r UM2073
’l life.augmented

User manual

STM32 LoRaWAN® Expansion Package for STM32Cube

Introduction

This user manual describes the I-CUBE-LRWAN LoRaWAN® Expansion Package implementation on the STM32L0 Series,
STM32L1 Series, and STM32L4 Series microcontrollers. This document also explains how to interface with the LoRaWAN® to
manage the LoRa® wireless link.

LoRa® is a type of wireless telecommunication network designed to allow long-range communications at a very low bit-rate
and enabling long-life battery-operated sensors. LoRaWAN® defines the communication and security protocol that ensures
interoperability with the LoRa® network. The LoRaWAN® Expansion Package is compliant with the LoRa Alliance® specification
protocol named LoRaWAN®.

The I-CUBE-LRWAN main features are the following:

* Integration-ready application

«  Easy add-on of the low-power LoRa® solution

*  Extremely-low CPU load

*  No latency requirements

e Small STM32 memory footprint

*  Low-power timing services provided

The I-CUBE-LRWAN Expansion Package is based on the STM32Cube HAL drivers (Refer to LoRa standard overview).

This user manual provides customer examples on NUCLEO-L053R8, NUCLEO-L073RZ, NUCLEO-L152RE, and NUCLEO-
L476RG using Semtech expansion boards SX1276MB1MAS, SX1276MB1LAS, SX1272MB2DAS, SX1262DVK1DAS,
SX1262DVK1CAS, and SX1262DVK1BAS.

This document targets the following tools:

+  P-NUCLEO-LRWAN1, STM32 Nucleo pack for LoRa® technology (Legacy only)

+  P-NUCLEO-LRWANZ2, STM32 Nucleo starter pack (USI®) for LoRa® technology

+  P-NUCLEO-LRWAN3, STM32 Nucleo starter pack (RisingHF) for LoRa® technology

«  B-L072Z-LRWAN1, STM32 Discovery kit embedding the CMWX1ZZABZ-091 LoRa® module from Murata

«  |-NUCLEO-LRWAN1, LoRa® expansion board for STM32 Nucleo, based on the WM-SG-SM-42 LPWAN module (USI®)
available in P-NUCLEO-LRWAN2

*  LRWAN-NS1, expansion board featuring the RisingHF modem RHFOMOO3 available in P-NUCLEO-LRWAN3

UM2073 - Rev 12 - September 2021 www.st.com

For further information contact your local STMicroelectronics sales office.


https://www.st.com/en/product/I-CUBE-LRWAN?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/nucleo-l053r8?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/nucleo-l073rz?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/nucleo-l152re?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/nucleo-l476rg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/nucleo-l476rg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/p-nucleo-lrwan1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/p-nucleo-lrwan2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/p-nucleo-lrwan3?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/B-L072Z-LRWAN1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/en/product/i-nucleo-lrwan1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
http://www.st.com

m UM2073

General information

1 General information

The I-CUBE-LRWAN Expansion Package runs on STM32 32-bit microcontrollers based on the Arm® Cortex®-M

processor.
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
1.1 Terms and definitions
Table 1 presents the definitions of the acronyms that are relevant for a better contextual understanding of this
document.

Table 1. List of acronyms

ABP Activation by personalization
App Application
API Application programming interface
BSP Board support package
FSM Finite-state machine
FUOTA Firmware update over the air
HAL Hardware abstraction layer
loT Internet of things
LoRa® Long-range radio technology
LoRaWAN® LoRa® wide-area network
LPWAN Low-power wide-area network
MAC Media access control
MCPS MAC common part sublayer
MIB MAC information base
MLME MAC sublayer management entity
MPDU MAC protocol data unit
OTAA Over-the-air activation
PLME Physical sublayer management entity
PPDU Physical protocol data unit
SAP Service access point
SBSFU Secure Boot and Secure Firmware Update

UM2073 - Rev 12 page 2/52


https://www.st.com/en/product/I-CUBE-LRWAN?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073

m UM2073

Overview of available documents and references

1.2 Overview of available documents and references
Table 2 lists the complementary references for using I-CUBE-LRWAN.

Table 2. References

e e ]

[1] LoRa Alliance specification protocol named LoRaWAN version V1.0.3 July 2018 final release

[2] Low-Rate Wireless Personal Area Networks (LRWPANSs) IEEE Std 802.15.4TM, 2011

[3] LoRaWAN® Regional Parameters v1.0.3revA, July 2018 release

[4] LoRa Alliance Fragmented Data Block Transport over LoRaWAN Specification v1.0.0 September 2018 [TS-004]
[5] LoRa Alliance Remote Multicast Setup over LoRaWAN Specification v1.0.0 September 2018 [TS-005]

[6] LoRa Alliance Application layer clock synchronization over LoRaWAN Specification v1.0.0 September 2018
[TS-003]

[7] Application note Integration guide for the X-CUBE-SBSFU STM32Cube Expansion Package (AN5056)

[8] Application note I-CUBE-LRWAN embedding FUOTA, application implementation (AN5411)

[9] Application note Examples of AT commands on I-CUBE-LRWAN (AN4967)

[10] Application note How to build a LoRa® application with STM32CubeWL (AN5406)

[11] User manual Getting started with the P-NUCLEO-LRWANZ2 and P-NUCLEO-LRWANS starter packs (UM2587)
[12] User manual STM32 Nucleo-64 boards (MB1136) (UM1724)

[13] User manual STM32WL Nucleo-64 board (MB1389) (UM2592)

[14] WM-SG-SM-42 AT Command Reference Manual located under US|_|-NUCLEO-LRWAN1(")

[15] RHF-PS01709 LoRaWAN Class ABC AT-Command Specification available from RiSINGHF home page"

1. This URL belongs to a third party. It is active at document publication, however, STMicroelectronics shall not be liable for
any change, move, or inactivation of the URL or the referenced material.

UM2073 - Rev 12 page 3/52


https://www.st.com/en/product/I-CUBE-LRWAN?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073
https://www.st.com/resource/en/application_note/dm00414677.pdf
https://www.st.com/resource/en/application_note/dm00661078.pdf
https://www.st.com/resource/en/application_note/dm00346311.pdf
https://www.st.com/resource/en/application_note/dm00660451.pdf
https://www.st.com/resource/en/user_manual/dm00620948.pdf
https://www.st.com/resource/en/user_manual/dm00105823.pdf
https://www.st.com/resource/en/user_manual/DM00622917.pdf
https://github.com/USIWP1Module/USI_I-NUCLEO-LRWAN1
http://www.risinghf.com/home

UM2073

LoRa® standard overview

2 LoRa® standard overview
21 Overview
This section provides a general overview of the LoRa® and LoRaWAN® recommendations, particularly focusing
on the LoRa® end device that is the core subject of this user manual.
LoRa® is a type of wireless telecommunication network designed to allow long-range communication at a very
low bit rate and enabling long-life battery-operated sensors. LoRaWAN® defines the communication and security
protocol ensuring interoperability with the LoRa® network.
The LoRaWAN® Expansion Package is compliant with the LoRa Alliance® specification protocol named
LoRaWAN®.
Table 3 shows the LoORaWAN® class usage definition. Refer to Section 2.2.2 for further details on these classes.
Table 3. LORaWAN® classes intended usage
. Battery-powered sensors or actuators with no latency constraint
A-Al . Most energy-efficient communication class
. Must be supported by all devices
. Battery-powered actuators
B - Beacon . Energy-efficient communication class for latency controlled downlink
. Based on slotted communication synchronized with a network beacon
. Main powered actuators
C - Continuous . Devices that can afford to listen continuously
. No latency for downlink communication
Note: While the physical layer of LoRa® is proprietary, the rest of the protocol stack (LoRaWAN®) is kept open and its
development is carried out by the LoRa Alliance®.
2.2 Network architecture

UM2073 - Rev 12

The LoRaWAN® network is structured in a star of stars topology, where the end devices are connected via a
single LoRaWAN® link to one gateway as shown in Figure 1.

Figure 1. Network diagram

LoRaWAN® end device Gateway Network server Application server
Pet tracking

Smoke @
alarm
%}IWater meter

1 G
monitoring -

page 4/52




m UM2073

Network architecture

2.21 End-device architecture

The end device is composed of an RF transceiver (also known as radio) and a host STM32 MCU. The RF
transceiver is composed of a modem and an RF up-converter. The MCU implements the radio driver, the

LoRaWAN® stack and optionally the sensor drivers.

2.2.2 End-device classes

The LoRaWAN® has several different classes of end-point devices, addressing the different needs reflected in the
wide range of applications.

Bi-directional Class-A end devices (all devices)

. Class-A operation is the lowest power end-device system.
. Each end-device uplink transmission is followed by two short downlinks receive windows.

. Downlink communication from the server shortly after the end-device has sent an uplink transmission (Refer
to Figure 2).
. Transmission slot is based on the own communication needs of the end device (ALOHA-type protocol).

Figure 2. Tx/Rx time diagram (Class-A)

~

Tx Rx1 Rx2

)

RxDelay1

- -

RxDelay2

Bi-directional end-devices with scheduled receive slots - Class-B - (beacon)

. Mid power consumption
. Class-B devices open extra receive windows at scheduled times (Refer to Figure 3).

. For the end device to open the receive window at the scheduled time, the end device receives a time-
synchronized beacon from the gateway.

. As Class-A has priority, the device replaces the periodic ping slots with an uplink (Tx) sequence followed by
Rx1 or Rx2 received windows when required by the device.

Figure 3. Tx/Rx time diagram (Class-B)

é RxDelay1 i

P

i Period Ping

RxDelay2 -

Beacon Period

\j

A

UM2073 - Rev 12 page 5/52



m UM2073

Network architecture

Bi-directional Class-C end devices with maximal receive slots (continuous)

. Large power consumption

. Class-C end devices have nearly continuously open receive windows, only closed when transmitting (Refer
to Figure 4).

Figure 4. Tx/Rx time diagram (Class-C)

D 2 Y

Tx Rx1 Rx2

N J N N
a TN a N

RxC RxC RxC

N \ Y L )

On-air transmit time | RxDelay1

-

A

RxDelay2 Extends RxC until next uplink

- - - o
- - - -

223 End-device activation (joining)

Over-the-air activation (OTAA)

The OTAA is a joining procedure for the LoRaWAN® end device to participate in a LoRaWAN® network. Both the
LoRaWAN® end device and the application server share the same secret key known as AppKey. During a joining
procedure, the LoRaWAN® end device and the application server exchange inputs to generate two session keys:

. A network session key (NwkSKey) for MAC commands encryption
. An application session key (AppSKey) for application data encryption

Activation by personalization (ABP)

In the case of ABP, the NwkSkey and AppSkey are already stored in the LoRaWAN® end device that sends the
data directly to the LoRaWAN® network.

UM2073 - Rev 12 page 6/52



‘W UM2073

Network architecture

224 Regional spectrum allocation

The LoRaWAN® specification varies slightly from region to region. The European, North American, and Asian
regions have different spectrum allocations and regulatory requirements (Refer to Table 4 for more details).

Table 4. LoORaWAN® regional spectrum allocation

. Output power
0,
Region Supported Band (MHz) Duty cycle (%) (dBm)™
EU 868 <1

Y +13
EU Y 433 <1 +10
us Y 915 No +27
CN N 779 <0.1 +10
AS Y 923 No +13
IN Y 865 No +27
KR Y 920 No +11
RU Y 864 <1 +13
AU Y 915 No +28
CN Y 470 No +17

1. The output power values are defined with the default maximal EIRP (Refer to the region associated section in [3]) and the
default antenna gain (2.15 by default): Default_Power = floor (Default_Max_EIRP - Default_Antenna_Gain)

UM2073 - Rev 12 page 7/52



m UM2073

Network layer

2.3 Network layer

The LoRaWAN® architecture is defined in terms of blocks, also called “layers”. Each layer is responsible for one
part of the standard and offers services to higher layers.

The end device is at least made of one physical layer (PHY), that embeds the radio frequency transceiver, a MAC
sublayer providing access to the physical channel, and an application layer, as shown in Figure 5.

Figure 5. LoORaWAN® layers

L1
L1

I

Physical medium (air interface)

2.3.1 Physical layer
The physical layer provides two services:
. The PHY data service, that enables the Tx/Rx of physical protocol data units (PPDUs)
. The PHY management service, that enables the personal area network information base (PIB) management

2.3.2 MAC sublayer
The MAC sublayer provides two services:

. The MAC data service, that enables the transmission and reception of MAC protocol data units (MPDU)
across the physical layer

. The MAC management service, that enables the PIB management

24 Message flow

This section describes the information flow between the N-user and the N-layer. The service request is performed
through a service primitive.

241 End-device activation details (joining)

Before communicating on the LoRaWAN® network, the end device must be associated or activated following one
of the two activation methods described in End-device activation (joining).

UM2073 - Rev 12 page 8/52



‘_ UM2073
,l Message flow

The message sequence chart (MSC) in Figure 6 shows the OTAA activation method.

Figure 6. Message sequence chart for joining (MLME primitives)

End-device End-device Network Network
App layer MAC layer MAC layer App layer
MLME.Req
(join request) > Join request MLME.Ind
77777777777777777 g (join request)
@
£
=
°©
% MLME.Resp
<§( (join accept)

Join response (ask
MLME.Conf i B ponse (ask) ___

(join accept)
b MLME.Ind
(join accept)

L J L )
hd hd
End-device App server
24.2 End-device class-A data communication

The end device transmits data by one of the following methods: through a confirmed-data message method
(Refer to Figure 7) or through an unconfirmed-data message (Refer to Figure 8).

In the first method, the end device requires an Ack (acknowledgment) to be done by the receiver while in the
second method, the Ack is not required.

When an end device sends data with an Ackreqg (acknowledgment request), the end device must wait during an
acknowledgment duration AckWaitDuration to receive the acknowledgment frame (Refer to Section 4.3.1 ).

UM2073 - Rev 12 page 9/52



UM2073

,l Message flow

If the acknowledgment frame is received, then the transmission is successful, else the transmission failed.

Figure 7. Message sequence chart for confirmed data (MCPS primitives)

End-device End-device Network Network
App layer MAC layer MAC layer App layer
MCPS.Req

(data request)

Data (Ackreq=1)

AckWaitDuration

Acknowledgment frame

MCPS.Ind (data)

A

MCPS.Conf()

End device App Server

Figure 8. Message sequence chart for unconfirmed data (MCPS primitives)

End-device End-device Network Network
App layer MAC layer MAC layer App layer
MCPS.Req (data requesl) Data
" (Ackreq=0)
7777777777777777777 ™ McPs.nd (data)
MCPS.Conf() o
N J N\ y
Y
End device App server

UM2073 - Rev 12 page 10/52



m UM2073

Message flow

2.4.3 End-device class-B mode establishment

This section describes the LoRaWAN® class-B mode establishment. Class-B is achieved by having the gateway
sending a beacon on a 128 s regular basis to synchronize all the end devices in the network so that the end
device can open a short Rx window called a ping slot. The decision to switch from class-A to class-B always

comes from the application layer.

Figure 9. MSC MCPS class-B primitives

End device App End device MAC Network MAC Network App
layer layer layer layer

MCPS.Req(Switch class-B)
Data (Switch class-B) <
MCPS.Ind(Switch class-B) ‘-

<

MLME.Req( DeviceTime.Req)

MLME.Conf(DeviceTime.Ans) [¢ -~~~ -~ ~————-------——————+

<

MLME.Req( Beacon_Acquisition)

i
.

wk beacon Transmission

every 128 s
eacon lock
MLME.Conf(Beacon_Acquisition)
MLME.Req(PingSlot.Req)
Pi lot.R
,,,,,,,, ingSlotReq ]
MLME.conf(PingSlot.Ans) ¢ PingSlotAns |
MCPS.Req(Switch class-B)
g Data (Class-B bit =1)
,,,,,,,,,,,,,,,,,,,,,,,,, 4>

MCPS.Ind(Data)

End Device App Server

UM2073 - Rev 12 page 11/52



m UM2073

Data flow

2.5 Data flow

The data integrity is ensured by the network session key NwkSKey and the application session key AppSKey.
NwkSKey is used to encrypt and decrypt the MAC payload data and AppSKey is used to encrypt and decrypt the
application payload data. Refer to Figure 10 for the data flow representation.

Figure 10. Data flow

. ® i IP infra L
End device LoRa® RF Gatewa IP infra Network Application

(sensor — MCU ~ radio) | y)) « V |-—» server -+ server
s Z
3 Encrypted payload by NwkSKey (payload of MAC data) %
! o)
5 5
= =}
[ 1
2 a
§ Encrypted payload by AppSKey (payload of application message) g.

NwkSKey is a private key that is derived from a root key and unique session identifier for each end device.
NwkSKey provides message integrity for the communication and provides security for the end device towards the
network server communication.

AppSKey is a private key that is derived from a root key and unique session identifier for each end device.
AppSKey is used to encrypt/decrypt the application data. In other words, AppSKey provides security for the
application payload. In this way, the application data sent by an end device cannot be interpreted by the network
server.

UM2073 - Rev 12 page 12/52



m UM2073

I-CUBE-LRWAN middleware description

3 I-CUBE-LRWAN middleware description

3.1 Overview

This I-CUBE-LRWAN Expansion Package offers a LoRaWAN® stack middleware for STM32 microcontrollers.
This middleware is split into several modules:

. LoRaMac layer module

«  LoRaWAN® utility module

+  LoRaWAN® crypto module

. LoRaMac handler

The LoRaMac handler module implements a LoRaWAN® state machine coming on top of the LoRaMac layer. The
LoRaWAN® stack module interfaces with the BSP Semtech radio driver module.

This middleware is provided in a source-code format and is compliant with the STM32Cube HAL driver.

Refer to Figure 11 for the project file structure.

Figure 11. Program file structure

STM32Cube_expansion_LRWAN

BSP drivers for & Drvers
Discovery kit b & BSP

=+l CMS5IS

| STMAZL 0o _HAL_Driver
STM32L0 CMIS 1 STMIZL bot_HAL_Driver

Bl

system drivers STMIZLdx_HAL_Driver
| Middiaveanes

1 ST
S| Third_Party
STM32L0 HAL drivers E-| | LeRaWAN
3} gt
@ | Conf
—p F1- Crypla
Middleware = LmHandier
LoRaWANe®crypto engine # Mac
Bl Lhities
__1" LICEMNSE ta
Middleware j :m;nn;dm
] A ]
LoRaMac handler s TS
03] SubGHz_Phy
Middleware Projecta

B-LO72Z-LRWAM1
= Apphcations

B~ | LoRaWAN
e LaRaWAN_AT_Slave
e LoRaWaAh_End_Mode
| SubGHz_Phy
= SubGHz_Phy_PingPong
NUCLEQ-LOS3RS

LoRaMac layer

Middleware

LoRaWAN® Utilities =l

Middleware MUCLEO-LOFIRE
El-| | Applcations
SubGHz_Phy B ot
3 LoRaWAN_AT_Master
LoRaWAN® #- | LoRaWAN_End_Mode
oRa

c3) SubGHz_Phy
NUCLEC-L152RE
MHLUCLEC-LA7TERG

FI-| | Applcations
=1 LoRa\W AN
€3] LoRaWWAaN_FUOTA
- SubGHz_Phy

AT_Slave application

LoRaWAN®
End_Node application

LoRaWAN®
FUOTA main application

EEES
3

&l timer

Utilities modules

UM2073 - Rev 12 page 13/52




m UM2073

Features

The I-CUBE-LRWAN Expansion Package includes:
«  The LoRaWAN® stack middleware:
- LoRaWAN® layer
- LoRaWAN® tilities
—  LoRaWAN® software crypto engine
—  LoRaMac handler state machine
. Board support package:
—  Radio Semtech drivers
— ST sensors drivers
. STM32L0xx HAL drivers
STM32L1xx HAL drivers
STM32L4xx HAL drivers
. Utilities:
—  Tool sequencer provides services to manage tasks.
—  Timer server provides timers service to the application.
—  Low-power management provides power management service to the application.
—  Trace provides trace capabilities to the application.
«  LoRaWAN® applications:
—  LoRaWAN_AT_Slave
—  LoRaWAN_End_Node
—  LoRaWAN_AT_Master
—  LoraWAN_FUOTA
. SubGHz_Phy application:
—  SubGig_Phy_PingPong

3.2 Features

. Compliant with the specification for the LoRa® Alliance protocol named LoRaWAN®
. On-board LoRaWAN® class-A, class-B, and class-C protocol stack

. EU 868 MHz ISM band ETSI compliant

. EU 433 MHz ISM band ETSI compliant

. US 915 MHz ISM band FCC compliant

. KR 920 Mhz ISM band defined by the South Korean government

. RU 864 Mhz ISM band defined by Russian regulation

. AS 923 Mhz ISM band defined by Asian governments

. AU 915 Mhz ISM bands defined by the Australian government

. IN 865 Mhz ISM bands defined by the Indian government

. CN 470 Mhz ISM band defined by the People's Republic of China government
. CN 779 Mhz ISM band defined by the People's Republic of China government

. End-device activation either through over-the-air activation (OTAA) or through activation-by-personalization
(ABP)

. Adaptive data rate support

. LoRaWAN® test application for certification tests included
. Low-power optimized

UM2073 - Rev 12 page 14/52



m UM2073

Architecture

3.3 Architecture
Figure 12 describes the main design of the firmware for the I-CUBE-LRWAN application.

Figure 12. Main design of the firmware

Utilities:

timer server
low-power
rand gen

Crypto/
software

secure
element

11

| Provided by Semtech | Provided by ST and Semtech

The HAL uses STM32Cube APIs to drive the MCU hardware required by the application. Only specific hardware

is included in the LoORaWAN® middleware as it is mandatory to run a LoRaWAN® application.

The RTC provides a centralized time unit that continues to run even in low-power mode (Stop mode). The RTC

alarm is used to wake up the system at specific timings managed by the timer server.

The radio driver uses the SPI and the GPIO hardware to control the radio (Refer to Figure 12). The radio driver

also provides a set of APIs to be used by higher-level software.

The LoRa® radio is provided by Semtech, though the APIs are slightly modified to interface with the STM32Cube

HAL.

The radio driver is split into two parts:

. The sx1276.c, sx1272.c and sx126x.c contain all functions that are radio dependent only.

. The sx1276mb1mas.c, sx1276mb1las, sx1272mb2das, sx1262dvk1das, sx1262dvk1cas and
sx1262dvk1bas contain all the radio board dependent functions.

The MAC controls the PHY using the 802.15.4 model. The MAC interfaces with the PHY driver and uses the timer
server to add or remove timed tasks and take care of the Tx time on-air. This action ensures that the duty-cycle
limitation mandated by the ETSI is respected and also carries out the AES encryption/decryption algorithm to
cipher the MAC header and the payload.

Since the state machine which controls the LoRaWAN® class-A is sensitive, an intermediate level of software is
inserted (LmHandler . c) between the MAC and the application (Refer to MAC’s upper layer in Figure 12). With a
set of APIs limited as of now, the user is free to implement the class-A state machine at the application level.

The application, built around an infinite loop, manages the low-power, runs the interrupt handlers (alarm or GPIO)

and calls the LoRaWAN® class-A if any task must be done. All the running tasks are managed by the sequencer.
This application also implements sensor read access.

UM2073 - Rev 12 page 15/52



m UM2073

Hardware related components

3.4 Hardware related components

3.4.1 Radio reset

One GPIO from the MCU is used to reset the radio. This action is done once at the initialization of the hardware
(Refer to Table 42 and Section 6.1 ).

3.4.2 SPI

The sx127x or sx126x radio commands and registers are accessed through the SPI bus at 1 Mbit/s (Refer to
Table 42 and Single MCU end-device hardware description).

3.4.3 RTC

The RTC calendar is used as a timer engine running in all power modes from the 32 kHz external oscillator. By
default, the RTC is programmed to provide 1024 ticks (sub-seconds) per second. The RTC is programmed once
at the initialization of the hardware when the MCU starts for the first time. The RTC output is limited to a 32-bit
timer that can last 48 days.

If the user needs to change the tick duration, note that the tick duration must remain below 1 ms.

344 Input lines

3.4.41 sx127x interrupt lines
Four sx127x interrupt lines are dedicated to receiving the interrupts from the radio (Refer to Table 42 and
Section 6.1 ).

The DIOO is used to signal that the LoRa® radio completes a requested task (TxDone or RxDone).
The DIO1 is used to signal that the radio failed to complete a requested task (RxTimeout).

In FSK mode, a FIFO-level interrupt signals that the FIFO-level reached a predefined threshold and needs to be
flushed.

The DIO2 is used in FSK mode and signals that the radio successfully detected a preamble.
The DIO3 is reserved for future use.

Note: The FSK mode in LoRaWAN® has the fastest data rate at 50 Kbps.

3.4.4.2 sx126x input lines

The sx126x interface is simplified compared to sx127x. One busy signal informs the MCU that the radio is
busy and cannot treat any commands. The MCU must poll that the ready signal is deasserted before any new
command can be sent.

DIO1 is used as a single-line interrupt.

UM2073 - Rev 12 page 16/52



‘,_l UM2073

I-CUBE-LRWAN middleware programming guidelines

4 I-CUBE-LRWAN middleware programming guidelines

This section describes the LoRaMac layer APIs. The proprietary PHY layer (Refer to Section 2.1 Overview) is out
of the scope of this user manual and must be viewed as a black box.

4.1 Middleware initialization

The initialization of the LoRaMac layer is done through the LoraMacinitialization function. This function
does the preamble run time initialization of the LoRaMac layer and initializes the callback primitives of the MCPS
and MLME services (Refer to Table 5).

Table 5. Middleware initialization function

o REmw [ Bemew ]

LoRaMacStatus t LoRaMacInitialization

(LoRaMacPrimitives_t *primitives, Do initialization of the LoRaMac layer module (Refer to
LoRaMacCallback t *callback, Section 4.3 Middleware MAC layer callbacks)

LoRaMacRegion t region)

4.2 Middleware MAC layer functions
The provided APIs follow the definition of primitive defined in [2].
The interfacing with the LoRaMac is made through the request-confirm and the indication-response architecture.
The application layer can perform a request that the LoRaWAN® MAC layer confirms with a confirm primitive.

Conversely, the LoRaWAN® MAC layer notifies an application layer with the indication primitive in case of any
event.

The application layer may respond to an indication with the response primitive. Therefore all the confirmations
and indications are implemented using callbacks.

The LoRaWAN® MAC layer provides MCPS services, MLME services, and MIB services.

4.2.1 MCPS services

The initialization of the LoRaMac layer is done through the LoraMacinitialization function. This function
does the preamble run time initialization of the LoRaMac layer and initializes the callback primitives of the MCPS
and MLME services (Refer to Table 6).

Table 6. MCPS services function

T e e

LoRaMacStatus t
LoRaMacMcpsRequest ( McpsReqg t* Requests to send Tx data
mcpsRequest, bool allowDelayedTx)

4.2.2 MLME services
The LoRaWAN® MAC layer uses the MLME services to manage the LoRaWAN® network (Refer to Table 7).

Table 7. MLME services function

T e e

LoRaMacStatus t LoRaMacMlmeRequest

(MlmeReq t *mlmeRequest) Used to generate a join request or request for a link check

UM2073 - Rev 12 page 17/52



‘,_l UM2073

Middleware MAC layer callbacks

4.2.3 MIB services

The MIB stores important runtime information, such as MIB_NETWORK_ACTIVATION, or MIB_NET_ID, and
holds the configuration of the LoORaWAN® MAC layer, for example, MIB_ADR or MIB_APP_KEY. The provided
APlIs are presented in Table 8.

Table 8. MLME services function

o REmw [ Beme ]

LoRaMacStatus t
LoRaMacMibSetRequestConfirm To set attributes of the LoRaMac layer
(MibRequestConfirm t *mibSet)

LoRaMacStatus t
LoRaMacMibGetRequestConfirm To get attributes of the LoRaMac layer
(MibRequestConfirm t *mibGet)

4.3 Middleware MAC layer callbacks

Refer to Section 4.1 Middleware initialization for the description of the LoRaMac user event functions primitives
and the callback functions.

4.31 MCPS

In general, the LoORaWAN® MAC layer uses the MCPS services for data transmission and data reception (Refer to
Table 9).

Table 9. MCPS primitives

void (*MacMcpsConfirm)

(McpsConfirm t *McpsConfirm) Event function primitive for the called callback to be implemented by the

application. Response to a McpsRequest

*McpsIndication)

Void (*MacMcpsIndication) Event function primitive for the called callback to be implemented by the

(McpsIndication t application. Notifies application that a received packet is available
4.3.2 MLME

The LoRaWAN® MAC layer uses the MLME services to manage the LoRaWAN® network (Refer to Table 10).

Table 10. MLME primitive

I R

void (*MacMlmeConfirm) (MlmeConfirm t Event function primitive so-called callback to be implemented
*MlmeConfirm) by the application
4.3.3 MiB

No available function.

43.4 Battery level
The LoRaWAN® MAC layer needs a battery-level measuring service (Refer to Table 11).

Table 11. Battery level function

o EmEw [ EEmmw ]

uint8 t GetBatteryLevel (void) Get the measured battery level

UM2073 - Rev 12 page 18/52



‘,_l UM2073

Middleware MAC layer timers

4.4 Middleware MAC layer timers

441 Rx-delay window
Refer to Section 2.2.2 End-device classes. Refer to Table 12 for the Rx-delay functions.

Table 12. Rx-delay functions

T e i

Set the RxDelay1
(ReceiveDelayX - RADIO_WAKEUP_TIME)

void OnRxWindowlTimerEvent (void)

void OnRxWindow2TimerEvent (void) Set the RxDelay2
44.2 Delay for Tx frame transmission

Table 13. Delay for Tx frame transmission

o EEw [ B

void OnTxDelayedTimerEvent (void) Set timer for Tx frame transmission
443 Delay for Rx frame

Table 14. Delay for Rx frame function

e T e

void OnAckTimeoutTimerEvent (void) Set timeout for received frame acknowledgment

4.5 Emulated secure element

The proposed hardware platforms do not integrate a secure-element device. Therefore this secure-element
device is emulated by software. Figure 13 describes the main design of the LoRaMacCrypto module.

Figure 13. LoRaMacCrypto module design

LoRaMac

Message | | Message
serializer parser

LoRaMacCrypto.h

L
LgRaMacCrypto

|Message preparation

| Nonce handling |

verification

| Key-ID selection | | Frame counter |

secure-element.h

Software Secure Element

| Key storage | | Encryption |
| Key derivation | | CMAC computation |
| Key provisioning | | CMAC verification |

UM2073 - Rev 12 page 19/52



‘W UM2073

Middleware LmHandler application function

The APIs presented in Table 15 are used to manage the emulated secure element.

Table 15. Secure-element functions

o EEw [ Emmmw ]

SecureElementStatus_t Initialization of the secure-element driver

SecureElementInit The Callback function is called when the non-volatile context
(EventNvmCtxChanged seNvmCtxChanged) must be stored.
SecureElementStatus t
SecureElementRestoreNvmCtx (void*
seNvmCtx)

Restore the internal nvm context from passed pointer to non-
volatile module context to be restored.

void* SecureElementGetNvmCtx
Request address where the non-volatile context is stored.
(size t* seNvmCtxSize)

SecureElementStatus t
SecureElementSetKey (KeyIdentifier t Set a key.
keyID, uint8 t* key)

SecureklementStatus t

SecureElementComputeAesCmac (uint8 t* Compute a CMAC.

buffer, uintl6_t size, Keyldentifier t The Key-ID determines the AES key to use.
keyID, uint32 t* cmac)

SecureElementStatus t

SecureElementVerifyAesCmac (uint8 t* Compute cmac and compare with expected cmac.
buffer, uintl6_t size, uint32_t The KeylID determines the AES key to use.
expectedCmac, KeyIdentifier t keyID)

SecureElementStatus t
SecureElementAesEncrypt (uint8 t* Encrypt a buffer.

buffer, uintl6_t size, KeylIdentifier t The KeyID determines the AES key to use.
keyID, uint8 t* encBuffer)

SecureElementStatus t

SecureElementDeriveAndStoreKey Derive and store a key. The key derivation depends on the
(Version t version, uint8 t* LoRaWAN® versionKeyID, rootKeyID are used to identify the
input, KeyIdentifier t rootKeyID, root key to perform the derivation.

KeyIdentifier t targetKeyID)

4.6 Middleware LmHandler application function
The interface to the MAC is done through the MAC interface file LoRaMac . h.

Standard mode

In standard mode, an interface file (Refer to LmHandler in Figure 12) is provided to let the user start without
worrying about the LoORaWAN® state machine. The interface file is located in Middlewares\Third Party\LoR
aWAN\LmHandler\LmHandler.c.

The interface file implements:
. A set of APIs allowing access to the LoRaWAN® MAC services
. The LoRaWAN® certification test cases that are not visible to the application layer

Advanced mode

In this mode, the user accesses directly the MAC layer by including the MAC in the user file.

UM2073 - Rev 12 page 20/52



UM2073

Middleware LmHandler application function

3

Operational model

The operation model proposed for this LoRaWAN® End_Node (Refer to Figure 14) is based on event-driven
paradigms including time-driven ones. The behavior of the LoRaWAN® system is triggered either by a timer event
or by a radio event plus a guard transition.

Figure 14. Operation model

Reset

.

Hal Initialization
Hardware initialization
LoRa stack initialization

v

LoRa specific configuration |«

x

LoRa join start

LoRa init TX event

:

Process event DISABLE_IRQ LoRa stop event
A l
ENABLE_IRQ Low power mode

?

Processevent

Radio event?

Process TX or RX event Process Timer event

C e

UM2073 - Rev 12 page 21/52



UM2073

Middleware LmHandler application function

UM2073 - Rev 12

LoRaWAN® system state behavior

Figure 15 describes the LoRaWAN® End_Node system state behavior.

On reset, after the system initialization is done, the LoRaWAN® End_Node system goes into a Start state defined
as Init.

The LoRaWAN® End_Node system sends a join network request when using the over_the_air_activation (OTAA)
method and goes into a state defined as Sleep.

When using the activation by personalization (ABP), the network is already joined, and therefore the LoRaWAN®
End_Node system jumps directly to a state defined as Send.

From the state defined as Sleep, if the end device joined the network when a TimerEvent occurred, the

LoRaWAN® End_Node system goes into a temporary state defined as Joined before going into the state defined
as Send.

From the state defined as Sleep, if the end device joined the network when an OnSendEvent occurred, the
LoRaWAN® End_Node system goes into the state defined as Send.

From the state defined as Send, the LoRaWAN® End_Node system goes back to the state defined as Sleep to
wait for the onSendEvent corresponding to the next scheduled packet to be sent.

Figure 15. LoORaWAN® state behavior

Reset

I NWK_JOINED / TimerEvent

\A / JoinTimer

TxNext / TxNextPacket

True\/ printf DutyCycleEnable

ABP / Void

LoRaWAN® class-B system state behavior

Figure 16 describes the LoRaWAN® class-B mode End-Node system state behavior.
Before doing a request to switch to class-B mode, an end device must be first in a Join state (Refer to Figure 14).

The decision to switch from class-A to class-B mode always comes from the application layer of the end device. If
the decision comes from the network side, the application server must use the class-A uplink of the end device to
send back a downlink frame to the application layer.

page 22/52




m UM2073

Middleware LmHandler application function

On MLME Beacon_Acquisition_req, the end-device LoORaWAN® class-B system state goes in
BEACON_STATE_ACQUISITION.

The LoRaWAN® end device starts the beacon acquisition. When the MAC layer successfully receives a beacon in
the RxBeacon function, the next state is BEACON_STATE_LOCKED.

When the LoRaWAN® end device receives a beacon, the acquisition is no longer pending: the MAC layer goes in
BEACON_STATE_IDLE.

In BEACON_STATE_IDLE, the MAC layer compares the BeaconEventTime with the current end-device

time. If the beaconEventTime is less than the current end-device time, the MAC layer goes in
BEACON_STATE_REACQUISITION. Otherwise, the MAC layer goes in BEACON_STATE_GUARD and performs
a new beacon acquisition.

If the MAC layer does not find a beacon, the state machine stays in BEACON_STATE_ACQUISITION. This state
detects that an acquisition was previously pending and changes the next state to BEACON_STATE_LOST.

When the MAC layer receives a bad beacon format, it must go in BEACON_STATE_TIMEOUT.
It enlarges window timeouts to increase the chance to receive the next beacon and goes in
BEACON_STATE_REACQUISITION.

Figure 16. LORaWAN® class-B system state behavior

Beacon

BeaconFormat != OK ’
MLME_Beacon_Acquisition_req TimeOut

Beacon not received

Beacon ' EnlargeWindowTmeout
Acquisition

MLME_Beacop_Acquisition_Ind

BeaconFormat == OK

Beacon CurrentTime > Beacon_Less_Period

Locked

Beacon
Reacquisition

BeaconAcqPending ==

Beacon
Lost

LME_Beacon_Acquisition_cnf CurrentTime < Beae6n_Less_Period

BeaconSetup
Beacon
Idle

BeaconEvenTime < CurrentTime

Beacon
Guard

BeaconEvenTime > CurrentTime

UM2073 - Rev 12 page 23/52




‘,_l UM2073

Middleware LmHandler application function

4.6.1 LoRa® initialization

Table 16. LoRa® initialization function

T e T e

LmHandlerErrorStatus t LmHandlerInit

(LmHandlerCallbacks t *handlerCallbacks) Initialization of the LoRa finite state machine

4.6.2 LoRa® join request entry point

Table 17. LoRa® join request entry point

e e

void LmHandlerJoin (ActivationType t

Join request to a network either in OTAA mode or ABP mode
mode)

4.6.3 LoRa® configuration

Table 18. LoRa® configuration

o REw [ Beme ]

LmHandlerErrorStatus t
LmHandlerConfigure (LmHandlerParams t Configuration of all applicative parameters
*handlerParams)

4.6.4 Request join status

Table 19. Request join status

o mEmw [ Emmmw ]

Check the End-Node activation type:
ACTIVATION_TYPE_NONE, ACTIVATION_TYPE_ABP, or
ACTIVATION_TYPE_OTAA

LmHandlerFlagStatus t
ILmHandlerJoinStatus (void)

4.6.5 Send an uplink frame

Table 20. Send an uplink frame

LmHandlerErrorStatus t LmHandlerSend

(LmHandlerAppData_t *appData, Send an uplink frame. This frame can be either an
LmHandlerMsgTypes t isTxConfirmed) unconfirmed empty frame or an unconfirmed/confirmed
TimerTime t *nextTxIn, bool payload frame.

allowDelayedTx)

UM2073 - Rev 12 page 24/52



‘,_l UM2073

Middleware LmHandler application function

4.6.6 Request the current network time

Table 21. Current network time

e EEw [ Emmmw ]

The end device requests the current network time from the
network. This is useful to accelerate the beacon discovery in
class-B mode.

LmHandlerErrorStatus t
LmHandlerDeviceTimeReq (void) ("

1. To be used in place of BeaconTimeReq in LoRaWAN® version 1.0.3 or higher.

4.6.7 Switch class request

Table 22. Switch class request

o EEw [ B

LmHandlerErrorStatus
LmHandlerRequestClass (DeviceClas s t
newClass)

Request the end device to switch from current to new class A,
B, or C.

4.6.8 Get end-device current class

Table 23. Get end-device current class

o REmw [ Bemew ]

int32 t
LmHandlerGetCurrentClass (DeviceClass_t Request the currently running class-A, class-B, or class-C.
*deviceClass)

4.6.9 Request beacon acquisition

Table 24. Request beacon acquisition

o EmEw [ EEmmw ]

LmHandlerErrorStatus t

LmHandlerBeaconReq (void) Request the beacon slot acquisition.

4.6.10 Send unicast ping slot info periodicity

Table 25. Send unicast ping slot info periodicity

o mEmw [ Eeme ]

LmHandlerErrorStatus t
LmHandlerPingSlotReqg(uint8 t Transmit to the server the unicast ping slot info periodicity.
periodicity)

UM2073 - Rev 12 page 25/52



‘,_l UM2073

Library application callbacks

4.6.11 Get current Tx data rate

Table 26. Get current Tx data rate

o EEw [ Emmmw ]

int32 t LmHandlerGetTxDatarate( int8 t

~txDatarate) Gets the current Tx data rate.

4.6.12 Set Tx data rate

Table 27. Set Tx data rate

o mEmw [ Emmmw ]

int32 t LmHandlerSetTxDatarate( int8 t

txDatarate) Set the Tx data rate, if adaptive DR is disabled.

4.6.13 Get current Tx duty-cycle state

Table 28. Get current Tx duty-cycle state

o EEw [ Beme ]

int32 t
LmHandlerGetDutyCycleEnable ( bool Get the current Tx duty-cycle state.
*dutyCycleEnable)

4.6.14 Set Tx duty-cycle state

Table 29. Set Tx duty-cycle state

o EmEw [ EEmmw ]

int32 t
LmHandlerSetDutyCycleEnable ( bool Set the Tx duty-cycle state.
dutyCycleEnable)

4.7 Library application callbacks

4.71 Current battery level

Table 30. Current battery level function

T R

uint8 t GetBatteryLevel (void) Get the battery level.

UM2073 - Rev 12 page 26/52



‘,_l UM2073

Extended application functions

4.7.2 Current temperature level

Table 31. Current temperature level function

o EEw [ EEmmw ]

Get the current temperature (degree Celsius) of the chipset in

uintl6 t GetTemperatureLevel (void) q7.8 format.

4.7.3 Board unique ID

Table 32. Board unique ID function

e T e

void GetUniqueId (uint8 t *id) Get a unique identifier.

4.7.4 End_Node class mode change confirmation

Table 33. End_Node class mode change confirmation function

void DisplayClassUpdate (DeviceClass t

Class) Notify the application that the End-Node class is changed.

4.8 Extended application functions
These functions are proposed to enhance when needed, application use cases.

UM2073 - Rev 12 page 27/52



‘W UM2073

Extended application functions

Table 34. Extended application functions

int32 t LmHandlerGetDevEUI ( uint8 t *devEUI) Gets the LoRaWAN® device EUI.
int32 t LmHandlerSetDevEUI ( uint8 t *devEUI) Sets the LoORaWAN® device EUI.
int32 t LmHandlerGetAppEUI ( uint8 t *appEUI) Gets the LoRaWAN® application EUI.
int32 t LmHandlerSetAppEUI ( uint8 t *appEUI) Sets the LoRaWAN® application EUI.
int32 t LmHandlerGetAppKey( uint8 t *appKey) Gets the LoRaWAN® application key.
int32 t LmHandlerSetAppKey( uint8 t *appKey) Sets the LoRaWAN® application key.

int32 t LmHandlerGetNetworkID( uint32 t

®
*networkId) Gets the LoRaWAN® network ID.

int32 t LmHandlerSetNetworkID( uint32 t ®
- - Sets the LoORaWAN® network ID.

networkId)
int32 t LmHandlerGetDevAddr ( uint32 t *devAddr) Gets the LoORaWAN® device.
int32 t LmHandlerSetDevAddr ( uint32 t devAddr) Sets the LoRaWAN® device.

int32 t LmHandlerGetActiveRegion( LoRaMacRegion t

% . Gets the active region.
region)

int32 t LmHandlerSetActiveRegion( LoRaMacRegion t . .
- — | Sets the active region.

region)
int32 t LmHandlerGetAdrEnable( bool *adrEnable) Gets the adaptive data rate state.
int32 t LmHandlerSetAdrEnable( bool adrEnable) Sets the adaptive data rate state.

int32 t LmHandlerGetRX2Params ( RxChannelParams_ t | Gets the current Rx2 data rate and frequency
*rxParams) conf.

int32_t LmHandlerSetRX2Params ( RxChannelParams_t
*rxParams)

Sets the Rx2 data rate and frequency conf.
int32 t LmHandlerGetTxPower ( int8 t *txPower) Gets the current Tx power value.

int32 t LmHandlerSetTxPower ( int8 t txPower) Sets the Tx power value.

int32 t LmHandlerGetRxlDelay( uint32 t *rxDelay) Gets the current Rx1 delay (after the Tx window).
int32 t LmHandlerSetRxlDelay( uint32 t rxDelay) Sets the Rx1 delay (after the Tx window).

int32 t LmHandlerGetRx2Delay( uint32 t *rxDelay) Gets the current Rx2 delay (after the Tx window).

int32 t LmHandlerSetRx2Delay( uint32 t rxDelay) Sets the Rx2 delay (after the Tx window).
int32 t LmHandlerGetJoinRxlDelay( uint32 t Gets the current Join Rx1 delay (after the Tx
*rxDelay) window).

i inRx1Del i 2
int32_t LmHandlersetJoinRxlDelay( uint32_t Sets the Join Rx1 delay (after the Tx window).

rxDelay)
int32 t LmHandlerGetJoinRx2Delay( uint32 t Get the current Join Rx2 delay (after the Tx
*rxDelay) window).

i inRx2Del i 2
int3z_t LmHandlersetJoinRxzDelay( uint3z_t Sets the Join Rx2 delay (after the Tx window).

rxDelay)

int32 t LmHandlerGetPingPeriodicity( uint8 t Gets the current Rx Ping Slot periodicity (If
*pingPeriodicity) LORAMAC_CLASSB_ENABLED)
int32 t LmHandlerSetPingPeriodicity( uint8 t Sets the Rx Ping Slot periodicity (If
pingPeriodicity) LORAMAC_CLASSB_ENABLED)
int32 t LmHandlerGetBeaconState( BeaconState t Gets the beacon state (If
*beaconState) LORAMAC_CLASSB_ENABLED)

UM2073 - Rev 12 page 28/52



‘,_l UM2073

Utilities description

5 Utilities description

Utilities are located in the \Utilities directory.

Main APIs are described below. Secondary APIs and additional information can be found on the header files
related to the drivers.

5.1 Sequencer

The sequencer provides a robust and easy framework to execute tasks in the background and enters low-power
mode when there is no more activity. The sequencer implements a mechanism to prevent race conditions.

In addition, the sequencer provides an event feature allowing any function to wait for an event (where particular
event is set by interrupt) and MIPS and power to be easily saved in any application that implements “run to
completion” command.

Theutilities def.h file located in the project sub-folder is used to configure the task and event IDs. The
ones already listed must not be removed.

The sequencer is not an OS. Any task is run to completion and cannot switch to another task like an RTOS can
do on the RTOS tick unless a task suspends itself by calling UTIL SEQ WaitEvt. Moreover, one single-memory
stack is used. The sequencer is an advanced ‘while loop’ centralizing task and event bitmap flags.

The sequencer provides the following features:

. Advanced and packaged while loop system

. Support up to 32 tasks and 32 events

. Task registration and execution

. Wait for an event and set event

. Task priority setting

. Race condition safe low-power entry

To use the sequencer, the application must perform the following:

. Set the number of maximum of supported functions, by defining a value for UTIL. SEQ CONF TASK NBR.
. Register a function to be supported by the sequencer with UTIL SEQ RegTask ().
. Start the sequencer by calling UTIL_SEQ Run () to run a background while loop.

. Call UTIL_SEQ SetTask () when a function needs to be executed.

The sequencer utility is located in Utilities\sequencer\stm32 seqg.c.

Table 35. Sequencer APls

void UTIL_SEQ Idle( void ) Called (in critical section - PRIMASK) when there is nothing to execute.
void UTIL SEQ Run (UTIL SEQ bm t Requests the sequencer to execute functions that are pending and enabled in the
mask bm ) mask mask bm.

void UTIL SEQ RegTask (UTIL SEQ bm t
task id bm, uint32 t flags, void
(*task) ( void ))

Registers a function (task) associated with a signal (task_id bm) in the
sequencer. The task id bm must have a single bit set.

Requests the function associated with the task id bm to be executed. The
void UTIL SEQ SetTask( UTIL SEQ bm t | task prioisevaluated by the sequencer only when a function has finished.

taskld bm, uint3z_ t task Prio ) If several functions are pending at any one time, the one with the highest priority (0)

is executed.

void UTIL SEQ WaitEvt ( UTIL SEQ bm t

EvtId bm ); Waits for a specific event to be set.

void UTIL SEQ SetEvt( UTIL SEQ bm t

EvtId bm ) ; Sets an event that waits with UTIL SEQ WaitEvt ().

UM2073 - Rev 12 page 29/52



UM2073

Timer server

5.2

The figure below compares the standard while-loop implementation with the sequencer while-loop

implementation.

Figure 17. While-loop standard vs. sequencer implementation

Standard way

Sequencer way

While (1)
{
if (flagl)
{
flagl=0;
Fectl();

}

if(flag2)

{

flag2=0;
Fct2(); }

/*Flags are checked in critical section to
avoid race conditions*/ /*Note: in the
critical section, NVIC records Interrupt
source and system will wake up 1if asleep */

__disable irq();

if (! ( flagl || flag2))

{

/*Enter LowPower 1if nothing else to do*/
LPM EnterLowPower( );

}

__enable irqg();

/*Irq executed here*/

Void some Irg(void) /*handler context*/
{
flag2=1; /*will execute Fct2*/

/*Flagl and Flag2 are bitmasks*/
UTIL_SEQ_RegTask(flagl, Fectl());
UTIL SEQ RegTask(flag2, Fct2());

While (1)
{
UTIL SEQ Run();

void UTIL SEQ Idle( void )
{

LPM EnterLowPower ( );
}

Void some Irg(void) /*handler context*/
{

UTIL SEQ SetTask(flag2); /*will execute
Fct2*/

}

Timer server

The timer server allows the user to request timed-tasks execution. As the hardware timer is based on the RTC,

the time is always counted, even in low-power modes.

The timer server provides a reliable clock for the user and the stack. The user can request as many timers as the

application requires.

UM2073 - Rev 12 page 30/52




‘,_l UM2073

Low-power functions

The timer server is located in Utilities\timer\stm32 timer.c.

Table 36. Timer server APIs

I

UTIL TIMER Status t UTIL TIMER Init( void ) Initializes the timer server.
UTIL TIMER Status t UTIL TIMER Create

( UTIL TIMER Object t *TimerObject, uint32 t PeriodValue, Creates the timer object and associates a

UTIL TIMER Mode t Mode, void ( *Callback ) callback function when timer elapses.
( void *), void *Argument)

UTIL TIMER Status t

Updates the period and starts the timer with a

UTIL TIMER SetPeriod (UTIL TIMER Object t *TimerObject, fimeout value (milliseconds)

uint32 t NewPeriodValue)

UTIL_TIMER Status_t UTIL_TIMER Start Starts and adds the timer object to the list of

( UTIL_TIMER Object t *TimerObject ) timer events.

UTIL TIMER Status t UTIL TIMER Stop Stops and removes the timer object from the

( UTIL_TIMER Object t *TimerObject ) list of timer events.

5.3 Low-power functions

The 1low-power utility centralizes the low-power requirement of separate modules implemented by the firmware
and manages the low-power entry when the system enters idle mode. For example, when the DMA is used to
print data to the console, the system must not enter a low-power mode below Sleep mode because the DMA
clock is switched off in Stop mode

The APIs presented in the table below are used to manage the low-power modes of the core MCU. The
low-power utility is located in Utilities\lpm\tiny lpm\stm32 lpm.c.

Table 37. Low-power APls

void UTIL LPM EnterLowPower ( void ) Enters the selected low-power mode. Called by the idle state of the

system
void UTIL LPM SetStopMode( UTIL LPM bm t Sets Stop mode. id defines the process mode requested:
lpm id bm, UTIL LPM State t state ); UTIL LPM ENABLE or UTIL LPM DISABLE.()
void UTIL LPM SetOffMode( UTIL LPM bm t Sets Stop mode. id defines the process mode requested:
lpm id bm, UTIL LPM State t state ); UTIL LPM ENABLE or UTIL LPM DISABLE.
UTIL LPM Mode t UTIL LPM GetMode ( void ) Returns the currently selected low-power mode.

1. Bitmaps for which the shift values are defined in utilities def.h.

The default low-power mode is Off mode, which may be Standby or Shutdown mode
(defined in void PWR _EnterOffMode (void) from Table 38):

. If Stop mode is disabled by at least one firmware module and low-power is entered, Sleep mode is selected.

. If Stop mode is not disabled by any firmware module, Off mode is disabled by at least one firmware module,
and low-power is entered. Stop mode is selected.

. If Stop mode is not disabled by any firmware module, Off mode is not disabled by any firmware module, and

low-power is entered. Off mode is selected.

UM2073 - Rev 12 page 31/52



‘,_l UM2073

System time

Figure 18 depicts the behavior with three different firmware modules setting dependently their low-power
requirements and low-power mode, selected when the system enters a low-power mode.

Figure 18. Example of low-power mode dynamic view

[UTIL_LPM_SetStopMode((1 << CFG_LPM_MODULEO_Id), UTIL_LPM_DISABLE); |
[UTIL_LPM_SetStopMode((1 << CFG_LPM_MODULEO_Id), UTIL_LPM_ENABLE); |

module0 ‘ Stop disable ((module0_Id) Stop disable ((module0_Id)

[UTIL_LPM_SetOffMode((1 << CFG_LPM_MODULET_Id), UTIL_LPM_DISABLE); |
[UTIL_LPM_SetOffMode((1 << CFG_LPM_MODULE1_Id), UTIL_LPM_ENABLE); _|

module1 off disable (module1_ld)

module2 Stop disable (module2_Id)

Sleep

mode
Low-power mode when the
system enters idle mode Stop

(For example when mode
UTIL_LPM_EnterLowPower
is called) off

mode
Time

Low-level APIs must be implemented to define what the system must do to enter/exit a low-power mode. These
functions are implemented in stm32_ 1pm if.c of project sub-folder.

Table 38. Low-level APls

void PWR EnterSleepMode (void) API called before entering Sleep mode
void PWR ExitSleepMode (void) API called on exiting Sleep mode
void PWR_EnterStopMode (void) API called before Stop mode

void PWR ExitStopMode (void) API called on exiting Stop mode
void PWR EnterOffMode (void) API called before entering Off mode
void PWR ExitOffMode (void) API called on exiting Off mode

In Sleep mode, the core clock is stopped. Each peripheral clock can be gated or not. The power is maintained on
all peripherals.

In Stop 2 mode, most peripheral clocks are stopped. Most peripheral supplies are switched off. Some registers
of the peripherals are not retained and must be reinitialized on Stop 2 mode exit. Memory and core registers are
retained.

In Standby mode, all clocks are switched off except LSI and LSE. All peripheral supplies are switched off (except
BOR, backup registers, GPIO pull, and RTC), with no retention (except additional SRAM2 with retention), and
must be reinitialized on Standby mode exit. Core registers are not retained and must be reinitialized on Standby

mode exit.

Note: The sub-GHz radio supply is independent of the rest of the system. See the product reference manual for more
details.

5.4 System time

The MCU time is referenced to the MCU reset. The system time can record the UNIX® epoch time.

UM2073 - Rev 12 page 32/52



‘W UM2073

System time

The APIs presented in the table below are used to manage the system time of the core MCU. The systime utility
is located in Utilities\misc\stm32 systime.c.

Table 39. System time functions

I T R

Based on an input UNIX epoch in seconds and sub-seconds, the
void SysTimeSet (SysTime t sysTime) difference with the MCU time is stored in the backup register
(retained even in Standby mode).(")

SysTime t SysTimeGet (void) Gets the current system time.(")

uint32 t SysTimeMkTime (const struct tm*

L . )
localtime) Converts local time into UNIX epoch time.

void SysTimeLocalTime
. ) . Converts UNIX epoch time into local time.?)
(const uint32 t timestamp, struct tm *localtime)

1. The system time reference is the UNIX epoch starting January 15t, 1970.

2. SysTimeMkTime and SysTimelLocalTime are also provided to convert epoch into tm structure as
specified by the t ime . h interface.

To convert UNIX time to local time, a time zone must be added and leap seconds must be removed. In 2018,
18 leap seconds must be removed. In Paris summertime, there is two hours difference from Greenwich time.
Assuming time is set, a local time can be printed on a terminal with the code below.

{

SysTime t UnixEpoch = SysTimeGet () ;

struct tm localtime;

UnixEpoch.Seconds-=18; /*removing leap seconds*/
UnixEpoch.Seconds+=3600*2; /*adding 2 hours*/

SysTimeLocalTime (UnixEpoch.Seconds, & localtime);

PRINTEF ("it's %02dh%02dm%02ds on %02d/%02d/%04d\n\zr",
localtime.tm hour, localtime.tm min, localtime.tm sec,
localtime.tm mday, localtime.tm mon+l, localtime.tm year + 1900);

}

UM2073 - Rev 12 page 33/52




m UM2073

Trace

5.5 Trace

The trace module enables printing data on a COM port using DMA. The APIs presented in the table below are
used to manage the trace functions.

The trace utility is located in Utilities\trace\adv_trace\stm32 adv_trace.c.

Table 40. Trace functions

I e

TraceInit must be called at the application
UTIL_ADV_TRACE_Status_t initialization. Initializes the com or vcom hardware in
UTIL ADV TRACE Init( void ) DMA mode and registers the callback to be processed
- - - at DMA transmission completion.

UTIL_ADV_TRACE Status_t

UTIL_ADV_TRACE_COND_FSend(uint32_t Verboselevel, Converts string format into a buffer and posts it to the

uint32 t Region, circular queue for printing.

uint32 t TimeStampState, const char *strFormat, ...)
UTIL ADV TRACE Status t

UTIL ADV_TRACE COND Send(uint32 t VerboseLevel, Posts data of length = 1en and posts it to the circular
uint32 t Region, uint32 t TimeStampState, queue for printing.
const uint8 t *pdata, uintl6 t length)

UTIL_ADV_TRACE Status t

UTIL ADV_TRACE COND zCSend Allocation (uint32 t

VerboseLevel, uint32 t Region, uint32 t TimeStampState, Writes user formatted data directly in the FIFO (Z-Cpy).
uintl6 t length,uint8 t **pData, uintl6 t *FifoSize,

uintl6 t *WritePos)

The status values of the trace functions are defined in the structure UTIL ADV TRACE Status t as follows.

typedef enum {

UTIL ADV_TRACE OK = 0, /*Operation terminated successfully*/
UTIL_ADV_TRACE_INVALID PARAM = -1, /*Invalid Parameter*/

UTIL ADV_TRACE HW ERROR = -2, /*Hardware Error*/

UTIL ADV_TRACE MEM ERROR = -3, /*Memory Allocation Error*/
UTIL_ADV_TRACE_UNKNOWN_ERROR = -4, /*Unknown Error*/

UTIL ADV_TRACE GIVEUP = =5, /*!< trace give up*/
UTIL_ADV_TRACE_REGIONMASKED = -6 /*!< trace region masked*/

} UTIL ADV_TRACE Status t;

UM2073 - Rev 12 page 34/52




‘_, 77 UM2073
Trace
The UTIL ADV_TRACE COND FSend (..) function can be used:
. in polling mode when no real time constraints apply: for example, during application initialization
#define APP_PPRINTF(...) do{ } while( UTIL ADV_TRACE OK \
!= UTIL ADV_TRACE COND FSend (VLEVEL ALWAYS, T REG OFF, TS OFF, _ VA ARGS ) )
/* Polling Mode */
. in real-time mode: when there is no space left in the circular queue, the string is not added and is not printed
out in the com port
#define APP_LOG (TS, VL, ...)do{
{UTIL ADV_TRACE COND FSend(VL, T REG OFF, TS, _ VA ARGS_);} }while(0);)
where:

UM2073 - Rev 12

— VL is the VerboseLevel of the trace.
— TS allows a timestamp to be added to the trace (Ts_ON or TS_OFF).
The application verbose level is setin Core\Inc\sys_conf.h with:

#define VERBOSE LEVEL <VLEVEL>

where VLEVEL can be VLEVEL OFF, VLEVEL_L, VLEVEL M, or VLEVEL H.

UTIL ADV_TRACE COND FSend (..) is displayed only if VLEVEL = VerboseLevel.
The buffer length can be increased in case it is saturated in Core\Inc\utilities conf.h with:

#define UTIL ADV TRACE TMP BUF SIZE 256U

The utility provides hooks to be implemented to forbid the system to enter Stop or lower mode while the DMA is
active:

° void UTIL_ADV_TRACE PreSendHook (void)
{ UTIL LPM SetStopMode ((l << CFG_LPM UART TX Id) , UTIL LPM DISABLE ); }
° void UTIL ADV_TRACE PostSendHook (void)

{ UTIL LPM SetStopMode((l << CFG LPM UART TX Id) , UTIL LPM ENABLE );}

page 35/52




‘,_l UM2073

Example description

6 Example description

6.1 Single MCU end-device hardware description

The application layer, the Mac layer, and the PHY driver are implemented on one MCU. The End_Node
application is implementing this hardware solution (Refer to End_Node application).

The I-CUBE-LRWAN runs on several platforms such as:
. STM32 Nucleo platform stacked with a LoRa® radio expansion board.
. B-L072Z-LRWAN1 Discovery kit, where LoRa® expansion board is not required.

Optionally, an ST X-NUCLEO-IKS01A2 sensor expansion board can be added on Nucleo boards and Discovery
kits. The Nucleo-based supported hardware is presented in Table 41.

Table 41. Nucleo-based supported hardware

LoRa® radio expansion board

Nucleo board
SX1276MB1MAS SX1276MB1LAS | SX1272MB2D SX12613VK1BA SX12613VK1° SX12613VK1DA

NUCLEO-L053R8 Supported
Supported
NUCLEO-L073RZ Supported (P-NUCLEO- Supported
LRWAN1()
NUCLEO-L152RE Supported
NUCLEO-
L476RG Supported

1. This particular configuration is commercially available as a P-NUCLEO-LRWAN1 kit.

The [-CUBE-LRWAN Expansion Package can easily be tailored to any other supported device and development
board.

The main characteristics of the LoRa® radio expansion board are described in Table 42.

Table 42. LoRa® radio expansion board characteristics

SX1276MB1MAS 868 MHz (HF) at 14 dBm and 433 MHz (LF) at 14 dBm
SX1276MB1LAS 915 MHz (HF) at 20 dBm and 433 MHz (LF) at 14 dBm
SX1272MB2DAS 915 MHz and 868 MHz at 14 dBm

SX1261DVK1BAS E406V03A sx1261, 14 dBm, 868 MHz, XTAL
SX1262DVK1CAS E428V03A sx1262, 22 dBm, 915 MHz, XTAL
SX1262DVK1DAS E449V01A sx1262, 22 dBm, 860-930 MHz, TCXO

The radio interface is described below:

. The radio registers are accessed through the SPI.

. The DIO mapping is radio dependent, refer to Input lines.

. One GPIO from the MCU is used to reset the radio.

. One MCU pin is used to control the antenna switch to set it either in Rx mode or in Tx mode.

UM2073 - Rev 12 page 36/52


https://www.st.com/en/product/x-nucleo-iks01a2?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2073

‘,_l UM2073

Split end-device hardware description (Two-MCU solution)

The hardware mapping is described in the hardware configuration files in Projects\<target>\Application
s\LoRaWAN\<App Type>\Core\inc folder, where:

. The <target> can be STM32L053R8-Nucleo, STM32L073RZ-Nucleo, STM32L152RE-Nucleo, STM32L
476RG-Nucleo, or B-L072Z-LRWAN1 (Murata modem device).

. The <App Type> can be LoRaWAN AT Master, LoRaWAN End Node, LoRaWAN AT Slave, Of SubGHz
Phy PingPong.

Interrupts

Table 43 shows the interrupt priorities level applicable for the Cortex system processor exception and the
STM32L0 Series LoRa® application-specific interrupt (IRQ).

Table 43. STM32L0xx IRQ priorities

Interrupt name Preempt priority Sub-priority

RTC 0 NA
EXTI2_3 0 NA
EXTI4_15 0 NA
6.2 Split end-device hardware description (Two-MCU solution)

The application layer, the Mac layer, and the PHY driver are separated. The LoRaWAN® End_Node is composed
of a LoRa® modem and a host controller. The LoRa® modem runs the LoRaWAN® stack (Mac and PHY layers)
and is controlled by a LoRa® host implementing the application layer.

The LoRaWAN AT Master application implementing the LoRa® host on a Nucleo board is compatible with the
LoRaWAN AT Slave application (Refer to Section 6.6 ). The LorRaWAN AT Slave application demonstrates

a modem on the CMWX1ZZABZ-091 LoRa® module from Murata. The LoRaWAN AT Master application is

also compatible with the I-NUCLEO-LRWAN1 expansion board featuring the WM-SG-SM-42 LPWAN module
from USI and with the LRWAN_NS1 expansion board featuring the RiSINGHF modem RHFOMO0O03 available in
P-NUCLEO-LRWANS (Refer to [11]).

This split solution is used to design the application layer without any constraint linked to the real-time requirement
of the LoORaWAN® stack.

Figure 19. Split end-device solution concept

radio

I-CUBE-LRWAN)

I—NUCLEO-L053R8 1 rLoRa® expansion board 1

| | I-NUCLEO-LRWAN1 |

| AT_MASTER | AT d | Lora® modem |
application comman

: (included in < ver UART —>|  LoraWANe stack :

| |

The interface between the LoRa® modem and the LoRa® host is a UART running AT commands.

UM2073 - Rev 12 page 37/52



m UM2073

Package description

6.3 Package description
When the user unzips the I-CUBE-LRWAN, the package presents the structure shown in Figure 20.

Figure 20. I-CUBE-LRWAN structure

=~ | Drivers

BSP

CMSIS
STM32L0xx_HAL_Driver
STM32L1xx_HAL_Driver
STM32L4xx_HAL_Driver
=~ | Middlewares

B-E-@-8-8

ST
Third_Party

Crypto
LmHandler
Mac
| LICENSE txt
readme.md
w|=] st_readme bd
@ | mbedTLS
®- | SubGHz_Phy
=- | Projects
£ | B-LO72Z-LRWAN1
B | Applications
- | LoRaWAN
. @ | LoRaWAN_AT_Slave
. @ | LoRaWAN_End_Node
- SubGHz_Phy
& | SubGHz_Phy_PingPong
2| | NUCLEO-LO53R8
B~ | Applications
B | LoRaWAN
.\ @  LoRaWAN_AT_Master
. @ | LoRaWAN_End_Node
#- | SubGHz_Phy
- NUCLEO-LO73RZ
@-  NUCLEO-L152RE
&~ . NUCLEO-L476RG
B~ | Applications
- | LoRaWAN
@- . LoRaWAN_FUOTA
B SubGHz_Phy

The I-CUBE-LRWAN Expansion Package contains five applications: LoRaWAN AT Master, LoRaWAN End
Node, LoRaWAN AT Slave, SubGHz Phy PingPong, and LoRaWAN FUOTA (Only supported on NUCLEO-

L476RG). For each application, three toolchains are available: IAR Systems® IAR Embedded Workbench®, Keil®
MDK-ARM, and STMicroelectronics STM32CubelDE.

UM2073 - Rev 12 page 38/52



m UM2073

End_Node application

6.4 End_Node application

This application reads the temperature, humidity, and atmospheric pressure from the sensors through the 12C.
The MCU measures the supplied voltage through VRer NT tO calculate the battery level. These four data

(temperature, humidity, atmospheric pressure, and battery level) are sent periodically to the LoRaWAN® network
using the LoRa® radio in class-A at 868 MHz.

To launch the LoRaWAN® End_Node project, the user must go to \Projects\<target>\Applications and

choose his favorite toolchain folder in the IDE environment. The user selects then the LoRaWAN® project from
the proper target board.

6.4.1 Activation methods and keys
There are two ways to activate a device on the network, either by OTAA or by ABP.

The \Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h
file gathers all the data related to the device activation. The chosen method, along with the commissioning data,
located in the \Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\se-i
dentity.h file, is printed on the Virtual COM port and visible on a terminal.

6.4.2 Debug switch

The user must edit the \Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\
sys_conf.h file to activate the debug or trace mode:

#define DEBUGGER ENABLED 1

The debug mode enables the DBG GPIO SET and the DBG_GPIO RST macros as well as the debugger mode,
even when the MCU goes in low-power. For trace mode, three levels of tracing are proposed:

#define VERBOSE LEVEL VLEVEL M

. VLEVEL_L 1:traces disabled

. VLEVEL_M 2: enabled for functional traces

. VLEVEL_H 3: enabled for Debug traces

The user must edit \Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\uti
lities conf.h to select the trace level.

Note: To enable a true low-power, #define DEBUGGER ENABLED mentioned above must be set to 0.
6.4.3 Sensor switch
When no sensor expansion board is plugged on the set-up, #define SENSOR ENABLED must be setto 0 in \Pr

ojects\<target>\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\utilities conf.h.

Table 44 provides a summary of the main options for the application configuration.

UM2073 - Rev 12 page 39/52



UM2073
End_Node application

Table 44. Switch options for LoORaWAN_End_Node application configuration

Project
mo-
dule
Identification
Address

Supported regions

LoRa stack

Limited channels

Read keys

Optional class
Tx trigger
Class choice
Duty cycle
App port

Confirmed mode

Adaptive data rate
Default data rate
Maximum data buffer

size

Ping period

Application

Network Join
activation

Initial region
Debug

Probe pins

Low power
Trace enable

Trace level

UM2073 - Rev 12 page 40/52

Switch option

STATIC_DEVICE EUT
STATIC DEVICE ADDRESS
REGION_EU868
REGION EU433
REGION US915
REGION AS923
REGION AU915
REGTON_ CN470
REGION CN779
REGION_ IN865
REGION RU864

REGION KR920

HYBRID ENABLED

KEY EXTRACTABLE

LORAMAC CLASSB_ENABLED
EventType = TX ON TIMER
LORAWAN DEFAULT CLASS
APP_TX DUTYCYCLE
LORAWAN USER APP PORT

LORAWAN DEFAULT CONFIRMED
_MSG_STATE
LORAWAN ADR STATE

LORAWAN DEFAULT DATA RATE
LORAWAN APP DATA BUFFER
_MAX SIZE

LORAWAN DEFAULT PING
_SLOT PERIODICITY

LORAWAN DEFAULT
_ACTIVATION TYPE

ACTIVE REGION

DEBUGGER ENABLED
PROBE PINS ENABLED

LOW_POWER DISABLE
APP LOG_ENABLED

VERBOSE LEVEL

Definition Location

Static or dynamic end-device identifying
se-identity.h
Static or dynamic end-device address

Regions supported by the device

lorawan conf.h

Limits the number of usable channels by
default for AU915, CN470, and US915
regions.

Defines the read access of the keys in the
memory.

End-device Class B capability
Tx trigger method lora app.c
Sets class of the device.

Time between two Tx sent

LoRa port used by the Tx data frame

Confirmed mode selection

ADR selection

Data rate if ADR is disabled
lora app.h

Buffer size definition

Rx ping slot period

Activation procedure default choice

Region used at device startup
Enables SWD pins.

Enables four pins usable as probe signals
by the middleware radio layer.

Disables low-power mode sys_conf.h
Enables the trace mode.

Enables the trace level.



‘,_l UM2073

PingPong application description

Note: The maximum allowed payload length depends on both the region and the selected data-rate, so the payload
format must be carefully designed according to these parameters.

6.5 PingPong application description

This application is a simple Rx/Tx RF link between two LoRa® end devices. By default, each LoRa® end device
starts as a master, transmits a Ping message, and waits for an answer. The first LoRa® end device receiving a
Ping message becomes a slave and answers the master with a Pong message. The PingPong is then started.
To launch the PingPong project, the user must go to the Projects\NUCLEO-L053R8\Applications\SubGHz
__Phy\SubGHz_Phy PingPong folder and follow the same procedure as for the LoRaWAN® End_Node project
to launch the preferred toolchain.

Hardware and software set-up environment

To set up the Nucleo board, connect it or the B-L072Z-LRWAN1 board to the computer with a Type-A to Mini-B
USB cable to the CN1 ST-LINK connector. Ensure that the CN2 ST-LINK connector jumpers are ON. Refer to
Figure 21 for a representation of the PingPong setup.

Figure 21. PingPong setup

LoRa® end device LoRa® end device
ComPort Nucleo board with radio | | Nucleo board with radio ComPort
expansion board expansion board
6.6 AT_Slave application description

The purpose of this example is to implement a LoRa® modem controlled through the AT-command interface over
UART by an external host.

The external host can be a host-microcontroller embedding the application and the AT driver or simply a computer
executing a terminal.

This application targets the B-L072Z-LRWAN1 Discovery kit embedding the CMWX1ZZABZ-091 LoRa® module.
This application uses the STM32Cube low-layer drivers APIs targeting the STM32L072CZ to optimize the code
size.

The AT_Slave example implements the LoRaWAN® stack driving the built-in LoRa® radio. The stack is controlled
through the AT-command interface over UART. The modem is always in Stop mode unless it processes an AT
command from the external host.

To launch the AT_Slave project, the user must go to the folder \Projects\B-L072Z-LRWANI\Applicatio
ns\LoRaWAN\LoRaWAN AT Slave and follow the same procedure as for the LorRaWAN End Node project to
launch the preferred toolchain.

The application note [9] gives the list of AT commands and their description.

6.7 AT _Master application description

This application reads sensor data and sends them to a LoRaWAN® network through an external LoRa® modem.
The AT_Master application implements a complete set of AT commands to drive the LoRaWAN® stack that is
embedded in the external LoRa® modem.

The external LoRa® modem targets the B-L072Z-LRWAN1 Discovery kit, the I-NUCLEO-LRWAN1 board (based
on the WM-SG-SM-42 USI module [14]) or the LRWAN-NS1 expansion board featuring the RiSINGHF modem
[15] available in P-NUCLEO-LRWAN2, P-NUCLEO-LRWAN3, and NUCLEO-WL55JCx ( High band x=1/ low
band x=2 [13]).

This application uses the STM32Cube HAL drivers APlIs targeting the STM32L0 Series.

UM2073 - Rev 12 page 41/52



m UM2073

FUOTA application description

BSP programming guidelines

Table 45 describes the BSP driver APIs to interface with the external LoRa® module.

Table 45. System-time functions

e e

ATEerror t Modem IO Init (void) Modem initialization
void Modem IO DeInit (void) Modem deinitialization

ATEerror t Modem AT Cmd (ATGroup_ t,

at group, ATCmd t Cmd, void *pdata) Modem I/O commands

Note: The Nucleo board communicates with the expansion board via the UART (PA2, PA3). The following
modifications must be applied (Refer to section 6.8 of [12] ):

. SB62 and SB63 must be ON.
. SB13 and SB14 must be OFF to disconnect the UART from ST-LINK.

6.8 FUOTA application description
The purpose of this application is to implement the firmware update over-the-air (FUOTA) feature. It provides a
way to manage the firmware update over the LoRaWAN® protocol.

This application is based on the LoRaWAN® recommendations version V1.0.3 and the three application packages
specification V1.0, Clock Synchronization, Fragmented Data Block Transport, and Remote Multicast Setup [1].
This application is made up of Secure Boot and Secure Firmware Update (SBSFU), LoRaWAN® protocol stack,
and User Application [2].

This application only targets the SMT32L476RG microcontroller.

The application note [8] gives all the needed information to make use of the FUOTA I-CUBE-LRWAN part.

UM2073 - Rev 12 page 42/52



‘,_l UM2073

System performances

7 System performances

71 Memory footprints
The values in Table 46 are measured for the following IAR Embedded Workbench® EWARM 8.32 compiler
configuration:

. Optimization: Optimized for the high size level
. Debug option: OFF

. Trace option: OFF

. Target STM32L073 with SX1272MB2DAS

Table 46. Memory footprint values for End_Node application

Application layer 5363 Includes all microlib.
LoRaWAN® stack 37267 4582 Includes MAC + RF driver.
HAL 11908 0 -

Includes services like system, timeserver, sequencer, trace,

Utilities 3058 1732
and low power.
Total application 57550 7188 Memory footprint for the overall application
7.2 Real-time constraints

The LoRa® RF asynchronous protocol implies following a strict Tx/Rx timing recommendation (Refer to
Figure 22. Tx/Rx time diagram for a Tx/Rx diagram example). The SX1276MB1MAS expansion board is

optimized for user-transparent low-lock time and fast auto-calibrating operation. The LoRaWAN® Expansion
Package design integrates the transmitter startup-time and the receiver startup-time constraints.

Figure 22. Tx/Rx time diagram

Start-Tx TimerStart (and RxWindowTimer1) Start-Rx

wou | TR
\ \

RF Activity (DIO#5) Tx-ON Rx-ON

\

DIO#0 ﬂ Y . E%e
x-

Tx-Done

Rx window channel start

The Rx window opens the RECEIVE_DELAY1 for 1 s (+ 20 us) or the JOIN_ACCEPT_DELAY1 for 5 s (+ 20 us)
after the end of the uplink modulation.

The current scheduling interrupt-level priority must be respected. In other words, all the new user interrupts must
have an interrupt priority higher than DIO#n interrupt (Refer to Table 43) to avoid stalling the received startup time.

UM2073 - Rev 12 page 43/52



Power consumption

Power consumption

The power-consumption measurement is done for the Nucleo boards associated with the SX1276MB1MAS
shield.

Measurements setup

. No DEBUGGER_ENABLED

. No TRACE

. No SENSOR_ENABLED

Measurement results

. Typical consumption in stop mode: 1.3 pA
. Typical consumption in run mode: 8.0 mA
Measurements figures

. Instantaneous consumption over 30 s

Figure 23 shows an example of the current consumption against time on an STM32L0 Series microcontroller.

STM32L0 current consumption against time

File Edit Tools Datalogger  Help ' J* Scope I Data Logger

]

|0QUOD JUBWINASUL

o
]
=
o

a

23728575 23730412 23.732248 3; 23735021 73 9 23741430 23743266 23745102
oo T
Markers & Measurements () @ @ AutoScroll  Ranges..  AUTOSCALE a

Marker 1 Measurements Between Markers Marker 2
00:00:23.733790 M Freq z 00:00:23.740324
Avg Avg Max Peak to Peak Charge / Energy Avg
1081 pA 1011748 mA 7.591867 mA 7.591224 mA ZnAh 7.591867 mA

Duration: | 000:01:00 Period: 1.00352 ms () Min/Max File: datalogdata52.dlg .. Trigger Dats Log Run Button ~




m UM2073

Revision history

Table 47. Document revision history

27-Jun-2016 1 Initial release.
Updated:
. —Introduction
10-Nov-2016 2 . Sect/:on 2.1: Overview
. Section 3.2: Features
. Section 5: Example description
. Section 6: System performances
Updated:
. Introduction concerning the CMWX1ZZABZ-xxx LoRa® module
(Murata).
. Section 5.1: Hardware description: 3rd hardware configuration file
4-Jan-2017 3 added.
. Section 5.2: Package description: AT_Slave application added.
Added:
. Section5.5: AT_Slave application description
Updated:
. Introduction with -NUCLEO-LRWAN1 LoRa® expansion board
. Figure 10: Project files structure
. Section 5.1: Single MCU end-device hardware description

. Figure 15: I-CUBE-LRWAN structure
. Section 5.4: End_Node application

21-Feb-2017 4 . Section Table 27.: Switch options for the application's configuration
. Section 5.5: PingPong application description
. Section 5.6: AT_Slave application description
. Table 29: Memory footprint values for End_Node application
Added:
. —Section 5.2: Split end-device hardware description (two-MCUs
solution)
. Section 5.7Section 5.7: AT_Master application description
Added:
. Note to Section 5.4:End_Node application on maximum payload length
18-Jul-2017 5 allowed
. Note to Section 5.7:AT_Master application description on the Nucleo
board communication with expansion board via UART
Added:
. New modem reference: expansion board featuring the
RiSINGHF®modem RHFOMO003
14-Dec-2017 6 Updated:
. New architecture design (LoRa® FSM removed)
. Figure 10: Project files structure
. Figure 13: Operation model
Added:
. New expansion boards
4-Jul-2018 7 . Introduction of LoORaWAN® class-B mode
Updated:

. Figure 10 to Figure17, Table 4, and Table 10 to Table 45

UM2073 - Rev 12 page 45/52



m UM2073

Removed:
13-Dec-2018 8 . Class B restriction regarding AT commands in Section 5.6: AT_Slave
application description
Updated:
9-Jul-2019 9 . P-NUCLEO-LPWAN2/3 in Introduction and Section 5.7:AT_Master
application description
. Added Section 2.4.3:End-device class B mode establishment
Added:
. FUOTA and SBSFU acronyms in Table1
4-Nov-2019 10
. LoRa Alliance® and application notes references in Section 1.2
. New Section 5.8: FUOTA application description
Updated:
. Title
. Table 2, Table 46, and Table 48
. Figure 4, Figure 11, Figure 13, and Figure 14
. Package content in Section 3.1
. Regions added to Section 3.2
19-Feb-2021 " . Functions in Section 4.6 and Section 4.7
Added:
. Section 4.8 Extended application functions
. Section 5 Utilities description
Removed:
. Middleware utility functions
Updated:
. Section 5 Utilities description and Table 44 both aligned with
30-Sep-2021 12 corresponding parts in the application note How to build a LoRa®
application with STM32CubeWL (AN5406)
. Table 46. Memory footprint values for End_Node application

UM2073 - Rev 12 page 46/52


https://www.st.com/resource/en/application_note/dm00660451.pdf

m UM2073

Contents

Contents
1 General information .......... ... i i 2
1.1 Terms and definitioNs . . ... ... . 2
1.2 Overview of available documents and references. . .......... ... ... ... ... 3
2 LORA® Standard OVerVIEW . .. .......viuiri ettt et e et ie e eieenaens 4
21 OV IV W . .o 4
2.2 Network architecture. . ... ... . 4
2.21 End-device architecture . ... ... .. . . ... 5
222 End-device Classes . . . . ... 5
223 End-device activation (Joining) . . ... .. 6
224 Regional spectrum allocation . . ... ... . . . . 7
23 NetWOTK LAy er. . . 8
231 Physical layer . . . ... 8
2.3.2 MAC sublayer . . . ... 8
2.4 Message floW. . . ... 8
241 End-device activation details (joining) . . . ........ .. . 8
24.2 End-device class-A data communication. . . . ... ... L 9
243 End-device class-B mode establishment. . .. ........ .. .. ... 11
25 Data floW . ..o 12
3 I-CUBE-LRWAN middleware description. ... iieannns 13
31 OV IV W . .o 13
3.2 Features . . ..o 14
3.3 Architecture . . ... 15
3.4 Hardware related components. . ... . i e 16
3.41 Radioreset . . ... 16
3.4.2 SPl L 16
343 R C . 16
3.4.4 INPUL NS . . . oo 16
4 I-CUBE-LRWAN middleware programming guidelines ...................cciiiiuntn 17
4.1 Middleware initialization . . .. ... ... . 17
4.2 Middleware MAC layer functions. . ... . 17
421 MCPS SEIVICES . . . . ottt 17
42.2 MLME SEIVICES . . . . o ittt e 17
423 MIB SEIVICES . . . o o 18
4.3 Middleware MAC layer callbacks . ......... ... .. . . i 18
4.31 MO P S . 18

UM2073 - Rev 12 page 47/52



m UM2073

Contents

4.3.2 MLME . . . 18

433 MIB . 18

434 Battery level . ... 18

4.4 Middleware MAC layer timers . . ... ... e 19
441 Rx-delay WIndow. . . . ... 19

442 Delay for Tx frame transmission . . . . . .. ... 19

443 Delay for Rx frame . . ... ... 19

4.5 Emulated secure element .. ... .. . e 19
4.6 Middleware LmHandler application function ........... .. ... .. ... ... ... ... 20
4.6.1  LoRa®initialization . ... ... ... 24

4.6.2 LoRa® join request entry point . ... ... 24

4.6.3  LoRa®configuration . . ... ... ... 24

46.4 Requestjoin status . . . ... ... e 24

4.6.5 Send anuplink frame . . ... ... 24

4.6.6 Request the current network time . . . ... ... . . 25

4.6.7 Switch class request . . . ... ... 25

4.6.8 Getend-device currentclass. . .. ... . . 25

4.6.9 Request beacon acquisition . ... ... . ... 25

4.6.10  Send unicast ping slot info periodicity . . . ...... ... .. .. 25

4.6.11  Getcurrent Txdatarate . ......... . 26

4612  SetTxdatarate ....... ... . 26

4.6.13 Getcurrent Txduty-cyclestate . . ... ... .. . . . 26

4.6.14 SetTxduty-cyclestate . ....... ... . 26

4.7 Library application callbacks . ........... . i 26
471 Currentbattery level . . ... ... 26

4.7.2 Currenttemperature level . . ... ... . e 27

4.7.3 Board unique ID . . ... . 27

4.7.4 End_Node class mode change confirmation. .. ........ ... ... ... ... ... ....... 27

4.8 Extended application functions . ........ ... .. . 27
5 Utilities description . ... ..ot i it et ias s nanaannnnans 29
5.1 SBQUENCET . . .ottt 29
5.2 TIMIEr GBIV . . o o 30
5.3 Low-power fUNCHIONS . . . . ..o 31
5.4  Systemtime. . ... 32
S 1 = (o 34
6 Example description. ....... .. i i i i 36
6.1 Single MCU end-device hardware description. .......... ... ... . ... 36

UM2073 - Rev 12 page 48/52



m UM2073

Contents
6.2  Split end-device hardware description (Two-MCU solution) .......................... 37

6.3 Package description . . ... ... e 38

6.4 End_Node application. . . ... . . e 39

6.4.1 Activation methods and keys. . . . ... .. 39

6.4.2 Debug switCh . . . .. 39

6.4.3 SENSOr SWItCN . . . 39

6.5 PingPong application description . ... ... . 41

6.6  AT_Slave application description .. ......... .. 41

6.7 AT_Master application description . ... ... .. 41

6.8 FUOTA application description ........ ... . i e e 42

7 System performancCes ..........ouiiiiiiiii i i 43
71 Memory footprintS . . .. .. 43

7.2 Real-time constraints . . ... .. 43

7.3 Power ConsSUmMption . . ... .. e 44
ReVISion RiStory . ...t i i iin s e i 45
List of tables . ... i 50
List Of figQUIeS. . ... i it it ettt ieaa s naa e ia e 51

UM2073 - Rev 12 page 49/52



m UM2073

List of tables
List of tables
Table 1. Listof @CrOonymMs . . . . .. . 2
Table 2. ReferenCes . . . . . . . 3
Table 3. LoRaWAN® classes intended USage. . . . . . ...ttt 4
Table 4. LoRaWAN® regional spectrum allocation . ... ... ...... .. ... ... . i 7
Table 5. Middleware initialization function . . . . . . . ... 17
Table 6. MCPS services funCtion . . . . . . .. . 17
Table 7. MLME services fUNCHON . . . . . . . .. 17
Table 8. MLME services fUNCHON . . . . . . . .. 18
Table 9. MCPS primitives . . . . . . .. e 18
Table 10.  MLME primitive . . . . . . . 18
Table 11.  Battery level function . . . . . . ... . 18
Table 12, Rx-delay funCtions . . . . . . . . 19
Table 13.  Delay for Tx frame transmission. . . . . . . . .. 19
Table 14. Delay for Rxframe function. . . . . . .. . 19
Table 15.  Secure-element fUNCLIONS . . . . . . . .. 20
Table 16. LoRa® initialization fUnCtion. . . . . . . . o 24
Table 17. LoRa®joinrequest entry point. . . . ... .. 24
Table 18. LoRa® configuration. . . . . .. . oottt 24
Table 19. Requestjoin status . . . . . ... 24
Table 20. Send an uplink frame . . . . . . .. 24
Table 21.  Current network time . . . . . .. 25
Table 22.  Switch class request. . . . . . ... 25
Table 23. Getend-device CUMTENt Class . . . . . . . .. 25
Table 24. Request beacon acquisition . . . .. .. ... e 25
Table 25. Send unicast ping slot info periodicity . . . . . .. ... . 25
Table 26. Getcurrent Txdatarate . . .. ... ... 26
Table 27. SetTxdatarate. . . .. ... . 26
Table 28. Getcurrent Tx duty-cycle state . . ... .. ... . 26
Table 29. Set Txduty-cycle state . . . . . . ... 26
Table 30. Current battery level function. . . . . . . .. 26
Table 31. Current temperature level function . . . . . . . 27
Table 32. Board unique ID funCtion. . . . . . .. 27
Table 33. End_Node class mode change confirmation function . .. ........ ... ... . . . . . . . 27
Table 34. Extended application functions . . .. ... ... . . . e 28
Table 35.  Sequencer APIS. . . . . . . e 29
Table 36.  Timer server APIs . . . .. 31
Table 37.  LOoW-pOWer APIS . . . . . 31
Table 38.  Low-level APIS. . . . o 32
Table 39. System time funclions . . . . .. . . . 33
Table 40. Trace funCtions . . . . . . . . 34
Table 41. Nucleo-based supported hardware. . . . . . . ... 36
Table 42. LoRa® radio expansion board characteristics. . . . .. ...... ... ... ... 36
Table 43, STM32L0xx IRQ Prionities . . . . . . . oo 37
Table 44. Switch options for LoRaWAN_End_Node application configuration. . . .. .......... ... ... ........... 40
Table 45. System-time fuNClioNS . . . . . . . .. 42
Table 46.  Memory footprint values for End_Node application. . . . ... ... .. . .. . . . 43
Table 47. Document revision history . . . . . . . .. 45

UM2073 - Rev 12 page 50/52



‘7 UM2073

List of figures

List of figures

Figure 1. Network diagram. . . . . . 4
Figure 2. Tx/Rx time diagram (Class-A). . . . . . ..o 5
Figure 3. Tx/Rx time diagram (Class-B). . . . . . . .. 5
Figure 4. Tx/Rx time diagram (Class-C). . . . . . . .o 6
Figure 5. LORaWAN® [ayers . . . . ..o 8
Figure 6. Message sequence chart for joining (MLME primitives) . . . . .. ... . 9
Figure 7. Message sequence chart for confirmed data (MCPS primitives) . . ... ... .. ... ... ... . .. . .. ... .. 10
Figure 8. Message sequence chart for unconfirmed data (MCPS primitives). . . .. ...... ... ... . .. . .. . .. ... 10
Figure 9. MSC MCPS class-B primitives . . . . .. . .. 11
Figure 10.  Dataflow . . . .. .. . e 12
Figure 11.  Programfile structure . . . . . .. ... 13
Figure 12. Main design of the firmware . . . . . . . ... 15
Figure 13.  LoRaMacCrypto module design . . . . . . ... 19
Figure 14.  Operation model. . . . . .. 21
Figure 15.  LoRaWAN® state behavior. . . . ... .. .. . i 22
Figure 16.  LoRaWAN® class-B system state behavior. . . . . .. ... ..o 23
Figure 17.  While-loop standard vs. sequencer implementation. . . . ... ... .. ... . .. . . .. . 30
Figure 18.  Example of low-power mode dynamicC VIEW. . . . . . . . . .. 32
Figure 19.  Split end-device solution concept . . . . . . .. . e 37
Figure 20.  I-CUBE-LRWAN StruCture . . . ... . .. e e e e e 38
Figure 21.  PingPong setup . . . . . . . e 41
Figure 22.  Tx/Rxtime diagram . . . . . .. 43
Figure 23.  STM32LO0 current consumption againsttime . . . . . . ... .. . 44

UM2073 - Rev 12 page 51/52



m UM2073

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

UM2073 - Rev 12 page 52/52



http://www.st.com/trademarks

	 Introduction
	1 General information
	1.1 Terms and definitions
	1.2 Overview of available documents and references

	2 LoRa(R) standard overview
	2.1 Overview
	2.2 Network architecture
	2.2.1 End-device architecture
	2.2.2 End-device classes
	2.2.3 End-device activation (joining)
	2.2.4 Regional spectrum allocation

	2.3 Network layer
	2.3.1 Physical layer
	2.3.2 MAC sublayer

	2.4 Message flow
	2.4.1 End-device activation details (joining)
	2.4.2 End-device class-A data communication
	2.4.3 End-device class-B mode establishment

	2.5 Data flow

	3 I-CUBE-LRWAN middleware description
	3.1 Overview
	3.2 Features
	3.3 Architecture
	3.4 Hardware related components
	3.4.1 Radio reset
	3.4.2 SPI
	3.4.3 RTC
	3.4.4 Input lines
	3.4.4.1 sx127x interrupt lines
	3.4.4.2 sx126x input lines



	4 I-CUBE-LRWAN middleware programming guidelines
	4.1 Middleware initialization
	4.2 Middleware MAC layer functions
	4.2.1 MCPS services
	4.2.2 MLME services
	4.2.3 MIB services

	4.3 Middleware MAC layer callbacks
	4.3.1 MCPS
	4.3.2 MLME
	4.3.3 MIB
	4.3.4 Battery level

	4.4 Middleware MAC layer timers
	4.4.1 Rx-delay window
	4.4.2 Delay for Tx frame transmission
	4.4.3 Delay for Rx frame

	4.5 Emulated secure element
	4.6 Middleware LmHandler application function
	4.6.1 LoRa(R) initialization
	4.6.2 LoRa(R) join request entry point
	4.6.3 LoRa(R) configuration
	4.6.4 Request join status
	4.6.5 Send an uplink frame
	4.6.6 Request the current network time
	4.6.7 Switch class request
	4.6.8 Get end-device current class
	4.6.9 Request beacon acquisition
	4.6.10 Send unicast ping slot info periodicity
	4.6.11 Get current Tx data rate
	4.6.12 Set Tx data rate
	4.6.13 Get current Tx duty-cycle state
	4.6.14 Set Tx duty-cycle state

	4.7 Library application callbacks
	4.7.1 Current battery level
	4.7.2 Current temperature level
	4.7.3 Board unique ID
	4.7.4 End_Node class mode change confirmation

	4.8 Extended application functions

	5 Utilities description
	5.1 Sequencer
	5.2 Timer server
	5.3 Low-power functions
	5.4 System time
	5.5 Trace

	6 Example description
	6.1 Single MCU end-device hardware description
	6.2 Split end-device hardware description (Two-MCU solution)
	6.3 Package description
	6.4 End_Node application
	6.4.1 Activation methods and keys
	6.4.2 Debug switch
	6.4.3 Sensor switch

	6.5 PingPong application description
	6.6 AT_Slave application description
	6.7 AT_Master application description
	6.8 FUOTA application description

	7 System performances
	7.1 Memory footprints
	7.2 Real-time constraints
	7.3 Power consumption

	 Revision history
	Contents
	List of tables
	List of figures

