

Five-sided shielded metal package reduces

Industry standard 1" x 1" x 0.40"

encapsulated package and pinout

Wide range input voltages 9-36 and

Bipolar $\pm 5V$, $\pm 12V$ and $\pm 15V$ outputs

Up to 15 Watts or greater total output

Isolation up to 1600 VDC (basic)

High efficiency flyback topology

power with overtemperature shutdown

Usable -40 to 85°C temperature range

Extensive self-protection shut down

Meets UL 60950-1, CAN/CSA-C22.2 No. 60950-1, IEC60950-1, safety approvals

Assembly and attachment for RoHS standards

FEATURES

18-75 Vdc

(with derating)

features

(2nd Edition)

radiated emissions

PRODUCT OVERVIEW

Featuring a full 15 Watt output in one square inch of board area, the BPM15 series isolated DC-DC converter family offers efficient regulated DC power for printed circuit board mounting. The wide range 4:1 inputs on the 1" x 1" x 0.40" (25.4 x 25.4 x 10.16mm) converter are either 9 to 36 Volts DC (Q12 models) or 18 to 75 Volts DC (Q48 models), ideal for battery-powered and telecom equipment. The industry-standard pinout fits larger 1" x 2" converters. Fixed output voltages of ± 5 , ± 12 or ± 15 VDC are regulated to within $\pm 0.25\%$. Applications include small instruments, arealimited microcontrollers, data communications equipment, remote sensor systems, vehicle and portable electronics.

The rugged mechanical, thermal, and electrical design of this product is intended for high reliability and harsh environments.

The BPM15 series includes full magnetic and optical isolation with Basic protection up to 1600 Volts DC. For powering digital systems, the outputs offer fast settling to step transients and will accept higher capacitive loads. Excellent ripple and noise specifications assure compatibility to noise-susceptible circuits. For systems requiring controlled startup/shutdown, an external remote On/Off control may use a switch, transistor or digital logic.

A wealth of self-protection features avoid both converter and external circuit faults. These include input undervoltage lockout and overtemperature shutdown. The outputs current limit using the "hiccup" autorestart technique and the outputs are short-circuit protected. Additional features include output overvoltage and reverse conduction elimination. The high efficiency offers minimal heat buildup and "no fan" operation.

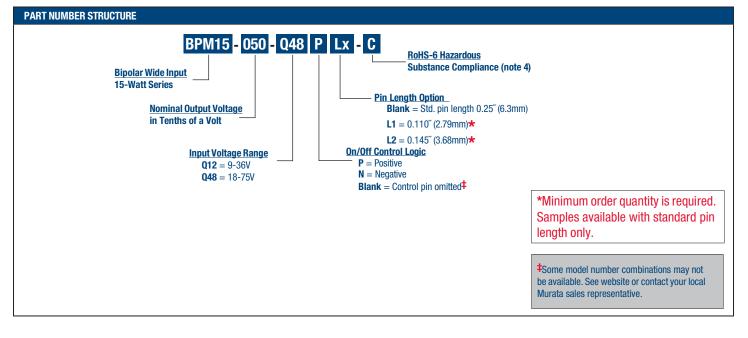
CONNECTION DIAGRAM

BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

PERFORMANCE S	PECIFI	CATIONS S	UMMAR	Y AND (ORDERII	NG GUIDE (D								
				Outpu	t				I	Input				Enca	psulated
				R/N (n	nVp-p)	Regulati	on (Max.)			IIN =	lin =	Effici	iency	Pa	ickage
Root Models (1)	Vour (V)	юл (mA, max.) (2)	Total Power (W)	Тур.	Max.	Line	Load (5)	VıN Nom. (V)	Range (V)	minimum load (mA)	full load (mA)	Min.	Тур.	(inches)	(mm)
			. ,		-	-				. ,	. ,			(increa)	((()))
BPM15-050-Q12	±5	±1500	15	60	100	±0.25%	±0.25%	24	9-36	90	740	82.5%	84%		
BPM15-050-Q48	±5	±1500	15	60	100	±0.25%	±0.25%	48	18-75	50	384	80%	81.4%		
BPM15-120-Q12	±12	±625	15	80	120	±0.25%	±0.25%	24	9-36	95	740	82%	84%	1 x 1 x 0.40	25.4 x 25.4 x 10.16
BPM15-120-Q48	±12	±625	15	80	120	±0.25%	±0.25%	48	18-75	50	368	83%	85%	I X I X 0.40	25.4 X 25.4 X 10.10
BPM15-150-Q12	±15	±500	15	60	100	±0.25%	±0.25%	24	9-36	100	740	82.5%	84.5%		
BPM15-150-Q48	±15	±500	15	80	120	±0.25%	±0.275%	48	18-75	50	360	83%	86%		

Please refer to the part number structure for additional options and complete ordering part numbers.


② The minimum output load for the BPM15 series is 10% of maximum current to meet published specifications. The converter will not be damaged by less than 10% load but some specs may degrade slightly.

③ All specifications are at nominal line voltage and full load, +25 °C. unless otherwise noted. See detailed specifications and notes for full conditions.

Output capacitors are 1 μF ceramic in parallel with 10 $\mu F.$ The input cap is 100 $\mu F,$ low ESR electrolytic.

 $\ensuremath{\text{I/O}}$ caps are necessary for our test equipment and may not be needed for your application.

- ④ RoHS-6 compliance does not claim EU RoHS exemption 7b (lead in solder).
- (5) Balanced loads, 10% to 100% loads.

MPS Part Number	Product Status	LTB Date
BPM15-050-Q12-C	Discontinued	3/31/2022
BPM15-050-Q12N-C	Discontinued	3/31/2022
BPM15-050-Q12P-C	In Production	N/A
BPM15-050-Q48-C	Discontinued	3/31/2022
BPM15-050-Q48N-C	In Production	N/A
BPM15-050-Q48P-C	Discontinued	3/31/2022
BPM15-120-Q12-C	In Production	N/A
BPM15-120-Q12N-C	Discontinued	3/31/2022
BPM15-120-Q12P-C	In Production	N/A

MPS Part Number	Product Status	LTB Date
BPM15-120-Q48-C	In Production	N/A
BPM15-120-Q48N-C	In Production	N/A
BPM15-120-Q48P-C	Discontinued	3/31/2022
BPM15-150-Q12-C	In Production	N/A
BPM15-150-Q12N-C	Discontinued	3/31/2022
BPM15-150-Q12P-C	In Production	N/A
BPM15-150-Q48-C	In Production	N/A
BPM15-150-Q48N-C	In Production	N/A
BPM15-150-Q48P-C	Discontinued	3/31/2022

muRata P- Murata Power Solutions Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-050-Q12

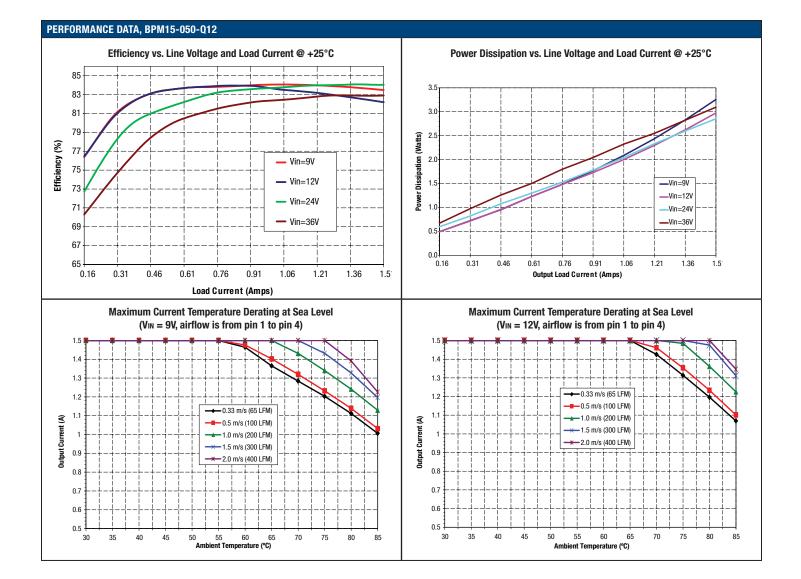
ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		36	Vdc
Input Voltage, Transient	100 mS max. duration			50	Vdc
solation Voltage	Input to output			1600	Vdc
Dn/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Dutput Power		1.48		15.15	W
Dutput Current	Current-limited, no damage, short-circuit protected	0.15		1.5	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	°C
Absolute maximums are stress ratings. Exposu	ire of devices to greater than any of these condition	ions may adversely a	ffect long-term reliability. P	Proper operation unde	r conditions oth
han those listed in the Performance/Functiona	al Specifications Table is not implied or recommen	nded.			
NPUT					
perating Voltage Range		9	24	36	Vdc
Recommended External Fuse	Fast blow			4	A
start-up Threshold	Rising input voltage	8	8.5	9	Vdc
Indervoltage Shutdown (50% load)	Falling input voltage	7.7	8.2	8.7	Vdc
nternal Filter Type			C	0.1	
nput Current	1		v		
Full Load Input Current	Vin = nominal		0.74	0.77	A
Low Line Input Current	Vin = minimum		2.03	2.09	A
Inrush Transient	VIII = IIIIIIIIUIII		0.05	2.09	A2-Sec.
Short Circuit Input Current			0.05	0.1	
	laut minimum unit ON				A
Minimum Load Input Current	lout = minimum, unit = ON		90	150	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
Reflected (Back) Ripple Current 2	Measured at input with specified filter		25		mA, p-p
ENERAL and SAFETY					
fficiency	Vin = 24V, full load	82.5	84		%
	Vin = min., full load	80.5	82		%
solation					
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance			10		MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1		Approved		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		5.8		Hours x 10
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		330	360	390	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			50	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		250	300	µSec
Dynamic Load Peak Deviation	same as above		±100	±150	mV
EATURES and OPTIONS	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Remote On/Off Control 3					
N" suffix					
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain	10	1	ſJ	
					mA
"P" suffix	ON Din anon	10		15	M
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, OFF state	OFF = Ground pin	-0.7		0.8	V
Control Current	Open collector/drain		1		mA

BPM15 Series

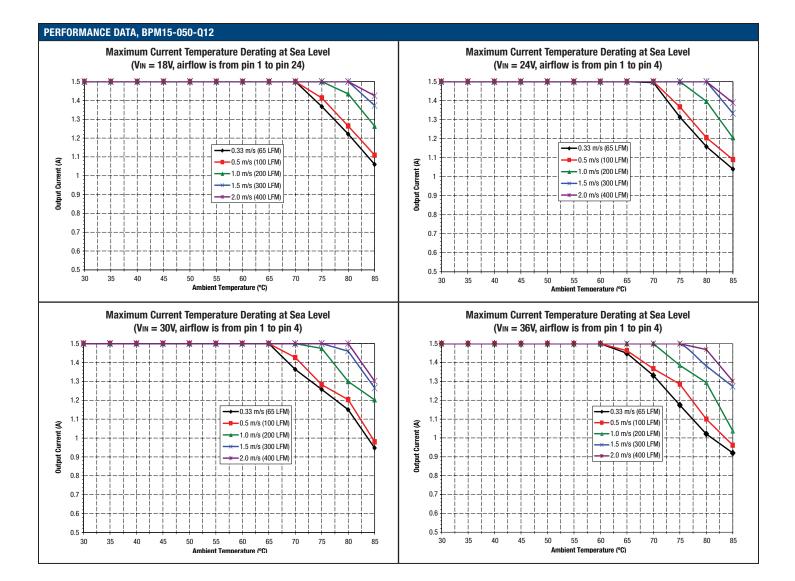
Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-050-Q12 (CONT.)

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.48	15	15.15	W
Voltage	· ·		•		
Nominal Output Voltage	No trim	±4.95	±5	±5.05	Vdc
Setting Accuracy	At 50% load, no trim		±1		% of Vnom
Overvoltage Protection	Via magnetic feedback	5.6	6.5	7	Vdc
Current	· ·				
Output Current Range		±0.15	±1.5	±1.5	Α
Current Limit Inception	98% of Vnom., after warmup	±1.65	±2.8	±3.3	Α
Short Circuit	· · · · ·				
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 24V			±0.25	% of Vout
Ripple and Noise	5 Hz - 20 MHz BW, Vin = 24V		60	100	mV pk-pk
Maximum Capacitive Loading	Low ESR, 0.02 Ω max			520	μF
MECHANICAL					· ·
Outline Dimensions			1 x 1 x 0.40		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.16		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		93	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	٥C
Thermal Protection/Shutdown	Measured in center	120	130	140	0°
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		


Notes

 \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 μF , electrolytic.


@~ Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus = 220 $\mu F,$ Cin = 33 μF and Lbus = 12 $\mu H.$

The Remote On/Off Control is referred to -Vin.

BPM15 Series

muRata Ps Murata Power Solutions Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-120-Q12

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		36	Vdc
nput Voltage, Transient	100 mS max. duration			50	Vdc
Isolation Voltage	Input to output			1600	Vdc
On/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.48		15.15	W
Dutput Current	Current-limited, no damage, short-circuit protected	0.0625		0.625	А
Storage Temperature Range	Vin = Zero (no power)	-55		125	C
Absolute maximums are stress ratings. Exposure	of devices to greater than any of these conditions m	ay adversely affect lor	ng-term reliability. Proper ope	eration under conditions	s other than thos
isted in the Performance/Functional Specification	ns Table is not implied or recommended.				
NPUT					
Dperating Voltage Range		9	24	36	Vdc
Recommended External Fuse	Fast blow			4	A
Start-up Threshold	Rising input voltage	8	8.5	9	Vdc
Indervoltage Shutdown (50% load)	Falling input voltage	7.7	8.2	8.7	Vdc
nternal Filter Type			C	-	
nput Current			-		1
Full Load Input Current	Vin = nominal		0.74	0.77	Α
Low Line Input Current	Vin = minimum		1.98	2.05	A
Inrush Transient			0.05	2.00	A2-Sec.
Short Circuit Input Current			0.05	0.1	A
No Load Input Current	lout = minimum, unit=ON		95	125	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
	Measured at input with specified filter		30	2	
Reflected (Back) Ripple Current ② GENERAL and SAFETY	Measured at input with specified liner		30		mA, p-p
		00	04.0		0(
fficiency	Vin = 24V, full load	82	84.3		%
-	Vin = min., full load	82	84		%
solation					
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance		10			MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1		Approved		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		7		Hours x 10
DYNAMIC CHARACTERISTICS					
ixed Switching Frequency		295	325	355	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			60	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		250	300	µSec
Dynamic Load Peak Deviation	same as above		±150	±250	mV
EATURES and OPTIONS					
Remote On/Off Control ③					
'N" suffix					
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain	10	1	10	mA
'P" suffix			1		IIIA
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, ON state Positive Logic, OFF state	OFF = Ground pin	-0.7			V
	Open collector/drain	-0.7		0.8	-
Control Current	Open collector/drain		1		mA

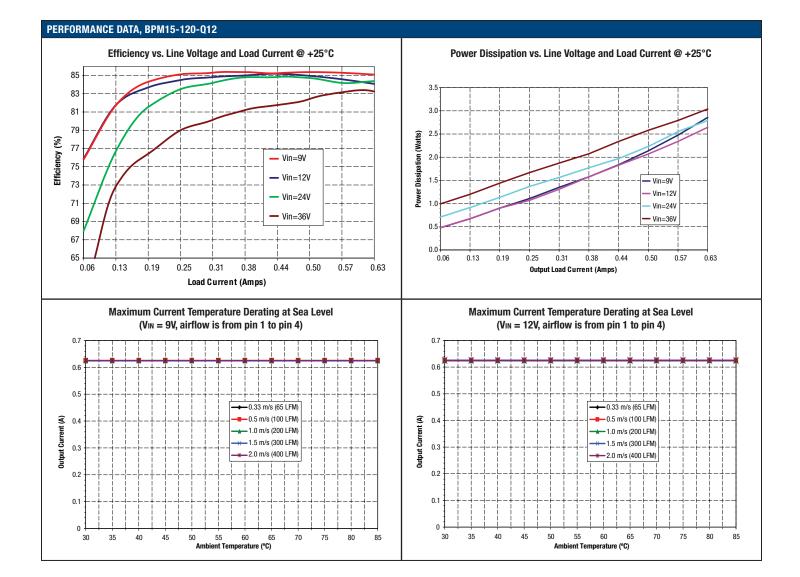
BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

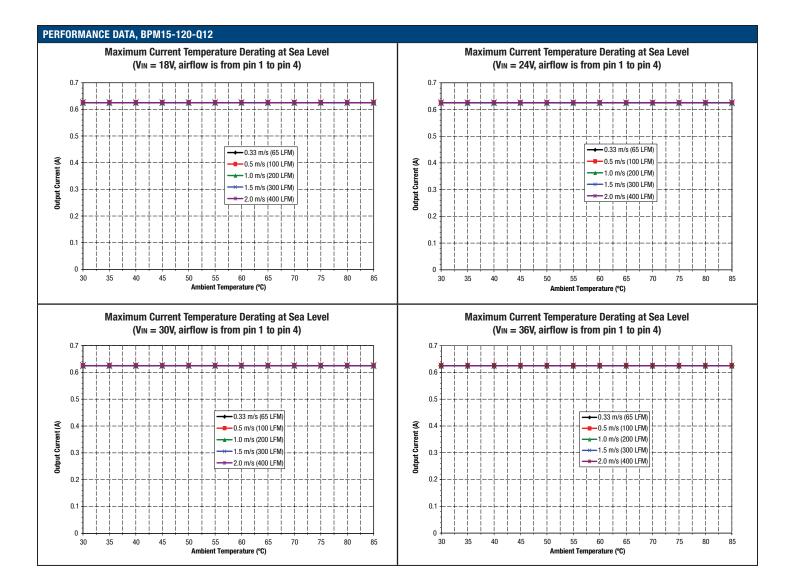
FUNCTIONAL SPECIFICATIONS, BPM15-120-Q12 (CONT.)

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.48	15	15.15	W
Voltage					
Nominal Output Voltage	No trim	±11.88	±12	±12.12	Vdc
Setting Accuracy	At 50% load, no trim		±1		% of Vnom
Overvoltage Protection	Via magnetic feedback	15	16	16.5	Vdc
Current					
Output Current Range		±0.0625	±0.625	±0.625	A
Current Limit Inception	98% of Vnom., after warmup	±0.75	±1.025	±1.30	Α
Short Circuit			· · ·		·
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	А
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation	· · · ·				
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 24V			±0.25	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin = 24V		80	120	mV pk-pk
Maximum Capacitive Loading	Low ESR, 0.02 ohms max			520	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.40		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.16		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		108	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	120	130	140	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes


 \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 $\mu F.$

② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is


Cbus = 220 $\mu\text{F},$ Cin = 33 μF and Lbus = 12 $\mu\text{H}.$

③ The Remote On/Off Control is referred to -Vin.

BPM15 Series

muRata Ps Murata Power Solutions Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-150-Q12

Conditions ①	Minimum	Typical/Nominal	Maximum	Units
	0		36	Vdc
100 mS max. duration			50	Vdc
Input to output			1600	Vdc
Power on, referred to -Vin	0		15	Vdc
	1.485		15.15	W
Current-limited, no damage, short-circuit protected	0.05		0.5	A
Vin = Zero (no power)	-55		125	°C
	ay adversely affect lor	ng-term reliability. Proper ope	ration under condition	s other than tho
ns Table is not implied or recommended.				
	9	24	36	Vdc
Fast blow			4	A
	8	8.5	9	Vdc
<u> </u>				Vdc
· · ··································				
1		0		
Vin – nominal		0.74	0.77	A
				A
			2.03	A2-Sec.
			0.1	
				A
lout = minimum, unit=ON				mA
			2	mA
Measured at input with specified filter		10		mA, p-p
Vin = 24V, full load	82.5	84.5		%
Vin = min., full load	83.0	85.0		%
Input to output			1600	Vdc
	10			MΩ
		1500		pF
Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1		Approved		
Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		6.7		Hours x 10
	300	330	360	KHz
Power on to Vout regulated			50	mS
				mS
50-75-50% load step, settling time to within		250	300	μSec
		±100	±200	mV
ON Crowned air	0.7		0.0	V
				V
	10	· · · · · · · · · · · · · · · · · · ·	15	V
Open collector/drain		1		mA
ON = Pin open	10		15	V
ON = Pin open OFF = Ground pin Open collector/drain	<u>10</u> -0.7		15 0.8	V V
	Input to output Power on, referred to -Vin Current-limited, no damage, short-circuit protected Vin = Zero (no power) of devices to greater than any of these conditions mains Table is not implied or recommended. Fast blow Rising input voltage Falling input voltage Falling input voltage Vin = nominal Vin = minimum Iout = minimum, unit=ON Measured at input with specified filter Vin = 24V, full load Vin = min., full load Vin = min., full load Vin = min., full load Vin = min., full so Gertified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1 Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C Power on to Vout regulated Remote ON to Vout regulated So-75-50% load step, settling time to within 1% of Vout same as above ON = Ground pin OFF = Pin open	100 mS max. duration Input to output Power on, referred to -Vin 0 1.485 Current-limited, no damage, short-circuit protected 0.05 Vin = Zero (no power) -55 of devices to greater than any of these conditions may adversely affect for is Table is not implied or recommended. 9 Fast blow Rising input voltage 8 Falling input voltage 7.7 Vin = nominal Vin = minimum Iout = minimum, unit=0N Iout = minimum, unit=0N Measured at input with specified filter Vin = 24V, full load 82.5 Vin = min., full load 83.0 Input to output 10 Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1 Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C 300 Power on to Vout regulated 300 Power on to Vout regulated 300 Power on to Vout regulated 50-75-50% load step, settling time to within 1% of Vout 1% of Vout same as above	100 mS max. duration Input to output Power on, referred to -Vin 0 1.485 0.05 Current-limited, no damage, short-circuit protected 0.05 Vin = Zero (no power) -55 of devices to greater than any of these conditions may adversely affect long-term reliability. Proper ope is Table is not implied or recommended. Past blow 9 Rising input voltage 8 Rating input voltage 7.7 8.2 C Vin = nominal 0.74 Vin = minimum 1.96 Un = minimum, unit=ON 0.05 lout = minimum, unit=ON 100 Vin = 244, full load 82.5 84.5 84.5 Vin = minimum, unit=ON 100 Vin = 244, full load 82.5 84.5 84.5 Vin = min., full load 83.0 85.0 10 Vin = min., full load 83.0 85.0 10 Per Telcordia SR32, issue 1, class 3, ground fixed, Tambient = +25°C 6.7 300 330	100 mS max. duration 50 Input to output 1600 Power on, referred to -Vin 0 1.485 15.15 Current-limited, no damage, short-circuit protected 0.05 0.5 Vin = Zero (no power) -55 125 of devices to greater than any of these conditions may adversely affect long-term reliability. Proper operation under condition: table is not implied or recommended. 9 24 36 Fast blow 9 24 36 4 Rising input voltage 8 8.5 9 Falling input voltage 7.7 8.2 8.7 C 0.05 0.1 0.05 Uin = nominal 0.74 0.77 0.1 0.05 0.1 100 130 Iout = minimum, unit=0N 100 130 130 Win = 24V, full load 82.5 84.5 1600 Vin = 24V, full load 83.0 85.0 1600 Iout = minimum, unit=0N 10 1600 1600 Uin = 24V, full load 82.5 <

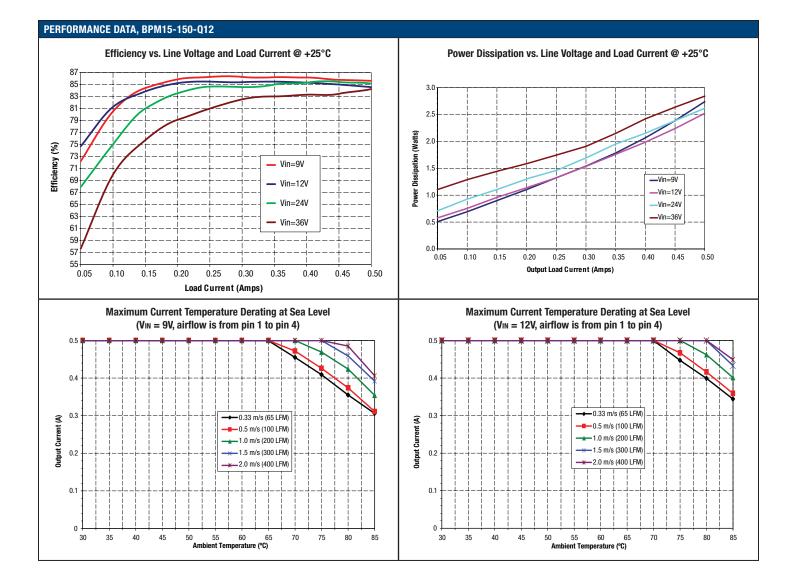
BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

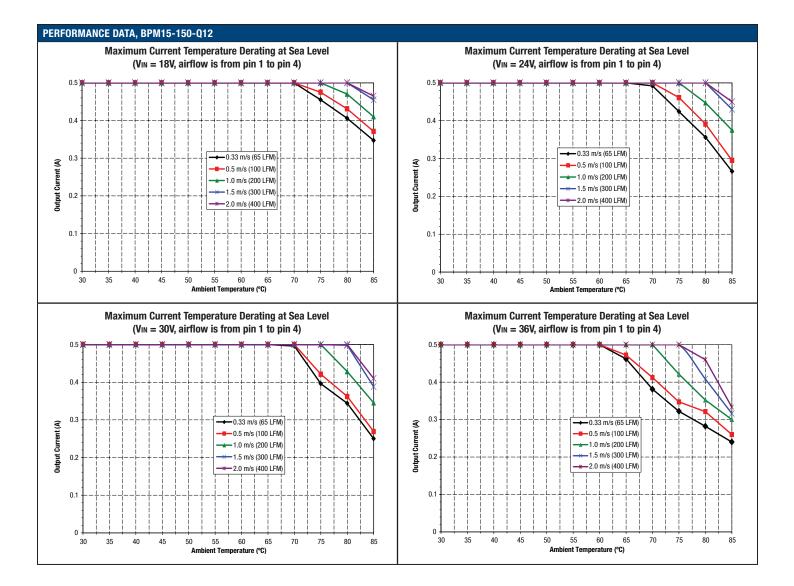
FUNCTIONAL SPECIFICATIONS, BPM15-150-Q12 (CONT.)

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.485	15.00	15.15	W
Voltage					
Nominal Output Voltage	No trim	14.850	15.00	15.150	Vdc
Setting Accuracy	At 50% load, no trim		1		% of Vnom
Overvoltage Protection	Via magnetic feedback	16.8	18	20.5	Vdc
Current	·				·
Output Current Range		±0.05	±0.5	±0.5	A
Current Limit Inception	98% of Vnom., after warmup	±0.7	±0.95	±1.2	A
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.		±0.05	±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 24V		±0.05	±0.25	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=24V		60	100	mV pk-pk
Maximum Capacitive Loading	Low ESR, 0.02 ohms max			520	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.40		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.16		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		91	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	120	130	140	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes


 \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 $\mu F.$

Cbus = 220 μ F, Cin = 33 μ F and Lbus = 12 μ H.


③ The Remote On/Off Control is referred to -Vin.

② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is

BPM15 Series

muRata P- Murata Power Solutions Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-050-Q48

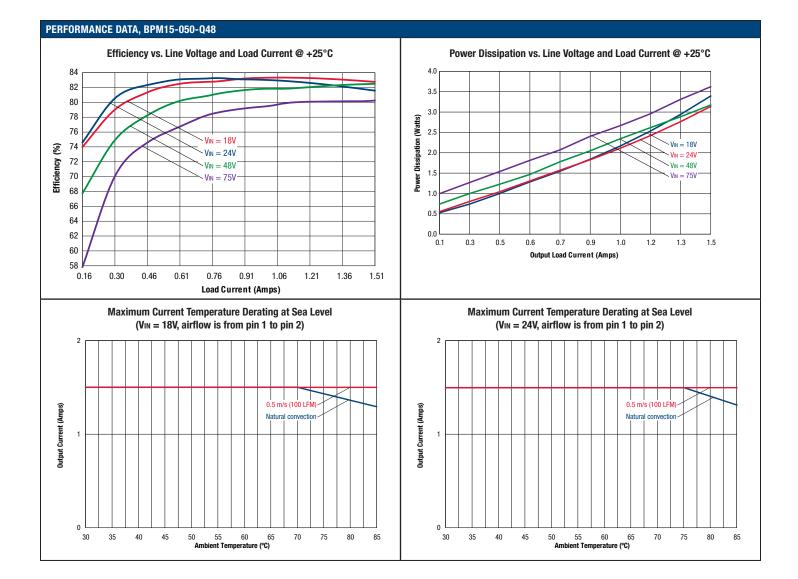
ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
Input Voltage, Continuous		0		75	Vdc
Input Voltage, Transient	100 mS max. duration			100	Vdc
Isolation Voltage	Input to output			1600	Vdc
On/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.48		15.23	W
Output Current	Current-limited, no damage, short-circuit protected	0.15		1.5	А
Storage Temperature Range	Vin = Zero (no power)	-55		125	C
Absolute maximums are stress ratings. Exposu	re of devices to greater than any of these conditi	ons may adversely a	ffect long-term reliability. P	roper operation unde	r conditions oth
han those listed in the Performance/Functiona	I Specifications Table is not implied or recommer	nded.			
INPUT					
Dperating Voltage Range		18	48	75	Vdc
Recommended External Fuse	Fast blow			2	A
Start-up Threshold	Rising input voltage	15.5	16.5	17.5	Vdc
Indervoltage Shutdown (50% load)	Falling input voltage	15	16	17	Vdc
nternal Filter Type	- · · · ·		C		
nput Current	·		·		
Full Load Input Current	Vin = nominal		0.384	0.396	A
Low Line Input Current	Vin = minimum		1.019	1.057	A
Inrush Transient			0.05		A2-Sec.
Short Circuit Input Current			0.05	0.1	A
Minimum Load Input Current	lout = minimum, unit = ON		50	100	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
Reflected (Back) Ripple Current @	Measured at input with specified filter		50		mA, p-p
GENERAL and SAFETY			00		nn, p p
	Vin = 48V, full load	80	81.4		%
Efficiency	Vin = viv, full load	80	81.8		%
solation	VIII – IIIII., Idii lodd	00	01.0		70
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance			10	1000	ΜΩ
Isolation Capacitance			1500		pF
Isolation obpacitance	Certified to UL-60950-1, CSA-C22.2 No.		1500		pi
Safety	60950-1, IEC/60950-1, 2nd edition, with AM1		Approved		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		5		Hours x 10
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		275	305	335	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			50	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		100	200	µSec
Dynamic Load Peak Deviation	same as above		±100	±150	mV
FEATURES and OPTIONS					
Remote On/Off Control 3					
'N" suffix					
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain	10	1		mA
"P" suffix					1 1103
Positive Logic, ON state	ON = Pin open	10		15	V
Positive Logic, OFF state	OFF = Ground pin	-0.7		0.8	V
Control Current	Open collector/drain	0.7	1	0.0	mA
	opon concetor/uran		I		111/1

BPM15 Series

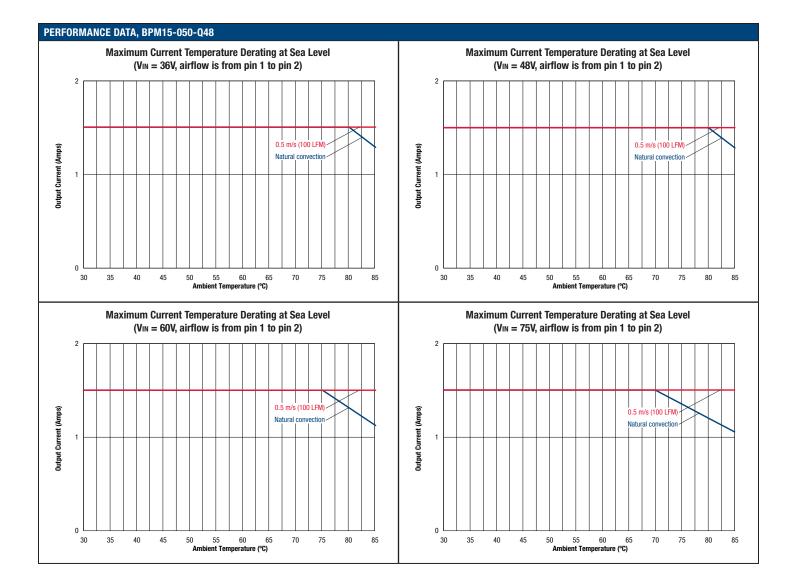
Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-050-Q48 (CONT.)

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.48	15	15.23	W
Voltage	· · · · · · · · · · · · · · · · · · ·				
Nominal Output Voltage	No trim	±4.925	±5	±5.075	Vdc
Setting Accuracy	At 50% load, no trim		±1.5		% of Vnom
Overvoltage Protection	Via magnetic feedback	5.6	7	8	Vdc
Current	· ·				
Output Current Range		±0.15	±1.5	±1.5	Α
Current Limit Inception	98% of Vnom., after warmup	±1.7	±2.7	±3.0	Α
Short Circuit	· · · · ·				
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 48V			±0.25	% of Vout
Ripple and Noise	5 Hz - 20 MHz BW, Vin = 48V		60	100	mV pk-pk
Maximum Capacitive Loading	Low ESR, 0.02 Ω max			1000	μF
MECHANICAL					· ·
Outline Dimensions			1 x 1 x 0.40		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.16		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		93	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	٥C
Thermal Protection/Shutdown	Measured in center	120	130	140	٥°
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		


Notes

 \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 $\mu F.$


@~ Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is Cbus = 220 $\mu F,$ Cin = 33 μF and Lbus = 12 $\mu H.$

The Remote On/Off Control is referred to -Vin.

muRata Ps Murata Power Solutions

muRata Ps Murata Power Solutions Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-120-Q48

ABSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
nput Voltage, Continuous		0		75	Vdc
nput Voltage, Transient	100 mS max. duration			100	Vdc
solation Voltage	Input to output			1600	Vdc
Dn/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.48		15.15	W
Dutput Current	Current-limited, no damage, short-circuit protected	0.0625		0.625	A
Storage Temperature Range	Vin = Zero (no power)	-55		125	C°
bsolute maximums are stress ratings. Exposure	of devices to greater than any of these conditions m	nay adversely affect lor	ng-term reliability. Proper ope	eration under conditions	other than tho
isted in the Performance/Functional Specification	ns Table is not implied or recommended.				
NPUT					
Dperating Voltage Range		18	48	75	Vdc
Recommended External Fuse	Fast blow			2	A
Start-up Threshold	Rising input voltage	15.5	17	17.9	Vdc
Indervoltage Shutdown (50% load)	Falling input voltage	15	16.2	17.5	Vdc
nternal Filter Type	·		C		
nput Current	1				
Full Load Input Current	Vin = nominal		0.368	0.38	A
Low Line Input Current	Vin = minimum		0.99	1.01	A
Inrush Transient	VIII = IIIIIIIIIIIIIII		0.05	1.01	A2-Sec.
				0.1	
Short Circuit Input Current			0.05	0.1	A
No Load Input Current	lout = minimum, unit=ON		50	100	mA
Shut-Down Input Current (Off, UV, OT)			1	2	mA
Reflected (Back) Ripple Current @	Measured at input with specified filter		40		mA, p-p
SENERAL and SAFETY					
Efficiency	Vin = 48V, full load	83	85		%
	Vin = min., full load	83	84.5		%
solation					
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance		10			MΩ
Isolation Capacitance			1500		pF
Safety	Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1		Approved		
Calculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		5		Hours x 10
DYNAMIC CHARACTERISTICS					
Fixed Switching Frequency		290	320	350	KHz
Startup Time	Power on to Vout regulated			50	mS
Startup Time	Remote ON to Vout regulated			60	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		150	250	μSec
Dynamic Load Peak Deviation	same as above		±100	±200	mV
EATURES and OPTIONS					
Remote On/Off Control ③					
'N" suffix					
Negative Logic, ON state	ON Cround sin	0.7		0.0	V
	ON = Ground pin	-0.7 10		0.8	
				15	V
Negative Logic, OFF state	OFF = Pin open	10			
Negative Logic, OFF state Control Current	OFF = Pin open Open collector/drain	10	1		mA
Negative Logic, OFF state Control Current 'P" suffix	Open collector/drain		1		
Negative Logic, OFF state Control Current 'P" suffix Positive Logic, ON state	Open collector/drain ON = Pin open	10	1	15	V
Negative Logic, OFF state Control Current 'P" suffix	Open collector/drain		1		

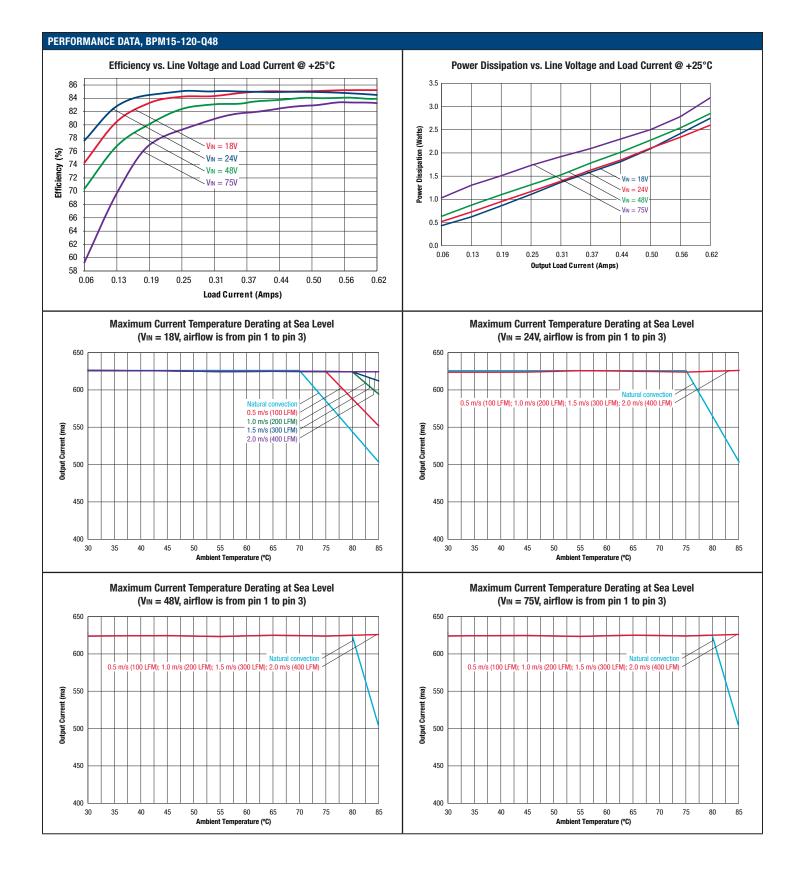
BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-120-Q48 (CONT.)

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.48	15	15.15	W
Voltage					
Nominal Output Voltage	No trim	±11.88	±12	±12.12	Vdc
Setting Accuracy	At 50% load, no trim		±1		% of Vnom
Overvoltage Protection	Via magnetic feedback	14.9	16	18	Vdc
Current					
Output Current Range		±0.0625	±0.625	±0.625	Α
Current Limit Inception	98% of Vnom., after warmup	±0.75	±1.2	±1.45	A
Short Circuit					
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation	· · · ·				
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.			±0.25	% of Vout
Load Regulation	lout = min. to max., $Vin = 48V$			±0.25	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=48V		80	120	mV pk-pk
Maximum Capacitive Loading	Low ESR, 0.02 ohms max			150	μF
MECHANICAL			i		
Outline Dimensions			1 x 1 x 0.40		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.16		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	С°
Operating Case Temperature Range	No derating	-40		108	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	0°
Thermal Protection/Shutdown	Measured in center	120	130	140	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes


 \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 $\mu F.$

② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is

Cbus = 220 μ F, Cin = 33 μ F and Lbus = 12 μ H.

③ The Remote On/Off Control is referred to -Vin.

BPM15 Series

muRata Ps Murata Power Solutions Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

FUNCTIONAL SPECIFICATIONS, BPM15-150-Q48

BSOLUTE MAXIMUM RATINGS	Conditions ①	Minimum	Typical/Nominal	Maximum	Units
nput Voltage, Continuous		0		75	Vdc
nput Voltage, Transient	100 mS max. duration			100	Vdc
solation Voltage	Input to output			1600	Vdc
n/Off Remote Control	Power on, referred to -Vin	0		15	Vdc
Output Power		1.485		15.15	W
)utput Current	Current-limited, no damage, short-circuit protected	0.05		0.5	A
storage Temperature Range	Vin = Zero (no power)	-55		125	°C
bsolute maximums are stress ratings. Exposure	of devices to greater than any of these conditions m	ay adversely affect lor	ng-term reliability. Proper ope	ration under condition	s other than tho
sted in the Performance/Functional Specificatior	ns Table is not implied or recommended.				
NPUT					
perating Voltage Range		18	48	75	Vdc
ecommended External Fuse	Fast blow			2	A
tart-up Threshold	Rising input voltage	16.25	16.8	17.5	Vdc
Indervoltage Shutdown (50% load)	Falling input voltage	15	16	17	Vdc
nternal Filter Type	- · · ·		С		
nput Current	1				1
Full Load Input Current	Vin = nominal		0.36	0.38	А
Low Line Input Current	Vin = minimum		0.97	1.01	A
Inrush Transient			0.05	1.01	A2-Sec.
Short Circuit Input Current			0.05	0.1	A
No Load Input Current	lout = minimum, unit=ON		50	100	mA
Shut-Down Input Current (Off, UV, OT)			1	2	
	Management of impact with an acified filter			Ζ	mA
eflected (Back) Ripple Current ②	Measured at input with specified filter		35		mA, p-p
ENERAL and SAFETY					
fficiency	Vin = 48V, full load	83.0	86.0		%
-	Vin = min., full load	83.0	85.5		%
solation					
Isolation Voltage	Input to output			1600	Vdc
Isolation Resistance		10			MΩ
Isolation Capacitance			1500		pF
afety	Certified to UL-60950-1, CSA-C22.2 No. 60950-1, IEC/60950-1, 2nd edition, with AM1		Approved		
alculated MTBF	Per Telcordia SR332, issue 1, class 3, ground fixed, Tambient = +25°C		5		Hours x 10
YNAMIC CHARACTERISTICS					
ixed Switching Frequency		290	320	350	KHz
Startup Time	Power on to Vout regulated			50	mS
tartup Time	Remote ON to Vout regulated			60	mS
Dynamic Load Response	50-75-50% load step, settling time to within 1% of Vout		250	300	μSec
ynamic Load Peak Deviation	same as above		±150	±250	mV
EATURES and OPTIONS					
emote On/Off Control 3					
N" suffix					
	ON Cround nin	0.7		0.0	V
Negative Logic, ON state	ON = Ground pin	-0.7		0.8	V
Negative Logic, OFF state	OFF = Pin open	10		15	V
Control Current	Open collector/drain		1		mA
P" suffix					
Positive Logic, ON state	ON = Pin open	10		15	V
	ON = Pin open OFF = Ground pin Open collector/drain	10 -0.7		15 0.7	V V

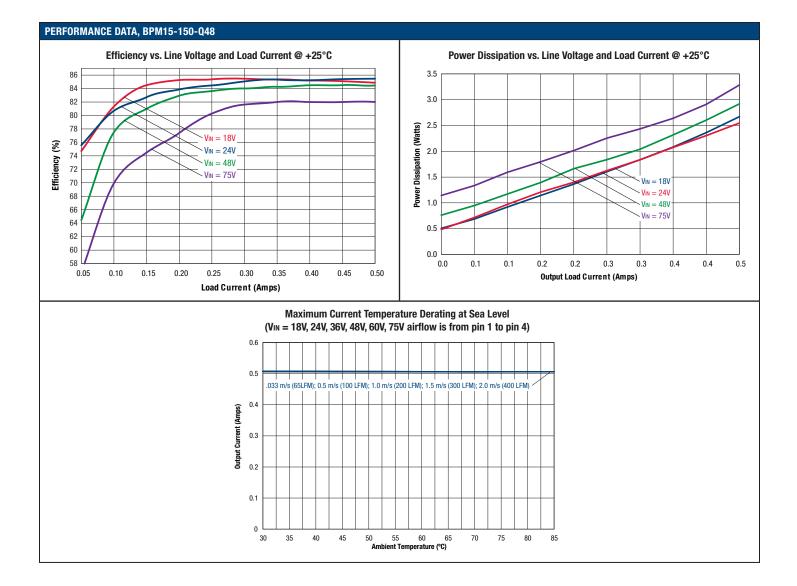
BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

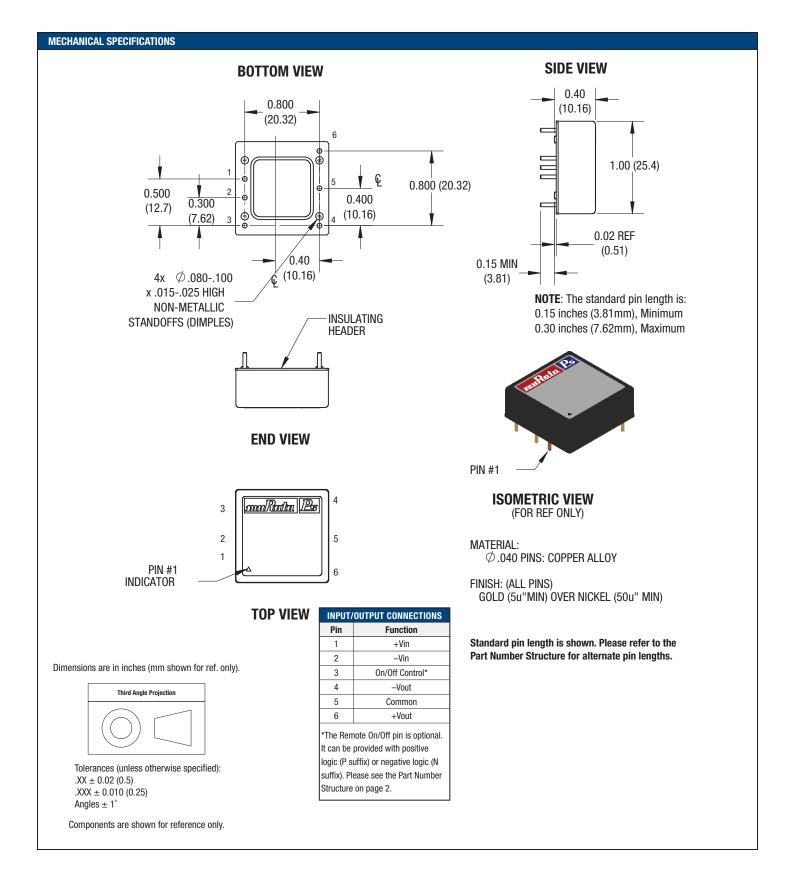
FUNCTIONAL SPECIFICATIONS, BPM15-150-Q48 (CONT.)

OUTPUT	Conditions ① ③	Minimum	Typical/Nominal	Maximum	Units
Total Output Power		1.485	15.00	15.15	W
Voltage					
Nominal Output Voltage	No trim	14.850	15.00	15.150	Vdc
Setting Accuracy	At 50% load, no trim		1		% of Vnom
Overvoltage Protection	Via magnetic feedback	16	19	22	Vdc
Current					
Output Current Range		±0.05	±0.5	±0.5	A
Current Limit Inception	98% of Vnom., after warmup	±0.6	±1.1	±1.5	А
Short Circuit	· · · · · ·				
Short Circuit Current	Hiccup technique, autorecovery within ±1.25% of Vout			0.3	A
Short Circuit Duration (remove short for recovery)	Output shorted to ground, no damage		Continuous		
Short circuit protection method	Current limiting				
Regulation					
Line Regulation	Vin = min. to max., Vout = nom., lout = nom.		±0.05	±0.25	% of Vout
Load Regulation	lout = min. to max., Vin = 48V		±0.075	±0.275	% of Vout
Ripple and Noise	5 Hz- 20 MHz BW, Vin=48V		80	120	mV pk-pk
Maximum Capacitive Loading	Low ESR, 0.02 ohms max			150	μF
MECHANICAL					
Outline Dimensions			1 x 1 x 0.40		Inches
(Please refer to outline drawing)	WxLxH		25.4 x 25.4 x 10.16		mm
Weight			0.69		Ounces
			19.56		Grams
Through Hole Pin Diameter			0.04		Inches
			1.016		mm
Through Hole Pin Material			Copper alloy		
TH Pin Plating Metal and Thickness	Nickel subplate		50		µ-inches
	Gold overplate		5		µ-inches
ENVIRONMENTAL					
Operating Ambient Temperature Range	See derating	-40		85	°C
Operating Case Temperature Range	No derating	-40		91	°C
Case Material	Tin plated steel with black powder coat				
Storage Temperature	Vin = Zero (no power)	-55		125	°C
Thermal Protection/Shutdown	Measured in center	120	130	140	°C
Electromagnetic Interference	External filter is required				
Conducted, EN55022/CISPR22			В		Class
RoHS rating			RoHS-6		

Notes

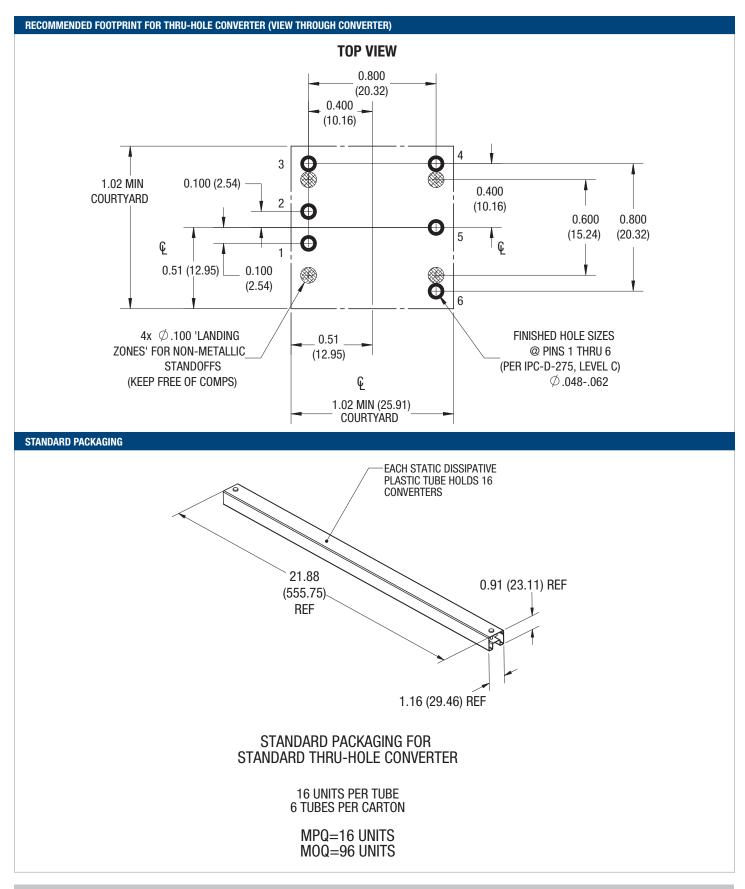

 \odot Unless otherwise noted, all specifications are at nominal input voltage, nominal output voltage and full load. General conditions are +25° Celsius ambient temperature, near sea level altitude, natural convection airflow. All models are tested and specified with external parallel 1 μF and 10 μF output capacitors. The external input capacitor is 100 $\mu F.$

Cbus = 220 μ F, Cin = 33 μ F and Lbus = 12 μ H.


③ The Remote On/Off Control is referred to -Vin.

② Input (back) ripple current is tested and specified over 5 Hz to 20 MHz bandwidth. Input filtering is

BPM15 Series



BPM15 Series

BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

www.murata-ps.com/support

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

TECHNICAL NOTES

Input Fusing

Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current-limited. For greatest safety, we recommend a fast blow fuse installed in the ungrounded input supply line.

The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard.

Input Under-Voltage Shutdown and Start-Up Threshold

Under normal start-up conditions, converters will not begin to regulate properly until the rising input voltage exceeds and remains at the Start-Up Threshold Voltage (see Specifications). Once operating, converters will not turn off until the input voltage drops below the Under-Voltage Shutdown Limit. Subsequent restart will not occur until the input voltage rises again above the Start-Up Threshold. This built-in hysteresis prevents any unstable on/off operation at a single input voltage.

Users should be aware however of input sources near the Under-Voltage Shutdown whose voltage decays as input current is consumed (such as poorly regulated capacitor inputs), the converter shuts off and then restarts as the external capacitor recharges. Such situations could oscillate. To prevent this, make sure the operating input voltage is well above the UV Shutdown voltage AT ALL TIMES.

Start-Up Delay

Assuming that the output current is set at the rated maximum, the Vin to Vout Start-Up Delay (see Specifications) is the time interval between the point when the rising input voltage crosses the Start-Up Threshold and the fully loaded regulated output voltage enters and remains within its specified regulation band. Actual measured times will vary with input source impedance, external input capacitance, input voltage slew rate and final value of the input voltage as it appears at the converter.

These converters include a soft start circuit to moderate the duty cycle of the PWM controller at power up, thereby limiting the input inrush current.

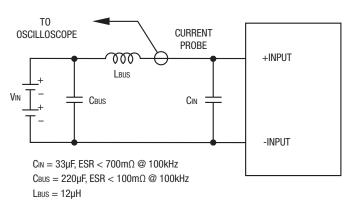
The On/Off Remote Control interval from inception to Vout regulated assumes that the converter already has its input voltage stabilized above the Start-Up Threshold before the On command. The interval is measured from the On command until the output enters and remains within its specified accuracy band. The specification assumes that the output is fully loaded at maximum rated current.

Recommended Input Filtering

The user must assure that the input source has low AC impedance to provide dynamic stability and that the input supply has little or no inductive content, including long distributed wiring to a remote power supply. The converter will operate with no additional external capacitance if these conditions are met.

For best performance, we recommend installing a low-ESR electrolytic capacitor immediately adjacent to the converter's input terminals. Initial suggested capacitor values are 10 to 22 μ F, rated at twice the expected maxi-

mum input voltage. Make sure that the input terminals do not go below the undervoltage shutdown voltage at all times. More input bulk capacitance may be added in parallel (either electrolytic or tantalum) if needed.


Recommended Output Filtering

The converter will achieve its rated output ripple and noise with no additional external capacitor. However, the user may install more external output capacitance to reduce the ripple even further or for improved dynamic response. Again, use low-ESR ceramic (Murata GRM32 series) or polymer capacitors. Initial values of 10 to 47 μ F may be tried, either single or multiple capacitors in parallel. Mount these close to the converter. Measure the output ripple under your load conditions.

Use only as much capacitance as required to achieve your ripple and noise objectives. Excessive capacitance can make step load recovery sluggish or possibly introduce instability. Do not exceed the maximum rated output capacitance listed in the specifications.

Input Ripple Current and Output Noise

All models in this converter series are tested and specified for input reflected ripple current and output noise using designated external input/output components, circuits and layout as shown in the figures below. The Cbus and Lbus components simulate a typical DC voltage bus. Please note that the values of Cin, Lbus and Cbus may vary according to the specific converter model.

Figure 2: Measuring Input Ripple Current

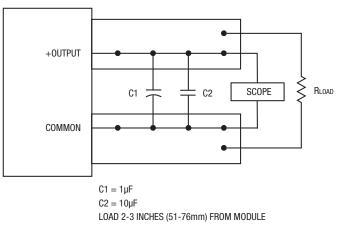


Figure 3: Measuring Output Ripple and Noise (PARD)

BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

Minimum Output Loading Requirements

All models regulate within specification and are stable under 10% minimum load to full load conditions. Operation under no load might however slightly increase output ripple and noise.

Thermal Shutdown

To protect against thermal overstress, these converters include thermal shutdown circuitry. If environmental conditions cause the temperature of the DC-DC's to rise above the Operating Temperature Range up to the shutdown temperature, an on-board electronic temperature sensor will power down the unit. When the temperature decreases below the turn-on threshold, the converter will automatically restart. There is a small amount of temperature hysteresis to prevent rapid on/off cycling.

CAUTION: If you operate too close to the thermal limits, the converter may shut down suddenly without warning. Be sure to thoroughly test your application to avoid unplanned thermal shutdown.

Temperature Derating Curves

The graphs in this data sheet illustrate typical operation under a variety of conditions. The Derating curves show the maximum continuous ambient air temperature and decreasing maximum output current which is acceptable under increasing forced airflow measured in Linear Feet per Minute ("LFM"). Note that these are AVERAGE measurements. The converter will accept brief increases in current or reduced airflow as long as the average is not exceeded.

Note that the temperatures are of the ambient airflow, not the converter itself which is obviously running at higher temperature than the outside air. Also note that very low flow rates (below about 65 LFM) are similar to "natural convection", that is, not using fan-forced airflow.

Murata Power Solutions makes Characterization measurements in a closed cycle wind tunnel with calibrated airflow. We use both thermocouples and an infrared camera system to observe thermal performance.

CAUTION: If you exceed these Derating guidelines, the converter may have an unplanned Over Temperature shut down. Also, these graphs are all collected near Sea Level altitude. Be sure to reduce the derating for higher altitude.

Output Current Limiting

Current limiting inception is defined as the point at which full power falls below the rated tolerance. See the Performance/Functional Specifications. Note particularly that the output current may briefly rise above its rated value in normal operation as long as the average output power is not exceeded. This enhances reliability and continued operation of your application. If the output current is too high, the converter will enter the short circuit condition.

Output Short Circuit Condition

When a converter is in current-limit mode, the output voltage will drop as the output current demand increases. If the output voltage drops too low (approximately 98% of nominal output voltage for most models), the PWM controller will shut down. Following a time-out period, the PWM will restart, causing the output voltage to begin rising to its appropriate value. If the short-circuit condition persists, another shutdown cycle will initiate. This rapid on/off cycling is called "hiccup mode". The hiccup cycling reduces the average output current, thereby preventing excessive internal temperatures and/or component damage.

Remote On/Off Control

On the input side, a remote On/Off Control can be specified with either positive or negative logic as follows:

<u>Positive</u>: Models equipped with Positive Logic are enabled when the On/Off pin is left open or is pulled high to +15VDC with respect to –VIN. An internal bias current causes the open pin to rise to +VIN. Positive-logic devices are disabled when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to –VIN.

<u>Negative</u>: Models with Negative Logic are on (enabled) when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to –VIN.

Dynamic control of the On/Off function must sink the specifi ed signal current when brought low and withstand the specifi ed voltage when brought high. Be aware too that there is a finite time in milliseconds (see Specifi cations) between the time of On/Off Control activation and stable, regulated output. This time will vary slightly with output load type and current and input conditions.

Output Capacitive Load

These converters do not require external capacitance added to achieve rated specifi cations. Users should only consider adding capacitance to reduce switching noise and/or to handle spike current load steps. Install only enough capacitance to achieve your noise and surge response objectives. Excess external capacitance may cause regulation problems and possible oscillation or instability.

The maximum rated output capacitance and ESR specifi cation is given for a capacitor installed immediately adjacent to the converter.

Floating Outputs

Since these are isolated DC-DC converters, their outputs are "fl oating." Any BPM15 model may be confi gured to produce an output of 10V, 24V or 30V (for $\pm 5V$, $\pm 12V$ or $\pm 15V$ models, respectively) by applying the load across the +Output and –Output pins, with either output grounded. The Common pin should be left open. Minimum 10% loading is recommended under these conditions.

Soldering Guidelines

Murata Power Solutions recommends the specifi cations below when installing these converters. These specifi cations vary depending on the solder type. Exceeding these specifi cations may cause damage to the product. Your production environment may differ; therefore please thoroughly review these guidelines with your process engineers.

Wave Solder Operations for through-hole mounted products (THMT)

For Sn/Ag/Cu based solders:	
Maximum Preheat Temperature	115° C.
Maximum Pot Temperature	270° C.
Maximum Solder Dwell Time	7 seconds
For Sn/Pb based solders:	
Maximum Preheat Temperature	105° C.
Maximum Pot Temperature	250° C.
Maximum Solder Dwell Time	6 seconds

BPM15 Series

Encapsulated Isolated Wide Input Bipolar 15-Watt DC-DC Converters

Emissions Performance

Murata Power Solutions measures its products for radio frequency emissions against the EN 55022 and CISPR 22 standards. Passive resistance loads are employed and the output is set to the maximum voltage. If you set up your own emissions testing, make sure the output load is rated at continuous power while doing the tests.

The recommended external input and output capacitors (if required) are included. Please refer to the fundamental switching frequency. All of this information is listed in the Product Specifications. An external discrete filter is installed and the circuit diagram is shown below.

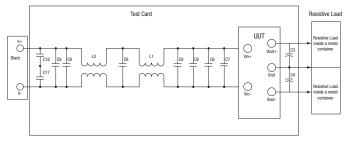
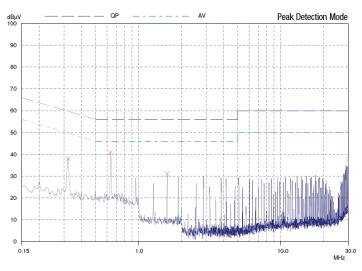
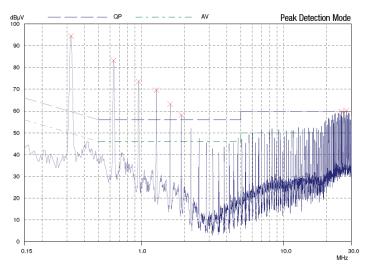


Figure 4. Conducted Emissions Test Circuit


[1] Conducted Emissions Parts List

Reference	Description		
L1	1mH, 6A		
L3	500µH,10A		
C1, C2, C8	2.2µfd		
C7	Electrolytic Capacitor 100µfd, 100V		
C16, C17	.22µfd		
C3, C4	Electrolytic Capacitor 33µfd, 100V		


[2] Conducted Emissions Test Equipment Used

- Rohde & Schwarz EMI Test Receiver (9KHz 1000MHz) ESPC
- Rohde & Schwarz Software ESPC-1 Ver. 2.20
- OHMITE 25W 1 Ohm resistor combinations
- DC Source Programmable DC Power Supply Model 62012P-100-50

[3] Conducted Emissions Test Results

Graph 1. Conducted emissions performance with filter, CISPR 22, Class B, full load, for BPM15-150-Q12P-C

Graph 2. Conducted emissions performance without filter, CISPR 22, Class B, full load, for BPM15-150-Q12P-C

Murata Power Solutions, Inc. 129 Flanders Road, Westborough, MA 01581 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: https://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifi cations are subject to change without notice.