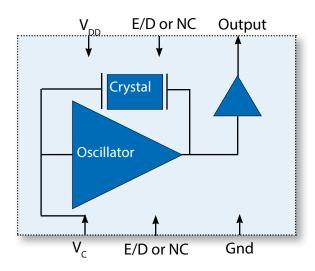


Vectron's VV-701 Voltage Controlled Crystal Oscillator (VCXO) is a quartz stabilized square wave generator with a CMOS output. The VV-701 uses fundamental crystals resulting in low jitter performance and a monolithic IC which improves reliability and reduces cost.


Features

- CMOS output VCXO
- Output Frequencies from 1.544 MHz to 77.760 MHz
- 5.0 or 3.3 V Operation
- High Impedance Control Voltage Option
- Fundamental Crystal Design with Low Jitter Performance
- Output Disable Feature
- · Excellent 20ppm Temperature Stability,
- 0/70°C or -40/85°C Operating Temperature
- Small Industry Standard Package, 7.0x5.0x1.8mm
- Product is free of lead and compliant to EC RoHS Directive

Applications

- SONET/SDH/DWDM
- Ethernet, SynchE
- xDSL, PCMIA
- Digital Video
- Broadband Access
- Base Stations, Picocells

Block Diagram

Performance Specifications

Table 1. Electrical Performance					
Parameter	Symbol	Min	Typical	Maximum	Units
		Supply		,	
Voltage ¹ , 5V option 3.3V option	$V_{_{\mathrm{DD}}}$	4.750 3.135	5.0 3.3	5.250 3.465	V
Current ² , 5V option, 1.544-30MHz 30.001-50.000 50.001-77.760MHz 3.3V option, 1.544-30MHz 30.001-50.000 50.001-77.760MHz	I _{DD}			10 12 18 5 9	mA
		Frequency			
Nominal Frequency ³	f _N	1.544		77.760	MHz
Pull Range ^{2,6} , ordering option	APR TPR		±50, ±80, ±100 ±50, ±100, ±150		ppm
Linearity ²	Lin		5		%
Gain Transfer ²	K_{V}		Positive, +65		ppm/V
Temperature Stability	$f_{_{STAB}}$		±20		ppm
		Outputs			
Output Logic Levels ² Output Logic High Output Logic Low		0.9*V _{DD}		0.1*V _{DD}	V
Load	l _{out}			15	pF
Rise Time ^{2,4}	t _R			5	ns
Fall Time ^{2,4}	t _F			5	ns
Symmetry ²	SYM	45	50	55	%
Period Jitter ^{5,7} , RMS (61.44 MHz) Peak-Peak (61.440MHz)	ф1		3.0 23		ps
Jitter ⁸ , 12kHz-20MHz (61.44 MHz)	фЈ		90		fs
Phase Noise ^{8,} 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz 10MHz			-63 -97 -129 -144 -157 -159		dBc/Hz
	Cor	trol Voltage			
Control Voltage Range for Pull Range	V _c	0.5 0.3		4.5 3.0	V
Control Voltage Input Impedance "E" Ordering option	Z _{IN}	2	100		KΩ MΩ
Control Voltage Modulation BW	BW	10			kHz
Output Enable/Disable ⁹ Output Enabled Output Disabled		0.9*V _{DD}		0.1*V _{DD}	V
Start-Up Time				10	ms
Operating Temp, ordering option	T_{OP}	0/70 or -40/85			
Package Size			7.0 x 5.0 x 1.8		mm

- 1] The power supply should have by-pass capacitors as close to the supply and to ground as possible, for examples 0.1 and 0.01uF
- 2] Parameters are tested with production test circuit (Fig 1).
- 3] See Standard Frequencies and Ordering Information tables for more specific information
- 4] Measured from 20% to 80% of a full output swing (Fig 2).
- 5] Not tested in production, guaranteed by design, verified at qualification.
- 6] Tested with Vc = 0.3V to 3.0V unless otherwise stated in part description
- 7] Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples, see Application Note for Typical Phase Noise and Jitter Performance
- 8] Phase Noise is measured with an Agilent E5052A, see Application Note for Typical Phase Noise and Jitter Performance
- 9] The Output is Enabled if the Enable/Disable is left open.

Test Circuit Waveform

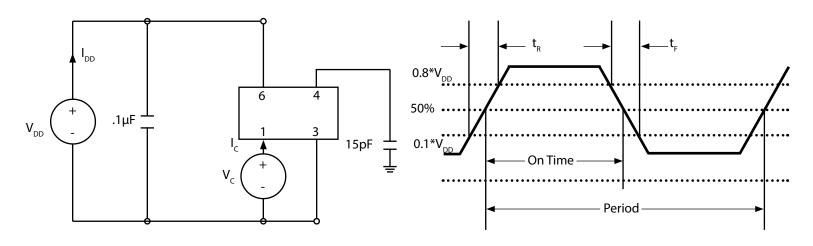
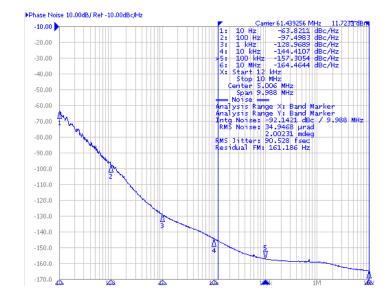
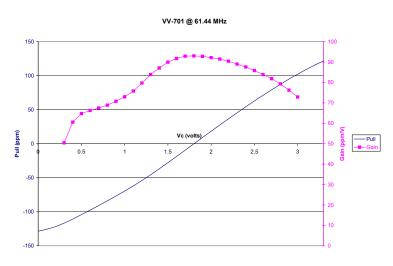


Fig 1: Test Circuit


Fig 2: Output Waveform


Table 2. Absolute Maximum Ratings								
Parameter	Symbol	Ratings	Unit					
Power Supply	V _{cc}	0 to 6	V					
Voltage Control Range	V _c	0 to V _{cc}	V					
Storage Temperature	TS	-55 to 125	°C					
Soldering Temp/Time	T _{LS}	260 / 20	°C / sec					

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if OD or Vc is applied before Vcc.

Typical Gain

Reliability

Vectron qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VV-701 family is capable of meeting the following qualification tests:

Table 3. Environmental Compliance						
Parameter	Conditions					
Mechanical Shock	MIL-STD-883, Method 2002					
Mechanical Vibration	MIL-STD-883, Method 2007					
Solderability	MIL-STD-883, Method 2003					
Gross and Fine Leak	MIL-STD-883, Method 1014					
Resistance to Solvents	MIL-STD-883, Method 2015					
Moisture Sensitivity Level	MSL 1					
Contact Pads	Gold over Nickel					

Handling Precautions

Although ESD protection circuitry has been designed into the VV-701 proper precautions should be taken when handling and mounting. Vectron employs a human body model (HBM) and a charged device model (CDM) for ESD susceptibility testing and design protection evaluation.

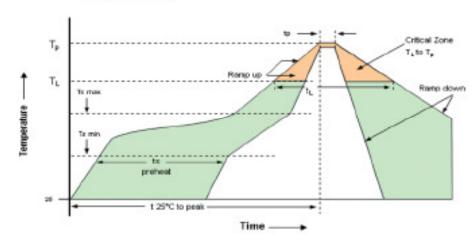
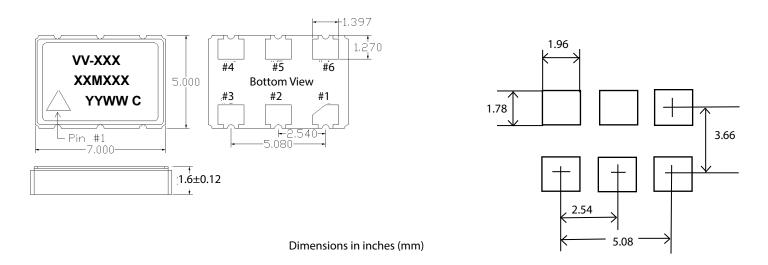
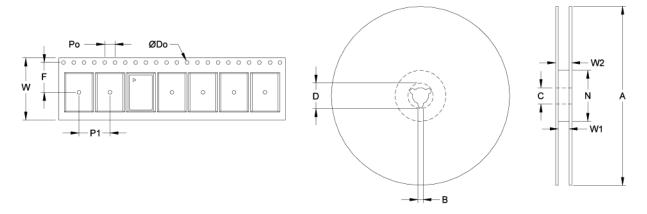

Table 4. ESD Ratings							
Model	Conditions						
Human Body Model	500V	MIL-STD-883, Method 3015					
Charged Device Model	500V	JESD22-C101					

Table 5. Reflow Profile							
Parameter	Symbol	Value					
PreHeat Time Ts-min Ts-max	t _s	60 sec Min, 260 sec Max 150°C 200°C					
Ramp Up	R _{UP}	3 °C/sec Max					
Time Above 217 °C	t _L	60 sec Min, 150 sec Max					
Time To Peak Temperature	T 25C to peak	480 sec Max					
Time at 260 °C	t _P	30 sec Max					
Ramp Down	R _{DN}	6 °C/sec Max					


The device is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The VV-701 device is hermetically sealed so an aqueous wash is not an issue.

Termination Plating: Electrolytic Gold Plate over Electrolytic Nickel Plate

Solderprofile:



Outline Drawing & Pad Layout

Table 6. Pin Out							
Pin	Symbol Function						
1	V _C	VCXO Control Voltage					
2	E/D	Enable Disable or NC					
3	GND	Case and Electrical Ground					
4	Output	Output					
5	E/D	Enable Disable or NC					
6	$V_{_{\mathrm{DD}}}$	Power Supply Voltage					

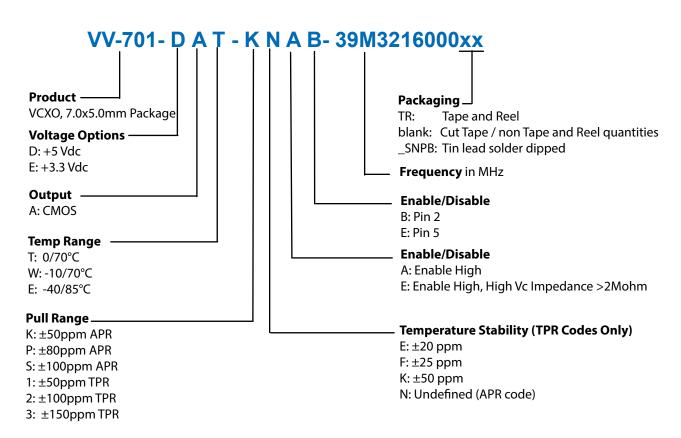
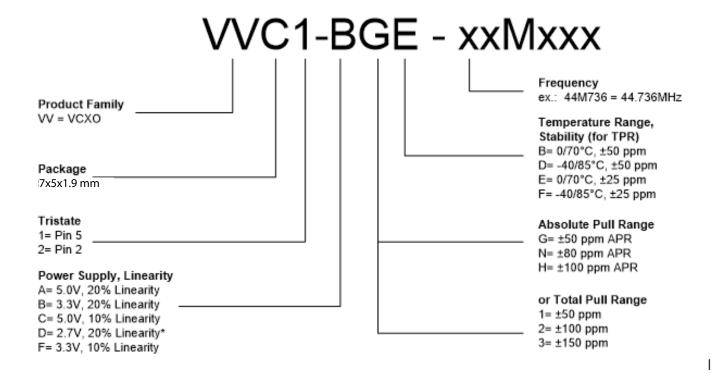

Tape & Reel (EIA-481-2-A)

Table 7. Tape	and Re	el Inform	nation										
Tape Dimensions (mm)				Reel Dimensions (mm)									
Dimension	W	F	Do	Ро	P1	A B C D N W1 W2 #						# Per	
Tolerance	Тур	Тур	Тур	Тур	Тур	Тур	Min	Тур	Min	Min	Тур	Max	Reel
VV-701	16	7.5	1.5	4	8	180	2	13	21	60	17	21	1000

Table 8. Standard Output Frequencies (MHz)										
1.54400	2.04800	4.09600	6.17600	8.19200	10.00000	12.00000	12.28800			
12.35200	13.00000	14.31800	15.44000	16.00000	16.38400	18.00000	18.43200			
19.20000	19.44000	20.00000	20.48000	24.57600	24.70400	25.00000	27.00000			
30.00000	32.00000	32.76800	34.36800	35.32800	38.88000	40.00000	40.96000			
42.66000	44.73600	48.89600	50.00000	50.68800	51.84000	52.00000	54.00000			
57.1429	62.20800	65.53600								

Ordering Information


*Note: not all combination of options are available. Other specifications may be available upon request.

Example:

VV-701-DAT-KNAB-39M3216000TR Tape and Reel VV-701-DAT-KNAB-39M3216000 Cut Tape

VV-701-DAT-KNAB-39M3216000_SNPB Tin lead solder dipped

Previous Ordering Information for Reference Only Do Not Use to Build a New Part Number

The ordering codes for the VVC1 were changed in 2016. If you had ordered a specific code based off this ordering method, it is still available for purchase under the old code however no new part numbers will be created using this system.

Contact Information

USA:

100 Watts Street Mt Holly Springs, PA 17065 Tel: 1.717.486.3411

Fax: 1.717.486.5920

Europe:

Landstrasse 74924 Neckarbischofsheim Germany

Tel: +49 (0) 7268.801.0 Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATU-TORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFOR-MANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

April, 2020