1. Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used.

2. Disable the SPI by following the SPI disable procedure.

3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the
SPI_CR2 register, if DMA Tx and/or DMA Rx are used.

Figure 289. Transmission using DMA

0xF1Tx buffer

TXE flag

0xF2

BSY flag

0xF3

set by hardware
clear by DMA write

set by hardware
cleared by DMA write set by hardware

set by hardware

SCK

reset

Example with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software configures the
DMA SPI Tx channel
to send 3 data items
and enables the SPI

DMA writes to SPI_DR

DMA request ignored by the DMA because

DMA TCIF flag
set by hardware clear by software

DMA writes
DATA1 into

SPI_DR

by hardware

DMA writes
DATA2 into

SPI_DR

DMA writes
DATA3 into

SPI_DR

software waits until BSY=0

(DMA transfer complete)

DMA transfer is
complete (TCIF=1 in

DMA_ISR)

software waits
until TXE=1

DMA transfer is complete

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17349

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

888/1040 RM0367 Rev 8

Figure 290. Reception using DMA

31.3.12 SPI status flags

Three status flags are provided for the application to completely monitor the state of the SPI
bus.

Tx buffer empty flag (TXE)

When it is set, the TXE flag indicates that the Tx buffer is empty and that the next data to be
transmitted can be loaded into the buffer. The TXE flag is cleared by writing to the SPI_DR
register.

Rx buffer not empty (RXNE)

When set, the RXNE flag indicates that there are valid received data in the Rx buffer. It is
cleared by reading from the SPI_DR register.

Busy flag (BSY)

The BSY flag is set and cleared by hardware (writing to this flag has no effect).

When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is
busy). There is one exception in master bidirectional receive mode (MSTR=1 and BDM=1
and BDOE=0) where the BSY flag is kept low during reception.

The BSY flag can be used in certain modes to detect the end of a transfer, thus preventing
corruption of the last transfer when the SPI peripheral clock is disabled before entering a
low-power mode or an NSS pulse end is handled by software.

The BSY flag is also useful for preventing write collisions in a multimaster system.

MISO/MOSI (in)
DATA 1 = 0xA1

software configures the
DMA SPI Rx channel
to receive 3 data items
and enables the SPI

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

Example with CPOL=1, CPHA=1

RXNE flag

Rx buffer

set by hardware

(read from SPI_DR) 0xA1 0xA2 0xA3

DMA request

DMA reads
DATA3 from

SPI_DR

flag DMA TCIF
set by hardware clear

by software

DMA read from SPI_DR

The DMA transfer is
complete (TCIF=1 in

DMA_ISR)

DMA reads
DATA2 from

SPI_DR

DMA reads
DATA1 from

SPI_DR

(DMA transfer complete)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

clear by DMA read

ai17350

RM0367 Rev 8 889/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

The BSY flag is cleared under any one of the following conditions:

• When the SPI is correctly disabled

• When a fault is detected in Master mode (MODF bit set to 1)

• In Master mode, when it finishes a data transmission and no new data is ready to be
sent

• In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
each data transfer.

Note: It is recommended to use always the TXE and RXNE flags (instead of the BSY flags) to
handle data transmission or reception operations.

31.3.13 SPI error flags

An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled
by setting the ERRIE bit.

Overrun flag (OVR)

An overrun condition occurs when the master or the slave completes the reception of the
next data frame while the read operation of the previous frame from the Rx buffer has not
completed (case RXNE flag is set).

In this case, the content of the Rx buffer is not updated with the new data received. A read
operation from the SPI_DR register returns the frame previously received. All other
subsequently transmitted data are lost.

Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read
access to the SPI_SR register.

Mode fault (MODF)

Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS
hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the
MODF bit. Master mode fault affects the SPI interface in the following ways:

• The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

• The SPE bit is cleared. This blocks all output from the device and disables the SPI
interface.

• The MSTR bit is cleared, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPIx_SR register while the MODF bit is set.

2. Then write to the SPIx_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence. As a security, hardware does
not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the
MODF bit cannot be set except as the result of a previous multimaster conflict.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

890/1040 RM0367 Rev 8

CRC error (CRCERR)

This flag is used to verify the validity of the value received when the CRCEN bit in the
SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value
received in the shift register does not match the receiver SPIx_RXCRC value. The flag is
cleared by the software.

TI mode frame format error (FRE)

A TI mode frame format error is detected when an NSS pulse occurs during an ongoing
communication when the SPI is operating in slave mode and configured to conform to the TI
mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI
is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the
next NSS pulse before starting a new transfer. The data may be corrupted since the error
detection may result in the loss of two data bytes.

The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt
is generated on the NSS error detection. In this case, the SPI should be disabled because
data consistency is no longer guaranteed and communications should be re-initiated by the
master when the slave SPI is enabled again.

31.4 SPI special features

31.4.1 TI mode

TI protocol in master mode

The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register
can be used to configure the SPI to be compliant with this protocol.

The clock polarity and phase are forced to conform to the TI protocol requirements whatever
the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol
which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2
registers (SSM, SSI, SSOE) impossible in this case.

In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO
pin state changes to HiZ when the current transaction finishes (see Figure 291). Any baud
rate can be used, making it possible to determine this moment with optimal flexibility.
However, the baud rate is generally set to the external master clock baud rate. The delay for
the MISO signal to become HiZ (trelease) depends on internal resynchronization and on the
baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the
formula:

If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is
set.

This feature is not available for Motorola SPI communications (FRF bit set to 0).

tbaud_rate

2
---------------------- 4 tpclk×+ trelease

tbaud_rate

2
---------------------- 6 tpclk×+< <

RM0367 Rev 8 891/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Note: To detect TI frame errors in slave transmitter only mode by using the Error interrupt
(ERRIE=1), the SPI must be configured in 2-line unidirectional mode by setting BIDIMODE
and BIDIOE to 1 in the SPI_CR1 register. When BIDIMODE is set to 0, OVR is set to 1
because the data register is never read and error interrupts are always generated, while
when BIDIMODE is set to 1, data are not received and OVR is never set.

Figure 291 shows the SPI communication waveforms when TI mode is selected.

Figure 291. TI mode transfer

31.4.2 CRC calculation

Two separate CRC calculators (on transmission and reception data flows) are implemented
in order to check the reliability of transmitted and received data. The SPI offers CRC8 or
CRC16 calculation depending on the data format selected through the DFF bit. The CRC is
calculated serially using the polynomial programmed in the SPI_CRCPR register.

CRC principle

CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the
SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable
polynomial on each bit. The calculation is processed on the sampling clock edge defined by
the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked
automatically at the end of the data block as well as for transfer managed by CPU or by the
DMA. When a mismatch is detected between the CRC calculated internally on the received
data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption
error. The right procedure for handling the CRC calculation depends on the SPI
configuration and the chosen transfer management.

Note: The polynomial value should only be odd. No even values are supported.

CRC transfer managed by CPU

Communication starts and continues normally until the last data frame has to be sent or
received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1
register to indicate that the CRC frame transaction will follow after the transaction of the
currently processed data frame. The CRCNEXT bit must be set before the end of the last
data frame transaction. CRC calculation is frozen during CRC transaction.

MS19835V2

MSB

MISO

NSS

SCK

trig
ge

r

sa
mpli

ng

trig
ge

r

sa
mpli

ng

trig
ge

r

sa
mpli

ng

Do not care LSBMOSI

1 or 0 MSB LSB

MSB LSB

MSB LSB

FRAME 1 FRAME 2

t RELEASE

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

892/1040 RM0367 Rev 8

The received CRC is stored in the Rx buffer like any other data frame.

A CRC-format transaction takes one more data frame to communicate at the end of data
sequence.

When the last CRC data is received, an automatic check is performed comparing the
received value and the value in the SPIx_RXCRC register. Software has to check the
CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or
not. Software clears the CRCERR flag by writing '0' to it.

After the CRC reception, the CRC value is stored in the Rx buffer and must be read in the
SPIx_DR register in order to clear the RXNE flag.

CRC transfer managed by DMA

When SPI communication is enabled with CRC communication and DMA mode, the
transmission and reception of the CRC at the end of communication is automatic (with the
exception of reading CRC data in receive-only mode). The CRCNEXT bit does not have to
be handled by the software. The counter for the SPI transmission DMA channel has to be
set to the number of data frames to transmit excluding the CRC frame. On the receiver side,
the received CRC value is handled automatically by DMA at the end of the transaction but
user must take care to flush out the CRC frame received from SPI_DR as it is always loaded
into it.

At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if
corruption occurred during the transfer.

Resetting the SPIx_TXCRC and SPIx_RXCRC values

The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when CRC
calculation is enabled.

When the SPI is configured in slave mode with the CRC feature enabled, a CRC calculation
is performed even if a high level is applied on the NSS pin. This may happen for example in
case of a multislave environment where the communication master addresses slaves
alternately.

Between a slave disabling (high level on NSS) and a new slave enabling (low level on NSS),
the CRC value should be cleared on both master and slave sides to resynchronize the
master and slave respective CRC calculation.

To clear the CRC, follow the below sequence:

1. Disable the SPI

2. Clear the CRCEN bit

3. Enable the CRCEN bit

4. Enable the SPI

Note: When the SPI interface is configured as a slave, the NSS internal signal needs to be kept
low during transaction of the CRC phase once the CRCNEXT signal is released, (see more
details at the product errata sheet).

At TI mode, despite the fact that the clock phase and clock polarity setting is fixed and
independent on the SPIx_CR1 register, the corresponding setting CPOL=0 CPHA=1 has to
be kept at the SPIx_CR1 register anyway if CRC is applied. In addition, the CRC calculation
has to be reset between sessions by the SPI disable sequence by re-enabling the CRCEN
bit described above at both master and slave sides, else the CRC calculation can be
corrupted at this specific mode.

RM0367 Rev 8 893/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.5 SPI interrupts

During SPI communication an interrupts can be generated by the following events:

• Transmit Tx buffer ready to be loaded

• Data received in Rx buffer

• Master mode fault

• Overrun error

• TI frame format error

Interrupts can be enabled and disabled separately.

 For code example, refer to A.19.6: SPI interrupt code example.

Table 157. SPI interrupt requests

Interrupt event Event flag Enable Control bit

Transmit Tx buffer ready to be loaded TXE TXEIE

Data received in Rx buffer RXNE RXNEIE

Master Mode fault event MODF

ERRIE
Overrun error OVR

CRC error CRCERR

TI frame format error FRE

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

894/1040 RM0367 Rev 8

31.6 I2S functional description

31.6.1 I2S general description

The block diagram of the I2S is shown in Figure 292.

Figure 292. I2S block diagram

1. MCK is mapped on the MISO pin.

The SPI can function as an audio I2S interface when the I2S capability is enabled (by setting
the I2SMOD bit in the SPIx_I2SCFGR register). This interface mainly uses the same pins,
flags and interrupts as the SPI.

Tx buffer

Shift register

16-bit

Communication

Rx buffer

16-bit

MOSI/SD

Master control logic

MISO

SPI
baud rate generator

I2SMOD

LSB first

LSB
First SPE BR2 BR1 BR0 MSTR CPOL CPHA

Bidi
mode

Bidi
OE

CRC
EN

CRC
Next DFF

Rx
only SSM SSI

Address and data bus

control

NSS/WS

BSY OVR MODF CRC
ERR

CH
SIDE TxE RxNE

I2S clock generator

MCK

I2S_CK

I2S
MOD I2SE

CHDATLEN
LEN

CK
POL

I2SCFG I2SSTD

MCKOE ODD I2SDIV[7:0]

[1:0] [1:0] [1:0]

UDR

I2SxCLK

MS32126V1

FRE

CK

RM0367 Rev 8 895/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

The I2S shares three common pins with the SPI:

• SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two time-
multiplexed data channels (in half-duplex mode only).

• WS: Word Select (mapped on the NSS pin) is the data control signal output in master
mode and input in slave mode.

• CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode
and serial clock input in slave mode.

An additional pin can be used when a master clock output is needed for some external
audio devices:

• MCK: Master Clock (mapped separately) is used, when the I2S is configured in master
mode (and when the MCKOE bit in the SPIx_I2SPR register is set), to output this
additional clock generated at a preconfigured frequency rate equal to 256 × fS, where
fS is the audio sampling frequency.

The I2S uses its own clock generator to produce the communication clock when it is set in
master mode. This clock generator is also the source of the master clock output. Two
additional registers are available in I2S mode. One is linked to the clock generator
configuration SPIx_I2SPR and the other one is a generic I2S configuration register
SPIx_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock
polarity, etc.).

The SPIx_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the
SSOE bit in the SPIx_CR2 register and the MODF and CRCERR bits in the SPIx_SR are
not used.

The I2S uses the same SPI register for data transfer (SPIx_DR) in 16-bit wide mode.

31.6.2 I2S full-duplex

Figure 293 shows how to perform full-duplex communications using two SPI/I2S instances.
In this case, the WS and CK IOs of both SPI2S must be connected together.

For the master full-duplex mode, one of the SPI2S block must be programmed in master
(I2SCFG = ‘10’ or ‘11’), and the other SPI2S block must be programmed in slave (I2SCFG =
‘00’ or ‘01’). The MCK can be generated or not, depending on the application needs.

For the slave full-duplex mode, both SPI2S blocks must be programmed in slave. One of
them in the slave receiver (I2SCFG = ‘01’), and the other in the slave transmitter (I2SCFG =
‘00’). The master external device then provides the bit clock (CK) and the frame
synchronization (WS).

Note that the full-duplex mode can be used for all the supported standards: I2S Philips, MSB
justified, LSB justified and PCM.

For the full-duplex mode, both SPI2S instances must use the same standard, with the same
parameters: I2SMOD, I2SSTD, CKPOL, PCMSYNC, DATLEN and CHLEN must contain the
same value on both instances.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

896/1040 RM0367 Rev 8

Figure 293. Full-duplex communication

31.6.3 Supported audio protocols

The three-line bus has to handle only audio data generally time-multiplexed on two
channels: the right channel and the left channel. However there is only one 16-bit register
for transmission or reception. So, it is up to the software to write into the data register the
appropriate value corresponding to each channel side, or to read the data from the data
register and to identify the corresponding channel by checking the CHSIDE bit in the
SPIx_SR register. Channel left is always sent first followed by the channel right (CHSIDE
has no meaning for the PCM protocol).

Four data and packet frames are available. Data may be sent with a format of:

• 16-bit data packed in a 16-bit frame

• 16-bit data packed in a 32-bit frame

• 24-bit data packed in a 32-bit frame

• 32-bit data packed in a 32-bit frame

When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant
bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only
one read/write operation).

The 24-bit and 32-bit data frames need two CPU read or write operations to/from the
SPIx_DR register or two DMA operations if the DMA is preferred for the application. For 24-
bit data frame specifically, the 8 non significant bits are extended to 32 bits with 0-bits (by
hardware).

For all data formats and communication standards, the most significant bit is always sent
first (MSB first).

MSv42093V1

SPI2Sx
(MASTER-TX)

SPI2Sy
(SLAVE-RX)

MCK (O)

CK (O)

WS (O)

SD (O)

CK (I)

WS (I)

SD (I)

External
slave

device

STM32

SPI2Sx
(SLAVE-TX)

SPI2Sy
(SLAVE-RX)

CK (I)

WS (I)

SD (O)

CK (I)

WS (I)

SD (I)

External
master
device

STM32

Optional

SPI2Sx
(MASTER-RX)

SPI2Sy
(SLAVE-TX)

MCK (O)

CK (O)

WS (O)

SD (I)

CK (I)

WS (I)

SD (O)

External
slave

device

STM32

MASTER full-duplex configurations

SLAVE full-duplex configurations

spix_tx_dm
a

spix_rx_dm
a

spix_tx_dm
a

spix_rx_dm
a

spix_rx_dm
a

spix_tx_dm
a

Master
Slave

RM0367 Rev 8 897/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and
PCMSYNC bits in the SPIx_I2SCFGR register.

I2S Philips standard

For this standard, the WS signal is used to indicate which channel is being transmitted. It is
activated one CK clock cycle before the first bit (MSB) is available.

Figure 294. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0)

Data are latched on the falling edge of CK (for the transmitter) and are read on the rising
edge (for the receiver). The WS signal is also latched on the falling edge of CK.

Figure 295. I2S Philips standard waveforms (24-bit frame with CPOL = 0)

This mode needs two write or read operations to/from the SPIx_DR register.

MS19591V1

CK

WS

SD

Can be 16-bit or 32-bit

MSB MSBLSB

Channel left
Channel

right

transmission reception

MS19592V1

CK

WS

SD

Transmission Reception

24-bit data

MSB LSB

Channel left 32-bit
Channel right

8-bit remaining 0 forced

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

898/1040 RM0367 Rev 8

• In transmission mode:

If 0x8EAA33 has to be sent (24-bit):

Figure 296. Transmitting 0x8EAA33

• In reception mode:

If data 0x8EAA33 is received:

Figure 297. Receiving 0x8EAA33

Figure 298. I2S Philips standard (16-bit extended to 32-bit packet frame with
CPOL = 0)

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, only one access to the SPIx_DR register is required. The 16 remaining
bits are forced by hardware to 0x0000 to extend the data to 32-bit format.

If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the
operation shown in Figure 299 is required.

MS19593V1

0x8EAA 0x33XX

First write to Data register Second write to Data register

Only the 8 MSB are sent
to compare the 24 bits
8 LSBs have no meaning
and can be anything

MS19594V1

0x8EAA 0x33XX

First read to Data register Second read to Data register

Only the 8 MSB are sent
to compare the 24 bits
8 LSBs have no meaning
and can be anything

MS19599V1

CK

WS

SD

Transmission Reception

16-bit data

MSB LSB

Channel left 32-bit Channel right

16-bit remaining 0 forced

RM0367 Rev 8 899/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Figure 299. Example of 16-bit data frame extended to 32-bit channel frame

For transmission, each time an MSB is written to SPIx_DR, the TXE flag is set and its
interrupt, if allowed, is generated to load the SPIx_DR register with the new value to send.
This takes place even if 0x0000 have not yet been sent because it is done by hardware.

For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first
16 MSB half-word is received.

In this way, more time is provided between two write or read operations, which prevents
underrun or overrun conditions (depending on the direction of the data transfer).

MSB justified standard

For this standard, the WS signal is generated at the same time as the first data bit, which is
the MSBit.

Figure 300. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0

Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge
(for the receiver).

Figure 301. MSB justified 24-bit frame length with CPOL = 0

MS19595V1

0x76A3

Only one access to SPIx_DR

MS30100 V1

CK

WS

SD

Transmission Reception

16- or 32 bit data

MSB LSB

Channel left
Channel right

MSB

MS30101V1

CK

WS

SD

Transmission Reception

24 bit data

MSB LSB

Channel left 32-bit

Channel right

8-bit remaining
0 forced

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

900/1040 RM0367 Rev 8

Figure 302. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0

LSB justified standard

This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit
full-accuracy frame formats).

Figure 303. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0

Figure 304. LSB justified 24-bit frame length with CPOL = 0

MS30102V1

CK

WS

SD

Transmission Reception

16-bit data

MSB LSB

Channel left 32-bit

Channel right

16-bit remaining
0 forced

MS30103V1

CK

WS

SD

Transmission Reception
16- or 32-bit data

MSB LSB

Channel left

Channel right

MSB

MS30104V1

CK

WS

SD

Transmission

Reception

8-bit data
0 forced

MSB LSB

Channel left 32-bit
Channel right

24-bit remaining

RM0367 Rev 8 901/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

• In transmission mode:

If data 0x3478AE have to be transmitted, two write operations to the SPIx_DR register
are required by software or by DMA. The operations are shown below.

Figure 305. Operations required to transmit 0x3478AE

• In reception mode:

If data 0x3478AE are received, two successive read operations from the SPIx_DR
register are required on each RXNE event.

Figure 306. Operations required to receive 0x3478AE

Figure 307. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, Only one access to the SPIx_DR register is required. The 16 remaining
bits are forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it
corresponds to the half-word MSB.

If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit),
the operation shown in Figure 308 is required.

0xXX34 0x78AE

First write to Data register
conditioned by TXE=1

Second write to Data register
conditioned by TXE=1

Only the 8 LSB of the
half-word are significant.
A field of 0x00 is forced
instead of the 8 MSBs. MS19596V1

0xXX34 0x78AE

First read from Data register
conditioned by RXNE=1

Second read from Data register
conditioned by RXNE=1

Only the 8 LSB of the
half-word are significant.
A field of 0x00 is forced
instead of the 8 MSBs.

MS19597V1

MS30105V1

CK

WS

SD

Transmission

Reception

16-bit data
0 forced

MSB LSB

Channel left 32-bit
Channel right

16-bit remaining

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

902/1040 RM0367 Rev 8

Figure 308. Example of 16-bit data frame extended to 32-bit channel frame

In transmission mode, when a TXE event occurs, the application has to write the data to be
transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit).
The TXE flag is set again as soon as the effective data (0x76A3) is sent on SD.

In reception mode, RXNE is asserted as soon as the significant half-word is received (and
not the 0x0000 field).

In this way, more time is provided between two write or read operations to prevent underrun
or overrun conditions.

PCM standard

For the PCM standard, there is no need to use channel-side information. The two PCM
modes (short and long frame) are available and configurable using the PCMSYNC bit in
SPIx_I2SCFGR register.

Figure 309. PCM standard waveforms (16-bit)

For long frame synchronization, the WS signal assertion time is fixed to 13 bits in master
mode.

For short frame synchronization, the WS synchronization signal is only one cycle long.

Figure 310. PCM standard waveforms (16-bit extended to 32-bit packet frame)

0x76A3

Only one access to the SPIx-DR register

MS19598V1

MS30106V1

CK

WS
short frame

SD

WS
long frame

13-bits

MSB LSB MSB

MS30107V1

CK

WS
short frame

SD

WS
long frame

Up to 13-bits

MSB LSB

16 bits

RM0367 Rev 8 903/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Note: For both modes (master and slave) and for both synchronizations (short and long), the
number of bits between two consecutive pieces of data (and so two synchronization signals)
needs to be specified (DATLEN and CHLEN bits in the SPIx_I2SCFGR register) even in
slave mode.

31.6.4 Clock generator

The I2S bitrate determines the data flow on the I2S data line and the I2S clock signal
frequency.

I2S bitrate = number of bits per channel × number of channels × sampling audio frequency

For a 16-bit audio, left and right channel, the I2S bitrate is calculated as follows:

I2S bitrate = 16 × 2 × fS

It will be: I2S bitrate = 32 x 2 x fS if the packet length is 32-bit wide.

Figure 311. Audio sampling frequency definition

When the master mode is configured, a specific action needs to be taken to properly
program the linear divider in order to communicate with the desired audio frequency.

Figure 312 presents the communication clock architecture. The I2SxCLK clock is provided
by the RCC block, refer to the RCC section for details.

Figure 312. I2S clock generator architecture

1. Where x = 2.

MS30108V1

16-or 32-bit left
channel

16-or 32-bit
right channel

32- or 64-bits

sampling point sampling point
FS

FS : audio sampling frequency

MS30109V1

MCKOE ODD

8-bit linear divider
+ reshaping stage

Divider by 4 Div2

I²SDIV[7:0]

I²S
M

O
D

CH
LE

N

0

1

0

1

MCKOE

CK

MCK

I²SxCLK

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

904/1040 RM0367 Rev 8

The audio sampling frequency may be 192 KHz, 96 kHz, 48 kHz, 44.1 kHz, 32 kHz,
22.05 kHz, 16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to
reach the desired frequency, the linear divider needs to be programmed according to the
formulas below:

When the master clock is generated (MCKOE in the SPIx_I2SPR register is set):

fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD)*8)] when the channel frame is 16-bit wide

fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD)*4)] when the channel frame is 32-bit wide

When the master clock is disabled (MCKOE bit cleared):

fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD))] when the channel frame is 16-bit wide

fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD))] when the channel frame is 32-bit wide

Table 158 provides example precision values for different clock configurations.

Note: Other configurations are possible that allow optimum clock precision.

Table 158. Audio-frequency precision using standard 8 MHz HSE

I2SxCLK
(MHz)

Data
length

I2SDIV I2SODD MCLK Target fs(Hz) Real fs (kHz) Error

32 16 5 0 No 96000 100 4.1667%

32 32 2 0 No 96000 100 4.1667%

32 16 10 1 No 48000 47.619 0.7937%

32 32 5 0 No 48000 50 4.1667%

32 16 11 1 No 44100 43.478 1.4098%

32 32 5 1 No 44100 45.454 3.0715%

32 16 15 1 No 32000 32.258 0.8065%

32 32 8 0 No 32000 31.25 2.3430%

32 16 22 1 No 22050 22.222 0.7811%

32 32 11 1 No 22050 21.739 1.4098%

32 16 31 1 No 16000 15.873 0.7937%

32 32 15 1 No 16000 16.129 0.8065%

32 16 45 1 No 11025 10.989 0.3264%

32 32 22 1 No 11025 11.111 0.7811%

32 16 62 1 No 8000 8 0.0000%

32 32 31 1 No 8000 7.936 0.7937%

32 16 2 0 Yes 32000 31.25 2.3430%

32 32 2 0 Yes 32000 31.25 2.3430%

32 16 3 0 Yes 22050 20.833 5.5170%

32 32 3 0 Yes 22050 20.833 5.5170%

32 16 4 0 Yes 16000 15.625 2.3428%

32 32 4 0 Yes 16000 15.625 2.3428%

32 16 5 1 Yes 11025 11.363 3.0715%

RM0367 Rev 8 905/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.6.5 I2S master mode

The I2S can be configured in master mode. This means that the serial clock is generated on
the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not,
controlled by the MCKOE bit in the SPIx_I2SPR register.

Procedure

1. Select the I2SDIV[7:0] bits in the SPIx_I2SPR register to define the serial clock baud
rate to reach the proper audio sample frequency. The ODD bit in the SPIx_I2SPR
register also has to be defined.

2. Select the CKPOL bit to define the steady level for the communication clock. Set the
MCKOE bit in the SPIx_I2SPR register if the master clock MCK needs to be provided
to the external DAC/ADC audio component (the I2SDIV and ODD values should be
computed depending on the state of the MCK output, for more details refer to
Section 31.6.4: Clock generator).

3. Set the I2SMOD bit in the SPIx_I2SCFGR register to activate the I2S functions and
choose the I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length
through the DATLEN[1:0] bits and the number of bits per channel by configuring the
CHLEN bit. Select also the I2S master mode and direction (Transmitter or Receiver)
through the I2SCFG[1:0] bits in the SPIx_I2SCFGR register.

4. If needed, select all the potential interrupt sources and the DMA capabilities by writing
the SPIx_CR2 register.

5. The I2SE bit in SPIx_I2SCFGR register must be set.

WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in
SPIx_I2SPR is set.

Transmission sequence

The transmission sequence begins when a half-word is written into the Tx buffer.

Lets assume the first data written into the Tx buffer corresponds to the left channel data.
When data are transferred from the Tx buffer to the shift register, TXE is set and data
corresponding to the right channel have to be written into the Tx buffer. The CHSIDE flag
indicates which channel is to be transmitted. It has a meaning when the TXE flag is set
because the CHSIDE flag is updated when TXE goes high.

A full frame has to be considered as a left channel data transmission followed by a right
channel data transmission. It is not possible to have a partial frame where only the left
channel is sent.

The data half-word is parallel loaded into the 16-bit shift register during the first bit
transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is

32 32 5 1 Yes 11025 11.363 3.0715%

32 16 8 0 Yes 8000 7.812 2.3428%

32 32 8 0 Yes 8000 7.812 2.3428%

Table 158. Audio-frequency precision using standard 8 MHz HSE (continued)

I2SxCLK
(MHz)

Data
length

I2SDIV I2SODD MCLK Target fs(Hz) Real fs (kHz) Error

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

906/1040 RM0367 Rev 8

set after each transfer from the Tx buffer to the shift register and an interrupt is generated if
the TXEIE bit in the SPIx_CR2 register is set.

For more details about the write operations depending on the I2S Standard-mode selected,
refer to Section 31.6.3: Supported audio protocols).

To ensure a continuous audio data transmission, it is mandatory to write the SPIx_DR
register with the next data to transmit before the end of the current transmission.

To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0.

Reception sequence

The operating mode is the same as for transmission mode except for the point 3 (refer to the
procedure described in Section 31.6.5: I2S master mode), where the configuration should
set the master reception mode through the I2SCFG[1:0] bits.

Whatever the data or channel length, the audio data are received by 16-bit packets. This
means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated
if the RXNEIE bit is set in SPIx_CR2 register. Depending on the data and channel length
configuration, the audio value received for a right or left channel may result from one or two
receptions into the Rx buffer.

Clearing the RXNE bit is performed by reading the SPIx_DR register.

CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the
I2S cell.

For more details about the read operations depending on the I2S Standard-mode selected,
refer to Section 31.6.3: Supported audio protocols.

If data are received while the previously received data have not been read yet, an overrun is
generated and the OVR flag is set. If the ERRIE bit is set in the SPIx_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S, specific actions are required to ensure that the I2S completes the
transfer cycle properly without initiating a new data transfer. The sequence depends on the
configuration of the data and channel lengths, and on the audio protocol mode selected. In
the case of:

• 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1)
using the LSB justified mode (I2SSTD = 10)

a) Wait for the second to last RXNE = 1 (n – 1)

b) Then wait 17 I2S clock cycles (using a software loop)

c) Disable the I2S (I2SE = 0)

• 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in
MSB justified, I2S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11,
respectively)

a) Wait for the last RXNE

b) Then wait 1 I2S clock cycle (using a software loop)

c) Disable the I2S (I2SE = 0)

RM0367 Rev 8 907/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

• For all other combinations of DATLEN and CHLEN, whatever the audio mode selected
through the I2SSTD bits, carry out the following sequence to switch off the I2S:

a) Wait for the second to last RXNE = 1 (n – 1)

b) Then wait one I2S clock cycle (using a software loop)

c) Disable the I2S (I2SE = 0)

Note: The BSY flag is kept low during transfers.

31.6.6 I2S slave mode

For the slave configuration, the I2S can be configured in transmission or reception mode.

The operating mode is following mainly the same rules as described for the I2S master
configuration. In slave mode, there is no clock to be generated by the I2S interface. The
clock and WS signals are input from the external master connected to the I2S interface.
There is then no need, for the user, to configure the clock.

The configuration steps to follow are listed below:

1. Set the I2SMOD bit in the SPIx_I2SCFGR register to select I2S mode and choose the
I2S standard through the I2SSTD[1:0] bits, the data length through the DATLEN[1:0]
bits and the number of bits per channel for the frame configuring the CHLEN bit. Select
also the mode (transmission or reception) for the slave through the I2SCFG[1:0] bits in
SPIx_I2SCFGR register.

2. If needed, select all the potential interrupt sources and the DMA capabilities by writing
the SPIx_CR2 register.

3. The I2SE bit in SPIx_I2SCFGR register must be set.

Transmission sequence

The transmission sequence begins when the external master device sends the clock and
when the NSS_WS signal requests the transfer of data. The slave has to be enabled before
the external master starts the communication. The I2S data register has to be loaded before
the master initiates the communication.

For the I2S, MSB justified and LSB justified modes, the first data item to be written into the
data register corresponds to the data for the left channel. When the communication starts,
the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in
order to request the right channel data to be written into the I2S data register.

The CHSIDE flag indicates which channel is to be transmitted. Compared to the master
transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the
external master. This means that the slave needs to be ready to transmit the first data
before the clock is generated by the master. WS assertion corresponds to left channel
transmitted first.

Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master
comes on the CK line.

The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus)
during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first.
The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt
is generated if the TXEIE bit in the SPIx_CR2 register is set.

Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

908/1040 RM0367 Rev 8

For more details about the write operations depending on the I2S Standard-mode selected,
refer to Section 31.6.3: Supported audio protocols.

To secure a continuous audio data transmission, it is mandatory to write the SPIx_DR
register with the next data to transmit before the end of the current transmission. An
underrun flag is set and an interrupt may be generated if the data are not written into the
SPIx_DR register before the first clock edge of the next data communication. This indicates
to the software that the transferred data are wrong. If the ERRIE bit is set into the SPIx_CR2
register, an interrupt is generated when the UDR flag in the SPIx_SR register goes high. In
this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the
left channel.

To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and
BSY = 0.

Reception sequence

The operating mode is the same as for the transmission mode except for the point 1 (refer to
the procedure described in Section 31.6.6: I2S slave mode), where the configuration should
set the master reception mode using the I2SCFG[1:0] bits in the SPIx_I2SCFGR register.

Whatever the data length or the channel length, the audio data are received by 16-bit
packets. This means that each time the RX buffer is full, the RXNE flag in the SPIx_SR
register is set and an interrupt is generated if the RXNEIE bit is set in the SPIx_CR2
register. Depending on the data length and channel length configuration, the audio value
received for a right or left channel may result from one or two receptions into the RX buffer.

The CHSIDE flag is updated each time data are received to be read from the SPIx_DR
register. It is sensitive to the external WS line managed by the external master component.

Clearing the RXNE bit is performed by reading the SPIx_DR register.

For more details about the read operations depending the I2S Standard-mode selected,
refer to Section 31.6.3: Supported audio protocols.

If data are received while the preceding received data have not yet been read, an overrun is
generated and the OVR flag is set. If the bit ERRIE is set in the SPIx_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving
the last RXNE = 1.

Note: The external master components should have the capability of sending/receiving data in 16-
bit or 32-bit packets via an audio channel.

31.6.7 I2S status flags

Three status flags are provided for the application to fully monitor the state of the I2S bus.

Busy flag (BSY)

The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates
the state of the communication layer of the I2S.

When BSY is set, it indicates that the I2S is busy communicating. There is one exception in
master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception.

RM0367 Rev 8 909/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S.
This avoids corrupting the last transfer. For this, the procedure described below must be
strictly respected.

The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode.

The BSY flag is cleared:

• When a transfer completes (except in master transmit mode, in which the
communication is supposed to be continuous)

• When the I2S is disabled

When communication is continuous:

• In master transmit mode, the BSY flag is kept high during all the transfers

• In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the
TXE and RXNE flags instead.

Tx buffer empty flag (TXE)

When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted
can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to
be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset).

RX buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the RX Buffer. It is reset
when SPIx_DR register is read.

Channel Side flag (CHSIDE)

In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel
side to which the data to transfer on SD has to belong. In case of an underrun error event in
slave transmission mode, this flag is not reliable and I2S needs to be switched off and
switched on before resuming the communication.

In reception mode, this flag is refreshed when data are received into SPIx_DR. It indicates
from which channel side data have been received. Note that in case of error (like OVR) this
flag becomes meaningless and the I2S should be reset by disabling and then enabling it
(with configuration if it needs changing).

This flag has no meaning in the PCM standard (for both Short and Long frame modes).

When the OVR or UDR flag in the SPIx_SR is set and the ERRIE bit in SPIx_CR2 is also
set, an interrupt is generated. This interrupt can be cleared by reading the SPIx_SR status
register (once the interrupt source has been cleared).

31.6.8 I2S error flags

There are three error flags for the I2S cell.

Underrun flag (UDR)

In slave transmission mode this flag is set when the first clock for data transmission appears
while the software has not yet loaded any value into SPIx_DR. It is available when the
I2SMOD bit in the SPIx_I2SCFGR register is set. An interrupt may be generated if the

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

910/1040 RM0367 Rev 8

ERRIE bit in the SPIx_CR2 register is set.
The UDR bit is cleared by a read operation on the SPIx_SR register.

Overrun flag (OVR)

This flag is set when data are received and the previous data have not yet been read from
the SPIx_DR register. As a result, the incoming data are lost. An interrupt may be generated
if the ERRIE bit is set in the SPIx_CR2 register.

In this case, the receive buffer contents are not updated with the newly received data from
the transmitter device. A read operation to the SPIx_DR register returns the previous
correctly received data. All other subsequently transmitted half-words are lost.

Clearing the OVR bit is done by a read operation on the SPIx_DR register followed by a
read access to the SPIx_SR register.

Frame error flag (FRE)

This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the
external master is changing the WS line while the slave is not expecting this change. If the
synchronization is lost, the following steps are required to recover from this state and
resynchronize the external master device with the I2S slave device:

1. Disable the I2S.

2. Enable it again when the correct level is detected on the WS line (WS line is high in I2S
mode or low for MSB- or LSB-justified or PCM modes.

Desynchronization between master and slave devices may be due to noisy environment on
the SCK communication clock or on the WS frame synchronization line. An error interrupt
can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by
software when the status register is read.

31.6.9 I2S interrupts

Table 159 provides the list of I2S interrupts.

31.6.10 DMA features

In I2S mode, the DMA works in exactly the same way as it does in SPI mode. There is no
difference except that the CRC feature is not available in I2S mode since there is no data
transfer protection system.

Table 159. I2S interrupt requests

Interrupt event Event flag Enable control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Overrun error OVR

ERRIEUnderrun error UDR

Frame error flag FRE

RM0367 Rev 8 911/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.7 SPI and I2S registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). In
addition, SPI_DR can be accessed by 8-bit.

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

31.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIDI
MODE

BIDI
OE

CRC
EN

CRC
NEXT

DFF
RX

ONLY
SSM SSI

LSB
FIRST

SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 BIDIMODE: Bidirectional data mode enable

This bit enables half-duplex communication using common single bidirectional data line.
Keep RXONLY bit clear when bidirectional mode is active.
0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Note: This bit is not used in I2S mode

Bit 14 BIDIOE: Output enable in bidirectional mode

This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional
mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)

Note: In master mode, the MOSI pin is used while the MISO pin is used in slave mode.

This bit is not used in I2S mode.

Bit 13 CRCEN: Hardware CRC calculation enable

0: CRC calculation disabled
1: CRC calculation enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.

It is not used in I2S mode.

Bit 12 CRCNEXT: CRC transfer next

0: Data phase (no CRC phase)
1: Next transfer is CRC (CRC phase)

Note: When the SPI is configured in full-duplex or transmitter only modes, CRCNEXT must be
written as soon as the last data is written to the SPI_DR register.
When the SPI is configured in receiver only mode, CRCNEXT must be set after the
second last data reception.
This bit should be kept cleared when the transfers are managed by DMA.
It is not used in I2S mode.

Bit 11 DFF: Data frame format

0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.

It is not used in I2S mode.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

912/1040 RM0367 Rev 8

Bit 10 RXONLY: Receive only mode enable

This bit enables simplex communication using a single unidirectional line to receive data
exclusively. Keep BIDIMODE bit clear when receive only mode is active.
This bit is also useful in a multislave system in which this particular slave is not accessed, the
output from the accessed slave is not corrupted.
0: full-duplex (Transmit and receive)
1: Output disabled (Receive-only mode)

Note: This bit is not used in I2S mode

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled

Note: This bit is not used in I2S mode and SPI TI mode

Bit 8 SSI: Internal slave select

This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the
NSS pin and the IO value of the NSS pin is ignored.

Note: This bit is not used in I2S mode and SPI TI mode

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first
1: LSB transmitted first

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode

Bit 6 SPE: SPI enable

0: Peripheral disabled
1: Peripheral enabled

Note: When disabling the SPI, follow the procedure described in Section 31.3.10: Procedure
for disabling the SPI.

This bit is not used in I2S mode.

Bits 5:3 BR[2:0]: Baud rate control

000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256

Note: These bits should not be changed when communication is ongoing.

They are not used in I2S mode.

RM0367 Rev 8 913/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.7.2 SPI control register 2 (SPI_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 MSTR: Master selection

0: Slave configuration
1: Master configuration

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode.

Bit1 CPOL: Clock polarity

0: CK to 0 when idle
1: CK to 1 when idle

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode except the case when CRC is applied
at TI mode.

Bit 0 CPHA: Clock phase

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode except the case when CRC is applied
at TI mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TXEIE RXNEIE ERRIE FRF Res. SSOE TXDMAEN RXDMAEN

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TXEIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Bit 6 RXNEIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is
set.

Bit 5 ERRIE: Error interrupt enable

This bit controls the generation of an interrupt when an error condition occurs (OVR,
CRCERR, MODF, FRE in SPI mode, and UDR, OVR, FRE in I2S mode).
0: Error interrupt is masked
1: Error interrupt is enabled

Bit 4 FRF: Frame format

0: SPI Motorola mode
1 SPI TI mode

Note: This bit is not used in I2S mode.

Bit 3 Reserved. Forced to 0 by hardware.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

914/1040 RM0367 Rev 8

31.7.3 SPI status register (SPI_SR)

Address offset: 0x08

Reset value: 0x0002

Bit 2 SSOE: SS output enable

0: SS output is disabled in master mode and the cell can work in multimaster configuration
1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work
in a multimaster environment.

Note: This bit is not used in I2S mode and SPI TI mode.

Bit 1 TXDMAEN: Tx buffer DMA enable

When this bit is set, the DMA request is made whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled

Bit 0 RXDMAEN: Rx buffer DMA enable

When this bit is set, the DMA request is made whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. FRE BSY OVR MODF
CRC
ERR

UDR CHSIDE TXE RXNE

r r r r rc_w0 r r r r

Bits 15:9 Reserved. Forced to 0 by hardware.

Bit 8 FRE: Frame Error

0: No frame error
1: Frame error occurred.
This bit is set by hardware and cleared by software when the SPI_SR register is read.
This bit is used in SPI TI mode or in I2S mode whatever the audio protocol selected. It
detects a change on NSS or WS line which takes place in slave mode at a non expected
time, informing about a desynchronization between the external master device and the
slave.

Bit 7 BSY: Busy flag

0: SPI (or I2S) not busy
1: SPI (or I2S) is busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.

Note: BSY flag must be used with caution: refer to Section 31.3.12: SPI status flags and
Section 31.3.10: Procedure for disabling the SPI.

Bit 6 OVR: Overrun flag

0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 31.3.13: SPI
error flags for the software sequence.

RM0367 Rev 8 915/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

Bit 5 MODF: Mode fault

0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 31.4 on
page 890 for the software sequence.

Note: This bit is not used in I2S mode

Bit 4 CRCERR: CRC error flag

0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Note: This bit is not used in I2S mode.

Bit 3 UDR: Underrun flag

0: No underrun occurred
1: Underrun occurred

This flag is set by hardware and reset by a software sequence. Refer to Section 31.6.8: I2S
error flags for the software sequence.

Note: This bit is not used in SPI mode.

Bit 2 CHSIDE: Channel side

0: Channel Left has to be transmitted or has been received
1: Channel Right has to be transmitted or has been received

Note: This bit is not used for SPI mode and is meaningless in PCM mode.

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty

0: Rx buffer empty
1: Rx buffer not empty

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

916/1040 RM0367 Rev 8

31.7.4 SPI data register (SPI_DR)

Address offset: 0x0C

Reset value: 0x0000

31.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S
mode)

Address offset: 0x10

Reset value: 0x0007

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DR[15:0]: Data register

Data received or to be transmitted.
The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for
reading (Receive buffer). A write to the data register will write into the Tx buffer and a read
from the data register will return the value held in the Rx buffer.

Note: These notes apply to SPI mode:

Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data
sent or received is either 8-bit or 16-bit. This selection has to be made before enabling
the SPI to ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register
(SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of
the register (SPI_DR[15:8]) is forced to 0.

For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is
used for transmission/reception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCPOLY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CRCPOLY[15:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.

Note: These bits are not used for the I2S mode.

RM0367 Rev 8 917/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode)

Address offset: 0x14

Reset value: 0x0000

31.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode)

Address offset: 0x18

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RXCRC[15:0]: Rx CRC register

When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of
the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1
register is written to 1. The CRC is calculated serially using the polynomial programmed in
the SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY Flag is set could return an incorrect value.These
bits are not used for I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 TXCRC[15:0]: Tx CRC register

When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of
the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1
is written to 1. The CRC is calculated serially using the polynomial programmed in the
SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY flag is set could return an incorrect value. These
bits are not used for I2S mode.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

918/1040 RM0367 Rev 8

31.7.8 SPI_I2S configuration register (SPI_I2SCFGR)

Address offset: 0x1C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. I2SMOD I2SE I2SCFG
PCMSY

NC
Res. I2SSTD CKPOL DATLEN CHLEN

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:12 Reserved, must be kept at reset value.

Bit 11 I2SMOD: I2S mode selection

0: SPI mode is selected
1: I2S mode is selected

Note: This bit should be configured when the SPI or I2S is disabled

Bit 10 I2SE: I2S Enable

0: I2S peripheral is disabled
1: I2S peripheral is enabled

Note: This bit is not used in SPI mode.

Bits 9:8 I2SCFG: I2S configuration mode

00: Slave - transmit
01: Slave - receive
10: Master - transmit
11: Master - receive

Note: This bit should be configured when the I2S is disabled.

It is not used in SPI mode.

Bit 7 PCMSYNC: PCM frame synchronization

0: Short frame synchronization
1: Long frame synchronization

Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used)

It is not used in SPI mode.

Bit 6 Reserved: forced at 0 by hardware

Bits 5:4 I2SSTD: I2S standard selection

00: I2S Philips standard.
01: MSB justified standard (left justified)
10: LSB justified standard (right justified)
11: PCM standard

For more details on I2S standards, refer to Section 31.6.3 on page 896. Not used in SPI mode.

Note: For correct operation, these bits should be configured when the I2S is disabled.

RM0367 Rev 8 919/1040

RM0367 Serial peripheral interface/ inter-IC sound (SPI/I2S)

920

31.7.9 SPI_I2S prescaler register (SPI_I2SPR)

Address offset: 0x20

Reset value: 0000 0010 (0x0002)

Bit 3 CKPOL: Steady state clock polarity

0: I2S clock steady state is low level
1: I2S clock steady state is high level

Note: For correct operation, this bit should be configured when the I2S is disabled.

This bit is not used in SPI mode

Bits 2:1 DATLEN: Data length to be transferred

00: 16-bit data length
01: 24-bit data length
10: 32-bit data length
11: Not allowed

Note: For correct operation, these bits should be configured when the I2S is disabled.

This bit is not used in SPI mode.

Bit 0 CHLEN: Channel length (number of bits per audio channel)

0: 16-bit wide
1: 32-bit wide
The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to
32-bit by hardware whatever the value filled in. Not used in SPI mode.

Note: For correct operation, this bit should be configured when the I2S is disabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. MCKOE ODD I2SDIV

rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 MCKOE: Master clock output enable

0: Master clock output is disabled
1: Master clock output is enabled

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

This bit is not used in SPI mode.

Bit 8 ODD: Odd factor for the prescaler

0: real divider value is = I2SDIV *2
1: real divider value is = (I2SDIV * 2)+1

Refer to Section 31.6.4 on page 903. Not used in SPI mode.

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

Bits 7:0 I2SDIV: I2S Linear prescaler

I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values.
Refer to Section 31.6.4 on page 903. Not used in SPI mode.

Note: These bits should be configured when the I2S is disabled. It is used only when the I2S is in
master mode.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0367

920/1040 RM0367 Rev 8

31.7.10 SPI register map

The table provides shows the SPI register map and reset values.

Refer to Section 2.2 on page 58 for the register boundary addresses.

Table 160. SPI register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N
C

R
C

N
E

X
T

D
F

F
R

X
O

N
LY

S
S

M
S

S
I

LS
B

F
IR

S
T

S
P

E BR
[2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

T
X

E
IE

R
X

N
E

IE
E

R
R

IE
F

R
F

R
es

.
S

S
O

E
T

X
D

M
A

E
N

R
X

D
M

A
E

N

Reset value 0 0 0 0 0 0 0

0x08
SPI_SR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
F

R
E

B
S

Y
O

V
R

M
O

D
F

C
R

C
E

R
R

U
D

R
C

H
S

ID
E

T
X

E
R

X
N

E

Reset value 0 0 0 0 0 0 0 1 0

0x0C
SPI_DR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

DR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

CRCPOLY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. RxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

TxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
SPI_I2SCFGR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

I2
S

M
O

D
I2

S
E

I2
S

C
F

G

P
C

M
S

Y
N

C
R

es
.

I2
S

S
T

D

C
K

P
O

L

D
A

T
L

E
N

C
H

L
E

N

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x20
SPI_I2SPR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

M
C

K
O

E
O

D
D I2SDIV

Reset value 0 0 0 0 0 0 0 0 1 0

RM0367 Rev 8 921/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

32 Universal serial bus full-speed device interface (USB)

32.1 Introduction

The USB peripheral implements an interface between a full-speed USB 2.0 bus and the
APB bus.

USB suspend/resume are supported, which allows to stop the device clocks for low-power
consumption.

32.2 USB main features

• USB specification version 2.0 full-speed compliant

• Configurable number of endpoints from 1 to 8

• Dedicated packet buffer memory (SRAM) of 1024 bytes

• Cyclic redundancy check (CRC) generation/checking, Non-return-to-zero Inverted
(NRZI) encoding/decoding and bit-stuffing

• Isochronous transfers support

• Double-buffered bulk/isochronous endpoint support

• USB Suspend/Resume operations

• Frame locked clock pulse generation

• USB 2.0 Link Power Management support

• Battery Charging Specification Revision 1.2 support

• USB connect / disconnect capability (controllable embedded pull-up resistor on
USB_DP line)

32.3 USB implementation

Table 161 describes the USB implementation in the devices.

Table 161. STM32L0x3 USB implementation

USB features(1)

1. X= supported

USB

Number of endpoints 8

Size of dedicated packet buffer memory SRAM 1024 bytes

Dedicated packet buffer memory SRAM access scheme 2 x 16 bits / word

USB 2.0 Link Power Management (LPM) support X

Battery Charging Detection (BCD) support X

Embedded pull-up resistor on USB_DP line X

Universal serial bus full-speed device interface (USB) RM0367

922/1040 RM0367 Rev 8

32.4 USB functional description

Figure 313 shows the block diagram of the USB peripheral.

Figure 313. USB peripheral block diagram

The USB peripheral provides an USB-compliant connection between the host PC and the
function implemented by the microcontroller. Data transfer between the host PC and the
system memory occurs through a dedicated packet buffer memory accessed directly by the
USB peripheral. This dedicated memory size is 1024 bytes, and up to 16 mono-directional
or 8 bidirectional endpoints can be used. The USB peripheral interfaces with the USB host,
detecting token packets, handling data transmission/reception, and processing handshake
packets as required by the USB standard. Transaction formatting is performed by the
hardware, including CRC generation and checking.

Each endpoint is associated with a buffer description block indicating where the
endpoint-related memory area is located, how large it is or how many bytes must be
transmitted. When a token for a valid function/endpoint pair is recognized by the USB
peripheral, the related data transfer (if required and if the endpoint is configured) takes

Control

MSv32120V2

S.I.E.

USB clock
(48 MHz)

DP

USB PHY

Register
mapper

APB interface

PCLK APB bus IRQs to NVIC

Arbiter
Packet
buffer

memory

Register
mapper

Control
registers and logic

Interrupt
registers and logic

Endpoint
registers

Endpoint
registers

Endpoint
selection

Clock
recoveryRX-TX

Suspend
timer

Packet
buffer

interface

Analog
transceiver

DM

Interrupt
mapper

APB wrapper

BCDEmbedded
pull-up

NOE

PCLK

RM0367 Rev 8 923/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

place. The data buffered by the USB peripheral is loaded in an internal 16-bit register and
memory access to the dedicated buffer is performed. When all the data has been
transferred, if needed, the proper handshake packet over the USB is generated or expected
according to the direction of the transfer.

At the end of the transaction, an endpoint-specific interrupt is generated, reading status
registers and/or using different interrupt response routines. The microcontroller can
determine:

• which endpoint has to be served,

• which type of transaction took place, if errors occurred (bit stuffing, format, CRC,
protocol, missing ACK, over/underrun, etc.).

Special support is offered to isochronous transfers and high throughput bulk transfers,
implementing a double buffer usage, which allows to always have an available buffer for the
USB peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control
register, whenever required. At this time, all static power dissipation is avoided, and the USB
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in
low-power mode, wakes the device up asynchronously. A special interrupt source can be
connected directly to a wakeup line to allow the system to immediately restart the normal
clock generation and/or support direct clock start/stop.

32.4.1 Description of USB blocks

The USB peripheral implements all the features related to USB interfacing, which include
the following blocks:

• USB Physical Interface (USB PHY): This block is maintaining the electrical interface to
an external USB host. It contains the differential analog transceiver itself, controllable
embedded pull-up resistor (connected to USB_DP line) and support for Battery
Charging Detection (BCD), multiplexed on same USB_DP and USB_DM lines. The
output enable control signal of the analog transceiver (active low) is provided externally
on USB_NOE. It can be used to drive some activity LED or to provide information about
the actual communication direction to some other circuitry.

• Serial Interface Engine (SIE): The functions of this block include: synchronization
pattern recognition, bit-stuffing, CRC generation and checking, PID
verification/generation, and handshake evaluation. It must interface with the USB
transceivers and uses the virtual buffers provided by the packet buffer interface for
local data storage. This unit also generates signals according to USB peripheral
events, such as Start of Frame (SOF), USB_Reset, Data errors etc. and to Endpoint
related events like end of transmission or correct reception of a packet; these signals
are then used to generate interrupts.

• Timer: This block generates a start-of-frame locked clock pulse and detects a global
suspend (from the host) when no traffic has been received for 3 ms.

• Packet Buffer Interface: This block manages the local memory implementing a set of
buffers in a flexible way, both for transmission and reception. It can choose the proper
buffer according to requests coming from the SIE and locate them in the memory
addresses pointed by the Endpoint registers. It increments the address after each
exchanged byte until the end of packet, keeping track of the number of exchanged
bytes and preventing the buffer to overrun the maximum capacity.

Universal serial bus full-speed device interface (USB) RM0367

924/1040 RM0367 Rev 8

• Endpoint-Related Registers: Each endpoint has an associated register containing the
endpoint type and its current status. For mono-directional/single-buffer endpoints, a
single register can be used to implement two distinct endpoints. The number of
registers is 8, allowing up to 16 mono-directional/single-buffer or up to 7 double-buffer
endpoints in any combination. For example the USB peripheral can be programmed to
have 4 double buffer endpoints and 8 single-buffer/mono-directional endpoints.

• Control Registers: These are the registers containing information about the status of
the whole USB peripheral and used to force some USB events, such as resume and
power-down.

• Interrupt Registers: These contain the Interrupt masks and a record of the events. They
can be used to inquire an interrupt reason, the interrupt status or to clear the status of a
pending interrupt.

Note: * Endpoint 0 is always used for control transfer in single-buffer mode.

The USB peripheral is connected to the APB bus through an APB interface, containing the
following blocks:

• Packet Memory: This is the local memory that physically contains the Packet Buffers. It
can be used by the Packet Buffer interface, which creates the data structure and can
be accessed directly by the application software. The size of the Packet Memory is
1024 bytes, structured as 512 half-words of 16 bits.

• Arbiter: This block accepts memory requests coming from the APB bus and from the
USB interface. It resolves the conflicts by giving priority to APB accesses, while always
reserving half of the memory bandwidth to complete all USB transfers. This time-duplex
scheme implements a virtual dual-port SRAM that allows memory access, while an
USB transaction is happening. Multiword APB transfers of any length are also allowed
by this scheme.

• Register Mapper: This block collects the various byte-wide and bit-wide registers of the
USB peripheral in a structured 16-bit wide half-word set addressed by the APB.

• APB Wrapper: This provides an interface to the APB for the memory and register. It
also maps the whole USB peripheral in the APB address space.

• Interrupt Mapper: This block is used to select how the possible USB events can
generate interrupts and map them to the NVIC.

32.5 Programming considerations

In the following sections, the expected interactions between the USB peripheral and the
application program are described, in order to ease application software development.

32.5.1 Generic USB device programming

This part describes the main tasks required of the application software in order to obtain
USB compliant behavior. The actions related to the most general USB events are taken into
account and paragraphs are dedicated to the special cases of double-buffered endpoints
and Isochronous transfers. Apart from system reset, action is always initiated by the USB
peripheral, driven by one of the USB events described below.

RM0367 Rev 8 925/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

32.5.2 System and power-on reset

Upon system and power-on reset, the first operation the application software should perform
is to provide all required clock signals to the USB peripheral and subsequently de-assert its
reset signal so to be able to access its registers. The whole initialization sequence is
hereafter described.

As a first step application software needs to activate register macrocell clock and de-assert
macrocell specific reset signal using related control bits provided by device clock
management logic.

After that, the analog part of the device related to the USB transceiver must be switched on
using the PDWN bit in CNTR register, which requires a special handling. This bit is intended
to switch on the internal voltage references that supply the port transceiver. This circuit has
a defined startup time (tSTARTUP specified in the datasheet) during which the behavior of the
USB transceiver is not defined. It is thus necessary to wait this time, after setting the PDWN
bit in the CNTR register, before removing the reset condition on the USB part (by clearing
the FRES bit in the CNTR register). Clearing the ISTR register then removes any spurious
pending interrupt before any other macrocell operation is enabled.

At system reset, the microcontroller must initialize all required registers and the packet
buffer description table, to make the USB peripheral able to properly generate interrupts and
data transfers. All registers not specific to any endpoint must be initialized according to the
needs of application software (choice of enabled interrupts, chosen address of packet
buffers, etc.). Then the process continues as for the USB reset case (see further
paragraph).

USB reset (RESET interrupt)

When this event occurs, the USB peripheral is put in the same conditions it is left by the
system reset after the initialization described in the previous paragraph: communication is
disabled in all endpoint registers (the USB peripheral will not respond to any packet). As a
response to the USB reset event, the USB function must be enabled, having as USB
address 0, implementing only the default control endpoint (endpoint address is 0 too). This
is accomplished by setting the Enable Function (EF) bit of the USB_DADDR register and
initializing the EP0R register and its related packet buffers accordingly. During USB
enumeration process, the host assigns a unique address to this device, which must be
written in the ADD[6:0] bits of the USB_DADDR register, and configures any other
necessary endpoint.

When a RESET interrupt is received, the application software is responsible to enable again
the default endpoint of USB function 0 within 10 ms from the end of reset sequence which
triggered the interrupt.

Structure and usage of packet buffers

Each bidirectional endpoint may receive or transmit data from/to the host. The received data
is stored in a dedicated memory buffer reserved for that endpoint, while another memory
buffer contains the data to be transmitted by the endpoint. Access to this memory is
performed by the packet buffer interface block, which delivers a memory access request
and waits for its acknowledgment. Since the packet buffer memory has to be accessed by
the microcontroller also, an arbitration logic takes care of the access conflicts, using half
APB cycle for microcontroller access and the remaining half for the USB peripheral access.
In this way, both the agents can operate as if the packet memory is a dual-port SRAM,
without being aware of any conflict even when the microcontroller is performing back-to-

Universal serial bus full-speed device interface (USB) RM0367

926/1040 RM0367 Rev 8

back accesses. The USB peripheral logic uses a dedicated clock. The frequency of this
dedicated clock is fixed by the requirements of the USB standard at 48 MHz, and this can be
different from the clock used for the interface to the APB bus. Different clock configurations
are possible where the APB clock frequency can be higher or lower than the USB peripheral
one.

Note: Due to USB data rate and packet memory interface requirements, the APB clock must have
a minimum frequency of 10 MHz to avoid data overrun/underrun problems.

Each endpoint is associated with two packet buffers (usually one for transmission and the
other one for reception). Buffers can be placed anywhere inside the packet memory
because their location and size is specified in a buffer description table, which is also
located in the packet memory at the address indicated by the USB_BTABLE register. Each
table entry is associated to an endpoint register and it is composed of four 16-bit half-words
so that table start address must always be aligned to an 8-byte boundary (the lowest three
bits of USB_BTABLE register are always “000”). Buffer descriptor table entries are
described in the Section 32.6.2: Buffer descriptor table. If an endpoint is unidirectional and it
is neither an Isochronous nor a double-buffered bulk, only one packet buffer is required (the
one related to the supported transfer direction). Other table locations related to unsupported
transfer directions or unused endpoints, are available to the user. Isochronous and double-
buffered bulk endpoints have special handling of packet buffers (Refer to Section 32.5.4:
Isochronous transfers and Section 32.5.3: Double-buffered endpoints respectively). The
relationship between buffer description table entries and packet buffer areas is depicted in
Figure 314.

Figure 314. Packet buffer areas with examples of buffer description table locations

MSv32129V1

0001_1110 (1E) COUNT3_TX_1
ADDR3_TX_1

COUNT3_TX_0
ADDR3_TX_0

COUNT2_RX_1
ADDR2_RX_1

COUNT2_RX_0
ADDR2_RX_0
COUNT1_RX
ADDR1_RX

COUNT1_TX
ADDR1_TX

COUNT0_RX
ADDR0_RX

COUNT0_TX
ADDR0_TX

0001_1100 (1C)
0001_1010 (1A)
0001_1000 (18)
0001_0110 (16)
0001_0100 (14)
0001_0010 (12)
0001_0000 (10)
0000_1110 (0E)
0000_1100 (0C)
0000_1010 (0A)
0000_1000 (08)
0000_0110 (06)
0000_0100 (04)
0000_0010 (02)
0000_0000 (00)

Buffer description table locations

Buffer for
double-buffered
IN Endpoint 3

Buffer for
double-buffered
OUT Endpoint 2

Transmission
buffer for

single-buffered
Endpoint 1

Reception buffer
for

Endpoint 0

Transmission
buffer for

Endpoint 0

Packet buffers

RM0367 Rev 8 927/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received
(buffer overrun condition) the data will be copied to the memory only up to the last available
location.

Endpoint initialization

The first step to initialize an endpoint is to write appropriate values to the
ADDRn_TX/ADDRn_RX registers so that the USB peripheral finds the data to be
transmitted already available and the data to be received can be buffered. The EP_TYPE
bits in the USB_EPnR register must be set according to the endpoint type, eventually using
the EP_KIND bit to enable any special required feature. On the transmit side, the endpoint
must be enabled using the STAT_TX bits in the USB_EPnR register and COUNTn_TX must
be initialized. For reception, STAT_RX bits must be set to enable reception and
COUNTn_RX must be written with the allocated buffer size using the BL_SIZE and
NUM_BLOCK fields. Unidirectional endpoints, except Isochronous and double-buffered bulk
endpoints, need to initialize only bits and registers related to the supported direction. Once
the transmission and/or reception are enabled, register USB_EPnR and locations
ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified
by the application software, as the hardware can change their value on the fly. When the
data transfer operation is completed, notified by a CTR interrupt event, they can be
accessed again to re-enable a new operation.

IN packets (data transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint, the USB peripheral accesses the contents of ADDRn_TX and COUNTn_TX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of these locations is stored in its internal 16 bit registers ADDR and COUNT (not
accessible by software). The packet memory is accessed again to read the first byte to be
transmitted (Refer to Structure and usage of packet buffers on page 925) and starts sending
a DATA0 or DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is
completed, the first byte, read from buffer memory, is loaded into the output shift register to
be transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is
sent. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent
instead of the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each half-word
read from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRn_TX for COUNTn_TX/2 half-words. If a transmitted packet is composed of an odd
number of bytes, only the lower half of the last half-word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the
following way: DTOG_TX bit is toggled, the endpoint is made invalid by setting
STAT_TX=10 (NAK) and bit CTR_TX is set. The application software must first identify the
endpoint, which is requesting microcontroller attention by examining the EP_ID and DIR bits
in the USB_ISTR register. Servicing of the CTR_TX event starts clearing the interrupt bit;
the application software then prepares another buffer full of data to be sent, updates the
COUNTn_TX table location with the number of byte to be transmitted during the next
transfer, and finally sets STAT_TX to ‘11 (VALID) to re-enable transmissions. While the
STAT_TX bits are equal to ‘10 (NAK), any IN request addressed to that endpoint is NAKed,

Universal serial bus full-speed device interface (USB) RM0367

928/1040 RM0367 Rev 8

indicating a flow control condition: the USB host will retry the transaction until it succeeds. It
is mandatory to execute the sequence of operations in the above mentioned order to avoid
losing the notification of a second IN transaction addressed to the same endpoint
immediately following the one which triggered the CTR interrupt.

OUT and SETUP packets (data reception)

These two tokens are handled by the USB peripheral more or less in the same way; the
differences in the handling of SETUP packets are detailed in the following paragraph about
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid
endpoint, the USB peripheral accesses the contents of the ADDRn_RX and COUNTn_RX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within
COUNTn_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is
used to check the buffer overrun condition (all these internal registers are not accessible by
software). Data bytes subsequently received by the USB peripheral are packed in half-
words (the first byte received is stored as least significant byte) and then transferred to the
packet buffer starting from the address contained in the internal ADDR register while
BUF_COUNT is decremented and COUNT is incremented at each byte transfer. When the
end of DATA packet is detected, the correctness of the received CRC is tested and only if no
errors occurred during the reception, an ACK handshake packet is sent back to the
transmitting host.

In case of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.), data
bytes are still copied in the packet memory buffer, at least until the error detection point, but
ACK packet is not sent and the ERR bit in USB_ISTR register is set. However, there is
usually no software action required in this case: the USB peripheral recovers from reception
errors and remains ready for the next transaction to come. If the addressed endpoint is not
valid, a NAK or STALL handshake packet is sent instead of the ACK, according to bits
STAT_RX in the USB_EPnR register and no data is written in the reception memory buffers.

Reception memory buffer locations are written starting from the address contained in the
ADDRn_RX for a number of bytes corresponding to the received data packet length, CRC
included (i.e. data payload length + 2), or up to the last allocated memory location, as
defined by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB
peripheral never writes beyond the end of the allocated reception memory buffer area. If the
length of the data packet payload (actual number of bytes used by the application) is greater
than the allocated buffer, the USB peripheral detects a buffer overrun condition. in this case,
a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no
interrupt is generated and the transaction is considered failed.

When the transaction is completed correctly, by sending the ACK handshake packet, the
internal COUNT register is copied back in the COUNTn_RX location inside the buffer
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which
normally do not require to be re-written, and the USB_EPnR register is updated in the
following way: DTOG_RX bit is toggled, the endpoint is made invalid by setting STAT_RX =
‘10 (NAK) and bit CTR_RX is set. If the transaction has failed due to errors or buffer overrun
condition, none of the previously listed actions take place. The application software must
first identify the endpoint, which is requesting microcontroller attention by examining the
EP_ID and DIR bits in the USB_ISTR register. The CTR_RX event is serviced by first
determining the transaction type (SETUP bit in the USB_EPnR register); the application
software must clear the interrupt flag bit and get the number of received bytes reading the
COUNTn_RX location inside the buffer description table entry related to the endpoint being

RM0367 Rev 8 929/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

processed. After the received data is processed, the application software should set the
STAT_RX bits to ‘11 (Valid) in the USB_EPnR, enabling further transactions. While the
STAT_RX bits are equal to ‘10 (NAK), any OUT request addressed to that endpoint is
NAKed, indicating a flow control condition: the USB host will retry the transaction until it
succeeds. It is mandatory to execute the sequence of operations in the above mentioned
order to avoid losing the notification of a second OUT transaction addressed to the same
endpoint following immediately the one which triggered the CTR interrupt.

Control transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages,
all of the same direction, followed by a status stage (a zero-byte transfer in the opposite
direction). SETUP transactions are handled by control endpoints only and are very similar to
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the
addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer,
and both STAT_TX and STAT_RX are set to ‘10 (NAK) to let software decide if subsequent
transactions must be IN or OUT depending on the SETUP contents. A control endpoint must
check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish normal
OUT transactions from SETUP ones. A USB device can determine the number and
direction of data stages by interpreting the data transferred in the SETUP stage, and is
required to STALL the transaction in the case of errors. To do so, at all data stages before
the last, the unused direction should be set to STALL, so that, if the host reverses the
transfer direction too soon, it gets a STALL as a status stage.

While enabling the last data stage, the opposite direction should be set to NAK, so that, if
the host reverses the transfer direction (to perform the status stage) immediately, it is kept
waiting for the completion of the control operation. If the control operation completes
successfully, the software will change NAK to VALID, otherwise to STALL. At the same time,
if the status stage will be an OUT, the STATUS_OUT (EP_KIND in the USB_EPnR register)
bit should be set, so that an error is generated if a status transaction is performed with not-
zero data. When the status transaction is serviced, the application clears the STATUS_OUT
bit and sets STAT_RX to VALID (to accept a new command) and STAT_TX to NAK (to delay
a possible status stage immediately following the next setup).

Since the USB specification states that a SETUP packet cannot be answered with a
handshake different from ACK, eventually aborting a previously issued command to start
the new one, the USB logic doesn’t allow a control endpoint to answer with a NAK or STALL
packet to a SETUP token received from the host.

When the STAT_RX bits are set to ‘01 (STALL) or ‘10 (NAK) and a SETUP token is
received, the USB accepts the data, performing the required data transfers and sends back
an ACK handshake. If that endpoint has a previously issued CTR_RX request not yet
acknowledged by the application (i.e. CTR_RX bit is still set from a previously completed
reception), the USB discards the SETUP transaction and does not answer with any
handshake packet regardless of its state, simulating a reception error and forcing the host to
send the SETUP token again. This is done to avoid losing the notification of a SETUP
transaction addressed to the same endpoint immediately following the transaction, which
triggered the CTR_RX interrupt.

Universal serial bus full-speed device interface (USB) RM0367

930/1040 RM0367 Rev 8

32.5.3 Double-buffered endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When
large portions of data are to be transferred between the host PC and the USB function, the
bulk endpoint type is the most suited model. This is because the host schedules bulk
transactions so as to fill all the available bandwidth in the frame, maximizing the actual
transfer rate as long as the USB function is ready to handle a bulk transaction addressed to
it. If the USB function is still busy with the previous transaction when the next one arrives, it
will answer with a NAK handshake and the host PC will issue the same transaction again
until the USB function is ready to handle it, reducing the actual transfer rate due to the
bandwidth occupied by re-transmissions. For this reason, a dedicated feature called
‘double-buffering’ can be used with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer
is to be used by the USB peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the
application, while the USB peripheral fills the other one. For example, during an OUT
transaction directed to a ‘reception’ double-buffered bulk endpoint, while one buffer is being
filled with new data coming from the USB host, the other one is available for the
microcontroller software usage (the same would happen with a ‘transmission’ double-
buffered bulk endpoint and an IN transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be
used as unidirectional ones. Therefore, only one STAT bit pair must be set at a value
different from ‘00 (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for
reception, STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In
case it is required to have double-buffered bulk endpoints enabled both for reception and
transmission, two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order
to switch the endpoint status to NAK only when a buffer conflict occurs between the USB
peripheral and application software, instead of doing it at the end of each successful
transaction. The memory buffer which is currently being used by the USB peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow
control scheme, the USB peripheral should know which packet buffer is currently in use by
the application software, so to be aware of any conflict. Since in the USB_EPnR register,
there are two DTOG bits but only one is used by USB peripheral for data and buffer
sequencing (due to the unidirectional constraint required by double-buffering feature) the
other one can be used by the application software to show which buffer it is currently using.
This new buffer flag is called SW_BUF. In the following table the correspondence between
USB_EPnR register bits and DTOG/SW_BUF definition is explained, for the cases of
‘transmission’ and ‘reception’ double-buffered bulk endpoints.

RM0367 Rev 8 931/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

The memory buffer which is currently being used by the USB peripheral is defined by DTOG
buffer flag, while the buffer currently in use by application software is identified by SW_BUF
buffer flag. The relationship between the buffer flag value and the used packet buffer is the
same in both cases, and it is listed in the following table.

Double-buffering feature for a bulk endpoint is activated by:

• Writing EP_TYPE bit field at ‘00 in its USB_EPnR register, to define the endpoint as a
bulk, and

• Setting EP_KIND bit at ‘1 (DBL_BUF), in the same register.

The application software is responsible for DTOG and SW_BUF bits initialization according
to the first buffer to be used; this has to be done considering the special toggle-only property
that these two bits have. The end of the first transaction occurring after having set
DBL_BUF, triggers the special flow control of double-buffered bulk endpoints, which is used
for all other transactions addressed to this endpoint until DBL_BUF remain set. At the end of
each transaction the CTR_RX or CTR_TX bit of the addressed endpoint USB_EPnR
register is set, depending on the enabled direction. At the same time, the affected DTOG bit
in the USB_EPnR register is hardware toggled making the USB peripheral buffer swapping
completely software independent. Unlike common transactions, and the first one after

Table 162. Double-buffering buffer flag definition

Buffer flag ‘Transmission’ endpoint ‘Reception’ endpoint

DTOG DTOG_TX (USB_EPnR bit 6) DTOG_RX (USB_EPnR bit 14)

SW_BUF USB_EPnR bit 14 USB_EPnR bit 6

Table 163. Bulk double-buffering memory buffers usage

Endpoint
type

DTOG SW_BUF
Packet buffer used by

USB peripheral
Packet buffer used by
Application Software

IN

0 1
ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations.

1 0
ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

0 0 None (1)

1. Endpoint in NAK Status.

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

1 1 None (1) ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

OUT

0 1
ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

1 0
ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

0 0 None (1) ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

1 1 None (1) ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

Universal serial bus full-speed device interface (USB) RM0367

932/1040 RM0367 Rev 8

DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value
remains ‘11 (Valid). However, as the token packet of a new transaction is received, the
actual endpoint status will be masked as ‘10 (NAK) when a buffer conflict between the USB
peripheral and the application software is detected (this condition is identified by DTOG and
SW_BUF having the same value, see Table 163 on page 931). The application software
responds to the CTR event notification by clearing the interrupt flag and starting any
required handling of the completed transaction. When the application packet buffer usage is
over, the software toggles the SW_BUF bit, writing ‘1 to it, to notify the USB peripheral about
the availability of that buffer. In this way, the number of NAKed transactions is limited only by
the application elaboration time of a transaction data: if the elaboration time is shorter than
the time required to complete a transaction on the USB bus, no re-transmissions due to flow
control will take place and the actual transfer rate will be limited only by the host PC.

The application software can always override the special flow control implemented for
double-buffered bulk endpoints, writing an explicit status different from ‘11 (Valid) into the
STAT bit pair of the related USB_EPnR register. In this case, the USB peripheral will always
use the programmed endpoint status, regardless of the buffer usage condition.

32.5.4 Isochronous transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical
examples of this data are: audio samples, compressed video streams, and in general any
sort of sampled data having strict requirements for the accuracy of delivered frequency.
When an endpoint is defined to be ‘isochronous’ during the enumeration phase, the host
allocates in the frame the required bandwidth and delivers exactly one IN or OUT packet
each frame, depending on endpoint direction. To limit the bandwidth requirements, no re-
transmission of failed transactions is possible for Isochronous traffic; this leads to the fact
that an isochronous transaction does not have a handshake phase and no ACK packet is
expected or sent after the data packet. For the same reason, Isochronous transfers do not
support data toggle sequencing and always use DATA0 PID to start any data packet.

The Isochronous behavior for an endpoint is selected by setting the EP_TYPE bits at ‘10 in
its USB_EPnR register; since there is no handshake phase the only legal values for the
STAT_RX/STAT_TX bit pairs are ‘00 (Disabled) and ‘11 (Valid), any other value will produce
results not compliant to USB standard. Isochronous endpoints implement double-buffering
to ease application software development, using both ‘transmission’ and ‘reception’ packet
memory areas to manage buffer swapping on each successful transaction in order to have
always a complete buffer to be used by the application, while the USB peripheral fills the
other.

The memory buffer which is currently used by the USB peripheral is defined by the DTOG
bit related to the endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints,
DTOG_TX for ‘transmission’ isochronous endpoints, both in the related USB_EPnR
register) according to Table 164.

RM0367 Rev 8 933/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

As it happens with double-buffered bulk endpoints, the USB_EPnR registers used to
implement Isochronous endpoints are forced to be used as unidirectional ones. In case it is
required to have Isochronous endpoints enabled both for reception and transmission, two
USB_EPnR registers must be used.

The application software is responsible for the DTOG bit initialization according to the first
buffer to be used; this has to be done considering the special toggle-only property that these
two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed
endpoint USB_EPnR register is set, depending on the enabled direction. At the same time,
the affected DTOG bit in the USB_EPnR register is hardware toggled making buffer
swapping completely software independent. STAT bit pair is not affected by transaction
completion; since no flow control is possible for Isochronous transfers due to the lack of
handshake phase, the endpoint remains always ‘11 (Valid). CRC errors or buffer-overrun
conditions occurring during Isochronous OUT transfers are anyway considered as correct
transactions and they always trigger an CTR_RX event. However, CRC errors will anyway
set the ERR bit in the USB_ISTR register to notify the software of the possible data
corruption.

32.5.5 Suspend/Resume events

The USB standard defines a special peripheral state, called SUSPEND, in which the
average current drawn from the USB bus must not be greater than 2.5 mA. This
requirement is of fundamental importance for bus-powered devices, while self-powered
devices are not required to comply to this strict power consumption constraint. In suspend
mode, the host PC sends the notification by not sending any traffic on the USB bus for more
than 3 ms: since a SOF packet must be sent every 1 ms during normal operations, the USB
peripheral detects the lack of 3 consecutive SOF packets as a suspend request from the
host PC and set the SUSP bit to ‘1 in USB_ISTR register, causing an interrupt if enabled.
Once the device is suspended, its normal operation can be restored by a so called
RESUME sequence, which can be started from the host PC or directly from the peripheral
itself, but it is always terminated by the host PC. The suspended USB peripheral must be
anyway able to detect a RESET sequence, reacting to this event as a normal USB reset
event.

Table 164. Isochronous memory buffers usage

Endpoint
Type

DTOG bit
value

Packet buffer used by the
USB peripheral

Packet buffer used by the
application software

IN

0
ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

1
ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

OUT

0
ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

1
ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

Universal serial bus full-speed device interface (USB) RM0367

934/1040 RM0367 Rev 8

The actual procedure used to suspend the USB peripheral is device dependent since
according to the device composition, different actions may be required to reduce the total
consumption.

A brief description of a typical suspend procedure is provided below, focused on the USB-
related aspects of the application software routine responding to the SUSP notification of
the USB peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend
mode within the USB peripheral. As soon as the suspend mode is activated, the check
on SOF reception is disabled to avoid any further SUSP interrupts being issued while
the USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB
peripheral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in
the analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the
device.

When an USB event occurs while the device is in SUSPEND mode, the RESUME
procedure must be invoked to restore nominal clocks and regain normal USB behavior.
Particular care must be taken to insure that this process does not take more than 10 ms
when the wakening event is an USB reset sequence (See “Universal Serial Bus
Specification” for more details). The start of a resume or reset sequence, while the USB
peripheral is suspended, clears the LP_MODE bit in USB_CNTR register asynchronously.
Even if this event can trigger an WKUP interrupt if enabled, the use of an interrupt response
routine must be carefully evaluated because of the long latency due to system clock restart;
to have the shorter latency before re-activating the nominal clock it is suggested to put the
resume procedure just after the end of the suspend one, so its code is immediately
executed as soon as the system clock restarts. To prevent ESD discharges or any other kind
of noise from waking-up the system (the exit from suspend mode is an asynchronous
event), a suitable analog filter on data line status is activated during suspend; the filter width
is about 70 ns.

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and/or device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the
USB_FNR register can be used according to Table 165, which also lists the intended
software action in all the cases. If required, the end of resume or reset sequence can
be detected monitoring the status of the above mentioned bits by checking when they
reach the “10” configuration, which represent the Idle bus state; moreover at the end of
a reset sequence the RESET bit in USB_ISTR register is set to 1, issuing an interrupt if
enabled, which should be handled as usual.

Table 165. Resume event detection

[RXDP,RXDM] status Wakeup event Required resume software action

“00” Root reset None

“10” None (noise on bus) Go back in Suspend mode

RM0367 Rev 8 935/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

A device may require to exit from suspend mode as an answer to particular events not
directly related to the USB protocol (e.g. a mouse movement wakes up the whole system).
In this case, the resume sequence can be started by setting the RESUME bit in the
USB_CNTR register to ‘1 and resetting it to 0 after an interval between 1 ms and 15 ms (this
interval can be timed using ESOF interrupts, occurring with a 1 ms period when the system
clock is running at nominal frequency). Once the RESUME bit is clear, the resume
sequence will be completed by the host PC and its end can be monitored again using the
RXDP and RXDM bits in the USB_FNR register.

Note: The RESUME bit must be anyway used only after the USB peripheral has been put in
suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

“01” Root resume None

“11” Not allowed (noise on bus) Go back in Suspend mode

Table 165. Resume event detection (continued)

[RXDP,RXDM] status Wakeup event Required resume software action

Universal serial bus full-speed device interface (USB) RM0367

936/1040 RM0367 Rev 8

32.6 USB and USB SRAM registers

The USB peripheral registers can be divided into the following groups:

• Common Registers: Interrupt and Control registers

• Endpoint Registers: Endpoint configuration and status

The USB SRAM registers cover:

• Buffer Descriptor Table: Location of packet memory used to locate data buffers (see
Section 2.2: Memory organization to find USB SRAM base address).

All register addresses are expressed as offsets with respect to the USB peripheral registers
base address, except the buffer descriptor table locations, which starts at the USB SRAM
base address offset by the value specified in the USB_BTABLE register.

Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

32.6.1 Common registers

These registers affect the general behavior of the USB peripheral defining operating mode,
interrupt handling, device address and giving access to the current frame number updated
by the host PC.

USB control register (USB_CNTR)

Address offset: 0x40

Reset value: 0x0003

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR
M

PMAOVR
M

ERR
M

WKUP
M

SUSP
M

RESET
M

SOF
M

ESOF
M

L1REQ
M

Res
.

L1RESU
ME

RE
SUME

F
SUSP

LP_
MODE

PDW
N

F
RES

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CTRM: Correct transfer interrupt mask

0: Correct Transfer (CTR) Interrupt disabled.
1: CTR Interrupt enabled, an interrupt request is generated when the corresponding bit in the
USB_ISTR register is set.

Bit 14 PMAOVRM: Packet memory area over / underrun interrupt mask

0: PMAOVR Interrupt disabled.
1: PMAOVR Interrupt enabled, an interrupt request is generated when the corresponding bit
in the USB_ISTR register is set.

Bit 13 ERRM: Error interrupt mask

0: ERR Interrupt disabled.
1: ERR Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 12 WKUPM: Wakeup interrupt mask

0: WKUP Interrupt disabled.
1: WKUP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

RM0367 Rev 8 937/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

Bit 11 SUSPM: Suspend mode interrupt mask

0: Suspend Mode Request (SUSP) Interrupt disabled.
1: SUSP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 10 RESETM: USB reset interrupt mask

0: RESET Interrupt disabled.
1: RESET Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 9 SOFM: Start of frame interrupt mask

0: SOF Interrupt disabled.
1: SOF Interrupt enabled, an interrupt request is generated when the corresponding bit in the
USB_ISTR register is set.

Bit 8 ESOFM: Expected start of frame interrupt mask

0: Expected Start of Frame (ESOF) Interrupt disabled.
1: ESOF Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 7 L1REQM: LPM L1 state request interrupt mask

0: LPM L1 state request (L1REQ) Interrupt disabled.
1: L1REQ Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 6 Reserved, must be kept at reset value.

Bit 5 L1RESUME: LPM L1 Resume request

The microcontroller can set this bit to send a LPM L1 Resume signal to the host. After the
signaling ends, this bit is cleared by hardware.

Bit 4 RESUME: Resume request

The microcontroller can set this bit to send a Resume signal to the host. It must be activated,
according to USB specifications, for no less than 1 ms and no more than 15 ms after which
the Host PC is ready to drive the resume sequence up to its end.

Bit 3 FSUSP: Force suspend

Software must set this bit when the SUSP interrupt is received, which is issued when no
traffic is received by the USB peripheral for 3 ms.
0: No effect.
1: Enter suspend mode. Clocks and static power dissipation in the analog transceiver are left
unaffected. If suspend power consumption is a requirement (bus-powered device), the
application software should set the LP_MODE bit after FSUSP as explained below.

Bit 2 LP_MODE: Low-power mode

This mode is used when the suspend-mode power constraints require that all static power
dissipation is avoided, except the one required to supply the external pull-up resistor. This
condition should be entered when the application is ready to stop all system clocks, or
reduce their frequency in order to meet the power consumption requirements of the USB
suspend condition. The USB activity during the suspend mode (WKUP event)
asynchronously resets this bit (it can also be reset by software).
0: No Low-power mode.
1: Enter Low-power mode.

Universal serial bus full-speed device interface (USB) RM0367

938/1040 RM0367 Rev 8

USB interrupt status register (USB_ISTR)

Address offset: 0x44

Reset value: 0x0000 0000

This register contains the status of all the interrupt sources allowing application software to
determine, which events caused an interrupt request.

The upper part of this register contains single bits, each of them representing a specific
event. These bits are set by the hardware when the related event occurs; if the
corresponding bit in the USB_CNTR register is set, a generic interrupt request is generated.
The interrupt routine, examining each bit, will perform all necessary actions, and finally it will
clear the serviced bits. If any of them is not cleared, the interrupt is considered to be still
pending, and the interrupt line will be kept high again. If several bits are set simultaneously,
only a single interrupt will be generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt
response latency. The CTR bit is set by the hardware as soon as an endpoint successfully
completes a transaction, generating a generic interrupt request if the corresponding bit in
USB_CNTR is set. An endpoint dedicated interrupt condition is activated independently
from the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until
software clears the pending bit in the corresponding USB_EPnR register (the CTR bit is
actually a read only bit). For endpoint-related interrupts, the software can use the Direction
of Transaction (DIR) and EP_ID read-only bits to identify, which endpoint made the last
interrupt request and called the corresponding interrupt service routine.

The user can choose the relative priority of simultaneously pending USB_ISTR events by
specifying the order in which software checks USB_ISTR bits in an interrupt service routine.
Only the bits related to events, which are serviced, are cleared. At the end of the service
routine, another interrupt will be requested, to service the remaining conditions.

To avoid spurious clearing of some bits, it is recommended to clear them with a load
instruction where all bits which must not be altered are written with 1, and all bits to be
cleared are written with ‘0 (these bits can only be cleared by software). Read-modify-write
cycles should be avoided because between the read and the write operations another bit

Bit 1 PDWN: Power down

This bit is used to completely switch off all USB-related analog parts if it is required to
completely disable the USB peripheral for any reason. When this bit is set, the USB
peripheral is disconnected from the transceivers and it cannot be used.
0: Exit Power Down.
1: Enter Power down mode.

Bit 0 FRES: Force USB Reset

0: Clear USB reset.
1: Force a reset of the USB peripheral, exactly like a RESET signaling on the USB. The USB
peripheral is held in RESET state until software clears this bit. A “USB-RESET” interrupt is
generated, if enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR
PMA
OVR

ERR WKUP SUSP RESET SOF ESOF L1REQ Res. Res. DIR EP_ID[3:0]

r rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r

RM0367 Rev 8 939/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

could be set by the hardware and the next write will clear it before the microprocessor has
the time to serve the event.

The following describes each bit in detail:

Bit 15 CTR: Correct transfer

This bit is set by the hardware to indicate that an endpoint has successfully completed a
transaction; using DIR and EP_ID bits software can determine which endpoint requested the
interrupt. This bit is read-only.

Bit 14 PMAOVR: Packet memory area over / underrun

This bit is set if the microcontroller has not been able to respond in time to an USB memory
request. The USB peripheral handles this event in the following way: During reception an
ACK handshake packet is not sent, during transmission a bit-stuff error is forced on the
transmitted stream; in both cases the host will retry the transaction. The PMAOVR interrupt
should never occur during normal operations. Since the failed transaction is retried by the
host, the application software has the chance to speed-up device operations during this
interrupt handling, to be ready for the next transaction retry; however this does not happen
during Isochronous transfers (no isochronous transaction is anyway retried) leading to a loss
of data in this case. This bit is read/write but only ‘0 can be written and writing ‘1 has no
effect.

Bit 13 ERR: Error

This flag is set whenever one of the errors listed below has occurred:
NANS: No ANSwer. The timeout for a host response has expired.
CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the token or in
the data, was wrong.
BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID, data, and/or
CRC.
FVIO: Framing format Violation. A non-standard frame was received (EOP not in the right
place, wrong token sequence, etc.).
The USB software can usually ignore errors, since the USB peripheral and the PC host
manage retransmission in case of errors in a fully transparent way. This interrupt can be
useful during the software development phase, or to monitor the quality of transmission over
the USB bus, to flag possible problems to the user (e.g. loose connector, too noisy
environment, broken conductor in the USB cable and so on). This bit is read/write but only ‘0
can be written and writing ‘1 has no effect.

Bit 12 WKUP: Wakeup

This bit is set to 1 by the hardware when, during suspend mode, activity is detected that
wakes up the USB peripheral. This event asynchronously clears the LP_MODE bit in the
CTLR register and activates the USB_WAKEUP line, which can be used to notify the rest of
the device (e.g. wakeup unit) about the start of the resume process. This bit is read/write but
only ‘0 can be written and writing ‘1 has no effect.

Bit 11 SUSP: Suspend mode request

This bit is set by the hardware when no traffic has been received for 3 ms, indicating a
suspend mode request from the USB bus. The suspend condition check is enabled
immediately after any USB reset and it is disabled by the hardware when the suspend mode
is active (FSUSP=1) until the end of resume sequence. This bit is read/write but only ‘0 can
be written and writing ‘1 has no effect.

Universal serial bus full-speed device interface (USB) RM0367

940/1040 RM0367 Rev 8

Bit 10 RESET: USB reset request

Set when the USB peripheral detects an active USB RESET signal at its inputs. The USB
peripheral, in response to a RESET, just resets its internal protocol state machine, generating
an interrupt if RESETM enable bit in the USB_CNTR register is set. Reception and
transmission are disabled until the RESET bit is cleared. All configuration registers do not
reset: the microcontroller must explicitly clear these registers (this is to ensure that the
RESET interrupt can be safely delivered, and any transaction immediately followed by a
RESET can be completed). The function address and endpoint registers are reset by an USB
reset event.
This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bit 9 SOF: Start of frame

This bit signals the beginning of a new USB frame and it is set when a SOF packet arrives
through the USB bus. The interrupt service routine may monitor the SOF events to have a
1 ms synchronization event to the USB host and to safely read the USB_FNR register which
is updated at the SOF packet reception (this could be useful for isochronous applications).
This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bit 8 ESOF: Expected start of frame

This bit is set by the hardware when an SOF packet is expected but not received. The host
sends an SOF packet each 1 ms, but if the device does not receive it properly, the Suspend
Timer issues this interrupt. If three consecutive ESOF interrupts are generated (i.e. three
SOF packets are lost) without any traffic occurring in between, a SUSP interrupt is
generated. This bit is set even when the missing SOF packets occur while the Suspend
Timer is not yet locked. This bit is read/write but only ‘0 can be written and writing ‘1 has no
effect.

Bit 7 L1REQ: LPM L1 state request

This bit is set by the hardware when LPM command to enter the L1 state is successfully
received and acknowledged. This bit is read/write but only ‘0 can be written and writing ‘1 has
no effect.

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 DIR: Direction of transaction

This bit is written by the hardware according to the direction of the successful transaction,
which generated the interrupt request.
If DIR bit=0, CTR_TX bit is set in the USB_EPnR register related to the interrupting endpoint.
The interrupting transaction is of IN type (data transmitted by the USB peripheral to the host
PC).
If DIR bit=1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR register
related to the interrupting endpoint. The interrupting transaction is of OUT type (data
received by the USB peripheral from the host PC) or two pending transactions are waiting to
be processed.
This information can be used by the application software to access the USB_EPnR bits
related to the triggering transaction since it represents the direction having the interrupt
pending. This bit is read-only.

RM0367 Rev 8 941/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

USB frame number register (USB_FNR)

Address offset: 0x48

Reset value: 0x0XXX where X is undefined

USB device address (USB_DADDR)

Address offset: 0x4C

Reset value: 0x0000

Bits 3:0 EP_ID[3:0]: Endpoint Identifier

These bits are written by the hardware according to the endpoint number, which generated
the interrupt request. If several endpoint transactions are pending, the hardware writes the
endpoint identifier related to the endpoint having the highest priority defined in the following
way: Two endpoint sets are defined, in order of priority: Isochronous and double-buffered
bulk endpoints are considered first and then the other endpoints are examined. If more than
one endpoint from the same set is requesting an interrupt, the EP_ID bits in USB_ISTR
register are assigned according to the lowest requesting endpoint register, EP0R having the
highest priority followed by EP1R and so on. The application software can assign a register
to each endpoint according to this priority scheme, so as to order the concurring endpoint
requests in a suitable way. These bits are read only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDP RXDM LCK LSOF[1:0] FN[10:0]

r r r r r r r r r r r r r r r r

Bit 15 RXDP: Receive data + line status

This bit can be used to observe the status of received data plus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 14 RXDM: Receive data - line status

This bit can be used to observe the status of received data minus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 13 LCK: Locked

This bit is set by the hardware when at least two consecutive SOF packets have been
received after the end of an USB reset condition or after the end of an USB resume
sequence. Once locked, the frame timer remains in this state until an USB reset or USB
suspend event occurs.

Bits 12:11 LSOF[1:0]: Lost SOF

These bits are written by the hardware when an ESOF interrupt is generated, counting the
number of consecutive SOF packets lost. At the reception of an SOF packet, these bits are
cleared.

Bits 10:0 FN[10:0]: Frame number

This bit field contains the 11-bits frame number contained in the last received SOF packet.
The frame number is incremented for every frame sent by the host and it is useful for
Isochronous transfers. This bit field is updated on the generation of an SOF interrupt.

Universal serial bus full-speed device interface (USB) RM0367

942/1040 RM0367 Rev 8

Buffer table address (USB_BTABLE)

Address offset: 0x50

Reset value: 0x0000

LPM control and status register (USB_LPMCSR)

Address offset: 0x54

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. EF ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved

Bit 7 EF: Enable function

This bit is set by the software to enable the USB device. The address of this device is
contained in the following ADD[6:0] bits. If this bit is at ‘0 no transactions are handled,
irrespective of the settings of USB_EPnR registers.

Bits 6:0 ADD[6:0]: Device address

These bits contain the USB function address assigned by the host PC during the
enumeration process. Both this field and the Endpoint Address (EA) field in the associated
USB_EPnR register must match with the information contained in a USB token in order to
handle a transaction to the required endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3] Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:3 BTABLE[15:3]: Buffer table

These bits contain the start address of the buffer allocation table inside the dedicated packet
memory. This table describes each endpoint buffer location and size and it must be aligned
to an 8 byte boundary (the 3 least significant bits are always ‘0). At the beginning of every
transaction addressed to this device, the USB peripheral reads the element of this table
related to the addressed endpoint, to get its buffer start location and the buffer size (Refer to
Structure and usage of packet buffers on page 925).

Bits 2:0 Reserved, forced by hardware to 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. BESL[3:0]
REM

WAKE
Res.

LPM
ACK

LPM
EN

r r r r r rw rw

RM0367 Rev 8 943/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

Battery charging detector (USB_BCDR)

Address offset: 0x58

Reset value: 0x0000

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:4 BESL[3:0]: BESL value

These bits contain the BESL value received with last ACKed LPM Token

Bit 3 REMWAKE: bRemoteWake value

This bit contains the bRemoteWake value received with last ACKed LPM Token

Bit 2 Reserved

Bit 1 LPMACK: LPM Token acknowledge enable

0: the valid LPM Token will be NYET.
1: the valid LPM Token will be ACK.
The NYET/ACK will be returned only on a successful LPM transaction:
No errors in both the EXT token and the LPM token (else ERROR)
A valid bLinkState = 0001B (L1) is received (else STALL)

Bit 0 LPMEN: LPM support enable

This bit is set by the software to enable the LPM support within the USB device. If this bit is
at ‘0 no LPM transactions are handled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DPPU Res. Res. Res. Res. Res. Res. Res.
PS2
DET

SDET PDET
DC
DET

SDEN PDEN
DCD
EN

BCD
EN

rw r r r r rw rw rw rw

Bit 15 DPPU: DP pull-up control

This bit is set by software to enable the embedded pull-up on the DP line. Clearing it to ‘0’
can be used to signalize disconnect to the host when needed by the user software.

Bits 14:8 Reserved, must be kept at reset value.

Bit 7 PS2DET: DM pull-up detection status

This bit is active only during PD and gives the result of comparison between DM voltage
level and VLGC threshold. In normal situation, the DM level should be below this threshold. If
it is above, it means that the DM is externally pulled high. This can be caused by connection
to a PS2 port (which pulls-up both DP and DM lines) or to some proprietary charger not
following the BCD specification.
0: Normal port detected (connected to SDP, ACA, CDP or DCP).
1: PS2 port or proprietary charger detected.

Bit 6 SDET: Secondary detection (SD) status

This bit gives the result of SD.
0: CDP detected.
1: DCP detected.

Bit 5 PDET: Primary detection (PD) status

This bit gives the result of PD.
0: no BCD support detected (connected to SDP or proprietary device).
1: BCD support detected (connected to ACA, CDP or DCP).

Universal serial bus full-speed device interface (USB) RM0367

944/1040 RM0367 Rev 8

Endpoint-specific registers

The number of these registers varies according to the number of endpoints that the USB
peripheral is designed to handle. The USB peripheral supports up to 8 bidirectional
endpoints. Each USB device must support a control endpoint whose address (EA bits) must
be set to 0. The USB peripheral behaves in an undefined way if multiple endpoints are
enabled having the same endpoint number value. For each endpoint, an USB_EPnR
register is available to store the endpoint specific information.

USB endpoint n register (USB_EPnR), n=[0..7]

Address offset: 0x00 to 0x1C

Reset value: 0x0000

They are also reset when an USB reset is received from the USB bus or forced through bit
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept
unchanged to avoid missing a correct packet notification immediately followed by an USB
reset event. Each endpoint has its USB_EPnR register where n is the endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read
and the write operations some bits could be set by the hardware and the next write would
modify them before the CPU has the time to detect the change. For this purpose, all bits
affected by this problem have an ‘invariant’ value that must be used whenever their
modification is not required. It is recommended to modify these registers with a load
instruction where all the bits, which can be modified only by the hardware, are written with
their ‘invariant’ value.

Bit 4 DCDET: Data contact detection (DCD) status

This bit gives the result of DCD.
0: data lines contact not detected.
1: data lines contact detected.

Bit 3 SDEN: Secondary detection (SD) mode enable

This bit is set by the software to put the BCD into SD mode. Only one detection mode (DCD,
PD, SD or OFF) should be selected to work correctly.

Bit 2 PDEN: Primary detection (PD) mode enable

This bit is set by the software to put the BCD into PD mode. Only one detection mode (DCD,
PD, SD or OFF) should be selected to work correctly.

Bit 1 DCDEN: Data contact detection (DCD) mode enable

This bit is set by the software to put the BCD into DCD mode. Only one detection mode
(DCD, PD, SD or OFF) should be selected to work correctly.

Bit 0 BCDEN: Battery charging detector (BCD) enable

This bit is set by the software to enable the BCD support within the USB device. When
enabled, the USB PHY is fully controlled by BCD and cannot be used for normal
communication. Once the BCD discovery is finished, the BCD should be placed in OFF
mode by clearing this bit to ‘0 in order to allow the normal USB operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR_
RX

DTOG
_RX

STAT_RX[1:0] SETUP
EP

TYPE[1:0]
EP_
KIND

CTR_
TX

DTOG_
TX

STAT_TX[1:0] EA[3:0]

rc_w0 t t t r rw rw rw rc_w0 t t t rw rw rw rw

RM0367 Rev 8 945/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

Bit 15 CTR_RX: Correct transfer for reception

This bit is set by the hardware when an OUT/SETUP transaction is successfully completed
on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register
is set accordingly, a generic interrupt condition is generated together with the endpoint
related interrupt condition, which is always activated. The type of occurred transaction, OUT
or SETUP, can be determined from the SETUP bit described below.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0 can be written, writing 1 has no effect.

Bit 14 DTOG_RX: Data toggle, for reception transfers

If the endpoint is not Isochronous, this bit contains the expected value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be received. Hardware toggles this bit,
when the ACK handshake is sent to the USB host, following a data packet reception having
a matching data PID value; if the endpoint is defined as a control one, hardware clears this
bit at the reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double-buffering feature this bit is used to support packet buffer
swapping too (Refer to Section 32.5.3: Double-buffered endpoints).
If the endpoint is Isochronous, this bit is used only to support packet buffer swapping since
no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted
(Refer to Section 32.5.4: Isochronous transfers). Hardware toggles this bit just after the end
of data packet reception, since no handshake is used for isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the
application software writes ‘0, the value of DTOG_RX remains unchanged, while writing ‘1
makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1.

Bits 13:12 STAT_RX [1:0]: Status bits, for reception transfers

These bits contain information about the endpoint status, which are listed in Table 166:
Reception status encoding on page 947.These bits can be toggled by software to initialize
their value. When the application software writes ‘0, the value remains unchanged, while
writing ‘1 makes the bit value toggle. Hardware sets the STAT_RX bits to NAK when a
correct transfer has occurred (CTR_RX=1) corresponding to a OUT or SETUP (control only)
transaction addressed to this endpoint, so the software has the time to elaborate the
received data before it acknowledge a new transaction
Double-buffered bulk endpoints implement a special transaction flow control, which control
the status based upon buffer availability condition (Refer to Section 32.5.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can be only “VALID” or “DISABLED”, so
that the hardware cannot change the status of the endpoint after a successful transaction. If
the software sets the STAT_RX bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the
USB peripheral behavior is not defined. These bits are read/write but they can be only
toggled by writing ‘1.

Bit 11 SETUP: Setup transaction completed

This bit is read-only and it is set by the hardware when the last completed transaction is a
SETUP. This bit changes its value only for control endpoints. It must be examined, in the
case of a successful receive transaction (CTR_RX event), to determine the type of
transaction occurred. To protect the interrupt service routine from the changes in SETUP
bits due to next incoming tokens, this bit is kept frozen while CTR_RX bit is at 1; its state
changes when CTR_RX is at 0. This bit is read-only.

Universal serial bus full-speed device interface (USB) RM0367

946/1040 RM0367 Rev 8

Bits 10:9 EP_TYPE[1:0]: Endpoint type

These bits configure the behavior of this endpoint as described in Table 167: Endpoint type
encoding on page 947. Endpoint 0 must always be a control endpoint and each USB
function must have at least one control endpoint which has address 0, but there may be
other control endpoints if required. Only control endpoints handle SETUP transactions,
which are ignored by endpoints of other kinds. SETUP transactions cannot be answered
with NAK or STALL. If a control endpoint is defined as NAK, the USB peripheral will not
answer, simulating a receive error, in the receive direction when a SETUP transaction is
received. If the control endpoint is defined as STALL in the receive direction, then the
SETUP packet will be accepted anyway, transferring data and issuing the CTR interrupt.
The reception of OUT transactions is handled in the normal way, even if the endpoint is a
control one.
Bulk and interrupt endpoints have very similar behavior and they differ only in the special
feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in Section 32.5.4: Isochronous transfers

Bit 8 EP_KIND: Endpoint kind

The meaning of this bit depends on the endpoint type configured by the EP_TYPE bits.
Table 168 summarizes the different meanings.
DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk
endpoint. The usage of double-buffered bulk endpoints is explained in Section 32.5.3:
Double-buffered endpoints.
STATUS_OUT: This bit is set by the software to indicate that a status out transaction is
expected: in this case all OUT transactions containing more than zero data bytes are
answered ‘STALL’ instead of ‘ACK’. This bit may be used to improve the robustness of the
application to protocol errors during control transfers and its usage is intended for control
endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of
bytes, as required.

Bit 7 CTR_TX: Correct Transfer for transmission

This bit is set by the hardware when an IN transaction is successfully completed on this
endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is
set accordingly, a generic interrupt condition is generated together with the endpoint related
interrupt condition, which is always activated.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0 can be written.

Bit 6 DTOG_TX: Data Toggle, for transmission transfers

If the endpoint is non-isochronous, this bit contains the required value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be transmitted. Hardware toggles this bit
when the ACK handshake is received from the USB host, following a data packet
transmission. If the endpoint is defined as a control one, hardware sets this bit to 1 at the
reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double buffer feature, this bit is used to support packet buffer
swapping too (Refer to Section 32.5.3: Double-buffered endpoints)
If the endpoint is Isochronous, this bit is used to support packet buffer swapping since no
data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (Refer
to Section 32.5.4: Isochronous transfers). Hardware toggles this bit just after the end of data
packet transmission, since no handshake is used for Isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force a specific data toggle/packet buffer usage. When
the application software writes ‘0, the value of DTOG_TX remains unchanged, while writing
‘1 makes the bit value toggle. This bit is read/write but it can only be toggled by writing 1.

RM0367 Rev 8 947/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

Bits 5:4 STAT_TX [1:0]: Status bits, for transmission transfers

These bits contain the information about the endpoint status, listed in Table 169. These bits
can be toggled by the software to initialize their value. When the application software writes
‘0, the value remains unchanged, while writing ‘1 makes the bit value toggle. Hardware sets
the STAT_TX bits to NAK, when a correct transfer has occurred (CTR_TX=1) corresponding
to a IN or SETUP (control only) transaction addressed to this endpoint. It then waits for the
software to prepare the next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow control, which controls
the status based on buffer availability condition (Refer to Section 32.5.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can only be “VALID” or “DISABLED”.
Therefore, the hardware cannot change the status of the endpoint after a successful
transaction. If the software sets the STAT_TX bits to ‘STALL’ or ‘NAK’ for an Isochronous
endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can
be only toggled by writing ‘1.

Bits 3:0 EA[3:0]: Endpoint address

Software must write in this field the 4-bit address used to identify the transactions directed to
this endpoint. A value must be written before enabling the corresponding endpoint.

Table 166. Reception status encoding

STAT_RX[1:0] Meaning

00 DISABLED: all reception requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all reception requests result in a STALL
handshake.

10 NAK: the endpoint is naked and all reception requests result in a NAK handshake.

11 VALID: this endpoint is enabled for reception.

Table 167. Endpoint type encoding

EP_TYPE[1:0] Meaning

00 BULK

01 CONTROL

10 ISO

11 INTERRUPT

Table 168. Endpoint kind meaning

EP_TYPE[1:0] EP_KIND meaning

00 BULK DBL_BUF

01 CONTROL STATUS_OUT

10 ISO Not used

11 INTERRUPT Not used

Universal serial bus full-speed device interface (USB) RM0367

948/1040 RM0367 Rev 8

Table 169. Transmission status encoding

STAT_TX[1:0] Meaning

00 DISABLED: all transmission requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all transmission requests result in a STALL
handshake.

10
NAK: the endpoint is naked and all transmission requests result in a NAK
handshake.

11 VALID: this endpoint is enabled for transmission.

RM0367 Rev 8 949/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

32.6.2 Buffer descriptor table

Note: The buffer descriptor table is located inside the packet buffer memory in the separate "USB
SRAM" address space.

Although the buffer descriptor table is located inside the packet buffer memory ("USB
SRAM" area), its entries can be considered as additional registers used to configure the
location and size of the packet buffers used to exchange data between the USB macro cell
and the device.

The first packet memory location is located at USB SRAM base address. The buffer
descriptor table entry associated with the USB_EPnR registers is described below. The
packet memory should be accessed only by byte (8-bit) or half-word (16-bit) accesses.
Word (32-bit) accesses are not allowed.

A thorough explanation of packet buffers and the buffer descriptor table usage can be found
in Structure and usage of packet buffers on page 925.

Transmission buffer address n (USB_ADDRn_TX)

Address offset: [USB_BTABLE] + n*8

Note: In case of double-buffered or isochronous endpoints in the IN direction, this address location
is referred to as USB_ADDRn_TX_0.

In case of double-buffered or isochronous endpoints in the OUT direction, this address
location is used for USB_ADDRn_RX_0.

Transmission byte count n (USB_COUNTn_TX)

Address offset: [USB_BTABLE] + n*8 + 2

Note: In case of double-buffered or isochronous endpoints in the IN direction, this address location
is referred to as USB_COUNTn_TX_0.

In case of double-buffered or isochronous endpoints in the OUT direction, this address
location is used for USB_COUNTn_RX_0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_TX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_TX[15:1]: Transmission buffer address

These bits point to the starting address of the packet buffer containing data to be transmitted
by the endpoint associated with the USB_EPnR register at the next IN token addressed to it.

Bit 0 Must always be written as ‘0 since packet memory is half-word wide and all packet buffers
must be half-word aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. COUNTn_TX[9:0]

rw rw rw rw rw rw rw rw rw rw

Universal serial bus full-speed device interface (USB) RM0367

950/1040 RM0367 Rev 8

Reception buffer address n (USB_ADDRn_RX)

Address offset: [USB_BTABLE] + n*8 + 4

Note: In case of double-buffered or isochronous endpoints in the OUT direction, this address
location is referred to as USB_ADDRn_RX_1.

In case of double-buffered or isochronous endpoints in the IN direction, this address location
is used for USB_ADDRn_TX_1.

Reception byte count n (USB_COUNTn_RX)

Address offset: [USB_BTABLE] + n*8 + 6

Note: In case of double-buffered or isochronous endpoints in the OUT direction, this address
location is referred to as USB_COUNTn_RX_1.

In case of double-buffered or isochronous endpoints in the IN direction, this address location
is used for USB_COUNTn_TX_1.

This table location is used to store two different values, both required during packet
reception. The most significant bits contains the definition of allocated buffer size, to allow
buffer overflow detection, while the least significant part of this location is written back by the
USB peripheral at the end of reception to give the actual number of received bytes. Due to
the restrictions on the number of available bits, buffer size is represented using the number
of allocated memory blocks, where block size can be selected to choose the trade-off
between fine-granularity/small-buffer and coarse-granularity/large-buffer. The size of
allocated buffer is a part of the endpoint descriptor and it is normally defined during the

Bits 15:10 These bits are not used since packet size is limited by USB specifications to 1023 bytes. Their
value is not considered by the USB peripheral.

Bits 9:0 COUNTn_TX[9:0]: Transmission byte count

These bits contain the number of bytes to be transmitted by the endpoint associated with the
USB_EPnR register at the next IN token addressed to it.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_RX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_RX[15:1]: Reception buffer address

These bits point to the starting address of the packet buffer, which will contain the data
received by the endpoint associated with the USB_EPnR register at the next OUT/SETUP
token addressed to it.

Bit 0 This bit must always be written as ‘0 since packet memory is half-word wide and all packet
buffers must be half-word aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE NUM_BLOCK[4:0] COUNTn_RX[9:0]

rw rw rw rw rw rw r r r r r r r r r r

RM0367 Rev 8 951/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

enumeration process according to its maxPacketSize parameter value (See “Universal
Serial Bus Specification”).

Bit 15 BL_SIZE: Block size

This bit selects the size of memory block used to define the allocated buffer area.

– If BL_SIZE=0, the memory block is 2-byte large, which is the minimum block
allowed in a half-word wide memory. With this block size the allocated buffer size
ranges from 2 to 62 bytes.

– If BL_SIZE=1, the memory block is 32-byte large, which allows to reach the
maximum packet length defined by USB specifications. With this block size the
allocated buffer size theoretically ranges from 32 to 1024 bytes, which is the longest
packet size allowed by USB standard specifications. However, the applicable size is
limited by the available buffer memory.

Bits 14:10 NUM_BLOCK[4:0]: Number of blocks

These bits define the number of memory blocks allocated to this packet buffer. The actual
amount of allocated memory depends on the BL_SIZE value as illustrated in Table 170.

Bits 9:0 COUNTn_RX[9:0]: Reception byte count

These bits contain the number of bytes received by the endpoint associated with the
USB_EPnR register during the last OUT/SETUP transaction addressed to it.

Table 170. Definition of allocated buffer memory

Value of
NUM_BLOCK[4:0]

Memory allocated
when BL_SIZE=0

Memory allocated
when BL_SIZE=1

0 (‘00000) Not allowed 32 bytes

1 (‘00001) 2 bytes 64 bytes

2 (‘00010) 4 bytes 96 bytes

3 (‘00011) 6 bytes 128 bytes

...

14 (‘01110) 28 bytes 480 bytes

15 (‘01111) 30 bytes

16 (‘10000) 32 bytes

...

29 (‘11101) 58 bytes

30 (‘11110) 60 bytes

31 (‘11111) 62 bytes N/A

Universal serial bus full-speed device interface (USB) RM0367

952/1040 RM0367 Rev 8

32.6.3 USB register map

The table below provides the USB register map and reset values.

Table 171. USB register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
USB_EP0R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
USB_EP1R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
USB_EP2R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USB_EP3R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USB_EP4R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_

R
X

D
T

O
G

_
R

X
STAT_

RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USB_EP5R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_R

X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]
E

P
_

K
IN

D

C
T

R
_T

X

D
T

O
G

_T
X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USB_EP6R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_R

X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_T

X

D
T

O
G

_T
X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
USB_EP7R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
_R

X

D
T

O
G

_
R

X

STAT_
RX
[1:0] S

E
T

U
P EP

TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_T

X

D
T

O
G

_T
X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x20-
0x3F

Reserved

0x40
 USB_CNTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R
M

P
M

A
O

V
R

M

E
R

R
M

W
K

U
P

M

S
U

S
P

M

R
E

S
E

T
M

S
O

F
M

E
S

O
F

M

L
1

R
E

Q
M

R
es

.

L1
R

E
S

U
M

E

R
E

S
U

M
E

F
S

U
S

P

L
P

_M
O

D
E

P
D

W
N

F
R

E
S

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0x44
 USB_ISTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

R

P
M

A
O

V
R

E
R

R

W
K

U
P

S
U

S
P

R
E

S
E

T

S
O

F

E
S

O
F

L
1

R
E

Q

R
es

.

R
es

.

D
IR EP_ID[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
 USB_FNR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
X

D
P

R
X

D
M

L
C

K LSOF
[1:0]

FN[10:0]

Reset value 0 0 0 0 0 x x x x x x x x x x x

0x4C
 USB_DADDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EF ADD[6:0]

Reset value 0 0 0 0 0 0 0 0

RM0367 Rev 8 953/1040

RM0367 Universal serial bus full-speed device interface (USB)

953

Refer to Section 2.2 on page 58 for the register boundary addresses.

0x50
 USB_BTABLE

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

BTABLE[15:3]

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x54
 USB_LPMCSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

BESL[3:0]

R
E

M
W

A
K

E

R
es

.

L
P

M
A

C
K

L
P

M
E

N

Reset value 0 0 0 0 0 0 0

0x58
 USB_BCDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
P

P
U

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
S

2D
E

T

S
D

E
T

P
D

E
T

D
C

D
E

T

S
D

E
N

P
D

E
N

D
C

D
E

N

B
C

D
E

N

Reset value 0 0 0 0 0 0 0 0 0

Table 171. USB register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Debug support (DBG) RM0367

954/1040 RM0367 Rev 8

33 Debug support (DBG)

33.1 Overview

The STM32L0x3 devices are built around a Cortex®-M0+ core which contains hardware
extensions for advanced debugging features. The debug extensions allow the core to be
stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When
stopped, the core’s internal state and the system’s external state may be examined. Once
examination is complete, the core and the system may be restored and program execution
resumed.

The debug features are used by the debugger host when connecting to and debugging the
STM32L0x3 MCUs.

One interface for debug is available:

• Serial wire

Figure 315. Block diagram of STM32L0x3 MCU and Cortex®-M0+-level debug support

1. The debug features embedded in the Cortex®-M0+ core are a subset of the Arm® CoreSight Design Kit.

The Arm® Cortex®-M0+ core provides integrated on-chip debug support. It is comprised of:

• SW-DP: Serial wire

• BPU: Break point unit

• DWT: Data watchpoint trigger

Cortex-M0
Core

SW-DP
Bridge

NVIC

DWT

BPU

System
interface

Debug AP

Bus matrix

DBGMCU

STM32 MCU debug support
Cortex-M0 debug support

SWDIO

SWCLK

MS19240V2

Debug AP

RM0367 Rev 8 955/1040

RM0367 Debug support (DBG)

968

It also includes debug features dedicated to the STM32L0x3 microcontrollers:

• Flexible debug pinout assignment

• MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note: For further information on debug functionality supported by the Arm® Cortex®-M0+ core,
refer to the Cortex®-M0+ Technical Reference Manual (see Section 33.2: Reference Arm®
documentation).

33.2 Reference Arm® documentation

• Cortex®-M0+ Technical Reference Manual (TRM)
It is available from www.infocenter.arm.com

• Arm® Debug Interface V5

• Arm® CoreSight Design Kit revision r1p1 Technical Reference Manual

33.3 Pinout and debug port pins

The STM32L0x3 MCUs are available in various packages with different numbers of
available pins.

33.3.1 SWD port pins

Two pins are used as outputs for the SW-DP as alternate functions of general purpose I/Os.
These pins are available on all packages.

33.3.2 SW-DP pin assignment

After reset (SYSRESETn or PORESETn), the pins used for the SW-DP are assigned as
dedicated pins which are immediately usable by the debugger host.

However, the MCU offers the possibility to disable the SWD port and can then release the
associated pins for general-purpose I/O (GPIO) usage. For more details on how to disable
SW-DP port pins, please refer to Section 9.3.2: I/O pin alternate function multiplexer and
mapping on page 240.

Table 172. SW debug port pins

SW-DP pin name
SW debug port Pin

assignment
Type Debug assignment

SWDIO IO Serial Wire Data Input/Output PA13

SWCLK I Serial Wire Clock PA14

Debug support (DBG) RM0367

956/1040 RM0367 Rev 8

33.3.3 Internal pull-up & pull-down on SWD pins

Once the SW I/O is released by the user software, the GPIO controller takes control of these
pins. The reset states of the GPIO control registers put the I/Os in the equivalent states:

• SWDIO: input pull-up

• SWCLK: input pull-down

Embedded pull-up and pull-down resistors remove the need to add external resistors.

33.4 ID codes and locking mechanism

There are several ID codes inside the MCU. ST strongly recommends the tool
manufacturers to lock their debugger using the MCU device ID located at address
0x40015800.

33.4.1 MCU device ID code

The STM32L0x3 products integrate an MCU ID code. This ID identifies the ST MCU part
number and the die revision.

This code is accessible by the software debug port (two pins) or by the user software.

Only the DEV_ID[15:0] should be used for identification by the debugger/programmer tools
(the revision ID must not be taken into account).

For code example, refer to A.20.1: DBG read device Id code example.

DBG_IDCODE

Address: 0x4001 5800

Only 32-bit access supported. Read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DEV_ID

r r r r r r r r r r r

Bits 31:16 REV_ID[15:0] Revision identifier

This field indicates the revision of the device (see Table 173: REV_ID values).

Bits 15:12 Reserved: read 0b0110.

Bits 11:0 DEV_ID[11:0]: Device identifier

This field indicates the device ID:
Category 3 devices: 0x417
Category 5 devices: 0x447

RM0367 Rev 8 957/1040

RM0367 Debug support (DBG)

968

33.5 SWD port

33.5.1 SWD protocol introduction

This synchronous serial protocol uses two pins:

• SWCLK: clock from host to target

• SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 kΩ
recommended by Arm®). These pull-up resistors can be configured internally. No external
pull-up resistors are required. .

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.

33.5.2 SWD protocol sequence

Each sequence consist of three phases:

1. Packet request (8 bits) transmitted by the host

2. Acknowledge response (3 bits) transmitted by the target

3. Data transfer phase (33 bits) transmitted by the host or the target

Table 173. REV_ID values

REV_ID Cat. 3 devices Cat. 5 devices

0x1000 Rev A

0x1008 Rev Z -

0x1018 Rev Y -

0x1038 Rev 1, P, Q, X -

0x2000 - Rev B

0x2008 - Rev 1, P, Q, Z

Table 174. Packet request (8-bits)

Bit Name Description

0 Start Must be “1”

1 APnDP
0: DP Access

1: AP Access

2 RnW
0: Write Request

1: Read Request

4:3 A[3:2]
Address field of the DP or AP registers (refer to Table 178 on
page 960)

Debug support (DBG) RM0367

958/1040 RM0367 Rev 8

Refer to the Cortex®-M0+ TRM for a detailed description of DPACC and APACC registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.

The ACK Response must be followed by a turnaround time only if it is a READ transaction
or if a WAIT or FAULT acknowledge has been received.

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

33.5.3 SW-DP state machine (reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default Arm® one and is set to
0x0BC1 1477 (corresponding to Cortex®-M0+).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

• The SW-DP state machine is in RESET STATE either after power-on reset, or after the
line is high for more than 50 cycles

• The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles
after RESET state.

• After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target will issue a
FAULT acknowledge response on another transactions.

Further details of the SW-DP state machine can be found in the Cortex®-M0+ TRM and the
CoreSight Design Kit r1p0 TRM.

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as “1” by the target
because of the pull-up

Table 175. ACK response (3 bits)

Bit Name Description

0..2 ACK
001: FAULT

010: WAIT

100: OK

Table 176. DATA transfer (33 bits)

Bit Name Description

0..31
WDATA or
RDATA

Write or Read data

32 Parity Single parity of the 32 data bits

Table 174. Packet request (8-bits) (continued)

Bit Name Description

RM0367 Rev 8 959/1040

RM0367 Debug support (DBG)

968

33.5.4 DP and AP read/write accesses

• Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

• Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

• The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of
IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.

• Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles should be applied while driving the line low (IDLE
state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it will fail.

33.5.5 SW-DP registers

Access to these registers are initiated when APnDP=0

Table 177. SW-DP registers

A[3:2] R/W
CTRLSEL bit
of SELECT

register
Register Notes

00 Read IDCODE
The manufacturer code is set to the default
Arm® code for Cortex®-M0+:
0x0BC1 1477 (identifies the SW-DP)

00 Write ABORT

01 Read/Write 0 DP-CTRL/STAT

Purpose is to:

– request a system or debug power-up

– configure the transfer operation for AP
accesses

– control the pushed compare and pushed
verify operations.

– read some status flags (overrun, power-up
acknowledges)

01 Read/Write 1
WIRE
CONTROL

Purpose is to configure the physical serial
port protocol (like the duration of the
turnaround time)

10 Read
READ
RESEND

Enables recovery of the read data from a
corrupted debugger transfer, without
repeating the original AP transfer.

Debug support (DBG) RM0367

960/1040 RM0367 Rev 8

33.5.6 SW-AP registers

Access to these registers are initiated when APnDP=1

There are many AP Registers addressed as the combination of:

• The shifted value A[3:2]

• The current value of the DP SELECT register.

10 Write SELECT
The purpose is to select the current access
port and the active 4-words register window

11 Read/Write READ BUFFER

This read buffer is useful because AP
accesses are posted (the result of a read AP
request is available on the next AP
transaction).

This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction

Table 177. SW-DP registers (continued)

A[3:2] R/W
CTRLSEL bit
of SELECT

register
Register Notes

Table 178. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A[3:2] value Description

0x0 00 Reserved, must be kept at reset value.

0x4 01

DP CTRL/STAT register. Used to:

– Request a system or debug power-up

– Configure the transfer operation for AP accesses

– Control the pushed compare and pushed verify operations.

– Read some status flags (overrun, power-up acknowledges)

0x8 10

DP SELECT register: Used to select the current access port and the
active 4-words register window.

– Bits 31:24: APSEL: select the current AP

– Bits 23:8: reserved

– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP

– Bits 3:0: reserved

0xC 11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)

RM0367 Rev 8 961/1040

RM0367 Debug support (DBG)

968

33.6 Core debug

Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the debug access port. It consists of four registers:

These registers are not reset by a system reset. They are only reset by a power-on reset.
Refer to the Cortex®-M0+ TRM for further details.

To Halt on reset, it is necessary to:

• enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control
Register

• enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register

33.7 BPU (Break Point Unit)

The Cortex®-M0+ BPU implementation provides four breakpoint registers. The BPU is a
subset of the Flash Patch and Breakpoint (FPB) block available in Armv7-M (Cortex®-M3
and Cortex®-M4).

33.7.1 BPU functionality

The processor breakpoints implement PC based breakpoint functionality.

Refer the Armv6-M Arm® and the Arm® CoreSight Components Technical Reference
Manual for more information about the BPU CoreSight identification registers, and their
addresses and access types.

Table 179. Core debug registers

Register Description

DHCSR
The 32-bit Debug Halting Control and Status Register

This provides status information about the state of the processor enable core debug
halt and step the processor

DCRSR
The 17-bit Debug Core Register Selector Register:

This selects the processor register to transfer data to or from.

DCRDR
The 32-bit Debug Core Register Data Register:

This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.

DEMCR
The 32-bit Debug Exception and Monitor Control Register:

This provides Vector Catching and Debug Monitor Control.

Debug support (DBG) RM0367

962/1040 RM0367 Rev 8

33.8 DWT (Data Watchpoint)

The Cortex®-M0+ DWT implementation provides two watchpoint register sets.

33.8.1 DWT functionality

The processor watchpoints implement both data address and PC based watchpoint
functionality, a PC sampling register, and support comparator address masking, as
described in the Armv6-M Arm®.

33.8.2 DWT Program Counter Sample Register

A processor that implements the data watchpoint unit also implements the Armv6-M
optional DWT Program Counter Sample Register (DWT_PCSR). This register permits a
debugger to periodically sample the PC without halting the processor. This provides coarse
grained profiling. See the Armv6-M Arm® for more information.

The Cortex®-M0+ DWT_PCSR records both instructions that pass their condition codes and
those that fail.

33.9 MCU debug component (DBG)

The MCU debug component helps the debugger provide support for:

• Low-power modes

• Clock control for timers, watchdog and I2C during a breakpoint

33.9.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.

For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:

• In Sleep mode: FCLK and HCLK are still active. Consequently, this mode does not
impose any restrictions on the standard debug features.

• In Stop/Standby mode, the DBG_STOP bit must be previously set by the debugger.

This enables the internal RC oscillator clock to feed FCLK and HCLK in Stop mode.

When one of the DBG_STANDBY, DBG_STOP and DBG_SLEEP bit is set and the internal
reference voltage is stopped in low-power mode (ULP bit set in PWR_CR register), then the
Fast wakeup must be enabled (FWU bit set in PWR_CR).

For code example, refer to A.20.2: DBG debug in LPM code example.

RM0367 Rev 8 963/1040

RM0367 Debug support (DBG)

968

33.9.2 Debug support for timers, watchdog and I2C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog
should behave:

• They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

• They can stop to count inside a breakpoint. This is required for watchdog purposes.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

33.9.3 Debug MCU configuration register (DBG_CR)

The DBG_CR register allows to configure the low-power modes when the MCU is under
debug. When one of DBG_CR bits is set, if ULP bit is set in PWR_CR, then FWU bit of
PWR_CR must be set.

It is mapped at address 0x4001 5804.

This register is asynchronously reset by the PORESET (and not the system reset). It can be
written by the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

Address: 0x04

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBG_

STAND
BY

DBG_
STOP

DBG_
SLEEP

rw rw rw

Debug support (DBG) RM0367

964/1040 RM0367 Rev 8

Bits 31:3 Reserved, must be kept at reset value.

Bit 2 DBG_STANDBY: Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset

Bit 1 DBG_STOP: Debug Stop mode

0: (FCLK=Off, HCLK=Off) In Stop mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from Stop mode, the clock configuration is identical to the
one after RESET. Consequently, the software must reprogram the clock controller to enable
the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering Stop mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in Stop mode. When exiting Stop
mode, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. (in
the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: In Sleep mode, FCLK is clocked by the system clock previously configured by the
software while HCLK is disabled. The clock controller configuration is not reset and remains
in its previously programmed state. As a consequence, when exiting from Sleep mode, the
software does not need to reconfigure the clock controller.
1: In this case, when entering in Sleep mode, HCLK is fed by the same clock that is provided
to FCLK (system clock previously configured by the software).

RM0367 Rev 8 965/1040

RM0367 Debug support (DBG)

968

33.9.4 Debug MCU APB1 freeze register (DBG_APB1_FZ)

The DBG_APB1_FZ register is used to configure the following APB peripherals, when the
MCU under debug:

• Timer clock counter freeze

• I2C SMBUS timeout freeze

• System window watchdog and independent watchdog counter freeze support.

This register is mapped at address 0x4001 5808.

The register is asynchronously reset by the POR (and not the system reset). It can be
written by the debugger under system reset.

Address offset: 0X08

Only 32-bit access are supported.

Power on reset (POR): 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

D
B

G
_

L
P

T
IM

E
R

_
S

T
O

P

D
B

G
_

I2
C

3
_

S
T

O
P

Res. Res. Res. Res. Res. Res. Res. Res.

D
B

G
_

I2
C

1
_

S
T

O
P

Res. Res. Res. Res. Res.

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.

D
B

G
_

IW
D

G
_

S
T

O
P

D
B

G
_W

W
D

G
_

S
T

O
P

D
B

G
_

R
T

C
_

S
T

O
P

Res. Res. Res. Res.

D
B

G
_

T
IM

7_
S

T
O

P

D
B

G
_

T
IM

6_
S

T
O

P

Res. Res.

.D
B

G
_T

IM
3

_S
T

O
P

.D
B

G
_T

IM
2

_S
T

O
P

rw rw rw rw rw rw rw

Bit 31 DBG_LPTIMER_STOP: LPTIM1 counter stopped when core is halted

0: LPTIM1 counter clock is fed even if the core is halted
1: LPTIM1 counter clock is stopped when the core is halted

Bit 30 DBG_I2C3_STOP: I2C3 SMBUS timeout mode stopped when core is halted

0: Same behavior as in normal mode
1: I2C3 SMBUS timeout is frozen

Bits 29:22 Reserved, must be kept at reset value.

Bit 21 DBG_I2C1_STOP: I2C1 SMBUS timeout mode stopped when core is halted

0: Same behavior as in normal mode
1: I2C1 SMBUS timeout is frozen

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted

0: The independent watchdog counter clock continues even if the core is halted
1: The independent watchdog counter clock is stopped when the core is halted

Debug support (DBG) RM0367

966/1040 RM0367 Rev 8

Bit 11 DBG_WWDG_STOP: Debug window watchdog stopped when core is halted

0: The window watchdog counter clock continues even if the core is halted
1: The window watchdog counter clock is stopped when the core is halted

Bit 10 DBG_RTC_STOP: Debug RTC stopped when core is halted

0: The clock of the RTC counter is fed even if the core is halted
1: The clock of the RTC counter is stopped when the core is halted

Bits 9:6 Reserved, must be kept at reset value.

Bit 5 DBG_TIM7_STOP: TIM7 counter stopped when core is halted

0: The counter clock of TIM7 is fed even if the core is halted
1: The counter clock of TIM7 is stopped when the core is halted

Bit 4 DBG_TIM6_STOP: TIM6 counter stopped when core is halted

0: The counter clock of TIM6 is fed even if the core is halted
1: The counter clock of TIM6 is stopped when the core is halted

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 DBG_TIM3_STOP: TIM3 counter stopped when core is halted

0: The counter clock of TIM3 is fed even if the core is halted
1: The counter clock of TIM3 is stopped when the core is halted

Bit 0 DBG_TIM2_STOP: TIM2 counter stopped when core is halted

0: The counter clock of TIM2 is fed even if the core is halted
1: The counter clock of TIM2 is stopped when the core is halted

RM0367 Rev 8 967/1040

RM0367 Debug support (DBG)

968

33.9.5 Debug MCU APB2 freeze register (DBG_APB2_FZ)

The DBG_APB2_FZ register is used to configure some APB peripheral features when the
MCU is under DEBUG:

• Timer clock counter freeze.

This register is mapped at address 0x4001580C.

It is asynchronously reset by the POR (and not the system reset). It can be written by the
debugger under system reset.

Address: 0x0C

Only 32-bit access is supported.

POR: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
D

B
G

_
T

IM
22

_
S

T
O

P
Res. Res.

D
B

G
_

T
IM

21
_

S
T

O
P

Res. Res.

rw rw

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 DBG_TIM22_STOP: TIM22 counter stopped when core is halted

0: The counter clock of TIM22 is fed even if the core is halted
1: The counter clock of TIM22 is stopped when the core is halted

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 DBG_TIM21_STOP: TIM21 counter stopped when core is halted

0: The counter clock of TIM21 is fed even if the core is halted
1: The counter clock of TIM21 is stopped when the core is halted

Bits 1:0 Reserved, must be kept at reset value.

Debug support (DBG) RM0367

968/1040 RM0367 Rev 8

33.10 DBG register map

The following table summarizes the Debug registers.

 .

Table 180. DBG register map and reset values

Addr. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
x4

0
0

1
58

0
0

DBG_
IDCODE

REV_ID

R
es

.

R
es

.

R
es

.

R
es

.

DEV_ID

Reset value(1) X

0
x4

0
01

5
8

0
4

DBG_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
_

S
TA

N
D

B
Y

D
B

G
_S

T
O

P

D
B

G
_

S
L

E
E

P

Reset value 0 0 0

0x
40

0
1

5
80

8

DBG_
APB1_FZ

D
B

G
_

L
P

T
IM

E
R

_
S

T
O

D
B

G
_I

2
C

3_
S

T
O

P
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
_

I2
C

1
_S

T
O

P

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
_

IW
D

G
_

S
T

O
P

D
B

G
_W

W
D

G
_

S
T

O
P

D
B

G
_

R
T

C
_

S
T

O
P

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
_

T
IM

7_
S

T
O

P

D
B

G
_

T
IM

6_
S

T
O

P

R
es

.

R
es

.

D
B

G
_

T
IM

3_
S

T
O

P

D
B

G
_

T
IM

2_
S

T
O

P

Reset value 0 0 0 0 0 0 0 0 0 0

0x
40

0
1

58
0

C

DBG_
APB2_FZ R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
B

G
_

T
IM

2
2_

S
T

O
P

R
es

.

R
es

.

D
B

G
_

T
IM

2
1_

S
T

O
P

R
es

.

R
es

.

Reset value 0 0

1. The reset value is product dependent. For more information, refer to Section 33.4.1: MCU device ID code.

RM0367 Rev 8 969/1040

RM0367 Device electronic signature

970

34 Device electronic signature

This section applies to all STM32L0x3 devices, unless otherwise specified.

The electronic signature is stored in the System memory area in the Flash memory module,
and can be read using the JTAG/SWD or the CPU. It contains factory-programmed
identification data that allow the user firmware or other external devices to automatically
match its interface to the characteristics of the STM32L0x3 microcontroller.

34.1 Memory size register

34.1.1 Flash size register

Base address: 0x1FF8 007C

Read only = 0xXXXX where X is factory-programmed

34.2 Unique device ID registers (96 bits)

The unique device identifier is ideally suited:

• for use as serial numbers

• for use as security keys in order to increase the security of code in Flash memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal Flash memory

• to activate secure boot processes, etc.

The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits can never be altered by the user.

The 96-bit unique device identifier can also be read in single bytes/half-words/words in
different ways and then be concatenated using a custom algorithm.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F_SIZE

r r r r r r r r r r r r r r r r

Bits 15:0 F_SIZE: Flash memory size

The value stored in this field indicates the Flash memory size of the device expressed in
Kbytes.
Example: 0x0040 = 64 Kbytes.

Device electronic signature RM0367

970/1040 RM0367 Rev 8

Base address: 0x1FF8 0050

Address offset: 0x00

Read only = 0xXXXX XXXX where X is factory-programmed

Address offset: 0x04

Read only = 0xXXXX XXXX where X is factory-programmed

Address offset: 0x14

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(31:16)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(15:0)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(31:24): WAF_NUM[7:0]

Wafer number (8-bit unsigned number)

U_ID(23:0): LOT_NUM[55:32]

Lot number (ASCII code)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

U_ID(63:48)

r r r r r r r r r r r r r r r r

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

U_ID(47:32)

r r r r r r r r r r r r r r r r

Bits 63:32 U_ID(63:32): LOT_NUM[31:0]

Lot number (ASCII code)

95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80

U_ID(95:80)

r r r r r r r r r r r r r r r r

79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

U_ID(79:64)

r r r r r r r r r r r r r r r r

Bits 95:64 U_ID(95:64): 95:64 unique ID bits

RM0367 Rev 8 971/1040

RM0367 Code examples

1018

Appendix A Code examples

A.1 Introduction

This appendix shows the code examples of the sequence described in this Reference
Manual.

These code examples are extracted from the STM32L0xx Snippet firmware package
STM32SnippetsL0 available on www.st.com.

These code examples used the peripheral bit and register description from the CMSIS
header file (stm32l0xx.h).

Code lines starting with // should be uncommented if the given register has been modified
before.

A.2 NVM/RCC Operation code example

A.2.1 Increasing the CPU frequency preparation sequence code

/* (1) Set one wait state in Latency bit of FLASH_ACR */

/* (2) Check the latency is set */

/* (3) Switch the clock on HSI16/4 and disable PLL */

/* (4) Set PLLMUL to 16 to get 32MHz on CPU clock */

/* (5) Enable and switch on PLL */

FLASH->ACR |= FLASH_ACR_LATENCY; /* (1) */

while ((FLASH->ACR & FLASH_ACR_LATENCY) == 0); /* (2) */

SwitchFromPLLtoHSI(); /* (3) */

RCC->CFGR = (RCC->CFGR & (~(uint32_t)RCC_CFGR_PLLMUL))

 | RCC_CFGR_PLLMUL16; /* (4) */

SwitchOnPLL(); /* (5) */

A.2.2 Decreasing the CPU frequency preparation sequence code

/* (1) Switch the clock on HSI16/4 and disable PLL */

/* (2) Set PLLMUL to 4 to get 8MHz on CPU clock */

/* (3) Enable and switch on PLL */

/* (4) Set one wait state in Latency bit of FLASH_ACR */

/* (5) Check the latency is set */

SwitchFromPLLtoHSI(); /* (1) */

RCC->CFGR = (RCC->CFGR & (~(uint32_t)RCC_CFGR_PLLMUL))

 | RCC_CFGR_PLLMUL4; /* (2) */

SwitchOnPLL(); /* (3) */

FLASH->ACR &= ~FLASH_ACR_LATENCY; /* (4) */

while ((FLASH->ACR & FLASH_ACR_LATENCY) != 0); /* (5) */

Code examples RM0367

972/1040 RM0367 Rev 8

A.2.3 Switch from PLL to HSI16 sequence code

uint32_t tickstart;

/* (1) Switch the clock on HSI16/4 */

/* (2) Wait for clock switched on HSI16/4 */

/* (3) Disable the PLL by resetting PLLON */

/* (4) Wait until PLLRDY is cleared */

RCC->CFGR = (RCC->CFGR & (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI; /* (1) */

tickstart = Tick;

while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI) /* (2) */

{

 if ((Tick - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)

 {

 /* Manage error */

 return;

 }

}

RCC->CR &= ~RCC_CR_PLLON; /* (3) */

tickstart = Tick;

while ((RCC->CR & RCC_CR_PLLRDY) != 0) /* (4) */

{

 if ((Tick - tickstart) > PLL_TIMEOUT_VALUE)

 {

 /* Manage error */

 }

}

Note: Tick is a global variable incremented in the SysTick ISR each millisecond.

A.2.4 Switch to PLL sequence code

uint32_t tickstart;

/* (1) Switch on the PLL */

/* (2) Wait for PLL ready */

/* (3) Switch the clock to the PLL */

/* (4) Wait until the clock is switched to the PLL */

RCC->CR |= RCC_CR_PLLON; /* (1) */

tickstart = Tick;

while ((RCC->CR & RCC_CR_PLLRDY) == 0) /* (2) */

{

 if ((Tick - tickstart) > PLL_TIMEOUT_VALUE)

 {

 error = ERROR_PLL_TIMEOUT; /* Report an error */

 return;

 }

}

RCC->CFGR = (RCC->CFGR & (~RCC_CFGR_SW)) | RCC_CFGR_SW_PLL; /* (3) */

RM0367 Rev 8 973/1040

RM0367 Code examples

1018

tickstart = Tick;

while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL) /* (4) */

{

 if ((Tick - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)

 {

 error = ERROR_CLKSWITCH_TIMEOUT; /* Report an error */

 return;

 }

}

Note: Tick is a global variable incremented in the SysTick ISR each millisecond.

A.3 NVM Operation code example

A.3.1 Unlocking the data EEPROM and FLASH_PECR register
code example

/* (1) Wait till no operation is on going */

/* (2) Check if the PELOCK is unlocked */

/* (3) Perform unlock sequence */

while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (1) */

{

/* For robust implementation, add here time-out management */

}

if ((FLASH->PECR & FLASH_PECR_PELOCK) != 0) /* (2) */

{

 FLASH->PEKEYR = FLASH_PEKEY1; /* (3) */

 FLASH->PEKEYR = FLASH_PEKEY2;

}

A.3.2 Locking data EEPROM and FLASH_PECR register code example

/* (1) Wait till no operation is on going */

/* (2) Locks the NVM by setting PELOCK in PECR */

while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (1) */

{

 /* For robust implementation, add here time-out management */

}

FLASH->PECR |= FLASH_PECR_PELOCK; /* (2) */

A.3.3 Unlocking the NVM program memory code example

/* (1) Wait till no operation is on going */

/* (2) Check that the PELOCK is unlocked */

/* (3) Check if the PRGLOCK is unlocked */

/* (4) Perform unlock sequence */

while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (1) */

Code examples RM0367

974/1040 RM0367 Rev 8

{

 /* For robust implementation, add here time-out management */

}

if ((FLASH->PECR & FLASH_PECR_PELOCK) == 0) /* (2) */

{

 if ((FLASH->PECR & FLASH_PECR_PRGLOCK) != 0) /* (3) */

 {

 FLASH->PRGKEYR = FLASH_PRGKEY1; /* (4) */

 FLASH->PRGKEYR = FLASH_PRGKEY2;

 }

}

A.3.4 Unlocking the option bytes area code example

/* (1) Wait till no operation is on going */

/* (2) Check that the PELOCK is unlocked */

/* (3) Check if the OPTLOCK is unlocked */

/* (4) Perform unlock sequence */

while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (1) */

{

 /* For robust implementation, add here time-out management */

}

if ((FLASH->PECR & FLASH_PECR_PELOCK) == 0) /* (2) */

{

 if ((FLASH->PECR & FLASH_PECR_OPTLOCK) != 0) /* (2) */

 {

 FLASH->OPTKEYR = FLASH_OPTKEY1; /* (3) */

 FLASH->OPTKEYR = FLASH_OPTKEY2;

 }

}

A.3.5 Write to data EEPROM code example

*(uint8_t *)(DATA_E2_ADDR+i) = DATA_BYTE;

*(uint16_t *)(DATA_E2_ADDR+j) = DATA_16B_WORD;

*(uint32_t *)(DATA_E2_ADDR) = DATA_32B_WORD;

DATA_E2_ADDR is an aligned address in the data EEPROM area.

i can be any integer.

j must be an even integer.

A.3.6 Erase to data EEPROM code example

/* (1) Set the ERASE and DATA bits in the FLASH_PECR register

 to enable page erasing */

/* (2) Write a 32-bit word value at the desired address

 to start the erase sequence */

RM0367 Rev 8 975/1040

RM0367 Code examples

1018

/* (3) Enter in wait for interrupt. The EOP check is done in the Flash ISR

 */

/* (6) Reset the ERASE and DATA bits in the FLASH_PECR register

 to disable the page erase */

FLASH->PECR |= FLASH_PECR_ERASE | FLASH_PECR_DATA; /* (1) */

*(__IO uint32_t *)addr = (uint32_t)0; /* (2) */

__WFI(); /* (3) */

FLASH->PECR &= ~(FLASH_PECR_ERASE | FLASH_PECR_DATA); /* (4) */

A.3.7 Program Option byte code example

/**

 * This function programs a 16-bit option byte and its complement word.

 * Param None

 * Retval None

 */

__INLINE __RAM_FUNC void OptionByteProg(uint8_t index, uint16_t data)

{

 /* (1) Write a 32-bit word value at the option byte address,
 the 16-bit data is extended with its compemented value */

 /* (3) Wait until the BSY bit is reset in the FLASH_SR register */

 /* (4) Check the EOP flag in the FLASH_SR register */

 /* (5) Clear EOP flag by software by writing EOP at 1 */

 *(__IO uint32_t *)(OB_BASE + index) = (uint32_t)((~data << 16) | data);

/* (1) */

 while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (2) */

 {

 /* For robust implementation, add here time-out management */

 }

 if ((FLASH->SR & FLASH_SR_EOP) != 0) /* (3) */

 {

 FLASH->SR = FLASH_SR_EOP; /* (4) */

 }

 else

 {

 /* Manage the error cases */

 }

}

Note: This function must be loaded in RAM.

A.3.8 Erase Option byte code example

/**

 * This function erases a 16-bit option byte and its complement

 word.

 * Param None

Code examples RM0367

976/1040 RM0367 Rev 8

 * Retval None

*/

__INLINE __RAM_FUNC void OptionByteErase(uint8_t index)

{

 /* (1) Set the ERASE bit in the FLASH_PECR register

 to enable option byte erasing */

 /* (2) Write a 32-bit word value at the option byte address to be erased

 to start the erase sequence */

 /* (3) Wait until the BSY bit is reset in the FLASH_SR register */

 /* (4) Check the EOP flag in the FLASH_SR register */

 /* (5) Clear EOP flag by software by writing EOP at 1 */

 /* (6) Reset the ERASE and PROG bits in the FLASH_PECR register

 to disable the page erase */

 FLASH->PECR |= FLASH_PECR_ERASE; /* (1) */

 *(__IO uint32_t *)(OB_BASE + index) = 0; /* (2) */

 while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (3) */

 {

 /* For robust implementation, add here time-out management */

 }

 if ((FLASH->SR & FLASH_SR_EOP) != 0) /* (4) */

 {

 FLASH->SR |= FLASH_SR_EOP; /* (5) */

 }

 else

 {

 /* Manage the error cases */

 }

 FLASH->PECR &= ~(FLASH_PECR_ERASE); /* (6) */

}

Note: This function must be loaded in RAM.

A.3.9 Program a single word to Flash program memory code example

/* (1) Perform the data write (32-bit word) at the desired address */

/* (2) Wait until the BSY bit is reset in the FLASH_SR register */

/* (3) Check the EOP flag in the FLASH_SR register */

/* (4) clear it by software by writing it at 1 */

(__IO uint32_t)(flash_addr) = data; /* (1) */

while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (2) */

{

 /* For robust implementation, add here time-out management */

}

if ((FLASH->SR & FLASH_SR_EOP) != 0) /* (3) */

{

 FLASH->SR = FLASH_SR_EOP; /* (4) */

RM0367 Rev 8 977/1040

RM0367 Code examples

1018

}

else

{

 /* Manage the error cases */

}

A.3.10 Program half-page to Flash program memory code example

/**

 * This function programs a half page. It is executed from the RAM.

 * The Programming bit (PROG) and half-page programming bit (FPRG)

 * is set at the beginning and reset at the end of the function,

 * in case of successive programming, these two operations

 * could be performed outside the function.

 * This function waits the end of programming, clears the appropriate

 * bit in the Status register and eventually reports an error.

 * Param flash_addr is the first address of the half-page to be programmed

 * data is the 32-bit word array to program

 * Retval None

 */

__RAM_FUNC void FlashHalfPageProg(uint32_t flash_addr, uint32_t *data)

{

 uint8_t i;

 /* (1) Set the PROG and FPRG bits in the FLASH_PECR register
 to enable a half page programming */

 /* (2) Perform the data write (half-word) at the desired address */

 /* (3) Wait until the BSY bit is reset in the FLASH_SR register */

 /* (4) Check the EOP flag in the FLASH_SR register */

 /* (5) clear it by software by writing it at 1 */

 /* (6) Reset the PROG and FPRG bits to disable programming */

 FLASH->PECR |= FLASH_PECR_PROG | FLASH_PECR_FPRG; /* (1) */

for (i = 0; i < ((FLASH_PAGE_SIZE/2) / 4); i++)

 {

 (__IO uint32_t)(flash_addr) = *data++; /* (2) */

 }

while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (3) */

 {

 /* For robust implementation, add here time-out management */

 }

 if ((FLASH->SR & FLASH_SR_EOP) != 0) /* (4) */

 {

 FLASH->SR = FLASH_SR_EOP; /* (5) */

 }

 else

 {

Code examples RM0367

978/1040 RM0367 Rev 8

 /* Manage the error cases */

 }

 FLASH->PECR &= ~(FLASH_PECR_PROG | FLASH_PECR_FPRG); /* (6) */

}

Note: This function must be loaded in RAM.

A.3.11 Erase a page in Flash program memory code example

/**

 * This function erases a page of flash.

 * The Page Erase bit (PER) is set at the beginning and reset

 * at the end of the function, in case of successive erase,

 * these two operations could be performed outside the function.

 * Param page_addr is an address inside the page to erase

 * Retval None

 */

__INLINE void FlashErase(uint32_t page_addr)

{

 /* (1) Set the ERASE and PROG bits in the FLASH_PECR register

 to enable page erasing */

 /* (2) Write a 32-bit word value in an address of the selected page

 to start the erase sequence */

 /* (3) Wait until the BSY bit is reset in the FLASH_SR register */

 /* (4) Check the EOP flag in the FLASH_SR register */

 /* (5) Clear EOP flag by software by writing EOP at 1 */

 /* (6) Reset the ERASE and PROG bits in the FLASH_PECR register

 to disable the page erase */

 FLASH->PECR |= FLASH_PECR_ERASE | FLASH_PECR_PROG; /* (1) */

 *(__IO uint32_t *)page_addr = (uint32_t)0; /* (2) */

 while ((FLASH->SR & FLASH_SR_BSY) != 0) /* (3) */

 {

 /* For robust implementation, add here time-out management */

 }

 if ((FLASH->SR & FLASH_SR_EOP) != 0) /* (4) */

 {

 FLASH->SR = FLASH_SR_EOP; /* (5) */

 }

 else

 {

 /* Manage the error cases */

 }

 FLASH->PECR &= ~(FLASH_PECR_ERASE | FLASH_PECR_PROG); /* (6) */

}

RM0367 Rev 8 979/1040

RM0367 Code examples

1018

A.3.12 Mass erase code example

/**

 * This function performs a mass erase of the flash.

 * This function is loaded in RAM.

 * Param None

 * Retval while successful, the function never returns except if executed

 from RAM

 */

__RAM_FUNC void FlashMassErase(void)

{

 /* (1) Check if the read protection is not level 2 */

 /* (2) Check if the read protection is not level 1 */

 /* (3) Erase the Option byte containing the read protection */

 /* (4) Reload the Option bytes */

 /* (5) Program read protection to level 1 by writing 0xAA

 to start the mass erase */

 /* (6) Lock the NVM by setting the PELOCK bit */

 if ((FLASH->OPTR & 0x000000FF) == 0xCC) /* (1) */

 {

 /* Report the error and abort*/

 return;

 }

 else if ((FLASH->OPTR & 0x000000FF) == 0xAA) /* (2) */

 {

 OptionByteErase(FLASH_OPTR0); /* (3) */

 FLASH->PECR |= FLASH_PECR_OBL_LAUNCH; /* (4) */

 /* The MCU will reset while executing the option bytes reloading */

 }

 OptionByteProg(FLASH_OPTR0, 0x00AA); /* (5) */

 if (*(uint32_t *)(FLASH_MAIN_ADDR) != (uint32_t)0) /* Check the erasing

 of the page by reading all the page value */

 {

 /* Report the error */

 }

 LockNVM(); /* (6) */

 while (1) /* Infinite loop */

 {

 }

}

Note: This function uses two other ones in A.3.7: Program Option byte code example and A.3.8:
Erase Option byte code example.

Code examples RM0367

980/1040 RM0367 Rev 8

A.4 Clock Controller

A.4.1 HSE start sequence code example

/**

 * This function enables the interrupton HSE ready,

 * and start the HSE as external clock.

 * Param None

 * Retval None

*/

__INLINE void StartHSE(void)

{

 /* Configure NVIC for RCC */

 /* (1) Enable Interrupt on RCC */

 /* (2) Set priority for RCC */

 NVIC_EnableIRQ(RCC_CRS_IRQn); /* (1) */

 NVIC_SetPriority(RCC_CRS_IRQn,0); /* (2) */

 /* (1) Enable interrupt on HSE ready */

 /* (2) Enable the CSS

 Enable the HSE and set HSEBYP to use the external clock

 instead of an oscillator

 Enable HSE */

 /* Note : the clock is switched to HSE in the RCC_CRS_IRQHandler ISR */

 RCC->CIER |= RCC_CIER_HSERDYIE; /* (1) */

 RCC->CR |= RCC_CR_CSSHSEON | RCC_CR_HSEBYP | RCC_CR_HSEON; /* (2) */

}

/**

 * This function handles RCC interrupt request

 * and switch the system clock to HSE.

 * Param None

 * Retval None

 */

void RCC_CRS_IRQHandler(void)

{

 /* (1) Check the flag HSE ready */

 /* (2) Clear the flag HSE ready */

 /* (3) Switch the system clock to HSE */

 if ((RCC->CifR & RCC_CifR_HSERDYF) != 0) /* (1) */

 {

 RCC->CICR |= RCC_CICR_HSERDYC; /* (2) */

 RCC->CFGR = ((RCC->CFGR & (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSE); /* (3) */

 }

 else

RM0367 Rev 8 981/1040

RM0367 Code examples

1018

 {

 /* Manage error */

 }

}

A.4.2 PLL configuration modification code example

/* (1) Test if PLL is used as System clock */

/* (2) Select HSI as system clock */

/* (3) Wait for HSI switched */

/* (4) Disable the PLL */

/* (5) Wait until PLLRDY is cleared */

/* (6) Set latency to 1 wait state */

/* (7) Set the PLL multiplier to 24 and divider by 3 */

/* (8) Enable the PLL */

/* (9) Wait until PLLRDY is set */

/* (10) Select PLL as system clock */

/* (11) Wait until the PLL is switched on */

if ((RCC->CFGR & RCC_CFGR_SWS) == RCC_CFGR_SWS_PLL) /* (1) */

{

 RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW))

 | RCC_CFGR_SW_HSI; /* (2) */

 while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI) /* (3) */

 {

 /* For robust implementation, add here time-out management */

 }

}

RCC->CR &= (uint32_t)(~RCC_CR_PLLON);/* (4) */

while((RCC->CR & RCC_CR_PLLRDY) != 0) /* (5) */

{

 /* For robust implementation, add here time-out management */

}

FLASH->ACR |= FLASH_ACR_LATENCY; /* (6) */

RCC->CFGR = RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV))

 | (RCC_CFGR_PLLMUL24 | RCC_CFGR_PLLDIV2); /* (7) */

RCC->CR |= RCC_CR_PLLON; /* (8) */

while ((RCC->CR & RCC_CR_PLLRDY) == 0) /* (9) */

{

 /* For robust implementation, add here time-out management */

}

RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL); /* (10) */

while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL) /* (11) */

{

 /* For robust implementation, add here time-out management */

}

Code examples RM0367

982/1040 RM0367 Rev 8

A.4.3 MCO selection code example

/* (1) Clear the MCO selection bits */

/* (2)Select system clock/4 to be output on the MCO without prescaler */

RCC->CFGR &= (uint32_t) RCC_CFGR_MCOSEL; /* (1) */

RCC->CFGR |= RCC_CFGR_MCO_SYSCLK | RCC_CFGR_MCO_PRE_4; /* (2) */

A.5 GPIOs

A.5.1 Locking mechanism code example

/* (1) Write LCKK bit to 1 and set the pin bits to lock */

/* (2) Write LCKK bit to 0 and set the pin bits to lock */

/* (3) Write LCKK bit to 1 and set the pin bits to lock */

/* (4) Read the Lock register */

/* (5) Check the Lock register (optionnal) */

GPIOA->LCKR = GPIO_LCKR_LCKK + lock; /* (1) */

GPIOA->LCKR = lock; /* (2) */

GPIOA->LCKR = GPIO_LCKR_LCKK + lock; /* (3) */

GPIOA->LCKR; /* (4) */

if ((GPIOA->LCKR & GPIO_LCKR_LCKK) == 0) /* (5) */

{

 /* Manage error */

}

A.5.2 Alternate function selection sequence code example

/* (1) Enable the peripheral clock of Timer 2 */

/* (2) Enable the peripheral clock of GPIOA */

/* (3) Select Alternate function mode (10) on GPIOA pin 0 */

/* (4) Select TIM2_CH1 on PA0 by enabling AF2 for pin 0 in GPIOA AFRL

 register */

RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; /* (1) */

RCC->IOPENR |= RCC_IOPENR_GPIOAEN; /* (2) */

GPIOA->MODER = (GPIOA->MODER & ~(GPIO_MODER_MODE0)) \

 | (GPIO_MODER_MODE0_1); /* (3) */

GPIOA->AFR[0] |= 0x2; /* (4) */

A.5.3 Analog GPIO configuration code example

/* (1) Enable the peripheral clock of GPIOA */

/* (2) Select Input Float (00- default) on GPIOA pin 0 */

RCC->IOPENR |= RCC_IOPENR_GPIOAEN; /* (1) */

GPIOA->MODER &= ~(GPIO_MODER_MODE0); /* (2) */

RM0367 Rev 8 983/1040

RM0367 Code examples

1018

A.6 DMA

A.6.1 DMA Channel Configuration sequence code example

/* (1) Enable the peripheral clock on DMA */

/* (2) Remap DMA channel1 on ADC (reset value) */

/* (3) Enable DMA transfer on ADC */

/* (4) Configure the peripheral data register address */

/* (5) Configure the memory address */

/* (6) Configure the number of DMA tranfer to be performs on channel 1 */

/* (7) Configure increment, size and interrupts */

/* (8) Enable DMA Channel 1 */

RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */

//DMA1_CSELR->CSELR &= (uint32_t)(~DMA_CSELR_C1S); /* (2) */

ADC1->CFGR1 |= ADC_CFGR1_DMAEN; /* (3) */

DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (4) */

DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (5) */

DMA1_Channel1->CNDTR = 3; /* (6) */

DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 \

 | DMA_CCR_TEIE | DMA_CCR_TCIE ; /* (7) */

DMA1_Channel1->CCR |= DMA_CCR_EN; /* (8) */

/* Configure NVIC for DMA */

/* (1) Enable Interrupt on DMA Channel 1 */

/* (2) Set priority for DMA Channel 1 */

NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* (1) */

NVIC_SetPriority(DMA1_Channel1_IRQn,0); /* (2) */

A.7 Interrupts and event

A.7.1 NVIC initialization example

/* Configure NVIC for ADC */

/* (1) Enable Interrupt on ADC */

/* (2) Set priority for ADC */

NVIC_EnableIRQ(ADC1_COMP_IRQn); /* (1) */

NVIC_SetPriority(ADC1_COMP_IRQn,0); /* (2) */

A.7.2 Extended interrupt selection code example

/* (1) Enable the peripheral clock of GPIOA */

/* (2) Select input mode (00) on GPIOA pin 0 */

/* (3) Select Port A for pin 0 extended interrupt by writing 0000

 in EXTI0 (reset value) */

/* (4) Configure the corresponding mask bit in the EXTI_IMR register */

Code examples RM0367

984/1040 RM0367 Rev 8

/* (5) Configure the Trigger Selection bits of the Interrupt line

 on rising edge */

/* (6) Configure the Trigger Selection bits of the Interrupt line

 on falling edge */

RCC->IOPENR |= RCC_IOPENR_GPIOAEN; /* (1) */

GPIOA->MODER = (GPIOA->MODER & ~(GPIO_MODER_MODE0)); /* (2) */

//SYSCFG->EXTICR[0] &= (uint16_t)~SYSCFG_EXTICR1_EXTI0_PA; /* (3) */

EXTI->IMR |= 0x0001; /* (4) */

EXTI->RTSR |= 0x0001; /* (5) */

//EXTI->FTSR |= 0x0001; /* (6) */

/* Configure NVIC for Extended Interrupt */

/* (7) Enable Interrupt on EXTI0_1 */

/* (8) Set priority for EXTI0_1 */

NVIC_EnableIRQ(EXTI0_1_IRQn); /* (7) */

NVIC_SetPriority(EXTI0_1_IRQn,0); /* (8) */

A.8 ADC

A.8.1 Calibration code example

/* (1) Ensure that ADEN = 0 */

/* (2) Clear ADEN */

/* (3) Set ADCAL=1 */

/* (4) Wait until EOCAL=1 */

/* (5) Clear EOCAL */

if ((ADC1->CR & ADC_CR_ADEN) != 0) /* (1) */

{

ADC1->CR |= ADC_CR_ADDIS; /* (2) */

}

ADC1->CR |= ADC_CR_ADCAL; /* (3) */

while ((ADC1->ISR & ADC_ISR_EOCAL) == 0) /* (4) */

{

 /* For robust implementation, add here time-out management */

}

ADC1->ISR |= ADC_ISR_EOCAL; /* (5) */

A.8.2 ADC enable sequence code example

/* (1) Clear the ADRDY bit */

/* (2) Enable the ADC */

/* (3) Wait until ADC ready */

ADC1->ISR |= ADC_ISR_ADRDY; /* (1) */

ADC1->CR |= ADC_CR_ADEN; /* (2) */

if ((ADC1->CFGR1 & ADC_CFGR1_AUTOFF) == 0)

RM0367 Rev 8 985/1040

RM0367 Code examples

1018

{

 while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* (3) */

 {

 /* For robust implementation, add here time-out management */

 }

}

A.8.3 ADC disable sequence code example

/* (1) Ensure that no conversion on going */

/* (2) Stop any ongoing conversion */

/* (3) Wait until ADSTP is reset by hardware i.e. conversion is stopped */

/* (4) Disable the ADC */

/* (5) Wait until the ADC is fully disabled */

if ((ADC1->CR & ADC_CR_ADSTART) != 0) /* (1) */

{

 ADC1->CR |= ADC_CR_ADSTP; /* (2) */

}

while ((ADC1->CR & ADC_CR_ADSTP) != 0) /* (3) */

{

 /* For robust implementation, add here time-out management */

}

ADC1->CR |= ADC_CR_ADDIS; /* (4) */

while ((ADC1->CR & ADC_CR_ADEN) != 0) /* (5) */

{

 /* For robust implementation, add here time-out management */

}

A.8.4 ADC clock selection code example

/* (1) Select PCLK by writing 11 in CKMODE */

ADC1->CFGR2 |= ADC_CFGR2_CKMODE; /* (1) */

A.8.5 Single conversion sequence code example - Software trigger

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the auto off mode */

/* (3) Select CHSEL17 for VRefInt */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater than

 17.1us */

/* (5) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_AUTOFF; /* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL17; /* (3) */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC->CCR |= ADC_CCR_VREFEN; /* (5) */

…

Code examples RM0367

986/1040 RM0367 Rev 8

/* Performs the AD conversion */

ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */

while ((ADC1->ISR & ADC_ISR_EOC) == 0) /* wait end of conversion */

{

 /* For robust implementation, add here time-out management */

}

A.8.6 Continuous conversion sequence code example - Software trigger

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the continuous mode and scanning direction */

/* (3) Select CHSEL4, CHSEL9 and CHSEL17 */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 5 us */

/* (5) Enable interrupts on EOC, EOSEQ and overrrun */

/* (6) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_WAIT |ADC_CFGR1_CONT | ADC_CFGR1_SCANDIR;/* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL9 \

 | ADC_CHSELR_CHSEL17; /* (3) */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC1->IER = ADC_IER_EOCIE | ADC_IER_EOSEQIE | ADC_IER_OVRIE; /* (5) */

ADC->CCR |= ADC_CCR_VREFEN; /* (6) */

/* Configure NVIC for ADC */

/* (1) Enable Interrupt on ADC */

/* (2) Set priority for ADC */

NVIC_EnableIRQ(ADC1_COMP_IRQn); /* (1) */

NVIC_SetPriority(ADC1_COMP_IRQn,0); /* (2) */

A.8.7 Single conversion sequence code example - Hardware trigger

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the external trigger on falling edge and external trigger on

 TIM22_TRGO by selecting TRG4 (EXTSEL = 100) */

/* (3) Select CHSEL17 for VRefInt */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 5us */

/* (5) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_EXTEN_0 | ADC_CFGR1_EXTSEL_2 ; /* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL17; /* (3) */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC->CCR |= ADC_CCR_VREFEN; /* (5) */

Note: Then TIM22 must be configured to generate an external trigger on TRG0 periodically.

RM0367 Rev 8 987/1040

RM0367 Code examples

1018

A.8.8 Continuous conversion sequence code example - Hardware trigger

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the external trigger on TIM22_TRGO (TRG4 i.e. EXTSEL = 100

 and rising edge, the continuous mode and scanning direction */

/* (3) Select CHSEL4, CHSEL9 and CHSEL17 */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 5us */

/* (5) Enable interrupts on EOC, EOSEQ and overrrun */

/* (6) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_EXTEN_0 | ADC_CFGR1_EXTSEL_2 | ADC_CFGR1_CONT \

 | ADC_CFGR1_SCANDIR; /* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL9 \

 | ADC_CHSELR_CHSEL17; /* (3 */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC1->IER = ADC_IER_EOCIE | ADC_IER_EOSEQIE | ADC_IER_OVRIE; /* (5) */

ADC->CCR |= ADC_CCR_VREFEN; /* (6) */

/* Configure NVIC for ADC */

/* (1) Enable Interrupt on ADC */

/* (2) Set priority for ADC */

NVIC_EnableIRQ(ADC1_COMP_IRQn); /* (1) */

NVIC_SetPriority(ADC1_COMP_IRQn,0); /* (2) */

A.8.9 DMA one shot mode sequence code example

/* (1) Enable the peripheral clock on DMA */

/* (2) Enable DMA transfer on ADC - DMACFG is kept at 0 for one shot mode */

/* (3) Configure the peripheral data register address */

/* (4) Configure the memory address */

/* (5) Configure the number of DMA transfer to be performs

 on DMA channel 1 */

/* (6) Configure increment, size and interrupts */

/* (7) Enable DMA Channel 1 */

RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_DMAEN; /* (2) */

DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */

DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */

DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNEL; /* (5) */

DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 \

 | DMA_CCR_TEIE | DMA_CCR_TCIE ; /* (6) */

DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */

Code examples RM0367

988/1040 RM0367 Rev 8

A.8.10 DMA circular mode sequence code example

/* (1) Enable the peripheral clock on DMA */

/* (2) Enable DMA transfer on ADC and circular mode */

/* (3) Configure the peripheral data register address */

/* (4) Configure the memory address */

/* (5) Configure the number of DMA tranfer to be performs

 on DMA channel 1 */

/* (6) Configure increment, size, interrupts and circular mode */

/* (7) Enable DMA Channel 1 */

RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* (2) */

DMA1_Channel1->CPAR = (uint32_t) (&(ADC1->DR)); /* (3) */

DMA1_Channel1->CMAR = (uint32_t)(ADC_array); /* (4) */

DMA1_Channel1->CNDTR = NUMBER_OF_ADC_CHANNEL; /* (5) */

DMA1_Channel1->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 \

 | DMA_CCR_TEIE | DMA_CCR_CIRC; /* (6) */

DMA1_Channel1->CCR |= DMA_CCR_EN; /* (7) */

A.8.11 Wait mode sequence code example

/* (1) Select PCLK by writing 11 in CKMODE */

/* (2) Select the continuous mode and the wait mode */

/* (3) Select CHSEL4, CHSEL9 and CHSEL17 */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 17.1us */

/* (5) Enable interrupts on overrrun */

/* (6) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

ADC1->CFGR2 |= ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_CONT | ADC_CFGR1_WAIT; /* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL9 \

 | ADC_CHSELR_CHSEL17; /* (3 */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC1->IER = ADC_IER_OVRIE; /* (5) */

ADC->CCR |= ADC_CCR_VREFEN; /* (6) */

A.8.12 Auto off and no wait mode sequence code example

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the external trigger on TIM22_TRGO and falling edge,

 the continuous mode, scanning direction and auto off */

/* (3) Select CHSEL4, CHSEL9 and CHSEL17 */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 5us */

/* (5) Enable interrupts on EOC, EOSEQ and overrrun */

/* (6) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

RM0367 Rev 8 989/1040

RM0367 Code examples

1018

ADC1->CFGR1 |= ADC_CFGR1_EXTEN_0 | ADC_CFGR1_EXTSEL_2 \

 | ADC_CFGR1_SCANDIR | ADC_CFGR1_AUTOFF; /* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL9 \

 | ADC_CHSELR_CHSEL17; /* (3) */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC1->IER = ADC_IER_EOCIE | ADC_IER_EOSEQIE | ADC_IER_OVRIE; /* (5) */

ADC->CCR |= ADC_CCR_VREFEN; /* (6) */

A.8.13 Auto off and wait mode sequence code example

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the continuous mode, the wait mode and the Auto off */

/* (3) Select CHSEL4, CHSEL9 and CHSEL17 */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 5us */

/* (5) Enable interrupt on overrrun */

/* (6) Wake-up the VREFINT (only for Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_CONT | ADC_CFGR1_WAIT | ADC_CFGR1_AUTOFF;/* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL9 \

 | ADC_CHSELR_CHSEL17; /* (3) */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (4) */

ADC1->IER = ADC_IER_OVRIE; /* (5) */

ADC->CCR |= ADC_CCR_VREFEN; /* (6) */

A.8.14 Analog watchdog code example

/* Define the upper limit 15% above the factory value

 the value is adapted according to the application power supply

 versus the factory calibration power supply */

uint16_t vrefint_high = (*VREFINT_CAL_ADDR)* VDD_CALIB / VDD_APPLI * 115 /
100;

/* Define the lower limit 15% below the factory value

 the value is adapted according to the application power supply

 versus the factory calibration power supply */

uint16_t vrefint_low = (*VREFINT_CAL_ADDR) * VDD_CALIB / VDD_APPLI * 85 /
100;

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select the continuous mode

 and configure the Analog watchdog to monitor only CH17 */

/* (3) Define analog watchdog range : 16b-MSW is the high limit

 and 16b-LSW is the low limit */

/* (4) Select CHSEL4, CHSEL9 and CHSEL17 */

/* (5) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 5us */

Code examples RM0367

990/1040 RM0367 Rev 8

/* (6) Enable interrupts on EOC, EOSEQ and Analog Watchdog */

/* (7) Wake-up the VREFINT (only for VBAT, Temp sensor and VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_CONT \

 | (17<<26) | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL; /* (2) */

ADC1->TR = (vrefint_high << 16) + vrefint_low; /* (3 */

ADC1->CHSELR = ADC_CHSELR_CHSEL4 | ADC_CHSELR_CHSEL9

 | ADC_CHSELR_CHSEL17; /* (4) */

ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* (5) */

ADC1->IER = ADC_IER_EOCIE | ADC_IER_EOSEQIE | ADC_IER_AWDIE; /* (6) */

ADC->CCR |= ADC_CCR_VREFEN; /* (7) */

A.8.15 Oversampling code example

/* (1) Select HSI16 by writing 00 in CKMODE (reset value)

 Enable oversampling with ratio 16 and shifted by 1,

 without trigger */

ADC1->CFGR2 = (ADC1->CFGR2 & (~ADC_CFGR2_CKMODE))

 | (ADC_CFGR2_OVSE | ADC_CFGR2_OVSR_1 | ADC_CFGR2_OVSR_0

 | ADC_CFGR2_OVSS_0); /* (1) */

A.8.16 Temperature configuration code example

/* (1) Select HSI16 by writing 00 in CKMODE (reset value) */

/* (2) Select continuous mode */

/* (3) Select CHSEL18 for temperature sensor */

/* (4) Select a sampling mode of 111 i.e. 239.5 ADC clk to be greater

 than 2.2us */

/* (5) Wake-up the Temperature sensor (only for Temp sensor and

 VRefInt) */

//ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* (1) */

ADC1->CFGR1 |= ADC_CFGR1_CONT; /* (2) */

ADC1->CHSELR = ADC_CHSELR_CHSEL18; /* (3) */

ADC1->SMPR |= ADC_SMPR_SMP; /* (4) */

ADC->CCR |= ADC_CCR_TSEN; /* (5) */

A.8.17 Temperature computation code example

/* Temperature sensor calibration value address */

#define TEMP130_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FF8007E))

#define TEMP30_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FF8007A))

#define VDD_CALIB ((uint16_t) (300))

#define VDD_APPLI ((uint16_t) (330))

int32_t ComputeTemperature(uint32_t measure)

{

 int32_t temperature;

 temperature = ((measure * VDD_APPLI / VDD_CALIB)

RM0367 Rev 8 991/1040

RM0367 Code examples

1018

 - (int32_t) *TEMP30_CAL_ADDR);

 temperature = temperature * (int32_t)(130 - 30);

 temperature = temperature / (int32_t)(*TEMP130_CAL_ADDR -

 *TEMP30_CAL_ADDR);

 temperature = temperature + 30;

 return(temperature);

}

A.9 DAC

A.9.1 Independent trigger without wave generation code example

/* (1) Enable the peripheral clock of the DAC */

/* (2) Configure WAVE1 at 01 and LFSR mask amplitude (MAMP1)

 at 1000 for a 511-bits amplitude,

 enable the DAC ch1,

 disable buffer on ch1,

 and select TIM6 as trigger by keeping 000 in TSEL1 */

RCC->APB1ENR |= RCC_APB1ENR_DACEN; /* (1) */

DAC->CR |= DAC_CR_WAVE1_0 | DAC_CR_MAMP1_3 \

 | DAC_CR_BOFF1 | DAC_CR_TEN1 | DAC_CR_EN1; /* (2) */

DAC->DHR12R1 = DAC_OUT1_VALUE; /* Initialize the DAC output value */

A.9.2 Independent trigger with single triangle generation code example

/* (1) Enable the peripheral clock of the DAC */

/* (2) Configure WAVE1 at 10 and LFSR mask amplitude (MAMP1)

 at 1001 for a 1023-bits amplitude,

 enable the DAC ch1,

 disable buffer on ch1,

 and select TIM6 as trigger by keeping 000 in TSEL1 */

RCC->APB1ENR |= RCC_APB1ENR_DACEN; /* (1) */

DAC->CR |= DAC_CR_WAVE1_1 | DAC_CR_MAMP1_3 | DAC_CR_MAMP1_0 \

 | DAC_CR_BOFF1 | DAC_CR_TEN1 | DAC_CR_EN1; /* (2) */

DAC->DHR12R1 = DAC_OUT1_VALUE; /* Define the low value of the triangle on
channel1 */

A.9.3 DMA initialization code example

/* (1) Enable the peripheral clock of the DAC */

/* (2) Enable DMA transfer on DAC ch1,

 enable interrupt on DMA underrun DAC,

 enable the DAC ch1, enable the trigger on ch 1,

 disable the buffer on ch1,

 and select TIM6 as trigger by keeping 000 in TSEL1 */

RCC->APB1ENR |= RCC_APB1ENR_DACEN; /* (1) */

Code examples RM0367

992/1040 RM0367 Rev 8

DAC->CR |= DAC_CR_DMAUDRIE1 | DAC_CR_DMAEN1 | DAC_CR_BOFF1

 | DAC_CR_TEN1 | DAC_CR_EN1; /* (2) */

/* (1) Enable the peripheral clock on DMA */

/* (2) Remap DAC on DMA channel 2 */

/* (3) Configure the peripheral data register address */

/* (4) Configure the memory address */

/* (5) Configure the number of DMA tranfer to be performs

 on DMA channel x */

/* (6) Configure increment, size (16-bits), interrupts, transfer

 from memory to peripheral and circular mode */

/* (7) Enable DMA Channel x */

RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */

DMA1_CSELR->CSELR |= (uint32_t)(9 << 4); /* (2) */

DMA1_Channel2->CPAR = (uint32_t) (&(DAC->DHR12R1)); /* (3) */

DMA1_Channel2->CMAR = (uint32_t)(sin_data); /* (4) */

DMA1_Channel2->CNDTR = SIN_ARRAY_SIZE; /* (5) */

DMA1_Channel2->CCR |= DMA_CCR_MINC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 \

 | DMA_CCR_DIR | DMA_CCR_TEIE | DMA_CCR_CIRC; /* (6) */

DMA1_Channel2->CCR |= DMA_CCR_EN; /* (7) */

/* Configure NVIC for DMA */

/* (1) Enable Interrupt on DMA Channels x */

/* (2) Set priority for DMA Channels x */

NVIC_EnableIRQ(DMA1_Channel2_3_IRQn); /* (1) */

NVIC_SetPriority(DMA1_Channel2_3_IRQn,3); /* (2) */

A.10 TSC code example

A.10.1 TSC configuration code example

/* Configure TSC */

/* With a Charge transfer cycle around 8µs */

/* (1)Select fPGCLK = fHCLK/32
 Set pulse high = 2xtPGCLK,Master

 Set pulse low = 2xtPGCLK

 Set Max count value = 16383 pulses

 Enable TSC */

/* (2) Disable hysteresis */

/* (3) Enable end of acquisition IT */

/* (4) Sampling enabled, G2IO4 */

/* (5) Channel enabled, G2IO3 */

/* (6) Enable group, G2 */

TSC->CR = TSC_CR_PGPSC_2 | TSC_CR_PGPSC_0 | TSC_CR_CTPH_0 | TSC_CR_CTPL_0

 | TSC_CR_MCV_2 | TSC_CR_MCV_1 | TSC_CR_TSCE; /* (1) */

RM0367 Rev 8 993/1040

RM0367 Code examples

1018

TSC->IOHCR &= (uint32_t)(~(TSC_IOHCR_G2_IO3 | TSC_IOHCR_G2_IO4)); /* (2) */

TSC->IER = TSC_IER_EOAIE; /* (3) */

TSC->IOSCR = TSC_IOSCR_G2_IO4; /* (4) */

TSC->IOCCR = TSC_IOCCR_G2_IO3; /* (5) */

TSC->IOGCSR |= TSC_IOGCSR_G2E; /* (6) */

A.10.2 TSC interrupt code example

/* End of acquisition flag */

if((TSC->ISR & TSC_ISR_EOAF) == TSC_ISR_EOAF)

{

 TSC->ICR = TSC_ICR_EOAIC; /* Clear flag, TSC_ICR_EOAIC = 1 */

 AcquisitionValue = TSC->IOGXCR[1]; /* Get G2 counter value */

}

A.11 Timers

A.11.1 Upcounter on TI2 rising edge code example

/* (1) Configure channel 1 to detect rising edges on the TI1 input

 by writing CC1S = ‘01’, and configure the input filter

 duration by writing the IC1F[3:0] bits in the TIMx_CCMR1

 register (if no filter is needed, keep IC2F=0000).*/

/* (2) Select rising edge polarity by writing CC1P=0 in the TIMx_CCER

 register

 Not necessary as it keeps the reset value. */

/* (3) Configure the timer in external clock mode 1 by writing SMS=111

 Select TI1 as the trigger input source by writing TS=101

 in the TIMx_SMCR register. */

/* (4) Enable the counter by writing CEN=1 in the TIMx_CR1 register. */

TIMx->CCMR1 |= TIM_CCMR1_IC1F_0 | TIM_CCMR1_IC1F_1

 | TIM_CCMR1_CC1S_0; /* (1 */

//TIMx->CCER &= (uint16_t)(~TIM_CCER_CC1P); /* (2) */

TIMx->SMCR |= TIM_SMCR_SMS | TIM_SMCR_TS_2 | TIM_SMCR_TS_0; /* (3) */

TIMx->CR1 |= TIM_CR1_CEN; /* (4) */

A.11.2 Up counter on each 2 ETR rising edges code example

/* (1) As no filter is needed in this example, write ETF[3:0]=0000

 in the TIMx_SMCR register. Keep the reset value.

 Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR

 register.

 Select rising edge detection on the ETR pin by writing ETP=0

 in the TIMx_SMCR register. Keep the reset value.

 Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR

 register. */

Code examples RM0367

994/1040 RM0367 Rev 8

/* (2) Enable the counter by writing CEN=1 in the TIMx_CR1 register. */

TIMx->SMCR |= TIM_SMCR_ETPS_0 | TIM_SMCR_ECE; /* (1) */

TIMx->CR1 |= TIM_CR1_CEN; /* (2) */

A.11.3 Input capture configuration code example

/* (1) Select the active input TI1 (CC1S = 01),

 program the input filter for 8 clock cycles (IC1F = 0011),

 select the rising edge on CC1 (CC1P = 0, reset value)

 and prescaler at each valid transition (IC1PS = 00, reset value) */

/* (2) Enable capture by setting CC1E */

/* (3) Enable interrupt on Capture/Compare */

/* (4) Enable counter */

TIMx->CCMR1 |= TIM_CCMR1_CC1S_0 \

 | TIM_CCMR1_IC1F_0 | TIM_CCMR1_IC1F_1; /* (1 */

TIMx->CCER |= TIM_CCER_CC1E; /* (2) */

TIMx->DIER |= TIM_DIER_CC1IE; /* (3) */

TIMx->CR1 |= TIM_CR1_CEN; /* (4) */

A.11.4 Input capture data management code example

This code must be inserted in the timer interrupt subroutine.

if ((TIMx->SR & TIM_SR_CC1IF) != 0)

{

 if ((TIMx->SR & TIM_SR_CC1OF) != 0) /* Check the overflow */

 {

 /* Overflow error management */

 gap = 0; /* Reinitialize the laps computing */

 TIMx->SR = ~(TIM_SR_CC1OF | TIM_SR_CC1IF); /* Clear the flags */

 return;

 }

 if (gap == 0) /* Test if it is the first rising edge */

 {

 counter0 = TIMx->CCR1; /* Read the capture counter which clears the
CC1ICF */

 gap = 1; /* Indicate that the first rising edge has yet been detected */

 }

 else

 {

 counter1 = TIMx->CCR1; /* Read the capture counter which clears the
CC1ICF */

 if (counter1 > counter0) /* Check capture counter overflow */

 {

 Counter = counter1 - counter0;

 }

 else

 {

RM0367 Rev 8 995/1040

RM0367 Code examples

1018

 Counter = counter1 + 0xFFFF - counter0 + 1;

 }

 counter0 = counter1;

 }

 }

else

{

 /* Manage error */

}

Note: This code manages only single counter overflows. To manage several counter overflows,
the update interrupt must be enabled (UIE = 1) and properly managed.

A.11.5 PWM input configuration code example

/* (1) Select the active input TI1 for TIMx_CCR1 (CC1S = 01),

 select the active input TI1 for TIMx_CCR2 (CC2S = 10) */

/* (2) Select TI1FP1 as valid trigger input (TS = 101)

 configure the slave mode in reset mode (SMS = 100) */

/* (3) Enable capture by setting CC1E and CC2E

 select the rising edge on CC1 and CC1N (CC1P = 0 and CC1NP = 0,

 reset value),

 select the falling edge on CC2 (CC2P = 1). */

/* (4) Enable interrupt on Capture/Compare 1 */

/* (5) Enable counter */

TIMx->CCMR1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_1; /* (1 */

TIMx->SMCR |= TIM_SMCR_TS_2 | TIM_SMCR_TS_0 \

 | TIM_SMCR_SMS_2; /* (2) */

TIMx->CCER |= TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC2P; /* (3) */

TIMx->DIER |= TIM_DIER_CC1IE; /* (4) */

TIMx->CR1 |= TIM_CR1_CEN; /* (5) */

A.11.6 PWM input with DMA configuration code example

/* (1) Enable the peripheral clock on DMA */

/* (2) Remap DMA channel5 and 7 on TIM2_CH1 and TIM2_CH2

 by writing 1000 in DMA_CSELR_C5S and DMA_CSELR_C7S */

/* (3) Configure the peripheral data register address for DMA channel x */

/* (4) Configure the memory address for DMA channel x */

/* (5) Configure the number of DMA tranfer to be performed

 on DMA channel x */

/* (6) Configure no increment (reset value), size (16-bits), interrupts,
transfer from peripheral to memory and circular mode

 for DMA channel x */

/* (7) Enable DMA Channel x */

Code examples RM0367

996/1040 RM0367 Rev 8

RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */

DMA1_CSELR->CSELR |= 8 << (4 * (5-1)) | 8 << (4 * (7-1)); /* (2) */

DMA1_Channel5->CPAR = (uint32_t) (&(TIMx->CCR1)); /* (3) */

DMA1_Channel5->CMAR = (uint32_t)(&Period); /* (4) */

DMA1_Channel5->CNDTR = 1; /* (5) */

DMA1_Channel5->CCR |= DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 \

 | DMA_CCR_TEIE | DMA_CCR_CIRC; /* (6) */

DMA1_Channel5->CCR |= DMA_CCR_EN; /* (7) */

/* repeat (3) to (6) for channel 6 */

DMA1_Channel7->CPAR = (uint32_t) (&(TIMx->CCR2)); /* (2) */

DMA1_Channel7->CMAR = (uint32_t)(&DutyCycle); /* (3) */

DMA1_Channel7->CNDTR = 1; /* (4) */

DMA1_Channel7->CCR |= DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 \

 | DMA_CCR_TEIE | DMA_CCR_CIRC; /* (5) */

DMA1_Channel7->CCR |= DMA_CCR_EN; /* (6) */

/* Configure NVIC for DMA */

/* (1) Enable Interrupt on DMA Channels x */

/* (2) Set priority for DMA Channels x */

NVIC_EnableIRQ(DMA1_Channel4_5_6_7_IRQn); /* (1) */

NVIC_SetPriority(DMA1_Channel4_5_6_7_IRQn,3); /* (2) */

A.11.7 Output compare configuration code example

/* (1) Set prescaler to 3, so APBCLK/4 i.e 4MHz */

/* (2) Set ARR = 4000 - 1 */

/* (3) Set CCRx = ARR, as timer clock is 4MHz, an event occurs each 1 ms */

/* (4) Select toggle mode on OC1 (OC1M = 011),

 disable preload register on OC1 (OC1PE = 0, reset value) */

/* (5) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (6) Enable output (MOE = 1 */

/* (7) Enable counter */

TIMx->PSC |= 3; /* (1) */

TIMx->ARR = 4000 - 1; /* (2) */

TIMx->CCR1 = 4000 - 1; /* (3) */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1; /* (4) */

TIMx->CCER |= TIM_CCER_CC1E; /* (5 */

TIMx->CR1 |= TIM_CR1_CEN; /* (6) */

A.11.8 Edge-aligned PWM configuration example

/* (1) Set prescaler to 15, so APBCLK/16 i.e 1MHz */

/* (2) Set ARR = 8, as timer clock is 1MHz the period is 9 us */

/* (3) Set CCRx = 4, , the signal will be high during 4 us */

RM0367 Rev 8 997/1040

RM0367 Code examples

1018

/* (4) Select PWM mode 1 on OC1 (OC1M = 110),

 enable preload register on OC1 (OC1PE = 1) */

/* (5) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1) */

/* (6) Enable output (MOE = 1)- optional*/

/* (7) Enable counter (CEN = 1)
 select edge aligned mode (CMS = 00, reset value)

 select direction as upcounter (DIR = 0, reset value) */

/* (8) Force update generation (UG = 1) */

TIMx->PSC = 15; /* (1) */

TIMx->ARR = 8; /* (2) */

TIMx->CCR1 = 4; /* (3) */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1

 | TIM_CCMR1_OC1PE; /* (4) */

TIMx->CCER |= TIM_CCER_CC1E; /* (5) */

TIMx->CR1 |= TIM_CR1_CEN; /* (6) */

TIMx->EGR |= TIM_EGR_UG; /* (7) */

A.11.9 Center-aligned PWM configuration example

/* (1) Set prescaler to 15, so APBCLK/16 i.e 1MHz */

/* (2) Set ARR = 8, as timer clock is 1MHz and center-aligned counting,

 the period is 16 us */

/* (3) Set CCRx = 7, the signal will be high during 14 us */

/* (4) Select PWM mode 1 on OC1 (OC1M = 110),

 enable preload register on OC1 (OC1PE = 1, reset value) */

/* (5) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (6) Enable output (MOE = 1 */

/* (7) Enable counter (CEN = 1)

 select center-aligned mode 1 (CMS = 01) */

/* (8) Force update generation (UG = 1) */

TIMx->PSC = 15; /* (1) */

TIMx->ARR = 8; /* (2) */

TIMx->CCR1 = 7; /* (3) */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1

 | TIM_CCMR1_OC1PE; /* (4) */

TIMx->CCER |= TIM_CCER_CC1E; /* (5) */

TIMx->CR1 |= TIM_CR1_CMS_0 | TIM_CR1_CEN; /* (6) */

TIMx->EGR |= TIM_EGR_UG; /* (7) */

A.11.10 ETR configuration to clear OCxREF code example

/* (1) Set prescaler to 15, so APBCLK/16 i.e 1MHz */

/* (2) Set ARR = 8, as timer clock is 1MHz the period is 9 us */

/* (3) Set CCRx = 4, , the signal will be high during 4 us */

/* (4) Select PWM mode 1 on OC1 (OC1M = 110),

Code examples RM0367

998/1040 RM0367 Rev 8

 enable preload register on OC1 (OC1PE = 1)

 enable clearing on OC1 for ETR clearing (OC1CE = 1)*/

/* (5) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1)*/

/* (6) Select ETR as OCREF clear source (reserved bit = 1)

 select External Trigger Prescaler off (ETPS = 00, reset value)

 disable external clock mode 2 (ECE = 0, reset value)

 select active at high level (ETP = 0, reset value) */

/* (7) Enable counter (CEN = 1)

 select edge aligned mode (CMS = 00, reset value)

 select direction as upcounter (DIR = 0, reset value) */

/* (8) Force update generation (UG = 1) */

TIMx->PSC = 15; /* (1) */

TIMx->ARR = 8; /* (2) */

TIMx->CCR1 = 4; /* (3) */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1PE \

 | TIM_CCMR1_OC1CE; /* (4) */

TIMx->CCER |= TIM_CCER_CC1E; /* (5) */

TIMx->SMCR |= (1<<3); /* (6) */

TIMx->CR1 |= TIM_CR1_CEN; /* (7) */

TIMx->EGR |= TIM_EGR_UG; /* (8) */

A.11.11 Encoder interface code example

/* (1) Configure TI1FP1 on TI1 (CC1S = 01)

 configure TI1FP2 on TI2 (CC2S = 01) */

/* (2) Configure TI1FP1 and TI1FP2 non inverted (CC1P = CC2P = 0, reset

 value) */

/* (3) Configure both inputs are active on both rising and falling edges

 (SMS = 011) */

/* (4) Enable the counter by writing CEN=1 in the TIMx_CR1 register. */

TIMx->CCMR1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0; /* (1 */

//TIMx->CCER &= (uint16_t)(~(TIM_CCER_CC21 | TIM_CCER_CC2P); /* (2) */

TIMx->SMCR |= TIM_SMCR_SMS_0 | TIM_SMCR_SMS_1; /* (3) */

TIMx->CR1 |= TIM_CR1_CEN; /* (4) */

A.11.12 Reset mode code example

/* (1) Configure channel 1 to detect rising edges on the TI1 input

 by writing CC1S = ‘01’,

 and configure the input filter duration by writing the IC1F[3:0]

 bits

 in the TIMx_CCMR1 register (if no filter is needed, keep

 IC1F=0000).*/

RM0367 Rev 8 999/1040

RM0367 Code examples

1018

/* (2) Select rising edge polarity by writing CC1P=0 in the TIMx_CCER

 register

 Not necessary as it keeps the reset value. */

/* (3) Configure the timer in reset mode by writing SMS=100

 Select TI1 as the trigger input source by writing TS=101

 in the TIMx_SMCR register.*/

/* (4) Set prescaler to 16000-1 in order to get an increment each 1ms */

/* (5) Enable the counter by writing CEN=1 in the TIMx_CR1 register. */

TIMx->CCMR1 |= TIM_CCMR1_CC1S_0; /* (1 */

//TIMx->CCER &= (uint16_t)(~TIM_CCER_CC1P); /* (2) */

TIMx->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_TS_2 | TIM_SMCR_TS_0; /* (3) */

TIMx->PSC = 15999; /* (4) */

TIMx->CR1 |= TIM_CR1_CEN; /* (5) */

A.11.13 Gated mode code example

/* (1) Configure channel 1 to detect low level on the TI1 input

 by writing CC1S = ‘01’,

 and configure the input filter duration by writing the IC1F[3:0]

 bits

 in the TIMx_CCMR1 register (if no filter is needed, keep

 IC1F=0000).*/

/* (2) Select polarity by writing CC1P=1 in the TIMx_CCER register */

/* (3) Configure the timer in gated mode by writing SMS=101

 Select TI1 as the trigger input source by writing TS=101

 in the TIMx_SMCR register.*/

/* (4) Set prescaler to 4000-1 in order to get an increment each 250us */

/* (5) Enable the counter by writing CEN=1 in the TIMx_CR1 register. */

TIMx->CCMR1 |= TIM_CCMR1_CC1S_0; /* (1 */

TIMx->CCER |= TIM_CCER_CC1P; /* (2) */

TIMx->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0 \

 | TIM_SMCR_TS_2 | TIM_SMCR_TS_0; /* (3) */

TIMx->PSC = 3999; /* (4) */

TIMx->CR1 |= TIM_CR1_CEN; /* (5) */

A.11.14 Trigger mode code example

/* (1) Configure channel 2 to detect rising edge on the TI2 input

 by writing CC2S = ‘01’,

 and configure the input filter duration by writing the IC1F[3:0]

 bits

 in the TIMx_CCMR1 register (if no filter is needed, keep

 IC1F=0000).*/

/* (2) Select polarity by writing CC2P=0 (reset value) in the TIMx_CCER

 register */

/* (3) Configure the timer in trigger mode by writing SMS=110

Code examples RM0367

1000/1040 RM0367 Rev 8

 Select TI2 as the trigger input source by writing TS=110

 in the TIMx_SMCR register.*/

/* (4) Set prescaler to 4000-1 in order to get an increment each 250us */

TIMx->CCMR1 |= TIM_CCMR1_CC2S_0; /* (1 */

//TIMx->CCER &= ~TIM_CCER_CC2P; /* (2) */

TIMx->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 \

 | TIM_SMCR_TS_2 | TIM_SMCR_TS_1; /* (3) */

TIMx->PSC = 3999; /* (4) */

A.11.15 External clock mode 2 + trigger mode code example

/* (1) Configure no input filter (ETF=0000, reset value)

 configure prescaler disabled (ETPS = 0, reset value)

 select detection on rising edge on ETR (ETP = 0, reset value)

 enable external clock mode 2 (ECE = 1 */

/* (2) Configure no input filter (IC1F=0000, reset value)

 select input capture source on TI1 (CC1S = 01) */

/* (3) Select polarity by writing CC1P=0 (reset value) in the TIMx_CCER

 register */

/* (4) Configure the timer in trigger mode by writing SMS=110

 Select TI1 as the trigger input source by writing TS=101

 in the TIMx_SMCR register.*/

TIMx->SMCR |= TIM_SMCR_ECE; /* (1) */

TIMx->CCMR1 |= TIM_CCMR1_CC1S_0; /* (2 */

//TIMx->CCER &= ~TIM_CCER_CC1P; /* (3) */

TIMx->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 \

 | TIM_SMCR_TS_2 | TIM_SMCR_TS_0; /* (4) */

A.11.16 One-Pulse mode code example

/* The OPM waveform is defined by writing the compare registers */

/* (1) Set prescaler to 15, so APBCLK/16 i.e 1MHz */

/* (2) Set ARR = 7, as timer clock is 1MHz the period is 8 us */

/* (3) Set CCRx = 5, the burst will be delayed for 5 us (must be > 0 */

/* (4) Select PWM mode 2 on OC1 (OC1M = 111),

 enable preload register on OC1 (OC1PE = 1, reset value)

 enable fast enable (no delay) if PULSE_WITHOUT_DELAY is set*/

/* (5) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (6) Enable output (MOE = 1) */

/* (7) Write '1 in the OPM bit in the TIMx_CR1 register to stop the

 counter

 at the next update event (OPM = 1)

 enable auto-reload register(ARPE = 1) */

TIMx->PSC = 15; /* (1) */

RM0367 Rev 8 1001/1040

RM0367 Code examples

1018

TIMx->ARR = 7; /* (2) */

TIMx->CCR1 = 5; /* (3) */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0

 | TIM_CCMR1_OC1PE

#if PULSE_WITHOUT_DELAY > 0

 | TIM_CCMR1_OC1FE

#endif

; /* (4) */

TIMx->CCER |= TIM_CCER_CC1E; /* (5) */

TIMx->CR1 |= TIM_CR1_OPM | TIM_CR1_ARPE; /* (6) */

A.11.17 Timer prescaling another timer code example

/* (1) Select Update Event as Trigger output (TRG0) by writing MMS = 010

 in TIMx_CR2. */

/* (2) Configure TIMy in slave mode using ITR1 as internal trigger

 by writing TS = 000 in TIMy_SMCR (reset value)

 Configure TIMy in external clock mode 1, by writing SMS=111 in the

 TIMy_SMCR register. */

/* (3) Set TIMx prescaler to 15999 in order to get an increment each 1ms */

/* (4) Set TIMx Autoreload to 999 in order to get an overflow (so an UEV)

 each second */

/* (5) Set TIMx Autoreload to 24*3600-1 in order to get an overflow

 each 24-hour */

/* (6) Enable the counter by writing CEN=1 in the TIMx_CR1 register. */

/* (7) Enable the counter by writing CEN=1 in the TIMy_CR1 register. */

TIMx->CR2 |= TIM_CR2_MMS_1; /* (1 */

TIMy->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0; /* (2) */

TIMx->PSC = 15999; /* (3) */

TIMx->ARR = 999; /* (4) */

TIMy->ARR = (24 * 3600) - 1; /* (5) */

TIMx->CR1 |= TIM_CR1_CEN; /* (6) */

TIMy->CR1 |= TIM_CR1_CEN; /* (7) */

A.11.18 Timer enabling another timer code example

/* (1) Configure Timer x master mode to send its Output Compare 1

 Reference (OC1REF)

 signal as trigger output (MMS=100 in the TIMx_CR2 register). */

/* (2) Configure the Timer x OC1REF waveform (TIMx_CCMR1 register)

 Channel 1 is in PWM mode 1 when the counter is less than the

 capture/compare

 register (write OC1M = 110) */

/* (3) Configure TIMy in slave mode using ITR1 as internal trigger

 by writing TS = 000 in TIMy_SMCR (reset value)

 Configure TIMy in gated mode, by writing SMS=101 in the

Code examples RM0367

1002/1040 RM0367 Rev 8

 TIMy_SMCR register. */

/* (4) Set TIMx prescaler to 2 */

/* (5) Set TIMy prescaler to 2 */

/* (6) Set TIMx Autoreload to 999 in order to get an overflow (so an UEV)

 each 100ms */

/* (7) Set capture compare register to a value between 0 and 999 */

TIMx->CR2 |= TIM_CR2_MMS_2; /* (1 */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; /* (2) */

TIMy->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0; /* (3) */

TIMx->PSC = 2; /* (4) */

TIMy->PSC = 2; /* (5) */

TIMx->ARR = 999; /* (6) */

TIMx-> CCR1 = 700; /* (7) */

/* Configure the slave timer to generate toggling on each count */

/* (1) Configure the Timer 2 in PWM mode 1 (write OC1M = 110) */

/* (2) Set TIMx Autoreload to 1 */

/* (3) Set capture compare register to 1 */

TIMy->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; /* (1) */

TIMy->ARR = 1; /* (2) */

TIMy-> CCR1 = 1; /* (3) */

/* Enable the output of TIMx OC1 */

/* (1) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (2) Enable output (MOE = 1 */

TIMx->CCER |= TIM_CCER_CC1E;

/* Enable the output of TIMy OC1 */

/* (1) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (2) Enable output (MOE = 1 */

TIMy->CCER |= TIM_CCER_CC1E;

/* (1) Enable the slave counter first by writing CEN=1 in the TIMy_CR1

 register. */

/* (2) Enable the master counter by writing CEN=1 in the TIMx_CR1

 register. */

TIMy->CR1 |= TIM_CR1_CEN; /* (1) */

TIMx->CR1 |= TIM_CR1_CEN; /* (2) */

A.11.19 Master and slave synchronization code example

/* (1) Configure Timer x in master mode to send its enable signal

 as trigger output (MMS=001 in the TIMx_CR2 register). */

/* (2) Configure the Timer x Channel 1 waveform (TIMx_CCMR1 register)

 is in PWM mode 1 (write OC1M = 110) */

RM0367 Rev 8 1003/1040

RM0367 Code examples

1018

/* (3) Configure TIMy in slave mode using ITR1 as internal trigger

 by writing TS = 000 in TIMy_SMCR (reset value)

 Configure TIMy in gated mode, by writing SMS=101 in the

 TIMy_SMCR register. */

/* (4) Set TIMx prescaler to 2 */

/* (5) Set TIMy prescaler to 2 */

/* (6) Set TIMx Autoreload to 99 in order to get an overflow (so an UEV)

 each 10ms */

/* (7) Set capture compare register to a value between 0 and 99 */

TIMx->CR2 |= TIM_CR2_MMS_0; /* (1 */

TIMx->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; /* (2) */

TIMy->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0; /* (3) */

TIMx->PSC = 2; /* (4) */

TIMy->PSC = 2; /* (5) */

TIMx->ARR = 99; /* (6) */

TIMx-> CCR1 = 25; /* (7) */

/* Configure the slave timer Channel 1 as PWM as Timer to show

 synchronicity */

/* (1) Configure the Timer y in PWM mode 1 (write OC1M = 110) */

/* (2) Set TIMx Autoreload to 99 */

/* (3) Set capture compare register to 25 */

TIMy->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; /* (1) */

TIMy->ARR = 99; /* (2) */

TIMy-> CCR1 = 25; /* (3) */

/* Enable the output of TIMx OC1 */

/* (1) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (2) Enable output (MOE = 1 */

TIMx->CCER |= TIM_CCER_CC1E;

/* Enable the output of TIMy OC1 */

/* (1) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (2) Enable output (MOE = 1 */

TIMy->CCER |= TIM_CCER_CC1E;

/* (1) Reset Timer x by writing ‘1 in UG bit (TIMx_EGR register) */

/* (2) Reset Timer y by writing ‘1 in UG bit (TIMy_EGR register) */

TIMx->EGR |= TIM_EGR_UG;

TIMy->EGR |= TIM_EGR_UG;

/* (1) Enable the slave counter first by writing CEN=1

 in the TIMy_CR1 register.

 TIMy will start synchronously with the master timer*/

/* (2) Start the master counter by writing CEN=1 in the TIMx_CR1

 register. */

Code examples RM0367

1004/1040 RM0367 Rev 8

TIMy->CR1 |= TIM_CR1_CEN; /* (1) */

TIMx->CR1 |= TIM_CR1_CEN; /* (2) */

A.11.20 Two timers synchronized by an external trigger code example

/* (1) Configure TIMx master mode to send its enable signal

 as trigger output (MMS=001 in the TIMx_CR2 register). */

/* (2) Configure TIMx in slave mode to get the input trigger from TI1

 by writing TS = 100 in TIMx_SMCR

 Configure TIMx in trigger mode, by writing SMS=110 in the

 TIMx_SMCR register.

 Configure TIMx in Master/Slave mode by writing MSM = 1

 in TIMx_SMCR */

/* (3) Configure TIMy in slave mode to get the input trigger from Timer1

 by writing TS = 000 in TIMy_SMCR (reset value)

 Configure TIMy in trigger mode, by writing SMS=110 in the

 TIMy_SMCR register. */

/* (4) Reset Timer x counter by writing '1' in UG bit (TIMx_EGR register) */

/* (5) Reset Timer y counter by writing '1' in UG bit (TIMy_EGR register) */

TIMx->CR2 |= TIM_CR2_MMS_0; /* (1 */

TIMx->SMCR |= TIM_SMCR_TS_2 | TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1

 | TIM_SMCR_MSM; /* (2) */

TIMy->SMCR |= TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1; /* (3) */

TIMx->EGR |= TIM_EGR_UG; /* (4) */

TIMy->EGR |= TIM_EGR_UG; /* (5) */

/* Configure the Timer Channel 2 as PWM as PWM */

/* (1) Configure the Timer 1 Channel 2 waveform (TIM1_CCMR1 register)

 is in PWM mode 1 (write OC2M = 110) */

/* (2) Set TIMx prescaler to 2 */

/* (3) Set TIMx Autoreload to 99 in order to get an overflow (so an UEV)

 each 10ms */

/* (4) Set capture compare register to a value between 0 and 99 */

TIMx->CCMR1 |= TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1; /* (1) */

TIMx->PSC = 2; /* (2) */

TIMx->ARR = 99; /* (3) */

TIMx-> CCR2 = 25; /* (4) */

/* Configure the slave timer Channel 1 as PWM as Timer

 to show synchronicity */

/* (1) Configure the Timer 2 in PWM mode 1 (write OC1M = 110) */

/* (2) Set TIMy prescaler to 2 */

/* (3) Set TIMx Autoreload to 99 */

/* (4) Set capture compare register to 25 */

TIMy->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; /* (1) */

TIMy->PSC = 2; /* (2) */

RM0367 Rev 8 1005/1040

RM0367 Code examples

1018

TIMy->ARR = 99; /* (2) */

TIMy-> CCR1 = 25; /* (3) */

/* Enable the output of TIMx OC1 */

/* (1) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (2) Enable output (MOE = 1 */

TIMx->CCER |= TIM_CCER_CC2E;

/* Enable the output of TIMy OC1 */

/* (1) Select active high polarity on OC1 (CC1P = 0, reset value),

 enable the output on OC1 (CC1E = 1 */

/* (2) Enable output (MOE = 1 */

TIMy->CCER |= TIM_CCER_CC1E;

A.11.21 DMA burst feature code example

/* Configure DMA Burst Feature */

/* Configure the corresponding DMA channel */

/* (1) Enable the peripheral clocks of Timer x and DMA*/

/* (2) Remap DMA channel2 on TIM2_UP by writing 1000 in DMA_CSELR_C2S */

/* (3) Set DMA channel peripheral address is the DMAR register address */

/* (4) Set DMA channel memory address is the address of the buffer in the

 RAM containing the data to be transferred by DMA into CCRx

 registers */

/* (5) Set the number of data transfer to sizeof(Duty_Cycle_Table) */

/* (6) Configure DMA transfer in CCR register

 enable the circular mode by setting CIRC bit (optional)

 set memory size to 16_bits MSIZE = 01

 set peripheral size to 32_bits PSIZE = 10

 enable memory increment mode by setting MINC

 set data transfer direction read from memory by setting DIR */

/* (7) Configure TIMx_DCR register with DBL = 3 transfers

 and DBA = (@TIMx->CCR2 - @TIMx->CR1) >> 2 = 0xE */

/* (8) Enable the TIMx update DMA request by setting UDE bit in DIER

 register */

/* (9) Enable TIMx */

/* (10)Enable DMA channel */

RCC->AHBENR |= RCC_AHBENR_DMA1EN; /* (1) */

DMA1_CSELR->CSELR |= 8 << (4 * (2-1)); /* (2) */

DMA1_Channel2->CPAR = (uint32_t)(&(TIMx->DMAR)); /* (3) */

DMA1_Channel2->CMAR = (uint32_t)(Duty_Cycle_Table); /* (4) */

DMA1_Channel2->CNDTR = 10*3; /* (5) */

DMA1_Channel2->CCR |= DMA_CCR_CIRC | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_1

 | DMA_CCR_MINC | DMA_CCR_DIR; /* (6) */

TIMx->DCR = (3 << 8)

Code examples RM0367

1006/1040 RM0367 Rev 8

 + ((((uint32_t)(&TIM2->CCR2)) - ((uint32_t)(&TIM2->CR1))) >> 2)

 ; /* (7) */

TIMx->DIER |= TIM_DIER_UDE; /* (8) */

TIMx->CR1 |= TIM_CR1_CEN; /* (9) */

DMA1_Channel2->CCR |= DMA_CCR_EN; /* (10) */

A.12 Low-power timer (LPTIM)

A.12.1 Pulse counter configuration code example

/* (1) Configure LPTimer in Counter on External Input1.*/

/* (2) Enable interrupt on Autoreload match */

/* (3) Enable LPTimer */

/* (4) Set Autoreload to 4 in order to get an interrupt after 10 pulses

 because the 5 first pulses don't increment the counter */

LPTIM1->CFGR |= LPTIM_CFGR_COUNTMODE | LPTIM_CFGR_CKSEL; /* (1 */

LPTIM1->IER |= LPTIM_IER_ARRMIE; /* (2) */

LPTIM1->CR |= LPTIM_CR_ENABLE; /* (3) */

LPTIM1->ARR = 4; /* (4) */

LPTIM1->CR |= LPTIM_CR_CNTSTRT; /* start the counter in continuous */

A.13 IWDG code example

A.13.1 IWDG configuration code example

/* (1) Activate IWDG (not needed if done in option bytes) */

/* (2) Enable write access to IWDG registers */

/* (3) Set prescaler by 8 */

/* (4) Set reload value to have a rollover each 100ms */

/* (5) Check if flags are reset */

/* (6) Refresh counter */

IWDG->KR = IWDG_START; /* (1) */

IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */

IWDG->PR = IWDG_PR_PR_0; /* (3) */

IWDG->RLR = IWDG_RELOAD; /* (4) */

while(IWDG->SR) /* (5) */

{

 /* add time out here for a robust application */

}

IWDG->KR = IWDG_REFRESH; /* (6) */

A.13.2 IWDG configuration with window code example

/* (1) Activate IWDG (not needed if done in option bytes) */

/* (2) Enable write access to IWDG registers */

RM0367 Rev 8 1007/1040

RM0367 Code examples

1018

/* (3) Set prescaler by 8 */

/* (4) Set reload value to have a rollover each 100ms */

/* (5) Check if flags are reset */

/* (6) Set a 50ms window, this will refresh the IWDG */

IWDG->KR = IWDG_START; /* (1) */

IWDG->KR = IWDG_WRITE_ACCESS; /* (2) */

IWDG->PR = IWDG_PR_PR_0; /* (3) */

IWDG->RLR = IWDG_RELOAD; /* (4) */

while(IWDG->SR) /* (5) */

{

 /* add time out here for a robust application */

}

IWDG->WINR = IWDG_RELOAD >> 1; /* (6) */

A.14 WWDG code example

A.14.1 WWDG configuration code example

/* (1) set prescaler to have a rollover each about 16.5ms, set window

 value (about 7.5ms) */

/* (2) Refresh WWDG before activate it */

/* (3) Activate WWDG */

WWDG->CFR = 0x0060; /* (1) */

WWDG->CR = WWDG_REFRESH; /* (2) */

WWDG->CR |= WWDG_CR_WDGA; /* (3) */

A.15 RTC code example

A.15.1 RTC calendar configuration code example

/* (1) Write access for RTC registers */

/* (2) Enable init phase */

/* (3) Wait until it is allow to modify RTC register values */

/* (4) set prescaler, 40kHz/64 => 625Hz, 625Hz/625 => 1Hz */

/* (5) New time in TR */

/* (6) Disable init phase */

/* (7) Disable write access for RTC registers */

RTC->WPR = 0xCA; /* (1) */

RTC->WPR = 0x53; /* (1) */

RTC->ISR = RTC_ISR_INIT; /* (2) */

while((RTC->ISR & RTC_ISR_INITF)!=RTC_ISR_INITF) /* (3) */

{

 /* add time out here for a robust application */

}

RTC->PRER = 0x003F0270; /* (4) */

Code examples RM0367

1008/1040 RM0367 Rev 8

RTC->TR = RTC_TR_PM | Time; /* (5) */

RTC->ISR =~ RTC_ISR_INIT; /* (6) */

RTC->WPR = 0xFE; /* (7) */

RTC->WPR = 0x64; /* (7) */

A.15.2 RTC alarm configuration code example

/* (1) Write access for RTC registers */

/* (2) Disable alarm A to modify it */

/* (3) Wait until it is allow to modify alarm A value */

/* (4) Modify alarm A mask to have an interrupt each 1Hz */

/* (5) Enable alarm A and alarm A interrupt */

/* (6) Disable write access */

RTC->WPR = 0xCA; /* (1) */

RTC->WPR = 0x53; /* (1) */

RTC->CR &=~ RTC_CR_ALRAE; /* (2) */

while((RTC->ISR & RTC_ISR_ALRAWF) != RTC_ISR_ALRAWF) /* (3) */

{

 /* add time out here for a robust application */

}

RTC->ALRMAR = RTC_ALRMAR_MSK4 | RTC_ALRMAR_MSK3 | RTC_ALRMAR_MSK2 |

RTC_ALRMAR_MSK1; /* (4) */

RTC->CR = RTC_CR_ALRAIE | RTC_CR_ALRAE; /* (5) */

RTC->WPR = 0xFE; /* (6) */

RTC->WPR = 0x64; /* (6) */

A.15.3 RTC WUT configuration code example

/* (1) Write access for RTC registers */

/* (2) Disable wake up timerto modify it */

/* (3) Wait until it is allow to modify wake up reload value */

/* (4) Modify wake up value reload counter to have a wake up each 1Hz */

/* (5) Enable wake up counter and wake up interrupt */

/* (6) Disable write access */

RTC->WPR = 0xCA; /* (1) */

RTC->WPR = 0x53; /* (1) */

RTC->CR &=~ RTC_CR_WUTE; /* (2) */

while((RTC->ISR & RTC_ISR_WUTWF) != RTC_ISR_WUTWF) /* (3) */

{

 /* add time out here for a robust application */

}

RTC->WUTR = 0x9C0; /* (4) */

RTC->CR = RTC_CR_WUTE | RTC_CR_WUTIE; /* (5) */

RTC->WPR = 0xFE; /* (6) */

RTC->WPR = 0x64; /* (6) */

RM0367 Rev 8 1009/1040

RM0367 Code examples

1018

A.15.4 RTC read calendar code example

if((RTC->ISR & RTC_ISR_RSF) == RTC_ISR_RSF)

{

 TimeToCompute = RTC->TR; /* get time */

 DateToCompute = RTC->DR; /* need to read date also */

}

A.15.5 RTC calibration code example

/* (1) Write access for RTC registers */

/* (2) Enable init phase */

/* (3) Wait until it is allow to modify RTC register values */

/* (4) set prescaler, 40kHz/125 => 320 Hz, 320Hz/320 => 1Hz */

/* (5) New time in TR */

/* (6) Disable init phase */

/* (7) Wait until it's allow to modify calibartion register */

/* (8) Set calibration to around +20ppm, which is a standard value @25°C */

/* Note: the calibration is relevant when LSE is selected for RTC clock */

/* (9) Disable write access for RTC registers */

RTC->WPR = 0xCA; /* (1) */

RTC->WPR = 0x53; /* (1) */

RTC->ISR = RTC_ISR_INIT; /* (2) */

while((RTC->ISR & RTC_ISR_INITF)!=RTC_ISR_INITF) /* (3) */

{

 /* add time out here for a robust application */

}

RTC->PRER = (124<<16) | 319; /* (4) */

RTC->TR = RTC_TR_PM | Time; /* (5) */

RTC->ISR &=~ RTC_ISR_INIT; /* (6) */

while((RTC->ISR & RTC_ISR_RECALPF) == RTC_ISR_RECALPF) /* (7) */

{

 /* add time out here for a robust application */

}

RTC->CALR = RTC_CALR_CALP | 482; /* (8) */

RTC->WPR = 0xFE; /* (9) */

RTC->WPR = 0x64; /* (9) */

A.15.6 RTC tamper and time stamp configuration code example

/* Tamper configuration:

 - Disable precharge (PU)

 - RTCCLK/256 tamper sampling frequency

 - Activate time stamp on tamper detection

 - input rising edge trigger detection on RTC_TAMP2 (PA0)

 - Tamper interrupt enable */

RTC->TAFCR = RTC_TAFCR_TAMPPUDIS | RTC_TAFCR_TAMPFREQ | RTC_TAFCR_TAMPTS

Code examples RM0367

1010/1040 RM0367 Rev 8

 | RTC_TAFCR_TAMP2E | RTC_TAFCR_TAMPIE;

A.15.7 RTC tamper and time stamp code example

/* Check tamper and timestamp flag */

if(((RTC->ISR & (RTC_ISR_TAMP2F)) == (RTC_ISR_TAMP2F)) && ((RTC->ISR &

 (RTC_ISR_TSF)) == (RTC_ISR_TSF)))

{

 RTC->ISR =~ (RTC_ISR_TAMP2F); /* clear tamper flag */

 EXTI->PR = EXTI_PR_PR19; /* clear exti line 19 flag */

 TimeToCompute = RTC->TSTR; /* get tamper time in timestamp register */

 RTC->ISR =~ (RTC_ISR_TSF); /* clear timestamp flag */

}

A.15.8 RTC clock output code example

/* (1) Write access for RTC registers */

/* (2) Disable alarm A to modify it */

/* (3) Wait until it is allow to modify alarm A value */

/* (4) Modify alarm A mask to have an interrupt each 1Hz */

/* (5) Enable alarm A and alarm A interrupt, calibration output (1Hz)

 enable */

/* (6) Disable write access */

RTC->WPR = 0xCA; /* (1) */

RTC->WPR = 0x53; /* (1) */

RTC->CR &=~ RTC_CR_ALRAE; /* (2) */

while((RTC->ISR & RTC_ISR_ALRAWF) != RTC_ISR_ALRAWF) /* (3) */

{

 /* add time out here for a robust application */

}

RTC->ALRMAR = RTC_ALRMAR_MSK4 | RTC_ALRMAR_MSK3 | RTC_ALRMAR_MSK2 |

RTC_ALRMAR_MSK1; /* (4) */

RTC->CR = RTC_CR_ALRAIE | RTC_CR_ALRAE | RTC_CR_COE | RTC_CR_COSEL; /*(5 */

RTC->WPR = 0xFE; /* (6) */

RTC->WPR = 0x64; /* (6) */

A.16 I2C code example

A.16.1 I2C configured in slave mode code example

/* (1) Timing register value is computed with the AN4235 xls file,

 fast Mode @400kHz with I2CCLK = 16MHz, rise time = 100ns,

 fall time = 10ns */

/* (2) Periph enable, address match interrupt enable */

/* (3) 7-bit address = 0x5A */

/* (4) Enable own address 1 */

RM0367 Rev 8 1011/1040

RM0367 Code examples

1018

I2C1->TIMINGR = (uint32_t)0x00300619; /* (1) */

I2C1->CR1 = I2C_CR1_PE | I2C_CR1_ADDRIE; /* (2) */

I2C1->OAR1 |= (uint32_t)(I2C1_OWN_ADDRESS << 1); /* (3) */

I2C1->OAR1 |= I2C_OAR1_OA1EN; /* (4) */

A.16.2 I2C slave transmitter code example

uint32_t I2C_InterruptStatus = I2C1->ISR; /* Get interrupt status */

/* Check address match */

if((I2C_InterruptStatus & I2C_ISR_ADDR) == I2C_ISR_ADDR)

{

 I2C1->ICR |= I2C_ICR_ADDRCF; /* Clear address match flag */

 /* Check if transfer direction is read (slave transmitter) */

 if((I2C1->ISR & I2C_ISR_DIR) == I2C_ISR_DIR)

 {

 I2C1->CR1 |= I2C_CR1_TXIE; /* Set transmit IT */

 }

}

else if((I2C_InterruptStatus & I2C_ISR_TXIS) == I2C_ISR_TXIS)

{

 I2C1->CR1 &=~ I2C_CR1_TXIE; /* Disable transmit IT */

 I2C1->TXDR = I2C_BYTE_TO_SEND; /* Byte to send */

}

A.16.3 I2C slave receiver code example

uint32_t I2C_InterruptStatus = I2C1->ISR; /* Get interrupt status */

if((I2C_InterruptStatus & I2C_ISR_ADDR) == I2C_ISR_ADDR)

{

 I2C1->ICR |= I2C_ICR_ADDRCF; /* Address match event */

}

else if((I2C_InterruptStatus & I2C_ISR_RXNE) == I2C_ISR_RXNE)

{

 /* Read receive register, will clear RXNE flag */

 if(I2C1->RXDR == I2C_BYTE_TO_SEND)

 {

 /* Process */

 }

}

A.16.4 I2C configured in master mode to receive code example

/* (1) Timing register value is computed with the AN4235 xls file,

 fast Mode @400kHz with I2CCLK = 16MHz, rise time = 100ns, fall time =

 10ns */

/* (2) Periph enable, receive interrupt enable */

/* (3) Slave address = 0x5A, read transfer, 1 byte to receive, autoend */

Code examples RM0367

1012/1040 RM0367 Rev 8

I2C2->TIMINGR = (uint32_t)0x00300619; /* (1) */

I2C2->CR1 = I2C_CR1_PE | I2C_CR1_RXIE; /* (2) */

I2C2->CR2 = I2C_CR2_AUTOEND | (1<<16) | I2C_CR2_RD_WRN |

 (I2C1_OWN_ADDRESS<<1); /* (3) */

A.16.5 I2C configured in master mode to transmit code example

/* (1) Timing register value is computed with the AN4235 xls file,

 fast Mode @400kHz with I2CCLK = 16MHz, rise time = 100ns, fall time =

 10ns */

/* (2) Periph enable */

/* (3) Slave address = 0x5A, write transfer, 1 byte to transmit, autoend */

I2C2->TIMINGR = (uint32_t)0x00300619; /* (1) */

I2C2->CR1 = I2C_CR1_PE; /* (2) */

I2C2->CR2 = I2C_CR2_AUTOEND | (1<<16) | (I2C1_OWN_ADDRESS<<1); /* (3) */

A.16.6 I2C master transmitter code example

/* Check Tx empty */

if((I2C2->ISR & I2C_ISR_TXE) == (I2C_ISR_TXE))

{

 I2C2->TXDR = I2C_BYTE_TO_SEND; /* Byte to send */

 I2C2->CR2 |= I2C_CR2_START; /* Go */

}

A.16.7 I2C master receiver code example

if((I2C2->ISR & I2C_ISR_RXNE) == I2C_ISR_RXNE)

{

 /* Read receive register, will clear RXNE flag */

 if(I2C2->RXDR == I2C_BYTE_TO_SEND)

 {

 /* Process */

 }

}

A.16.8 I2C configured in master mode to transmit with DMA code example

/* (1) Timing register value is computed with the AN4235 xls file,

 fast Mode @400kHz with I2CCLK = 16MHz, rise time = 100ns, fall time =

 10ns */

/* (2) Periph enable */

/* (3) Slave address = 0x5A, write transfer, 2 bytes to transmit, autoend */

I2C2->TIMINGR = (uint32_t)0x00300619; /* (1) */

I2C2->CR1 = I2C_CR1_PE | I2C_CR1_TXDMAEN; /* (2) */

I2C2->CR2 = I2C_CR2_AUTOEND | (SIZE_OF_DATA << 16) |

 (I2C1_OWN_ADDRESS<<1); /* (3) */

RM0367 Rev 8 1013/1040

RM0367 Code examples

1018

A.16.9 I2C configured in slave mode to receive with DMA code example

/* (1) Timing register value is computed with the AN4235 xls file,

 fast Mode @400kHz with I2CCLK = 16MHz, rise time = 100ns, fall time =

 10ns */

/* (2) Periph enable, receive DMA enable */

/* (3) 7-bit address = 0x5A */

/* (4) Enable own address 1 */

I2C1->TIMINGR = (uint32_t)0x00300619; /* (1) */

I2C1->CR1 = I2C_CR1_PE | I2C_CR1_RXDMAEN | I2C_CR1_ADDRIE; /* (2) */

I2C1->OAR1 |= (uint32_t)(I2C1_OWN_ADDRESS << 1); /* (3) */

I2C1->OAR1 |= I2C_OAR1_OA1EN; /* (4) */

A.17 USART code example

A.17.1 USART transmitter configuration code example

/* (1) oversampling by 16, 9600 baud */

/* (2) 8 data bit, 1 start bit, 1 stop bit, no parity */

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR1 = USART_CR1_TE | USART_CR1_UE; /* (2) */

A.17.2 USART transmit byte code example

/* start USART transmission */

USART1->TDR = stringtosend[send++]; /* Will inititiate TC if TXE */

A.17.3 USART transfer complete code example

if((USART1->ISR & USART_ISR_TC) == USART_ISR_TC)

{

 if(send == sizeof(stringtosend))

 {

 send=0;

 USART1->ICR = USART_ICR_TCCF; /* Clear transfer complete flag */

 }

 else

 {

 /* clear transfer complete flag and fill TDR with a new char */

 USART1->TDR = stringtosend[send++];

 }

}

A.17.4 USART receiver configuration code example

/* (1) oversampling by 16, 9600 baud */

/* (2) 8 data bit, 1 start bit, 1 stop bit, no parity, reception mode */

Code examples RM0367

1014/1040 RM0367 Rev 8

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR1 = USART_CR1_RXNEIE | USART_CR1_RE | USART_CR1_UE; /* (2) */

A.17.5 USART receive byte code example

if((USART1->ISR & USART_ISR_RXNE) == USART_ISR_RXNE)

{

 chartoreceive = (uint8_t)(USART1->RDR); /* Receive data, clear flag */

}

A.17.6 USART LIN mode code example

/* (1) oversampling by 16, 9600 baud */

/* (2) LIN mode */

/* (3) 8 data bit, 1 start bit, 1 stop bit, no parity, reception and

 transmission enabled */

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR2 = USART_CR2_LINEN | USART_CR2_LBDIE; /* (2) */

USART1->CR1 = USART_CR1_TE | USART_CR1_RXNEIE | USART_CR1_RE |

 USART_CR1_UE; /* (3) */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)/* polling idle frame
Transmission */

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* Clear TC flag */

USART1->CR1 |= USART_CR1_TCIE;/* Enable TC interrupt */

A.17.7 USART synchronous mode code example

/* (1) oversampling by 16, 9600 baud */

/* (2) Synchronous mode */

/* CPOL and CPHA = 0 => rising first edge */

/* Last bit clock pulse */

/* Most significant bit first in transmit/receive */

/* (3) 8 data bit, 1 start bit, 1 stop bit, no parity */

/* Transmission enabled, reception enabled */

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR2 = USART_CR2_MSBFIRST | USART_CR2_CLKEN | USART_CR2_LBCL; /* (2)
*/

USART1->CR1 = USART_CR1_TE | USART_CR1_RXNEIE | USART_CR1_RE |
USART_CR1_UE; /* (3) */

/* polling idle frame Transmission w/o clock */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* clear TC flag */

RM0367 Rev 8 1015/1040

RM0367 Code examples

1018

USART1->CR1 |= USART_CR1_TCIE;/* enable TC interrupt */

A.17.8 USART single-wire half-duplex code example

/* (1) oversampling by 16, 9600 baud */

/* (2) Single-wire half-duplex mode */

/* (3) 8 data bit, 1 start bit, 1 stop bit, no parity, reception and

 transmission enabled */

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR3 = USART_CR3_HDSEL; /* (2) */

USART1->CR1 = USART_CR1_TE | USART_CR1_RXNEIE | USART_CR1_RE |

 USART_CR1_UE; /* (3) */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)/* polling idle frame
Transmission */

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* Clear TC flag */

USART1->CR1 |= USART_CR1_TCIE;/* Enable TC interrupt */

A.17.9 USART smartcard mode code example

/* (1) oversampling by 16, 9600 baud */

/* (2) Clock divided by 16 = 1MHz */

/* (3) Samrt card mode enable */

/* (4) 1.5 stop bits, clock enable */

/* (5) 8-data bit plus parity, 1 start bit */

USART1->BRR = 160000 / 96; /* (1) */

USART1->GTPR = 16 >> 1; /* (2) */

USART1->CR3 = USART_CR3_SCEN; /* (3) */

USART1->CR2 = USART_CR2_STOP_1 | USART_CR2_STOP_0 | USART_CR2_CLKEN;/*(4 */

USART1->CR1 = USART_CR1_M | USART_CR1_PCE | USART_CR1_TE |
USART_CR1_UE;/* (5) */

/* Polling idle frame transmission transfer complete (this frame is not
sent) */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* clear TC flag */

USART1->CR1 |= USART_CR1_TCIE;/* enable TC interrupt */

A.17.10 USART IrDA mode code example

/* (1) oversampling by 16, 9600 baud */

/* (2) Divide by 24 to achieve the low power frequency */

/* (3) Enable IrDA */

/* (4) 8 data bit, 1 start bit, 1 stop bit, no parity */

Code examples RM0367

1016/1040 RM0367 Rev 8

USART1->BRR = 160000 / 96; /* (1) */

USART1->GTPR = 24; /* (2) */

USART1->CR3 = USART_CR3_IREN; /* (3) */

USART1->CR1 = USART_CR1_TE | USART_CR1_UE; /* (4) */

/* polling idle frame Transmission */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* clear TC flag */

USART1->CR1 |= USART_CR1_TCIE;/* enable TC interrupt */

A.17.11 USART DMA code example

/* (1) oversampling by 16, 9600 baud */

/* (2) Enable DMA in reception and transmission */

/* (3) 8 data bit, 1 start bit, 1 stop bit, no parity, reception and

 transmission enabled */

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR3 = USART_CR3_DMAT | USART_CR3_DMAR; /* (2) */

USART1->CR1 = USART_CR1_TE | USART_CR1_RE | USART_CR1_UE; /* (3) */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)/* polling idle frame
Transmission */

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* Clear TC flag */

A.17.12 USART hardware flow control code example

/* (1) oversampling by 16, 9600 baud */

/* (2) RTS and CTS enabled */

/* (3) 8 data bit, 1 start bit, 1 stop bit, no parity, reception and

 transmission enabled */

USART1->BRR = 160000 / 96; /* (1) */

USART1->CR3 = USART_CR3_RTSE | USART_CR3_CTSE; /* (2) */

USART1->CR1 = USART_CR1_TE | USART_CR1_RXNEIE | USART_CR1_RE |

USART_CR1_UE; /* (3) */

while((USART1->ISR & USART_ISR_TC) != USART_ISR_TC)/* polling idle frame
Transmission */

{

 /* add time out here for a robust application */

}

USART1->ICR = USART_ICR_TCCF;/* Clear TC flag */

USART1->CR1 |= USART_CR1_TCIE;/* Enable TC interrupt */

RM0367 Rev 8 1017/1040

RM0367 Code examples

1018

A.18 LPUART code example

A.18.1 LPUART receiver configuration code example

/* (1) oversampling by 16, 9600 baud */

/* (2) Enable STOP mode, 8 data bit, 1 start bit, 1 stop bit, no parity,

 reception mode */

LPUART1->BRR = 0x369; /* (1) */

LPUART1->CR1 = USART_CR1_UESM | USART_CR1_RXNEIE | USART_CR1_RE |

 USART_CR1_UE; /* (2) */

A.18.2 LPUART receive byte code example

if((LPUART1->ISR & USART_ISR_RXNE) == USART_ISR_RXNE)

{

 chartoreceive = (uint8_t)(LPUART1->RDR); /* Receive data, clear flag */

}

A.19 SPI code example

A.19.1 SPI master configuration code example

/* (1) Master selection, BR: Fpclk/256,

 CPOL and CPHA at zero (rising first edge) */

/* (2) Slave select output enabled, RXNE IT, 8-bit Rx fifo */

/* (3) Enable SPI1 */

SPI1->CR1 = SPI_CR1_MSTR | SPI_CR1_BR; /* (1) */

SPI1->CR2 = SPI_CR2_SSOE | SPI_CR2_RXNEIE; /* (2) */

SPI1->CR1 |= SPI_CR1_SPE; /* (3) */

A.19.2 SPI slave configuration code example

/* nSS hard, slave, CPOL and CPHA at zero (rising first edge) */

/* (1) RXNE IT, 8-bit Rx fifo */

/* (2) Enable SPI2 */

SPI2->CR2 = SPI_CR2_RXNEIE; /* (1) */

SPI2->CR1 |= SPI_CR1_SPE; /* (2) */

A.19.3 SPI full duplex communication code example

if((SPI1->SR & SPI_SR_TXE) == SPI_SR_TXE) /* Test Tx empty */

{

 /* Will inititiate 8-bit transmission if TXE */

 *(uint8_t *)&(SPI1->DR) = SPI1_DATA;

}

Code examples RM0367

1018/1040 RM0367 Rev 8

A.19.4 SPI master configuration with DMA code example

/* (1) Master selection, BR: Fpclk/256

 CPOL and CPHA at zero (rising first edge) */

/* (2) TX and RX with DMA, slave select output enabled, RXNE IT, 8-bit Rx

 fifo */

/* (3) Enable SPI1 */

SPI1->CR1 = SPI_CR1_MSTR | SPI_CR1_BR; /* (1) */

SPI1->CR2 = SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN | SPI_CR2_SSOE;; /* (2) */

SPI1->CR1 |= SPI_CR1_SPE; /* (3) */

A.19.5 SPI slave configuration with DMA code example

/* nSS hard, slave, CPOL and CPHA at zero (rising first edge) */

/* (1) TX and RX with DMA, RXNE IT, 8-bit Rx fifo */

/* (2) Enable SPI2 */

SPI2->CR2 = SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN; /* (1) */

SPI2->CR1 |= SPI_CR1_SPE; /* (2) */

A.19.6 SPI interrupt code example

if((SPI1->SR & SPI_SR_RXNE) == SPI_SR_RXNE)
{
 SPI1_Data = (uint8_t)SPI1->DR; /* receive data, clear flag */
 /* Process */
}

A.20 DBG code example

A.20.1 DBG read device Id code example

MCU_Id = DBGMCU->IDCODE; /* Read MCU Id, 32-bit access */

A.20.2 DBG debug in LPM code example

DBGMCU->CR |= DBGMCU_CR_DBG_STOP; /* To be able to debug in stop mode */

RM0367 Rev 8 1019/1040

RM0367 Revision history

1036

Revision history

Table 181. Document revision history

Date Revision Changes

11-Feb-2014 1 Initial release.

29-Apr-2014 2

TSC, RNG, ASE and communication sections reordered.

System and memory overview

Updated Section 2.3: Embedded SRAM and Section 2.4: Boot configuration.

Flash memory/data EEPROM

Updated Figure 6: RDP levels.

Modified Section 3.4.2: PcROP (Proprietary Code Read-Out Protection).

FIREWALL

Renamed EEPROM PROG, PROG EEPROM, PROG or PROGRAM MEMORY
into Flash program memory.

PWR

Added note 3 related to VREF+ below Section Figure 10.: Power supply
overview.

Updated Section 6.1.1: Independent A/D and DAC converter supply and
reference voltage.

RCC

Updated Figure 16: Simplified diagram of the reset circuit and Figure 17: Clock
tree.

Updated Section 7.2.4: HSI48 clock.

Changed MCOSEL[2:0] into MCOSEL[3:0], Section 7.2.14: Clock-out capability
definition updated in Section 7.3.4: Clock configuration register (RCC_CFGR).

Renamed TOUCHRST into TSCRST in Section 7.3.9: AHB peripheral reset
register (RCC_AHBRSTR). Renamed TOUCHSMEM into TSCSMEM in Section
7.3.17: AHB peripheral clock enable in Sleep mode register
(RCC_AHBSMENR). Renamed HSI48MSEL into HSI48SEL in Section 7.3.20:
Clock configuration register (RCC_CCIPR).

SYSCFG:

Updated Section 10.1: Introduction

Renamed REF_CTRL register (Section 10.2.3) into REF_CFGR3 and changed
ENBUFLP_BGAP_COMP to ENBUF_VREFINT_COMP, ENBUF_BGAP_ADC
to ENBUF_VREFINT_ADC, ENBUF_SENSOR_ADC to
ENBUF_TSENSE_ADC.EN_BGAP to EN_VREFINT and description updated.

Revision history RM0367

1020/1040 RM0367 Rev 8

28-Apr-2014
(continued)

2

NTERRUPTS

Updated Table 53: List of vectors.

ADC:

Removed JADSTART from the whole section.

Updated ADC supply requirements in Section 13.2: ADC main features and
Figure 28: ADC block diagram

Renamed section “Analog Reference from the PMU” into Section : Analog
reference for the ADC internal voltage regulator and content updated. Modified
Section 14.4.2: Calibration (ADCAL).

In Section 13.11: Temperature sensor and internal reference voltage, changed
110 °C into 130 °C.

Updated AWDCH[4:0] and SCANDIR descriptions in Section 13.15.4: ADC
configuration register 1 (ADC_CFGR1).

DAC:

Added Section : Independent trigger with single LFSR generation and Section :
Independent trigger with single triangle generation in Section 15.5.2: DAC
channel conversion.

COMP:

Updated Figure 61: Comparator 1 and 2 block diagrams.

Updated bits named in Figure 61: Comparator 1 and 2 block diagrams.
Renamed COMP1_CSR and COMP2_CSR bits.

LCD

Updated COM and SEG output pin functions in Section 17.4.7: COM and SEG
multiplexing. Updated note in Section 17.7.1: LCD control register (LCD_CR).

TIM2/3:

Updated Section 21.4.19: TIM2 option register (TIM2_OR).

Changed all registers to 16-bit length.

TIM21/22:

Updated Figure 147: General-purpose timer block diagram (TIM21/22).

Added Section 22.4.2: TIM21/22 control register 2 (TIMx_CR2).

USART

Updated CTSE bit description in Section 29.8.3: Control register 3
(USART_CR3).

DEBUG

Replaced DBG_TIM20_STOP and DBG_TIM21_STOP by DBG_TIM21_STOP
and DBG_TIM22_STOP, respectively.

Updated REV_ID in Section 33.4.1: MCU device ID code.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1021/1040

RM0367 Revision history

1036

04-May-2015 3

Section 1.3: Peripheral availability: added category 5 (STM32L07x/8x) features,
updated Table 1.: STM32L0x3 memory density and added Table 2.: Overview
of features per category.

Added Appendix A: Code examples.

System and memory overview

Added category 5 features.

Updated TIMER 7 register addresses in Table 3: STM32L0x3 peripheral
register boundary addresses.

Flash memory/data EEPROM

Added category 5 features.

Replaced FLASH_WRPROT by FLASH_WRPROT1 and added
FLASH_WRPROT2 register. Updated BOR_LEV description and renamed
BOOT1 into nBOOT1 in FLASH_OPTCR register.

Updated READY flag description in FLASH_SR register.

CRC

Updated Section 4.2: CRC main features and Section : Polynomial
programmability.

FIREWALL

Updated Section 5.3.5: Firewall initialization.

PWR

Removed limitation related to 1.8V minimum VDDA for ADC, updated VREF+ in
Section 6.1: Power supplies and Figure 10: Power supply overview. Updated
Range 1 description in Section 6.1.5: Dynamic voltage scaling management.

Updated Table 32: Summary of low-power modes.

Added Section 6.3.5: Entering low-power mode and Section 6.3.6: Exiting low-
power mode.

Updated Section 6.3.7: Sleep mode to remove details on mode entry and exit
and updated Table 33: Sleep-now and Table 34: Sleep-on-exit.

Updated Section 6.3.8: Low-power sleep mode (LP sleep) to remove details on
mode entry and exit and updated Table 35: Sleep-now (Low-power sleep) and
Table 36: Sleep-on-exit (Low-power sleep).

Updated Section 6.3.9: Stop mode to remove details on mode entry and exit
and updated Table 37: Stop mode.

Updated Section 6.3.10: Standby mode to remove details on mode entry and
exit and updated Table 38: Standby mode.

Updated LPRUN bit description in Section 6.4.1: PWR power control register
(PWR_CR). Added EWUP3 bit in Section 6.4.2: PWR power control/status
register (PWR_CSR). Updated Section : Range 1 to specify that the CRS is
available only in range 1.

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1022/1040 RM0367 Rev 8

04-May-2015 3 (continued)

RCC

Updated ADC clock in Section 7.2: Clocks. Added HSE failure in Section 7.2.10:
HSE clock security system (CSS).

Added HSI48DIV6EN and updated HSI48DIV6EN in Section 7.3.3: Clock
recovery RC register (RCC_CRRCR).

Section 7.3.7: Clock interrupt clear register (RCC_CICR): changed all bit access
type to ‘w, renamed USB bit into UFB and bit moved to bit 3.

Renamed TOUCHEN into TSCEN in Section 7.3.13: AHB peripheral clock
enable register (RCC_AHBENR).

Renamed MIFIEN into FWEN and description updated in Section 7.3.14: APB2
peripheral clock enable register (RCC_APB2ENR). Updated Section 7.3.21:
Control/status register (RCC_CSR).

Added IOPERST in Section 7.3.8: GPIO reset register (RCC_IOPRSTR),
IOPEENR in Section 7.3.12: GPIO clock enable register (RCC_IOPENR), and
IOPESMEN in Section 7.3.16: GPIO clock enable in Sleep mode register
(RCC_IOPSMENR).

Section 7.3.11: APB1 peripheral reset register (RCC_APB1RSTR): Added
USART4RST, USART5RST, TIM3RST, TIM7RST and I2C3RST. Renamed
UARTxRST bits into USARTxRST.

Section 7.3.15: APB1 peripheral clock enable register (RCC_APB1ENR):
Added USART4EN, USART5EN, TIM3EN and TIM7EN and I2C3EN. Renamed
UARTxEN bits into USARTxEN.

Section 7.3.19: APB1 peripheral clock enable in Sleep mode register
(RCC_APB1SMENR): Added USART4SMEN, USART5SMEN, TIM3SMEN,
TIM7SMEN and I2C3SMEN. Renamed UARTxSMEN bits into USARTxSMEN.

Added I2C3SEL bits in Section 7.3.20: Clock configuration register
(RCC_CCIPR).

CRS:

Added note related to SYNCSRC[1:0] in Section 8.6.2: CRS configuration
register (CRS_CFGR) register.

GPIOs

Add Port E for category 5 devices.

SYSCFG

Updated Figure 1: System architecture to add STM32L07/08 peripherals.

Added USB bit in Section 10.2.1: SYSCFG memory remap register
(SYSCFG_CFGR1). Replaced REF_CFGR3 by SYSCFG_CFGR3.

Added I2C3_FMP bit and updated CAPA bits in Section 10.2.2: SYSCFG
peripheral mode configuration register (SYSCFG_CFGR2).

Updated Table 46: VLCD rails connections to GPIO pins

Updated Section 10.2.4: SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1), Section 10.2.5: SYSCFG external interrupt configuration
register 2 (SYSCFG_EXTICR2), Section 10.2.6: SYSCFG external interrupt
configuration register 3 (SYSCFG_EXTICR3) and Section 10.2.7: SYSCFG
external interrupt configuration register 4 (SYSCFG_EXTICR4).

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1023/1040

RM0367 Revision history

1036

04-May-2015 3 (continued)

DMA

Updated DMA mapping/channel selection for category 5 devices.

INTERRUPTS

Changed number of priority levels from 16 to 4.

Updated Table 53: List of vectors and Table 54: EXTI lines connections to add
category 5 peripherals and update vectors 17 and 18. Added bit24 in all EXTI
registers.

ADC

Updated Figure 28: ADC block diagram.

Section 13.4.1: ADC voltage regulator (ADVREGEN): changed REF_CTRL into
REF_CFGR3 and ENBUF_EN_VREFINT_ADC into ENBUF_VREFINT_ADC.

Removed limitation related to 1.8 V VDDA minimum value. Changed VDDA=
3.3 V into 3 V in Section 13.11: Temperature sensor and internal reference
voltage.

Changed 3.3 V into 3 V in VCHANNELx equation in Section : Converting a
supply-relative ADC measurement to an absolute voltage value.

Updated Section 13.13: VLCD voltage monitoring.

Updated AWDCH bitfield definition in ADC_CFGR1Section 13.15.4: ADC
configuration register 1 (ADC_CFGR1).

DAC

Added dual DAC feature and DAC channel 2. Added TIM3 and TIM7 TRGO
events in Table 68: External triggers.

Changed VREF+ into VDDA in Section 15.6.4: DAC output voltage.

COMP

Updated Figure 61: Comparator 1 and 2 block diagrams.

Added COMP1LPTIMIN1 in Section 16.5.1: Comparator 1 control and status
register (COMP1_CSR).

Added COMP2LPTIMIN2 and COMP2LPTIMIN1, and updated COMP2INSEL
definition in Section 16.5.2: Comparator 2 control and status register
(COMP2_CSR).

LCD

Updated LCD section to support up t o 52 segments for category 5 devices.

Updated Figure 62: LCD controller block diagram.

Updated Section 17.4.7: COM and SEG multiplexing

RNG:

Replaced PLL48CLK by RNG_CLK.

Added note 1 below Figure 99: RNG block diagram

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1024/1040 RM0367 Rev 8

04-May-2015 3 (continued)

General-purpose timers (TIM2/3)

Added TIMER3.

Removed 32-bit option.

Updated sequence to use TI2FP2 as trigger 1 in Section 21.3.10: One-pulse
mode.

Added note related to slave timer clock in Section 21.3.15: Timer
synchronization.

Updated MMS bit description in Section 21.4.2: TIMx control register 2
(TIMx_CR2) to add note related to slave timer clock.

Updated SMS bits and Table 97: TIM2/TIM3 internal trigger connection in
Section 21.4.3: TIMx slave mode control register (TIMx_SMCR) and added note
related to slave timer clock.

Removed note related to TIMx_BDTR in OC1M and OC1PE bit description of
Section 21.4.7: TIMx capture/compare mode register 1 (TIMx_CCMR1)/output
compare.

Updated ETR_RMP description in Section 21.4.19: TIM2 option register
(TIM2_OR).

General-purpose timers (TIM21/22)

Updated sequence to use TI2FP2 as trigger 1 in Section 22.3.11: One-pulse
mode.

Removed note in IC1F bit description of Section 22.4.7: TIM21/22
capture/compare mode register 1 (TIMx_CCMR1)

Basic timers

Added TIMER7.

LPTIM

Updated TRIGSEL description in Section 24.6.4: LPTIM configuration register
(LPTIM_CFGR). Added ext_trig5 in Table 103: LPTIM external trigger
connection.

WWDG:

Updated Figure 203: Watchdog block diagram and timeout formula and
example in Section 26.3.4: How to program the watchdog timeout.

RTC

Added tamper 3 event for category 5 devices.

Updated WUCKSEL bits in Figure 202: RTC block diagram.

Section 27.4.5: Programmable alarms: Changed MSK0 to MSK1 in caution
note.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1025/1040

RM0367 Revision history

1036

04-May-2015 3 (continued)

I2C

Updated NOSTRECH definition in Section 28.7.1: Control register 1 (I2C_CR1).

USART

Added USART4/5 for category 5 devices. Updated Figure 238: USART block
diagram. Added Low-power modes sections.

Updated Section : Single byte communication.

Updated Table 136: Error calculation for programmed baud rates at fCK = 32
MHz in both cases of oversampling by 16 or by 8.

Updated Figure 255: IrDA SIR ENDEC- block diagram, Figure 257:
Transmission using DMA and Figure 258: Reception using DMA.

Removed UCESM bit from USARTx_CR3 as well as the capability to keep
enabled USART clock during Stop mode.

Updated REACK flag description in USARTx_ISR register.

LPUART

Updated Figure 263: LPUART block diagram. Added Low-power modes
sections. Removed note in Section 30.4.1: LPUART character description.

Updated Table 143: Error calculation for programmed baud rates at fck = 32,768
KHz. Updated Table 148: LPUART interrupt requests.

Changed LPUARTx_RDR and LPUARTx_TDR reset values in Table 149:
LPUART register map and reset values. Removed UCESM bit from
LPUART_CR3 as well as the capability to keep enabled LPUART clock during
Stop mode.

SPI

Updated Table 152: Audio-frequency precision using standard 8 MHz HSE.

DEBUG

Updated REV_ID bitfield in Section : DBG_IDCODE. Added bits to support
I2C3, TIM3 and TIM7 in Section 33.9.4: Debug MCU APB1 freeze register
(DBG_APB1_FZ).

Updated Appendix A: Code examples.

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1026/1040 RM0367 Rev 8

19-Feb-2016 4

Updated Section 2.3: Embedded SRAM.

Flash program memory and data EEPROM
Splitted NVM memory organization table for category 5 devices into 2 tables:
NVM organization for UFB = 0 and Flash memory and data EEPROM
remapping.
Updated Table 7: Flash memory and data EEPROM remapping (192 Kbyte
category 5 devices) and Table 9: Flash memory and data EEPROM remapping
(128 Kbyte category 5 devices). Updated Table 10: NVM organization for UFB =
0 (64 Kbyte category 5 devices): BOOT0= 0 and UBS = 1 configuration
forbidden.
Replaced bus error by hard fault in the whole section.
Updated Section 3.3.2: Dual-bank boot capability.
Updated description of Level 1 memory read protection in Section 3.4.1: RDP
(Read Out Protection).
Updated reset value in Section 3.7.8: Option bytes register (FLASH_OPTR),
Section 3.7.9: Write protection register 1 (FLASH_WRPROT1) and Section
3.7.10: Write protection register 2 (FLASH_WRPROT2).
Updated BFB2 bit description in Section 3.7.8: Option bytes register
(FLASH_OPTR).

Power controller (PWR)
Updated Section 6.2.4: Internal voltage reference (VREFINT) to add exit from
Standby mode on an NRST pulse and note related to LCD active.
Added note related to HSI16 in Stop mode in Table 32: Summary of low-power
modes.
Updated condition for entering low-power mode in Section 6.3.5: Entering low-
power mode, Table 33: Sleep-now, Table 34: Sleep-on-exit, Table 35: Sleep-
now (Low-power sleep), Table 36: Sleep-on-exit (Low-power sleep), Table 37:
Stop mode and Table 38: Standby mode.
Updated DS_EE_KOFF and ULP bit definitions in PWR power control register
(PWR_CR).

Reset and clock control (RCC)

Updated Section 7.1.2: Power reset and Figure 16: Simplified diagram of the
reset circuit.

Suppressed EN_VREFINT in Section 7.2.4: HSI48 clock. Updated Section
7.2.7: LSI clock. Added case of RTC clocked by the LSE in Section 7.2.12: RTC
and LCD clock.. Updated Section 7.2.13: Watchdog clock

Modified HSI16OUTEN bit definition and HSI16KERON and HSI16RDYF
access type in Section 7.3.1: Clock control register (RCC_CR). Updated
register reset value and HSIDIV6EN bit in Section 7.3.3: Clock recovery RC
register (RCC_CRRCR).

Updated GPIO clock enable in Sleep mode register (RCC_IOPSMENR), AHB
peripheral clock enable in Sleep mode register (RCC_AHBSMENR), APB2
peripheral clock enable in Sleep mode register (RCC_APB2SMENR) and APB1
peripheral clock enable in Sleep mode register (RCC_APB1SMENR) reset
values.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1027/1040

RM0367 Revision history

1036

19-Feb-2016 4 (continued)

System configuration controller (SYSCFG)

Updated UFB bit description in SYSCFG memory remap register
(SYSCFG_CFGR1).

SYSCFG peripheral mode configuration register (SYSCFG_CFGR2):

Updated reset value.

Renamed CAPA bits into LCD_CAPA in SYSCFG_CFGR register and modified
bitfield description.

Removed EN_VERFINT, VREFINT_COMP_RDYF, VREFINT_ADC_RDYF,
SENSOR_ADC_RDYF and REF_HSI48_RDYF bits in Reference control and
status register (SYSCFG_CFGR3).

Nested vector interrupt controller

Removed MemManage_Handler, BusFault_Handler,Usagefault _Handler and
DebugMon_Handler from Table 53: List of vectors.

Updated EXTI_IMR reset value.

General-purpose I/Os (GPIOs)

Updated OSPEEDy[1:0] definition in Section 9.4.3: GPIO port output speed
register (GPIOx_OSPEEDR) (x = A..E and H).

Analog-to-digital converter (ADC)

Replaced AUTDLY by WAIT in Figure 28: ADC block diagram.

Changed tADC into tCONV.

Updated Section : Analog reference for the ADC internal voltage regulator.
Updated ADC enable sequence in Section 13.4.6: ADC on-off control (ADEN,
ADDIS, ADRDY). Updated Section 13.4.14: Starting conversions (ADSTART)
and ADSTART bit description in Section 13.15.3: ADC control register
(ADC_CR). Updated EOSMP bit description in Section 13.15.1: ADC interrupt
and status register (ADC_ISR).

Liquid crystal display controller (LCD)
Updated Section : LCD intermediate voltages, Section : LCD drive selection and
Section : External decoupling.
Updated Figure 72: SEG/COM mux feature example
Updated LCDEN bit description in LCD control register (LCD_CR).

Touch sensing controller (TSC)
Removed Section Capacitive sensing GPIOs.
Added note in Section 18.3.4: Charge transfer acquisition sequence.
Added notes in CTPL and PGPSC bit description in Section 18.6.1: TSC control
register (TSC_CR).

TIMER2/3
Updated ETR_RMP bit definition in TIM2 option register (TIM2_OR).

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1028/1040 RM0367 Rev 8

19-Feb-2016 4 (continued)

TIMER21/22
Updated SMS bit definition in Section 22.4.3: TIM21/22 slave mode control
register (TIMx_SMCR).
Restricted Table 103: TIM21/22 register map and reset values to 16 bits instead
of 32.

TIMER6/7
Restricted Table 104: TIM6/7 register map and reset values to 16 bits instead of
32.

Low-power timer (LPTIM)
Updated Section 24.4.7: Operating mode.
Added Section Figure 197.: LPTIM output waveform, single counting mode
configuration, Section Figure 198.: LPTIM output waveform, Single counting
mode configuration and Set-once mode activated (WAVE bit is set) and Section
Figure 199.: LPTIM output waveform, Continuous counting mode configuration.
Updated CNT bitfield definition in Section 24.6.8: LPTIM counter register
(LPTIM_CNT).
Removed LPTIM1_OR and LPTIM2_OR.

Real-time clock (RTC)
Updated note below Figure 202: RTC block diagram.
Updated step 3 in Section : Programming the wakeup timer.
Updated behavior of RTC under system reset in Section 27.4.9: Resetting the
RTC.
Modified WUTWF description in Section 27.7.4: RTC initialization and status
register (RTC_ISR).

Inter-integrated circuit interface (I2C)

Added description of stretch mechanism that guarantees setup and hold times
in Section : I2C timings and SCDEL bit description in Section 28.7.5: Timing
register (I2C_TIMINGR).

Universal synchronous asynchronous receiver transmitter (USART)

Replaced nCTS by CTS, nRTS by RTS and SCLK by CK.

Updated note related to RTO counter in Section : Block mode (T=1)

Changed tWUSTOP to tWUUSART in Section 29.5.5: Tolerance of the USART
receiver to clock deviation.

Updated Section 29.8.3: Control register 3 (USART_CR3) ‘ONEBIT’ bit 11
description adding a note. Updated RTOF bit definition in Section 29.8.8:
Interrupt and status register (USART_ISR).

Updated Section 29.5.10: USART LIN (local interconnection network) mode.
Added Section : Determining the maximum USART baud rate allowing to
wakeup correctly from Stop mode when the USART clock source is the HSI
clock.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1029/1040

RM0367 Revision history

1036

19-Feb-2016 4 (continued)

Low-power UART (LPUART)

Replaced nCTS by CTS, nRTS by RTS and SCLK by CK.

Updated Section 30.4.4: LPUART baud rate generation.

Added Section 30.4.5: Tolerance of the LPUART receiver to clock deviation and
Section : Determining the maximum LPUART baud rate allowing to wakeup
correctly from Stop mode when the LPUART clock source is the HSI clock.

Updated Table 147: Effect of low-power modes on the LPUART.

Removed TFQRX in Table 149: LPUART register map and reset values.

SPI/I2S

Updated Figure 276, Figure 277, Figure 278 and Figure 279.

Updated and added notes below Figure 276, Figure 277 and Figure 278.

Added Section 31.3.4: Multi-master communication.

DEBUG

Updated SWDIO bidirectional management in Section 33.5.1: SWD protocol
introduction.

Updated Section 33.9.1: Debug support for low-power modes.

Updated Section 33.9.3: Debug MCU configuration register (DBG_CR).

Added Table 167: REV_ID values in Section : DBG_IDCODE.

Code examples
Updated Section A.3.7: Program Option byte code example and Section A.3.9:
Program a single word to Flash program memory code example, Section
A.3.10: Program half-page to Flash program memory code example and
Section A.3.11: Erase a page in Flash program memory code example.
Updated Appendix A.8.2: ADC enable sequence code example, Section A.8.5:
Single conversion sequence code example - Software trigger, Section A.8.6:
Continuous conversion sequence code example - Software trigger, Section
A.8.7: Single conversion sequence code example - Hardware trigger, Section
A.8.8: Continuous conversion sequence code example - Hardware trigger,
Section A.8.11: Wait mode sequence code example, Section A.8.12: Auto off
and no wait mode sequence code example, Section A.8.13: Auto off and wait
mode sequence code example, Section A.8.14: Analog watchdog code
example and Section A.8.16: Temperature configuration code example.
Updated Section A.11.4: Input capture data management code example and
Section A.11.10: ETR configuration to clear OCxREF code example.
Updated Section A.15.1: RTC calendar configuration code example, Section
A.15.5: RTC calibration code example and Section A.15.7: RTC tamper and
time stamp code example.
Updated Section A.17.3: USART transfer complete code example, Section
A.17.6: USART LIN mode code example, Section A.17.7: USART synchronous
mode code example, Section A.17.8: USART single-wire half-duplex code
example, Section A.17.9: USART smartcard mode code example, Section
A.17.10: USART IrDA mode code example, Section A.17.11: USART DMA code
example and Section A.17.12: USART hardware flow control code example.

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1030/1040 RM0367 Rev 8

14-Nov-2016 5

Flash program memory and data EEPROM
In Section 3.4.1: RDP (Read Out Protection), for protection level 2, added note
related to debug feature disabled under reset.

FIREWALL
Updated LENG bitfield description in Section 5.4.6: Volatile data segment length
(FW_VDSL).

Power control (PWR)
Updated voltage regulator status in Stop mode in Table 32: Summary of low-
power modes.
Updated power consumption methods in Stop mode in Section : Entering Stop
mode.
Updated PDDS bit description in Section 6.4.1: PWR power control register
(PWR_CR).

Reset and clock control (RCC)
HSE RTC clock source frequency changed to 4 MHz.
Section 7.1.2: Power reset: added internal pull-up deactivation in case of
internal reset and updated Figure 16: Simplified diagram of the reset circuit.
Updated Section 7.2.11: LSE Clock Security System to add condition on LSE
oscillator minimum frequency.

System configuration controller (SYSCFG)
Updated Reference control and status register (SYSCFG_CFGR3):
Added EN_VREFINT
Renamed ENBUF_VREFINT_COMP into ENBUF_VREFINT_COMP2 and
description updated.
Updated ENBUF_SENSOR_ADC and ENBUF_VREFINT_ADC

DMA controller (DMA)
Removed DMA_REQx from Figure 28: DMA request mapping.

Analog-to-digital converter (ADC)
Replaced ADVREFEN by ADVREGEN in Section : Analog reference for the
ADC internal voltage regulator.
Updated calibration software procedure in Section 14.4.2: Calibration (ADCAL).
Changed EXTEN value from 00 to 01 in the note related to HW trigger selection
in Section 13.4.14: Starting conversions (ADSTART).

Comparator (COMP)
Updated COMPx_CSR to add a note related to VREFINT in COMP2INNSEL bit
description.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1031/1040

RM0367 Revision history

1036

14-Nov-2016 5 (continued)

General-purpose timers (TIM2/3)

Replace TIM2_SMCR by TIMy_SMCR in Section : Using one timer to start
another timer and Section : Starting 2 timers synchronously in response to an
external trigger.

Updated PSC[15:0] bitfield definition in Section 21.4.11: TIMx prescaler
(TIMx_PSC).

Changed TIMx capture/compare register 1 (TIMx_CCR1), TIMx
capture/compare register 2 (TIMx_CCR2), TIMx capture/compare register 3
(TIMx_CCR3) and TIMx capture/compare register 4 (TIMx_CCR4) registers to
read-only when CCy channel is configured as input.

Replace USB_OE by USB_NOE in TIM3 option register (TIM3_OR).

Lite timers (TIM21/22)

Updated PSC[15:0] bitfield definition in Section 22.4.10: TIM21/22 prescaler
(TIMx_PSC).

Changed TIMx_ARR reset value to 0xFFFF FFFF in Section 22.4.11.

Changed TIM21/22 control register 1 (TIMx_CR1) and TIM21/22 control register
2 (TIMx_CR2) registers to read-only when CCy channel is configured as input.

Basic timers (TIM6/7)

Updated PSC[15:0] bitfield definition in Section 23.4.7: TIM6/7 prescaler
(TIMx_PSC).

Changed TIMx_ARR reset value to 0xFFFF FFFF in Section 23.4.8.

Real-time clock (RTC)

Replaced HSE/32 by HSE prescaled in Figure 202: RTC block diagram.

Added Section 27.3: RTC implementation. Removed notes related to
RTC_TAMP3 availability depending on categories in RTC_ISR and
RTC_TAMPCR.

Updated Section 27.4.15: Calibration clock output.

Section 27.7.3: RTC control register (RTC_CR):

Added caution note at the end of the section.

Updated ADD1H and SUB1H descriptions

Updated caution note at the end of Section 27.7.16: RTC tamper configuration
register (RTC_TAMPCR).

Updated RTC backup registers (RTC_BKPxR) register description.

Inter-integrated circuit interface (I2C)

Updated Section 28.4.5: I2C initialization, Section 28.4.8: I2C slave mode and
Section 28.7.5: Timing register (I2C_TIMINGR).

Updated:

Note on Section 28.4.9: I2C master mode

Bit 13 on Section 28.7.2: Control register 2 (I2C_CR2)

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1032/1040 RM0367 Rev 8

14-Nov-2016 5 (continued)

Universal synchronous asynchronous receiver transmitter (USART)
Updated Section 29.5.17: Wakeup from Stop mode using USART.
Added bit USESM in Section 29.5.17: Wakeup from Stop mode using USART
and Section 29.8.3: Control register 3 (USART_CR3)

Low-power UART (LPUART)
Updated Section 30.4.11: Wakeup from Stop mode using LPUART.
Added bit USESM in Section 30.4.11: Wakeup from Stop mode using LPUART
and Section 30.7.3: Control register 3 (LPUART_CR3).
Updated RWU bit description to remove the note related to wakeup from Stop in
Interrupt & status register (LPUART_ISR).
Added Table 144: Error calculation for programmed baud rates at fck = 32 MHz.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1033/1040

RM0367 Revision history

1036

06-Dec-2017 6

Flash program memory and data EEPROM

Updated Section 3.4: Memory protection.

Updated level 1 description in Section 3.4.1: RDP (Read Out Protection).

Improved read while write description in Section 3.6.2: Sequence of operations
and Table 11: Boot pin and BFB2 bit configuration.

Power controller

Updated Section 6.2.3: Programmable voltage detector (PVD).

Updated Section : Exiting Standby mode.

Updated VOSF bit description in Section 6.4.2: PWR power control/status
register (PWR_CSR).

Reset and clock controller (RCC)

Updated Section 7.2.6: LSE clock.
Updated HSI16RDYF description in Section 7.3.1: Clock control register
(RCC_CR).

System configuration controller (SYSCFG)
Updated EN_VREFINT bit description in Section 10.2.3: Reference control and
status register (SYSCFG_CFGR3).

Direct memory controller (DMA)
Updated Section 11.3.7: DMA request mapping.

Analog-to-digital converted (ADC)

Renamed EOSEQ, EOSEQIE, EXTENSEL bits into EOS, EOSIE, EXTEN.
Replaced tADC by tCONV in the whole document.

Added ADC_AWDx_OUT in Table 56: ADC internal signals.

Updated step 2 of calibration software procedure in Section 14.3.3: Calibration
(ADCAL).
Updated Section 14.3.3: Calibration (ADCAL).

Updated tCONV unit in Table 61: tSAR timings depending on resolution.

Added note related to the management of the internal oscillator in
Section 14.6.2: Auto-off mode (AUTOFF).

Replaced ADC_HTR and ADC_LTR registers by HT[11:0] and LT[11:0] in
Section 14.7: Analog window watchdog (AWDEN, AWDSGL, AWDCH,
ADC_TR, AWD) and updated Figure 48: Analog watchdog guarded area.
Removed all references to DMA double buffer mode.

Comparator (COMP)
Updated Figure 66: Comparator 1 and 2 block diagrams.

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1034/1040 RM0367 Rev 8

06-Dec-2017 6 (continued)

AES hardware accelerator (AES)
General update.

Window watchdog (WWDG)

Updated Figure 208.

Updated Section 26.3.5: Debug mode.

Updated Table 115: WWDG register map and reset values.

Real-time clock (RTC)

Updated Section 27.4.2: GPIOs controlled by the RTC.

Inter-integrated circuit interface (I2C)

Updated OA1[7:1] and OA2[7:1] bit descriptions in Section 28.7.3: Own address
1 register (I2C_OAR1) and Section 28.7.4: Own address 2 register
(I2C_OAR2), respectively.

Updated NACKCF bit definition in Section 28.7.8: Interrupt clear register
(I2C_ICR).

Universal synchronous asynchronous receiver transmitter (USART)

Added definition of tWUUSART in Section 29.5.5: Tolerance of the USART
receiver to clock deviation.

Restored PSC bit description for Section 29.8.5: USART guard time and
prescaler register (USART_GTPR).

Low-power UART (LPUART)

Added definition of tWLPUART in Section 30.4.5: Tolerance of the LPUART
receiver to clock deviation.

Added Note in Section 30.4.11: Wakeup from Stop mode using LPUART.

Note related to 7-bit data length removed in Section 30.7.1: Control register 1
(LPUART_CR1).

Debug

Updated Cortex-M0+ ID code in Section 33.5.3: SW-DP state machine (reset,
idle states, ID code) and Section 33.5.5: SW-DP registers.

Updated Appendix A.3.10: Program half-page to Flash program memory code
example and A.8.1: Calibration code example.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Rev 8 1035/1040

RM0367 Revision history

1036

01-Apr-2021 7

Updated cover introduction and related documents.

Document conventions
Added Section 1.1: General information.
Updated Section 1.2: List of abbreviations for registers.
Removed note related to product under development in Table 1: STM32L0x3
memory density.

Flash program memory and data EEPROM (FLASH)
Updated information about granularity of EEPROM and Flash in:
Section 3.2: NVM main features.
Section 3.3.1: NVM organization.
Section 3.3.4: Writing/erasing the NVM ‘Program half-page in Flash program
memory’ and ‘Detailed description of NVM write/erase operations’ paragraphs.

Liquid crystal display controller (LCD)
Updated Table 110: VLCDrail connections to GPIO pins.

Power control (PWR)
Updated:
Section 24.1.1: Independent A/D and DAC converter supply and reference
voltage.
Section 24.3.9: Stop mode ‘Entering Stop mode’ paragraph.
Section 24.4.1: PWR power control register (PWR_CR) DBP bit description
adding note.
‘power voltage control’ by ‘programmable voltage control’.

Reset and clock control (RCC)
Updated:
Figure 16: Simplified diagram of the reset circuit.
Section 7.3.5: Clock interrupt enable register (RCC_CIER) bits in read/write.
Section 7.3.21: Control/status register (RCC_CSR) RTCSEL[1:0] bits
description.

System configuration controller (SYSCFG)
Updated:
Section 10.2.2: SYSCFG peripheral mode configuration register
(SYSCFG_CFGR2) LCD_CAPA[4:0] bits description.
Section 10.2.3: Reference control and status register (SYSCFG_CFGR3)
EN_VREFINT bit description.

Extended interrupt and event controller (EXTI)
Updated Section 13.5.7: EXTI register map.

Table 181. Document revision history (continued)

Date Revision Changes

Revision history RM0367

1036/1040 RM0367 Rev 8

01-Apr-2021 7 (continued)

Analog digital converter (ADC)
Updated:
Table 69: ADC input/output pins.
Section 15.4.2: ADC voltage regulator (ADVREGEN).
Section 15.4.15: Starting conversions (ADSTART) note.
Added Section 15.4.9: ADC connectivity.

Inter-integrated circuit (I2C) interface
Updated:
Table 41.3: I2C implementation fast-mode supported for all I2Cs.
Section 41.4.15: Wakeup from Stop mode on address match.

Universal synchronous asynchronous receiver transmitter (USART)
Updated:
Figure 248: USART block diagram.
Section 28.4.4: LPUART baud rate generation.
Table 146: Error calculation for programmed baud rates at fck = 32 MHz.

Appendix code examples
Updated Section A.5.3: Analog GPIO configuration code example.

02-Feb-2022 8

Section 4: Cyclic redundancy check calculation unit (CRC)

Added CRC register access granularity in Section 4.2: CRC main features and
Section 4.4: CRC registers.

Updated Figure 7: CRC calculation unit block diagram.

Section 10: System configuration controller (SYSCFG)
Updated description of LCD_CAPA[4:0] in SYSCFG peripheral mode
configuration register (SYSCFG_CFGR2).

Section 14: Analog-to-digital converter (ADC)
Removed ADC supply requirements from Section 14.2: ADC main features.

In Section 14.3.7: Configuring the ADC, ADC configuration register 1
(ADC_CFGR1) and ADC configuration register 2 (ADC_CFGR2), specified that
ADC_CFGR1/2 must be configured only when ADCEN = 0.

Updated note related to ADSTART clearing in Section 14.3.12: Starting
conversions (ADSTART).

Removed temperature range from the list of main features in Section 14.9:
Temperature sensor and internal reference voltage.

Added reference to Section 14.3.6: ADC connectivity in CHSELx description of
ADC channel selection register (ADC_CHSELR).

Section 27: Real-time clock (RTC)

Update note in Section 27.4.15: Calibration clock output and Section 27.4.16:
Alarm output.

Section 33: Debug support (DBG)
Updated REV_ID in DBG_IDCODE register.

Table 181. Document revision history (continued)

Date Revision Changes

RM0367 Index

RM0367 Rev 8 1037/1040

Index

A
ADC_CALFACT .348
ADC_CCR .349
ADC_CFGR1 .341
ADC_CFGR2 .345
ADC_CHSELR .347
ADC_CR .339
ADC_DR .348
ADC_IER .337
ADC_ISR .336
ADC_SMPR .346
ADC_TR .347
AES_CR .457
AES_DINR .460
AES_DOUTR .460
AES_IVR .463
AES_KEYRx .461
AES_SR .459

C
COMP1_CSR .378
COMP2_CSR .380
CRC_CR .127
CRC_DR .126
CRC_IDR .126
CRC_INIT .128
CRC_POL .128
CRS_CFGR .232
CRS_CR .231
CRS_ICR .235
CRS_ISR .233

D
DAC_CR .364
DAC_DHR12L1 .369
DAC_DHR12L2 .370
DAC_DHR12LD .371
DAC_DHR12R1 .368
DAC_DHR12R2 .369
DAC_DHR12RD .371
DAC_DHR8R1 .369
DAC_DHR8R2 .370
DAC_DHR8RD .371
DAC_DOR1 .372
DAC_DOR2 .372
DAC_SR .372

DAC_SWTRIGR . 368
DBG_APB1_FZ . 965
DBG_APB2_FZ . 967
DBG_CR . 963
DBG_IDCODE . 956
DBGMCU_CR . 963
DMA_CCRx . 279
DMA_CMARx . 283
DMA_CNDTRx . 282
DMA_CPARx . 283
DMA_IFCR . 278
DMA_ISR . 276
DMA1_CSELR . 285

E
EXTI_EMR . 296
EXTI_FTSR . 298
EXTI_IMR . 296
EXTI_PR . 299
EXTI_RTSR . 297
EXTI_SWIER . 298

F
FLASH_ACR . 107
FLASH_CR . 112
FLASH_KEYR . 108
FLASH_OPTKEYR 112-113
FLASH_OPTR . 116
FLASH_PDKEYR . 112
FLASH_PECR . 108
FLASH_PEKEYR . 112
FLASH_PRGKEYR . 112
FLASH_SR . 112, 114
FLASH_WRPROT1 . 118
FLASH_WRPROT2 . 119
FW_CR . 140
FW_CSL . 137
FW_CSSA . 137
FW_NVDSL . 138
FW_NVDSSA . 138
FW_VDSL . 139
FW_VDSSA . 139

G
GPIOx_AFRH . 251
GPIOx_AFRL . 251

Index RM0367

1038/1040 RM0367 Rev 8

GPIOx_BRR .252
GPIOx_BSRR .249
GPIOx_IDR .248
GPIOx_LCKR .249
GPIOx_MODER .246
GPIOx_ODR .249
GPIOx_OSPEEDR .247
GPIOx_OTYPER .247
GPIOx_PUPDR .248

I
I2C_CR1 .746
I2C_CR2 .749
I2C_ICR .757
I2C_ISR .755
I2C_OAR1 .751
I2C_OAR2 .752
I2C_PECR .758
I2C_RXDR .759
I2C_TIMEOUTR .754
I2C_TIMINGR .753
I2C_TXDR .759
I2Cx_CR2 . 137-140
IWDG_KR .637
IWDG_PR .638
IWDG_RLR .639
IWDG_SR .640
IWDG_WINR .641

L
LCD_CLR .409
LCD_CR .405
LCD_RAM .410
LPTIM_ARR .632
LPTIM_CFGR .627
LPTIM_CMP .631
LPTIM_CNT .632
LPTIM_CR .630
LPTIM_ICR .626
LPTIM_IER .626
LPTIM_ISR .625
LPUART_BRR .863
LPUART_CR1 .856
LPUART_CR2 .859
LPUART_CR3 .861
LPUART_ICR .867
LPUART_ISR .864
LPUART_RDR .868
LPUART_RQR .863
LPUART_TDR .868

P
PWR_CR . 167
PWR_CSR . 170

R
RCC_AHBENR . 205
RCC_AHBRSTR . 199
RCC_AHBSMENR . 213
RCC_APB1ENR . 209
RCC_APB1RSTR . 201
RCC_APB1SMENR 215
RCC_APB2ENR . 207
RCC_APB2RSTR . 200
RCC_APB2SMENR 214
RCC_CCIPR . 217
RCC_CFGR . 192
RCC_CICR . 197
RCC_CIER . 194
RCC_CIFR . 196
RCC_CR . 187
RCC_CRRCR . 191
RCC_CSR . 219
RCC_ICSCR . 190
RCC_IOPENR . 204
RCC_IOPRSTR . 198
RCC_IOPSMENR . 212
RNG_CR . 473
RNG_DR . 476
RNG_SR . 475
RTC_ALRMAR . 677
RTC_ALRMASSR . 688
RTC_ALRMBR . 678
RTC_ALRMBSSR . 689
RTC_BKPxR . 690
RTC_CALR . 684
RTC_CR . 669
RTC_DR . 668
RTC_ISR . 672
RTC_OR . 690
RTC_PRER . 675
RTC_SHIFTR . 680
RTC_SSR . 679
RTC_TAMPCR . 685
RTC_TR . 667
RTC_TSDR . 682
RTC_TSSSR . 683
RTC_TSTR . 681
RTC_WPR . 679
RTC_WUTR . 676

RM0367 Index

RM0367 Rev 8 1039/1040

S
SPI_CR1 .911
SPI_CR2 .913
SPI_CRCPR .916
SPI_DR .916
SPI_I2SCFGR .918
SPI_I2SPR .919
SPI_RXCRCR .917
SPI_SR .914
SPI_TXCRCR .917
SYSCFG_CFGR1 .255
SYSCFG_CFGR2 .257
SYSCFG_CFGR3 .258
SYSCFG_EXTICR1 .260
SYSCFG_EXTICR2 .261
SYSCFG_EXTICR3 .261
SYSCFG_EXTICR4 .262

T
TIM2_OR .541
TIM21_OR .596
TIM22_OR .597
TIM3_OR .542
TIMx_ARR 536, 594, 611
TIMx_CCER .534, 593
TIMx_CCMR1 .530, 590
TIMx_CCMR2 .533
TIMx_CCR1 .537, 595
TIMx_CCR2 .537, 595
TIMx_CCR3 .538
TIMx_CCR4 .538
TIMx_CNT 536, 594, 610
TIMx_CR1 521, 581, 608
TIMx_CR2 523, 583, 609
TIMx_DCR .539
TIMx_DIER 526, 587, 609
TIMx_DMAR .539
TIMx_EGR 529, 589, 610
TIMx_PSC 536, 594, 611
TIMx_SMCR .524, 584
TIMx_SR 527, 587, 610
TSC_CR .422
TSC_ICR .425
TSC_IER .424
TSC_IOASCR .427
TSC_IOCCR .428
TSC_IOGCSR .428
TSC_IOGxCR .429
TSC_IOHCR .426
TSC_IOSCR .427
TSC_ISR .426

U
USART_BRR . 817
USART_CR1 . 806
USART_CR2 . 809
USART_CR3 . 813
USART_GTPR . 817
USART_ICR . 825
USART_ISR . 820
USART_RDR . 826
USART_RQR . 819
USART_RTOR . 818
USART_TDR . 826
USB_ADDRn_RX . 950
USB_ADDRn_TX . 949
USB_BCDR . 943
USB_BTABLE . 942
USB_CNTR . 936
USB_COUNTn_RX . 950
USB_COUNTn_TX . 949
USB_DADDR . 941
USB_EPnR . 944
USB_FNR . 941
USB_ISTR . 938
USB_LPMCSR . 942

W
WWDG_CFR . 647
WWDG_CR . 646
WWDG_SR . 647

RM0367

1040/1040 RM0367 Rev 8

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

	1 Documentation conventions
	1.1 General information
	1.2 List of abbreviations for registers
	1.3 Glossary
	1.4 Availability of peripherals
	1.5 Product category definition

	2 System and memory overview
	2.1 System architecture
	2.1.1 S0: Cortex®-bus
	2.1.2 S1: DMA-bus
	2.1.3 BusMatrix

	2.2 Memory organization
	2.2.1 Introduction
	2.2.2 Memory map and register boundary addresses

	2.3 Embedded SRAM
	2.4 Boot configuration

	3 Flash program memory and data EEPROM (FLASH)
	3.1 Introduction
	3.2 NVM main features
	3.3 NVM functional description
	3.3.1 NVM organization
	3.3.2 Dual-bank boot capability
	3.3.3 Reading the NVM
	3.3.4 Writing/erasing the NVM

	3.4 Memory protection
	3.4.1 RDP (Read Out Protection)
	3.4.2 PcROP (Proprietary Code Read-Out Protection)
	3.4.3 Protections against unwanted write/erase operations
	3.4.4 Write/erase protection management
	3.4.5 Protection errors

	3.5 NVM interrupts
	3.5.1 Hard fault

	3.6 Memory interface management
	3.6.1 Operation priority and evolution
	3.6.2 Sequence of operations
	3.6.3 Change the number of wait states while reading
	3.6.4 Power-down

	3.7 Flash register description
	3.7.1 Access control register (FLASH_ACR)
	3.7.2 Program and erase control register (FLASH_PECR)
	3.7.3 Power-down key register (FLASH_PDKEYR)
	3.7.4 PECR unlock key register (FLASH_PEKEYR)
	3.7.5 Program and erase key register (FLASH_PRGKEYR)
	3.7.6 Option bytes unlock key register (FLASH_OPTKEYR)
	3.7.7 Status register (FLASH_SR)
	3.7.8 Option bytes register (FLASH_OPTR)
	3.7.9 Write protection register 1 (FLASH_WRPROT1)
	3.7.10 Write protection register 2 (FLASH_WRPROT2)
	3.7.11 Flash register map

	3.8 Option bytes
	3.8.1 Option bytes description
	3.8.2 Mismatch when loading protection flags
	3.8.3 Reloading Option bytes by software

	4 Cyclic redundancy check calculation unit (CRC)
	4.1 Introduction
	4.2 CRC main features
	4.3 CRC functional description
	4.3.1 CRC block diagram
	4.3.2 CRC internal signals
	4.3.3 CRC operation

	4.4 CRC registers
	4.4.1 CRC data register (CRC_DR)
	4.4.2 CRC independent data register (CRC_IDR)
	4.4.3 CRC control register (CRC_CR)
	4.4.4 CRC initial value (CRC_INIT)
	4.4.5 CRC polynomial (CRC_POL)
	4.4.6 CRC register map

	5 Firewall (FW)
	5.1 Introduction
	5.2 Firewall main features
	5.3 Firewall functional description
	5.3.1 Firewall AMBA bus snoop
	5.3.2 Functional requirements
	5.3.3 Firewall segments
	5.3.4 Segment accesses and properties
	5.3.5 Firewall initialization
	5.3.6 Firewall states

	5.4 Firewall registers
	5.4.1 Code segment start address (FW_CSSA)
	5.4.2 Code segment length (FW_CSL)
	5.4.3 Non-volatile data segment start address (FW_NVDSSA)
	5.4.4 Non-volatile data segment length (FW_NVDSL)
	5.4.5 Volatile data segment start address (FW_VDSSA)
	5.4.6 Volatile data segment length (FW_VDSL)
	5.4.7 Configuration register (FW_CR)
	5.4.8 Firewall register map

	6 Power control (PWR)
	6.1 Power supplies
	6.1.1 Independent A/D and DAC converter supply and reference voltage
	6.1.2 Independent LCD supply
	6.1.3 RTC and RTC backup registers
	6.1.4 Voltage regulator
	6.1.5 Dynamic voltage scaling management
	6.1.6 Dynamic voltage scaling configuration
	6.1.7 Voltage regulator and clock management when VDD drops below 1.71 V
	6.1.8 Voltage regulator and clock management when modifying the VCORE range
	6.1.9 Voltage range and limitations when VDD ranges from 1.71 V to 2.0 V

	6.2 Power supply supervisor
	6.2.1 Power-on reset (POR)/power-down reset (PDR)
	6.2.2 Brown out reset (BOR)
	6.2.3 Programmable voltage detector (PVD)
	6.2.4 Internal voltage reference (VREFINT)

	6.3 Low-power modes
	6.3.1 Behavior of clocks in low-power modes
	6.3.2 Slowing down system clocks
	6.3.3 Peripheral clock gating
	6.3.4 Low-power run mode (LP run)
	6.3.5 Entering low-power mode
	6.3.6 Exiting low-power mode
	6.3.7 Sleep mode
	6.3.8 Low-power sleep mode (LP sleep)
	6.3.9 Stop mode
	6.3.10 Standby mode
	6.3.11 Waking up the device from Stop and Standby modes using the RTC and comparators

	6.4 Power control registers
	6.4.1 PWR power control register (PWR_CR)
	6.4.2 PWR power control/status register (PWR_CSR)
	6.4.3 PWR register map

	7 Reset and clock control (RCC)
	7.1 Reset
	7.1.1 System reset
	7.1.2 Power reset
	7.1.3 RTC and backup registers reset

	7.2 Clocks
	7.2.1 HSE clock
	7.2.2 HSI16 clock
	7.2.3 MSI clock
	7.2.4 HSI48 clock
	7.2.5 PLL
	7.2.6 LSE clock
	7.2.7 LSI clock
	7.2.8 System clock (SYSCLK) selection
	7.2.9 System clock source frequency versus voltage range
	7.2.10 HSE clock security system (CSS)
	7.2.11 LSE Clock Security System
	7.2.12 RTC and LCD clock
	7.2.13 Watchdog clock
	7.2.14 Clock-out capability
	7.2.15 Internal/external clock measurement using TIM21
	7.2.16 Clock-independent system clock sources for TIM2/TIM21/TIM22

	7.3 RCC registers
	7.3.1 Clock control register (RCC_CR)
	7.3.2 Internal clock sources calibration register (RCC_ICSCR)
	7.3.3 Clock recovery RC register (RCC_CRRCR)
	7.3.4 Clock configuration register (RCC_CFGR)
	7.3.5 Clock interrupt enable register (RCC_CIER)
	7.3.6 Clock interrupt flag register (RCC_CIFR)
	7.3.7 Clock interrupt clear register (RCC_CICR)
	7.3.8 GPIO reset register (RCC_IOPRSTR)
	7.3.9 AHB peripheral reset register (RCC_AHBRSTR)
	7.3.10 APB2 peripheral reset register (RCC_APB2RSTR)
	7.3.11 APB1 peripheral reset register (RCC_APB1RSTR)
	7.3.12 GPIO clock enable register (RCC_IOPENR)
	7.3.13 AHB peripheral clock enable register (RCC_AHBENR)
	7.3.14 APB2 peripheral clock enable register (RCC_APB2ENR)
	7.3.15 APB1 peripheral clock enable register (RCC_APB1ENR)
	7.3.16 GPIO clock enable in Sleep mode register (RCC_IOPSMENR)
	7.3.17 AHB peripheral clock enable in Sleep mode register (RCC_AHBSMENR)
	7.3.18 APB2 peripheral clock enable in Sleep mode register (RCC_APB2SMENR)
	7.3.19 APB1 peripheral clock enable in Sleep mode register (RCC_APB1SMENR)
	7.3.20 Clock configuration register (RCC_CCIPR)
	7.3.21 Control/status register (RCC_CSR)
	7.3.22 RCC register map

	8 Clock recovery system (CRS)
	8.1 Introduction
	8.2 CRS main features
	8.3 CRS implementation
	8.4 CRS functional description
	8.4.1 CRS block diagram
	8.4.2 Synchronization input
	8.4.3 Frequency error measurement
	8.4.4 Frequency error evaluation and automatic trimming
	8.4.5 CRS initialization and configuration

	8.5 CRS low-power modes
	8.6 CRS interrupts
	8.7 CRS registers
	8.7.1 CRS control register (CRS_CR)
	8.7.2 CRS configuration register (CRS_CFGR)
	8.7.3 CRS interrupt and status register (CRS_ISR)
	8.7.4 CRS interrupt flag clear register (CRS_ICR)
	8.7.5 CRS register map

	9 General-purpose I/Os (GPIO)
	9.1 Introduction
	9.2 GPIO main features
	9.3 GPIO functional description
	9.3.1 General-purpose I/O (GPIO)
	9.3.2 I/O pin alternate function multiplexer and mapping
	9.3.3 I/O port control registers
	9.3.4 I/O port data registers
	9.3.5 I/O data bitwise handling
	9.3.6 GPIO locking mechanism
	9.3.7 I/O alternate function input/output
	9.3.8 External interrupt/wakeup lines
	9.3.9 Input configuration
	9.3.10 Output configuration
	9.3.11 Alternate function configuration
	9.3.12 Analog configuration
	9.3.13 Using the HSE or LSE oscillator pins as GPIOs
	9.3.14 Using the GPIO pins in the RTC supply domain

	9.4 GPIO registers
	9.4.1 GPIO port mode register (GPIOx_MODER) (x =A to E and H)
	9.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A to E and H)
	9.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A to E and H)
	9.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A to E and H)
	9.4.5 GPIO port input data register (GPIOx_IDR) (x = A to E and H)
	9.4.6 GPIO port output data register (GPIOx_ODR) (x = A to E and H)
	9.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A to E and H)
	9.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A to E and H)
	9.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A to E and H)
	9.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A to E and H)
	9.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A to E and H)
	9.4.12 GPIO register map

	10 System configuration controller (SYSCFG)
	10.1 Introduction
	10.2 SYSCFG registers
	10.2.1 SYSCFG memory remap register (SYSCFG_CFGR1)
	10.2.2 SYSCFG peripheral mode configuration register (SYSCFG_CFGR2)
	10.2.3 Reference control and status register (SYSCFG_CFGR3)
	10.2.4 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)
	10.2.5 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2)
	10.2.6 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3)
	10.2.7 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4)
	10.2.8 SYSCFG register map

	11 Direct memory access controller (DMA)
	11.1 Introduction
	11.2 DMA main features
	11.3 DMA implementation
	11.3.1 DMA
	11.3.2 DMA request mapping

	11.4 DMA functional description
	11.4.1 DMA block diagram
	11.4.2 DMA transfers
	11.4.3 DMA arbitration
	11.4.4 DMA channels
	11.4.5 DMA data width, alignment and endianness
	11.4.6 DMA error management

	11.5 DMA interrupts
	11.6 DMA registers
	11.6.1 DMA interrupt status register (DMA_ISR)
	11.6.2 DMA interrupt flag clear register (DMA_IFCR)
	11.6.3 DMA channel x configuration register (DMA_CCRx)
	11.6.4 DMA channel x number of data to transfer register (DMA_CNDTRx)
	11.6.5 DMA channel x peripheral address register (DMA_CPARx)
	11.6.6 DMA channel x memory address register (DMA_CMARx)
	11.6.7 DMA channel selection register (DMA_CSELR)
	11.6.8 DMA register map

	12 Nested vectored interrupt controller (NVIC)
	12.1 Main features
	12.2 SysTick calibration value register
	12.3 Interrupt and exception vectors

	13 Extended interrupt and event controller (EXTI)
	13.1 Introduction
	13.2 EXTI main features
	13.3 EXTI functional description
	13.3.1 EXTI block diagram
	13.3.2 Wakeup event management
	13.3.3 Peripherals asynchronous interrupts
	13.3.4 Hardware interrupt selection
	13.3.5 Hardware event selection
	13.3.6 Software interrupt/event selection

	13.4 EXTI interrupt/event line mapping
	13.5 EXTI registers
	13.5.1 EXTI interrupt mask register (EXTI_IMR)
	13.5.2 EXTI event mask register (EXTI_EMR)
	13.5.3 EXTI rising edge trigger selection register (EXTI_RTSR)
	13.5.4 Falling edge trigger selection register (EXTI_FTSR)
	13.5.5 EXTI software interrupt event register (EXTI_SWIER)
	13.5.6 EXTI pending register (EXTI_PR)
	13.5.7 EXTI register map

	14 Analog-to-digital converter (ADC)
	14.1 Introduction
	14.2 ADC main features
	14.3 ADC functional description
	14.3.1 ADC pins and internal signals
	14.3.2 ADC voltage regulator (ADVREGEN)
	14.3.3 Calibration (ADCAL)
	14.3.4 ADC on-off control (ADEN, ADDIS, ADRDY)
	14.3.5 ADC clock (CKMODE, PRESC[3:0], LFMEN)
	14.3.6 ADC connectivity
	14.3.7 Configuring the ADC
	14.3.8 Channel selection (CHSEL, SCANDIR)
	14.3.9 Programmable sampling time (SMP)
	14.3.10 Single conversion mode (CONT = 0)
	14.3.11 Continuous conversion mode (CONT = 1)
	14.3.12 Starting conversions (ADSTART)
	14.3.13 Timings
	14.3.14 Stopping an ongoing conversion (ADSTP)

	14.4 Conversion on external trigger and trigger polarity (EXTSEL, EXTEN)
	14.4.1 Discontinuous mode (DISCEN)
	14.4.2 Programmable resolution (RES) - Fast conversion mode
	14.4.3 End of conversion, end of sampling phase (EOC, EOSMP flags)
	14.4.4 End of conversion sequence (EOS flag)
	14.4.5 Example timing diagrams (single/continuous modes hardware/software triggers)

	14.5 Data management
	14.5.1 Data register and data alignment (ADC_DR, ALIGN)
	14.5.2 ADC overrun (OVR, OVRMOD)
	14.5.3 Managing a sequence of data converted without using the DMA
	14.5.4 Managing converted data without using the DMA without overrun
	14.5.5 Managing converted data using the DMA

	14.6 Low-power features
	14.6.1 Wait mode conversion
	14.6.2 Auto-off mode (AUTOFF)

	14.7 Analog window watchdog (AWDEN, AWDSGL, AWDCH, ADC_TR)
	14.7.1 Description of the analog watchdog
	14.7.2 ADC_AWD1_OUT output signal generation
	14.7.3 Analog watchdog threshold control

	14.8 Oversampler
	14.8.1 ADC operating modes supported when oversampling
	14.8.2 Analog watchdog
	14.8.3 Triggered mode

	14.9 Temperature sensor and internal reference voltage
	14.10 VLCD voltage monitoring
	14.11 ADC interrupts
	14.12 ADC registers
	14.12.1 ADC interrupt and status register (ADC_ISR)
	14.12.2 ADC interrupt enable register (ADC_IER)
	14.12.3 ADC control register (ADC_CR)
	14.12.4 ADC configuration register 1 (ADC_CFGR1)
	14.12.5 ADC configuration register 2 (ADC_CFGR2)
	14.12.6 ADC sampling time register (ADC_SMPR)
	14.12.7 ADC watchdog threshold register (ADC_TR)
	14.12.8 ADC channel selection register (ADC_CHSELR)
	14.12.9 ADC data register (ADC_DR)
	14.12.10 ADC Calibration factor (ADC_CALFACT)
	14.12.11 ADC common configuration register (ADC_CCR)

	14.13 ADC register map

	15 Digital-to-analog converter (DAC)
	15.1 Introduction
	15.2 DAC1 main features
	15.3 DAC output buffer enable
	15.4 DAC channel enable
	15.5 Single mode functional description
	15.5.1 DAC data format
	15.5.2 DAC channel conversion
	15.5.3 DAC output voltage
	15.5.4 DAC trigger selection

	15.6 Dual-mode functional description
	15.6.1 DAC data format
	15.6.2 DAC channel conversion in dual mode
	15.6.3 Description of dual conversion modes
	15.6.4 DAC output voltage
	15.6.5 DAC trigger selection

	15.7 Noise generation
	15.8 Triangle-wave generation
	15.9 DMA request
	15.10 DAC registers
	15.10.1 DAC control register (DAC_CR)
	15.10.2 DAC software trigger register (DAC_SWTRIGR)
	15.10.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1)
	15.10.4 DAC channel1 12-bit left-aligned data holding register (DAC_DHR12L1)
	15.10.5 DAC channel1 8-bit right-aligned data holding register (DAC_DHR8R1)
	15.10.6 DAC channel2 12-bit right-aligned data holding register (DAC_DHR12R2)
	15.10.7 DAC channel2 12-bit left-aligned data holding register (DAC_DHR12L2)
	15.10.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2)
	15.10.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD)
	15.10.10 Dual DAC 12-bit left-aligned data holding register (DAC_DHR12LD)
	15.10.11 Dual DAC 8-bit right-aligned data holding register (DAC_DHR8RD)
	15.10.12 DAC channel1 data output register (DAC_DOR1)
	15.10.13 DAC channel2 data output register (DAC_DOR2)
	15.10.14 DAC status register (DAC_SR)
	15.10.15 DAC register map

	16 Comparator (COMP)
	16.1 Introduction
	16.2 COMP main features
	16.3 COMP functional description
	16.3.1 COMP block diagram
	16.3.2 COMP pins and internal signals
	16.3.3 COMP reset and clocks
	16.3.4 Comparator LOCK mechanism
	16.3.5 Power mode

	16.4 COMP interrupts
	16.5 COMP registers
	16.5.1 Comparator 1 control and status register (COMP1_CSR)
	16.5.2 Comparator 2 control and status register (COMP2_CSR)
	16.5.3 COMP register map

	17 Liquid crystal display controller (LCD)
	17.1 Introduction
	17.2 LCD main features
	17.3 LCD implementation
	17.4 LCD functional description
	17.4.1 General description
	17.4.2 Frequency generator
	17.4.3 Common driver
	17.4.4 Segment driver
	17.4.5 Voltage generator and contrast control
	17.4.6 Double buffer memory
	17.4.7 COM and SEG multiplexing
	17.4.8 Flowchart

	17.5 LCD low-power modes
	17.6 LCD interrupts
	17.7 LCD registers
	17.7.1 LCD control register (LCD_CR)
	17.7.2 LCD frame control register (LCD_FCR)
	17.7.3 LCD status register (LCD_SR)
	17.7.4 LCD clear register (LCD_CLR)
	17.7.5 LCD display memory (LCD_RAM)
	17.7.6 LCD register map

	18 Touch sensing controller (TSC)
	18.1 Introduction
	18.2 TSC main features
	18.3 TSC functional description
	18.3.1 TSC block diagram
	18.3.2 Surface charge transfer acquisition overview
	18.3.3 Reset and clocks
	18.3.4 Charge transfer acquisition sequence
	18.3.5 Spread spectrum feature
	18.3.6 Max count error
	18.3.7 Sampling capacitor I/O and channel I/O mode selection
	18.3.8 Acquisition mode
	18.3.9 I/O hysteresis and analog switch control

	18.4 TSC low-power modes
	18.5 TSC interrupts
	18.6 TSC registers
	18.6.1 TSC control register (TSC_CR)
	18.6.2 TSC interrupt enable register (TSC_IER)
	18.6.3 TSC interrupt clear register (TSC_ICR)
	18.6.4 TSC interrupt status register (TSC_ISR)
	18.6.5 TSC I/O hysteresis control register (TSC_IOHCR)
	18.6.6 TSC I/O analog switch control register (TSC_IOASCR)
	18.6.7 TSC I/O sampling control register (TSC_IOSCR)
	18.6.8 TSC I/O channel control register (TSC_IOCCR)
	18.6.9 TSC I/O group control status register (TSC_IOGCSR)
	18.6.10 TSC I/O group x counter register (TSC_IOGxCR)
	18.6.11 TSC register map

	19 AES hardware accelerator (AES)
	19.1 Introduction
	19.2 AES main features
	19.3 AES implementation
	19.4 AES functional description
	19.4.1 AES block diagram
	19.4.2 AES internal signals
	19.4.3 AES cryptographic core
	19.4.4 AES procedure to perform a cipher operation
	19.4.5 AES decryption key preparation
	19.4.6 AES ciphertext stealing and data padding
	19.4.7 AES task suspend and resume
	19.4.8 AES basic chaining modes (ECB, CBC)
	19.4.9 AES counter (CTR) mode
	19.4.10 AES data registers and data swapping
	19.4.11 AES key registers
	19.4.12 AES initialization vector registers
	19.4.13 AES DMA interface
	19.4.14 AES error management

	19.5 AES interrupts
	19.6 AES processing latency
	19.7 AES registers
	19.7.1 AES control register (AES_CR)
	19.7.2 AES status register (AES_SR)
	19.7.3 AES data input register (AES_DINR)
	19.7.4 AES data output register (AES_DOUTR)
	19.7.5 AES key register 0 (AES_KEYR0)
	19.7.6 AES key register 1 (AES_KEYR1)
	19.7.7 AES key register 2 (AES_KEYR2)
	19.7.8 AES key register 3 (AES_KEYR3)
	19.7.9 AES initialization vector register 0 (AES_IVR0)
	19.7.10 AES initialization vector register 1 (AES_IVR1)
	19.7.11 AES initialization vector register 2 (AES_IVR2)
	19.7.12 AES initialization vector register 3 (AES_IVR3)
	19.7.13 AES register map

	20 True random number generator (RNG)
	20.1 Introduction
	20.2 RNG main features
	20.3 RNG functional description
	20.3.1 RNG block diagram
	20.3.2 RNG internal signals
	20.3.3 Random number generation
	20.3.4 RNG initialization
	20.3.5 RNG operation
	20.3.6 RNG clocking
	20.3.7 Error management
	20.3.8 RNG low-power usage

	20.4 RNG interrupts
	20.5 RNG processing time
	20.6 RNG entropy source validation
	20.6.1 Introduction
	20.6.2 Validation conditions
	20.6.3 Data collection

	20.7 RNG registers
	20.7.1 RNG control register (RNG_CR)
	20.7.2 RNG status register (RNG_SR)
	20.7.3 RNG data register (RNG_DR)
	20.7.4 RNG register map

	21 General-purpose timers (TIM2/TIM3)
	21.1 TIM2/TIM3 introduction
	21.2 TIM2/TIM3 main features
	21.3 TIM2/TIM3 functional description
	21.3.1 Time-base unit
	21.3.2 Counter modes
	21.3.3 Clock selection
	21.3.4 Capture/compare channels
	21.3.5 Input capture mode
	21.3.6 PWM input mode
	21.3.7 Forced output mode
	21.3.8 Output compare mode
	21.3.9 PWM mode
	21.3.10 One-pulse mode
	21.3.11 Clearing the OCxREF signal on an external event
	21.3.12 Encoder interface mode
	21.3.13 Timer input XOR function
	21.3.14 Timers and external trigger synchronization
	21.3.15 Timer synchronization
	21.3.16 Debug mode

	21.4 TIM2/TIM3 registers
	21.4.1 TIMx control register 1 (TIMx_CR1)
	21.4.2 TIMx control register 2 (TIMx_CR2)
	21.4.3 TIMx slave mode control register (TIMx_SMCR)
	21.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)
	21.4.5 TIMx status register (TIMx_SR)
	21.4.6 TIMx event generation register (TIMx_EGR)
	21.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
	21.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)
	21.4.9 TIMx capture/compare enable register (TIMx_CCER)
	21.4.10 TIMx counter (TIMx_CNT)
	21.4.11 TIMx prescaler (TIMx_PSC)
	21.4.12 TIMx auto-reload register (TIMx_ARR)
	21.4.13 TIMx capture/compare register 1 (TIMx_CCR1)
	21.4.14 TIMx capture/compare register 2 (TIMx_CCR2)
	21.4.15 TIMx capture/compare register 3 (TIMx_CCR3)
	21.4.16 TIMx capture/compare register 4 (TIMx_CCR4)
	21.4.17 TIMx DMA control register (TIMx_DCR)
	21.4.18 TIMx DMA address for full transfer (TIMx_DMAR)
	21.4.19 TIM2 option register (TIM2_OR)
	21.4.20 TIM3 option register (TIM3_OR)

	21.5 TIMx register map

	22 General-purpose timers (TIM21/22)
	22.1 Introduction
	22.2 TIM21/22 main features
	22.2.1 TIM21/22 main features

	22.3 TIM21/22 functional description
	22.3.1 Timebase unit
	22.3.2 Counter modes
	22.3.3 Clock selection
	22.3.4 Capture/compare channels
	22.3.5 Input capture mode
	22.3.6 PWM input mode
	22.3.7 Forced output mode
	22.3.8 Output compare mode
	22.3.9 PWM mode
	22.3.10 Clearing the OCxREF signal on an external event
	22.3.11 One-pulse mode
	22.3.12 Encoder interface mode
	22.3.13 TIM21/22 external trigger synchronization
	22.3.14 Timer synchronization (TIM21/22)
	22.3.15 Debug mode

	22.4 TIM21/22 registers
	22.4.1 TIM21/22 control register 1 (TIMx_CR1)
	22.4.2 TIM21/22 control register 2 (TIMx_CR2)
	22.4.3 TIM21/22 slave mode control register (TIMx_SMCR)
	22.4.4 TIM21/22 Interrupt enable register (TIMx_DIER)
	22.4.5 TIM21/22 status register (TIMx_SR)
	22.4.6 TIM21/22 event generation register (TIMx_EGR)
	22.4.7 TIM21/22 capture/compare mode register 1 (TIMx_CCMR1)
	22.4.8 TIM21/22 capture/compare enable register (TIMx_CCER)
	22.4.9 TIM21/22 counter (TIMx_CNT)
	22.4.10 TIM21/22 prescaler (TIMx_PSC)
	22.4.11 TIM21/22 auto-reload register (TIMx_ARR)
	22.4.12 TIM21/22 capture/compare register 1 (TIMx_CCR1)
	22.4.13 TIM21/22 capture/compare register 2 (TIMx_CCR2)
	22.4.14 TIM21 option register (TIM21_OR)
	22.4.15 TIM22 option register (TIM22_OR)
	22.4.16 TIM21/22 register map

	23 Basic timers (TIM6/7)
	23.1 Introduction
	23.2 TIM6/7 main features
	23.3 TIM6/7 functional description
	23.3.1 Time-base unit
	23.3.2 Counting mode
	23.3.3 Clock source
	23.3.4 Debug mode

	23.4 TIM6/7 registers
	23.4.1 TIM6/7 control register 1 (TIMx_CR1)
	23.4.2 TIM6/7 control register 2 (TIMx_CR2)
	23.4.3 TIM6/7 DMA/Interrupt enable register (TIMx_DIER)
	23.4.4 TIM6/7 status register (TIMx_SR)
	23.4.5 TIM6/7 event generation register (TIMx_EGR)
	23.4.6 TIM6/7 counter (TIMx_CNT)
	23.4.7 TIM6/7 prescaler (TIMx_PSC)
	23.4.8 TIM6/7 auto-reload register (TIMx_ARR)
	23.4.9 TIM6/7 register map

	24 Low-power timer (LPTIM)
	24.1 Introduction
	24.2 LPTIM main features
	24.3 LPTIM implementation
	24.4 LPTIM functional description
	24.4.1 LPTIM block diagram
	24.4.2 LPTIM trigger mapping
	24.4.3 LPTIM reset and clocks
	24.4.4 Glitch filter
	24.4.5 Prescaler
	24.4.6 Trigger multiplexer
	24.4.7 Operating mode
	24.4.8 Timeout function
	24.4.9 Waveform generation
	24.4.10 Register update
	24.4.11 Counter mode
	24.4.12 Timer enable
	24.4.13 Encoder mode
	24.4.14 Debug mode

	24.5 LPTIM low-power modes
	24.6 LPTIM interrupts
	24.7 LPTIM registers
	24.7.1 LPTIM interrupt and status register (LPTIM_ISR)
	24.7.2 LPTIM interrupt clear register (LPTIM_ICR)
	24.7.3 LPTIM interrupt enable register (LPTIM_IER)
	24.7.4 LPTIM configuration register (LPTIM_CFGR)
	24.7.5 LPTIM control register (LPTIM_CR)
	24.7.6 LPTIM compare register (LPTIM_CMP)
	24.7.7 LPTIM autoreload register (LPTIM_ARR)
	24.7.8 LPTIM counter register (LPTIM_CNT)
	24.7.9 LPTIM register map

	25 Independent watchdog (IWDG)
	25.1 Introduction
	25.2 IWDG main features
	25.3 IWDG functional description
	25.3.1 IWDG block diagram
	25.3.2 Window option
	25.3.3 Hardware watchdog
	25.3.4 Register access protection
	25.3.5 Debug mode

	25.4 IWDG registers
	25.4.1 IWDG key register (IWDG_KR)
	25.4.2 IWDG prescaler register (IWDG_PR)
	25.4.3 IWDG reload register (IWDG_RLR)
	25.4.4 IWDG status register (IWDG_SR)
	25.4.5 IWDG window register (IWDG_WINR)
	25.4.6 IWDG register map

	26 System window watchdog (WWDG)
	26.1 Introduction
	26.2 WWDG main features
	26.3 WWDG functional description
	26.3.1 WWDG block diagram
	26.3.2 Enabling the watchdog
	26.3.3 Controlling the down-counter
	26.3.4 How to program the watchdog timeout
	26.3.5 Debug mode

	26.4 WWDG interrupts
	26.5 WWDG registers
	26.5.1 WWDG control register (WWDG_CR)
	26.5.2 WWDG configuration register (WWDG_CFR)
	26.5.3 WWDG status register (WWDG_SR)
	26.5.4 WWDG register map

	27 Real-time clock (RTC)
	27.1 Introduction
	27.2 RTC main features
	27.3 RTC implementation
	27.4 RTC functional description
	27.4.1 RTC block diagram
	27.4.2 GPIOs controlled by the RTC
	27.4.3 Clock and prescalers
	27.4.4 Real-time clock and calendar
	27.4.5 Programmable alarms
	27.4.6 Periodic auto-wakeup
	27.4.7 RTC initialization and configuration
	27.4.8 Reading the calendar
	27.4.9 Resetting the RTC
	27.4.10 RTC synchronization
	27.4.11 RTC reference clock detection
	27.4.12 RTC smooth digital calibration
	27.4.13 Time-stamp function
	27.4.14 Tamper detection
	27.4.15 Calibration clock output
	27.4.16 Alarm output

	27.5 RTC low-power modes
	27.6 RTC interrupts
	27.7 RTC registers
	27.7.1 RTC time register (RTC_TR)
	27.7.2 RTC date register (RTC_DR)
	27.7.3 RTC control register (RTC_CR)
	27.7.4 RTC initialization and status register (RTC_ISR)
	27.7.5 RTC prescaler register (RTC_PRER)
	27.7.6 RTC wakeup timer register (RTC_WUTR)
	27.7.7 RTC alarm A register (RTC_ALRMAR)
	27.7.8 RTC alarm B register (RTC_ALRMBR)
	27.7.9 RTC write protection register (RTC_WPR)
	27.7.10 RTC sub second register (RTC_SSR)
	27.7.11 RTC shift control register (RTC_SHIFTR)
	27.7.12 RTC timestamp time register (RTC_TSTR)
	27.7.13 RTC timestamp date register (RTC_TSDR)
	27.7.14 RTC time-stamp sub second register (RTC_TSSSR)
	27.7.15 RTC calibration register (RTC_CALR)
	27.7.16 RTC tamper configuration register (RTC_TAMPCR)
	27.7.17 RTC alarm A sub second register (RTC_ALRMASSR)
	27.7.18 RTC alarm B sub second register (RTC_ALRMBSSR)
	27.7.19 RTC option register (RTC_OR)
	27.7.20 RTC backup registers (RTC_BKPxR)
	27.7.21 RTC register map

	28 Inter-integrated circuit (I2C) interface
	28.1 Introduction
	28.2 I2C main features
	28.3 I2C implementation
	28.4 I2C functional description
	28.4.1 I2C1/3 block diagram
	28.4.2 I2C2 block diagram
	28.4.3 I2C pins and internal signals
	28.4.4 I2C clock requirements
	28.4.5 Mode selection
	28.4.6 I2C initialization
	28.4.7 Software reset
	28.4.8 Data transfer
	28.4.9 I2C slave mode
	28.4.10 I2C master mode
	28.4.11 I2C_TIMINGR register configuration examples
	28.4.12 SMBus specific features
	28.4.13 SMBus initialization
	28.4.14 SMBus: I2C_TIMEOUTR register configuration examples
	28.4.15 SMBus slave mode
	28.4.16 Wakeup from Stop mode on address match
	28.4.17 Error conditions
	28.4.18 DMA requests
	28.4.19 Debug mode

	28.5 I2C low-power modes
	28.6 I2C interrupts
	28.7 I2C registers
	28.7.1 I2C control register 1 (I2C_CR1)
	28.7.2 I2C control register 2 (I2C_CR2)
	28.7.3 I2C own address 1 register (I2C_OAR1)
	28.7.4 I2C own address 2 register (I2C_OAR2)
	28.7.5 I2C timing register (I2C_TIMINGR)
	28.7.6 I2C timeout register (I2C_TIMEOUTR)
	28.7.7 I2C interrupt and status register (I2C_ISR)
	28.7.8 I2C interrupt clear register (I2C_ICR)
	28.7.9 I2C PEC register (I2C_PECR)
	28.7.10 I2C receive data register (I2C_RXDR)
	28.7.11 I2C transmit data register (I2C_TXDR)
	28.7.12 I2C register map

	29 Universal synchronous/asynchronous receiver transmitter (USART/UART)
	29.1 Introduction
	29.2 USART main features
	29.3 USART extended features
	29.4 USART implementation
	29.5 USART functional description
	29.5.1 USART character description
	29.5.2 USART transmitter
	29.5.3 USART receiver
	29.5.4 USART baud rate generation
	29.5.5 Tolerance of the USART receiver to clock deviation
	29.5.6 USART auto baud rate detection
	29.5.7 Multiprocessor communication using USART
	29.5.8 Modbus communication using USART
	29.5.9 USART parity control
	29.5.10 USART LIN (local interconnection network) mode
	29.5.11 USART synchronous mode
	29.5.12 USART Single-wire Half-duplex communication
	29.5.13 USART Smartcard mode
	29.5.14 USART IrDA SIR ENDEC block
	29.5.15 USART continuous communication in DMA mode
	29.5.16 RS232 hardware flow control and RS485 driver enable using USART
	29.5.17 Wakeup from Stop mode using USART

	29.6 USART in low-power modes
	29.7 USART interrupts
	29.8 USART registers
	29.8.1 USART control register 1 (USART_CR1)
	29.8.2 USART control register 2 (USART_CR2)
	29.8.3 USART control register 3 (USART_CR3)
	29.8.4 USART baud rate register (USART_BRR)
	29.8.5 USART guard time and prescaler register (USART_GTPR)
	29.8.6 USART receiver timeout register (USART_RTOR)
	29.8.7 USART request register (USART_RQR)
	29.8.8 USART interrupt and status register (USART_ISR)
	29.8.9 USART interrupt flag clear register (USART_ICR)
	29.8.10 USART receive data register (USART_RDR)
	29.8.11 USART transmit data register (USART_TDR)
	29.8.12 USART register map

	30 Low-power universal asynchronous receiver transmitter (LPUART)
	30.1 Introduction
	30.2 LPUART main features
	30.3 LPUART implementation
	30.4 LPUART functional description
	30.4.1 LPUART character description
	30.4.2 LPUART transmitter
	30.4.3 LPUART receiver
	30.4.4 LPUART baud rate generation
	30.4.5 Tolerance of the LPUART receiver to clock deviation
	30.4.6 Multiprocessor communication using LPUART
	30.4.7 LPUART parity control
	30.4.8 Single-wire Half-duplex communication using LPUART
	30.4.9 Continuous communication in DMA mode using LPUART
	30.4.10 RS232 Hardware flow control and RS485 Driver Enable using LPUART
	30.4.11 Wakeup from Stop mode using LPUART

	30.5 LPUART in low-power mode
	30.6 LPUART interrupts
	30.7 LPUART registers
	30.7.1 Control register 1 (LPUART_CR1)
	30.7.2 Control register 2 (LPUART_CR2)
	30.7.3 Control register 3 (LPUART_CR3)
	30.7.4 Baud rate register (LPUART_BRR)
	30.7.5 Request register (LPUART_RQR)
	30.7.6 Interrupt & status register (LPUART_ISR)
	30.7.7 Interrupt flag clear register (LPUART_ICR)
	30.7.8 Receive data register (LPUART_RDR)
	30.7.9 Transmit data register (LPUART_TDR)
	30.7.10 LPUART register map

	31 Serial peripheral interface/ inter-IC sound (SPI/I2S)
	31.1 Introduction
	31.1.1 SPI main features
	31.1.2 SPI extended features
	31.1.3 I2S features

	31.2 SPI/I2S implementation
	31.3 SPI functional description
	31.3.1 General description
	31.3.2 Communications between one master and one slave
	31.3.3 Standard multi-slave communication
	31.3.4 Multi-master communication
	31.3.5 Slave select (NSS) pin management
	31.3.6 Communication formats
	31.3.7 SPI configuration
	31.3.8 Procedure for enabling SPI
	31.3.9 Data transmission and reception procedures
	31.3.10 Procedure for disabling the SPI
	31.3.11 Communication using DMA (direct memory addressing)
	31.3.12 SPI status flags
	31.3.13 SPI error flags

	31.4 SPI special features
	31.4.1 TI mode
	31.4.2 CRC calculation

	31.5 SPI interrupts
	31.6 I2S functional description
	31.6.1 I2S general description
	31.6.2 I2S full-duplex
	31.6.3 Supported audio protocols
	31.6.4 Clock generator
	31.6.5 I2S master mode
	31.6.6 I2S slave mode
	31.6.7 I2S status flags
	31.6.8 I2S error flags
	31.6.9 I2S interrupts
	31.6.10 DMA features

	31.7 SPI and I2S registers
	31.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode)
	31.7.2 SPI control register 2 (SPI_CR2)
	31.7.3 SPI status register (SPI_SR)
	31.7.4 SPI data register (SPI_DR)
	31.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode)
	31.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode)
	31.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode)
	31.7.8 SPI_I2S configuration register (SPI_I2SCFGR)
	31.7.9 SPI_I2S prescaler register (SPI_I2SPR)
	31.7.10 SPI register map

	32 Universal serial bus full-speed device interface (USB)
	32.1 Introduction
	32.2 USB main features
	32.3 USB implementation
	32.4 USB functional description
	32.4.1 Description of USB blocks

	32.5 Programming considerations
	32.5.1 Generic USB device programming
	32.5.2 System and power-on reset
	32.5.3 Double-buffered endpoints
	32.5.4 Isochronous transfers
	32.5.5 Suspend/Resume events

	32.6 USB and USB SRAM registers
	32.6.1 Common registers
	32.6.2 Buffer descriptor table
	32.6.3 USB register map

	33 Debug support (DBG)
	33.1 Overview
	33.2 Reference Arm® documentation
	33.3 Pinout and debug port pins
	33.3.1 SWD port pins
	33.3.2 SW-DP pin assignment
	33.3.3 Internal pull-up & pull-down on SWD pins

	33.4 ID codes and locking mechanism
	33.4.1 MCU device ID code

	33.5 SWD port
	33.5.1 SWD protocol introduction
	33.5.2 SWD protocol sequence
	33.5.3 SW-DP state machine (reset, idle states, ID code)
	33.5.4 DP and AP read/write accesses
	33.5.5 SW-DP registers
	33.5.6 SW-AP registers

	33.6 Core debug
	33.7 BPU (Break Point Unit)
	33.7.1 BPU functionality

	33.8 DWT (Data Watchpoint)
	33.8.1 DWT functionality
	33.8.2 DWT Program Counter Sample Register

	33.9 MCU debug component (DBG)
	33.9.1 Debug support for low-power modes
	33.9.2 Debug support for timers, watchdog and I2C
	33.9.3 Debug MCU configuration register (DBG_CR)
	33.9.4 Debug MCU APB1 freeze register (DBG_APB1_FZ)
	33.9.5 Debug MCU APB2 freeze register (DBG_APB2_FZ)

	33.10 DBG register map

	34 Device electronic signature
	34.1 Memory size register
	34.1.1 Flash size register

	34.2 Unique device ID registers (96 bits)

	Appendix A Code examples
	A.1 Introduction
	A.2 NVM/RCC Operation code example
	A.2.1 Increasing the CPU frequency preparation sequence code
	A.2.2 Decreasing the CPU frequency preparation sequence code
	A.2.3 Switch from PLL to HSI16 sequence code
	A.2.4 Switch to PLL sequence code

	A.3 NVM Operation code example
	A.3.1 Unlocking the data EEPROM and FLASH_PECR register code example
	A.3.2 Locking data EEPROM and FLASH_PECR register code example
	A.3.3 Unlocking the NVM program memory code example
	A.3.4 Unlocking the option bytes area code example
	A.3.5 Write to data EEPROM code example
	A.3.6 Erase to data EEPROM code example
	A.3.7 Program Option byte code example
	A.3.8 Erase Option byte code example
	A.3.9 Program a single word to Flash program memory code example
	A.3.10 Program half-page to Flash program memory code example
	A.3.11 Erase a page in Flash program memory code example
	A.3.12 Mass erase code example

	A.4 Clock Controller
	A.4.1 HSE start sequence code example
	A.4.2 PLL configuration modification code example
	A.4.3 MCO selection code example

	A.5 GPIOs
	A.5.1 Locking mechanism code example
	A.5.2 Alternate function selection sequence code example
	A.5.3 Analog GPIO configuration code example

	A.6 DMA
	A.6.1 DMA Channel Configuration sequence code example

	A.7 Interrupts and event
	A.7.1 NVIC initialization example
	A.7.2 Extended interrupt selection code example

	A.8 ADC
	A.8.1 Calibration code example
	A.8.2 ADC enable sequence code example
	A.8.3 ADC disable sequence code example
	A.8.4 ADC clock selection code example
	A.8.5 Single conversion sequence code example - Software trigger
	A.8.6 Continuous conversion sequence code example - Software trigger
	A.8.7 Single conversion sequence code example - Hardware trigger
	A.8.8 Continuous conversion sequence code example - Hardware trigger
	A.8.9 DMA one shot mode sequence code example
	A.8.10 DMA circular mode sequence code example
	A.8.11 Wait mode sequence code example
	A.8.12 Auto off and no wait mode sequence code example
	A.8.13 Auto off and wait mode sequence code example
	A.8.14 Analog watchdog code example
	A.8.15 Oversampling code example
	A.8.16 Temperature configuration code example
	A.8.17 Temperature computation code example

	A.9 DAC
	A.9.1 Independent trigger without wave generation code example
	A.9.2 Independent trigger with single triangle generation code example
	A.9.3 DMA initialization code example

	A.10 TSC code example
	A.10.1 TSC configuration code example
	A.10.2 TSC interrupt code example

	A.11 Timers
	A.11.1 Upcounter on TI2 rising edge code example
	A.11.2 Up counter on each 2 ETR rising edges code example
	A.11.3 Input capture configuration code example
	A.11.4 Input capture data management code example
	A.11.5 PWM input configuration code example
	A.11.6 PWM input with DMA configuration code example
	A.11.7 Output compare configuration code example
	A.11.8 Edge-aligned PWM configuration example
	A.11.9 Center-aligned PWM configuration example
	A.11.10 ETR configuration to clear OCxREF code example
	A.11.11 Encoder interface code example
	A.11.12 Reset mode code example
	A.11.13 Gated mode code example
	A.11.14 Trigger mode code example
	A.11.15 External clock mode 2 + trigger mode code example
	A.11.16 One-Pulse mode code example
	A.11.17 Timer prescaling another timer code example
	A.11.18 Timer enabling another timer code example
	A.11.19 Master and slave synchronization code example
	A.11.20 Two timers synchronized by an external trigger code example
	A.11.21 DMA burst feature code example

	A.12 Low-power timer (LPTIM)
	A.12.1 Pulse counter configuration code example

	A.13 IWDG code example
	A.13.1 IWDG configuration code example
	A.13.2 IWDG configuration with window code example

	A.14 WWDG code example
	A.14.1 WWDG configuration code example

	A.15 RTC code example
	A.15.1 RTC calendar configuration code example
	A.15.2 RTC alarm configuration code example
	A.15.3 RTC WUT configuration code example
	A.15.4 RTC read calendar code example
	A.15.5 RTC calibration code example
	A.15.6 RTC tamper and time stamp configuration code example
	A.15.7 RTC tamper and time stamp code example
	A.15.8 RTC clock output code example

	A.16 I2C code example
	A.16.1 I2C configured in slave mode code example
	A.16.2 I2C slave transmitter code example
	A.16.3 I2C slave receiver code example
	A.16.4 I2C configured in master mode to receive code example
	A.16.5 I2C configured in master mode to transmit code example
	A.16.6 I2C master transmitter code example
	A.16.7 I2C master receiver code example
	A.16.8 I2C configured in master mode to transmit with DMA code example
	A.16.9 I2C configured in slave mode to receive with DMA code example

	A.17 USART code example
	A.17.1 USART transmitter configuration code example
	A.17.2 USART transmit byte code example
	A.17.3 USART transfer complete code example
	A.17.4 USART receiver configuration code example
	A.17.5 USART receive byte code example
	A.17.6 USART LIN mode code example
	A.17.7 USART synchronous mode code example
	A.17.8 USART single-wire half-duplex code example
	A.17.9 USART smartcard mode code example
	A.17.10 USART IrDA mode code example
	A.17.11 USART DMA code example
	A.17.12 USART hardware flow control code example

	A.18 LPUART code example
	A.18.1 LPUART receiver configuration code example
	A.18.2 LPUART receive byte code example

	A.19 SPI code example
	A.19.1 SPI master configuration code example
	A.19.2 SPI slave configuration code example
	A.19.3 SPI full duplex communication code example
	A.19.4 SPI master configuration with DMA code example
	A.19.5 SPI slave configuration with DMA code example
	A.19.6 SPI interrupt code example

	A.20 DBG code example
	A.20.1 DBG read device Id code example
	A.20.2 DBG debug in LPM code example

	Revision history

