

The PS-702 is a SAW Based Clock Oscillator that achieves low phase noise and very low jitter performance. The PS-702 is housed in an industry standard 6-Pad leadless ceramic package that is hermetically sealed. Packaging options include bulk or tape and reel.

Features

- Industry Standard Package, 5.0 x 7.5 x 2.0 mm
- ASIC Technology For Ultra Low Jitter
 0.100 ps-rms typical across 12 kHz to 20 MHz BW
 0.120 ps-rms typical across 50 kHz to 80 MHz BW
- Output Frequencies from 150 MHz to 1 GHz
- 3.3 V Operation
- LV-PECL or LVDS Configuration with Fast Transition Times
- Complementary Outputs
- Output Disable Feature
- Improved Temperature Stability over Standard SAW XO
- Product is free of lead and compliant to EC RoHS Directive (Ph)

Applications

Reference Clock for Wired and Wireless Products

<u>Description</u>

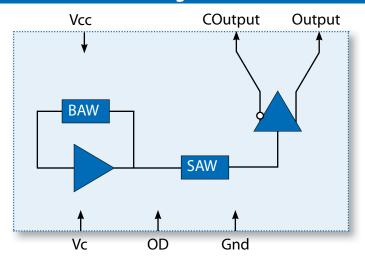
<u>Standard</u>

• 1-2-4 Gigabit Fibre Channel

INCITS 352-2002

10 Gigabit Fibre Channel

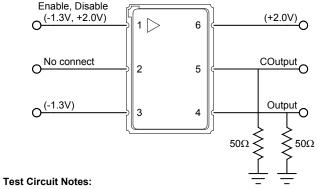
INCITS 364-2003


10GbE LAN / WANOC-192

IEEE 802.3ae ITU-T G.709

• SONET / SDH

GR-253-CORE Issue4


Block Diagram

Performance Specifications

Table 1: Electrical Performance									
Parameter	Symbol	Min	Typical	Maximum	Units				
Supply									
Voltage ^{2, 3}	V _{cc}	2.97	3.3	3.63	V				
Current (No Load) ³	l _{cc}		55	70	mA				
		Frequency							
Nominal Frequency 1, 2	$f_{_{\rm N}}$	150		1000	MHz				
Frequency Stability 1,2 (Ordering Option)	f _{STAB}		±50, ±100		ppm				
Aging ^{6,8}				10	ppm				
		Outputs							
Mid Level - LVPECL 2,3		V _{cc} -1.4	V _{cc} -1.25	V _{cc} -1.0	V				
Swing - LVPECL ^{2,3}		450	600	750	mV-pp				
Mid Level - LVDS ^{2,3}			V _{cc} -1.2		V				
Swing - LVDS ^{2,3}		250	450		mV-pp				
Current ⁶	I _{OUT}			20	mA				
Rise Time 5, 6	t _R			500	ps				
Fall Time 5,6	t _F			500	ps				
Symmetry ^{2,3}	SYM	45	50	55	%				
Jitter ^{6,7} (12 kHz - 20 MHz BW) 622.08 MHz	фЛ		0.100	0.250	ps-rms				
Jitter ^{6,7} (50 kHz - 80 MHz BW) 622.08 MHz	фЛ		0.120	0.300	ps-rms				
Period Jitter ⁹ , RMS (622.08 MHz)	фЈ		2.5	3.0	ps-rms				
Period Jitter ⁹ , Peak - Peak (622.08 MHz)	фЈ		16	24	ps pk-pk				
Operating Temperature 1	T_{OP}	0/70, -20/70 or -40/85			°C				
Package Size		5.0 x 7.5 x 2.0 mm							

- 1] See Standard Frequencies and Ordering Information tables (Pg 7) for more specific information
- 2] Parameters are tested with production test circuit below (Fig 1).
- Parameters are tested at ambient temperature with test limits guard-banded for specified operating temperature.
- 4] Measured as the maximum deviation from the best straight-line fit, per MIL-0-55310.
- 5] Measured from 20% to 80% of a full output swing (Fig 2).
- 6] Not tested in production, guaranteed by design, verified at qualification.
- 7] Integrated across stated bandwidth per GR-253-CORE Issue4.
- Tested with Vc = 0.3V to 3.0V unless otherwise stated in part description
- 9] Broadband Period Jitter measured using Lecroy Wavemaster 8600A 6 GHz Oscilloscope, 250K samples taken

- 1) To Permit 50Ω Measurement of Outputs, all DC Inputs are Biased Down 1.3V.
- 2) All Voltage Sources Contain Bypass Capacitors to Minimize Supply Noise.
- 3) 50Ω Terminations are Within Test Equipment.

Fig 1: Test Circuit

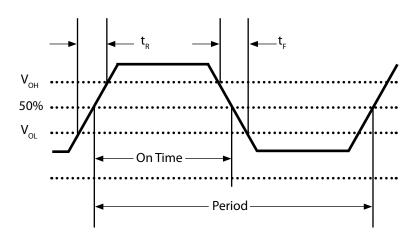
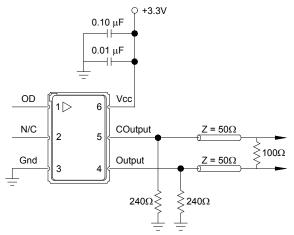
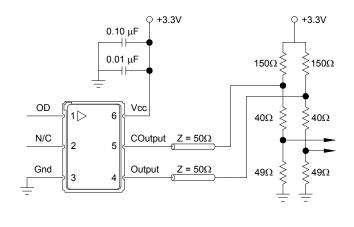
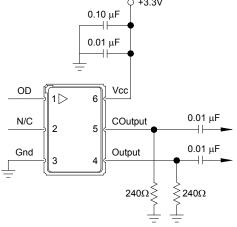
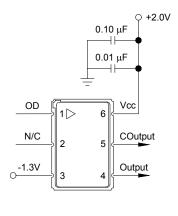



Fig 2: LV-PECL Waveform

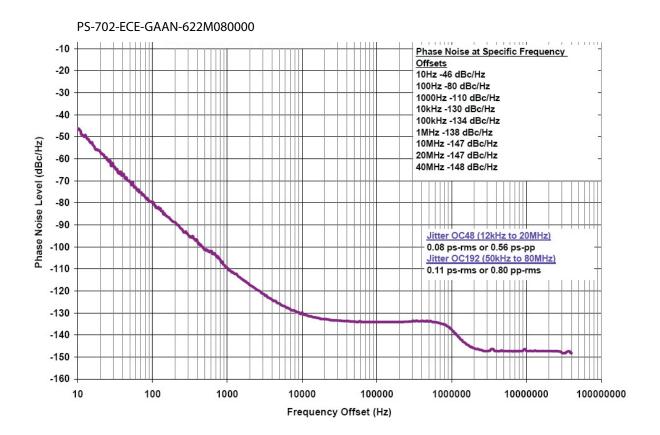

Absolute Maximum Ratings							
Parameter Symbol Ratings Unit							
Power Supply	V _{cc}	0 to 4	V				
Output Current	I _{OUT}	25	mA				
Storage Temperature	TS	-55 to 125	°C				
Soldering Temp/Time	T _{LS}	260 / 40	°C / sec				

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if OD or Vc is applied before Vcc.


Suggested Output Load Configurations


LV-PECL to LV-PECL: For short transmission lengths, the power consumption could be reduced by removing the 100 Ω resistor and doubling the value of the pull down resistors.

LV-PECL to LVDS: Restricted for short transmission lengths. Configuration may require modification depending on LVDS receiver.



Functional Test: Allows standard power supply configuration. Since AC coupled, the LV-PECL levels cannot be measured.

Production Test: Allows direct DC coupling into 50Ω measurement equipment. Must bias the power supplys as shown. Similar to Figure 1.

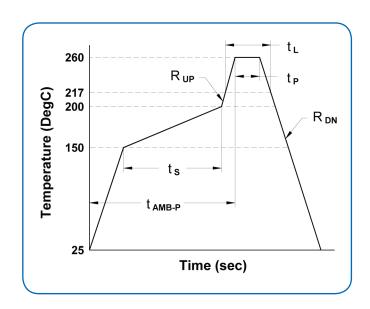
Typical Characteristics - Phase Noise

Reliability

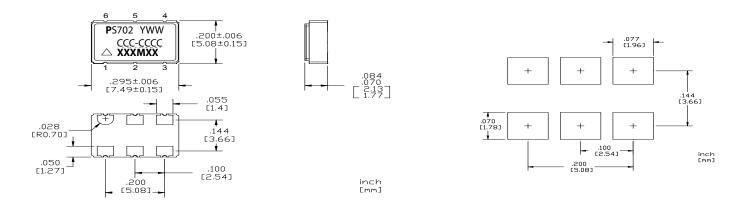
VI qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The PS-702 family is capable of meeting the following qualification tests:

Environmental Compliance					
Parameter	Conditions				
Mechanical Shock	MIL-STD-883, Method 2002				
Mechanical Vibration	MIL-STD-883, Method 2007				
Solderability	MIL-STD-883, Method 2003				
Gross and Fine Leak	MIL-STD-883, Method 1014				
Resistance to Solvents	MIL-STD-883, Method 2016				

Handling Precautions

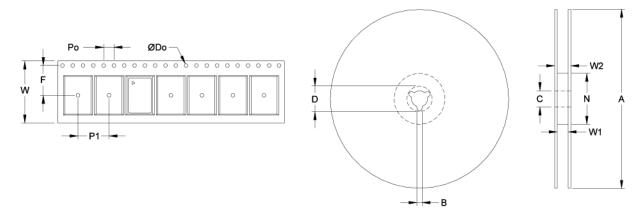

Although ESD protection circuitry has been designed into the PS-702 proper precautions should be taken when handling and mounting. VI employs a human body model (HBM) and a charged device model (CDM) for ESD susceptibility testing and design protection evaluation.

ESD Ratings						
Model	Conditions					
Human Body Model 1500V		MIL-STD-883, Method 3015				
Man Man Model	200V	V/JESD22-A115-A				


Reflow Profile (IPC/JEDEC J-STD-020C)							
Parameter	Value						
PreHeat Time	t _s	60 sec Min, 180 sec Max					
Ramp Up	R_{UP}	3 °C/sec Max					
Time Above 217 °C	t _L	60 sec Min, 150 sec Max					
Time To Peak Temperature	T_{AMB-P}	480 sec Max					
Time at 260 °C	t _p	20 sec Min, 40 sec Max					
Ramp Down	R _{DN}	6 °C/sec Max					

The device is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The PS-702 device is hermetically sealed so an aqueous wash is not an issue.

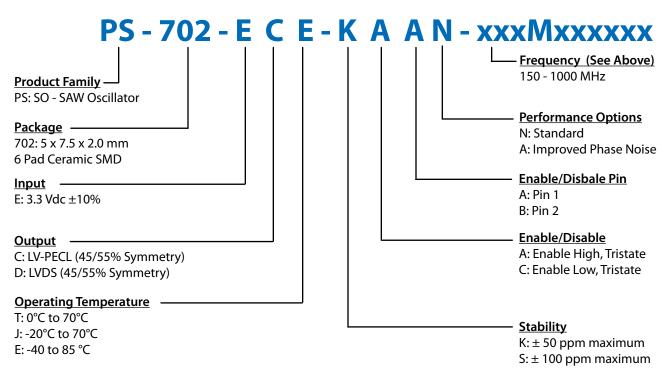
Termination Plating: Electroless Gold Plate over Nickel Plate


Outline Drawing & Pad Layout

Pin Out							
Pin	Symbol	Function					
1	NC or OE ¹	NC or Enable = LV-CMOS logic 0 or Ground Disable = LV-CMOS logic 1 **see Note 1 below**					
2	NC or OE ¹	NC or Enable = LV-CMOS logic 0 or Ground Disable = LV-CMOS logic 1 **see Note 1 below**					
3	GND	Case and Electrical Ground					
4	Output	Output					
5	COutput	Complementary Output					
6	V _{cc}	Power Supply Voltage (3.3V ±10%)					

Note 1: For proper operation disable pin can not be left floating and a pin1 or pin 2 enable option must be ordered. See page 7 for alternative input logic operation

Tape & Reel (EIA-481-2-A)



	Tape Dimensions (mm)				Reel Dimensions (mm)								
Dimension	W	F	Do	Ро	P1	A B C D N W1 W2				# Per			
Tolerance	Тур	Тур	Тур	Тур	Тур	Тур	Min	Тур	Min	Min	Тур	Max	Reel
PS-702	16	7.5	1.5	4	8	178	1.5	13	20.2	50	16.4	22.4	200

Standard Output Frequencies (MHz)								
155M520000	156M250000	160M000000	162M000000	175M000000	187M500000	200M000000	212M500000	
240M000000	245M760000	250M000000	260M000000	268M800000	300M000000	311M040000	312M500000	
320M000000	324M000000	350M000000	375M000000	384M000000	389M600000	390M625000	400M000000	
480M000000	491M520000	500M000000	531M250000	532M000000	533M000000	537M600000	622M080000	
625M000000	635M040000	637M500000	640M000000	644M531300	657M421900	666M514300	669M326600	
672M162700	690M569200	693M483000	704M380600	707M352700	720M000000	742M434700	768M000000	
796M875000	800M000000	901M120000	1000M00000					

Frequencies not shown are available upon request.

Ordering Information

^{*}Not all combinations are possible

Contact Information

USA:

100 Watts Street Mt Holly Springs, PA 17065 Tel: 1.717.486.3411

Fax: 1.717.486.5920

Europe:

Landstrasse 74924 Neckarbischofsheim Germany Tel: +49 (0) 7268.801.0 Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Page7 of 7 Rev: 6/18/2019