

Reference Specification

Leaded MLCC for General Purpose RDE Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering.Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

impalee maletan		each cquipment a		te concluciatione	
Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p		Vp-p	Vp-p	VP-P

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <u>the condition of</u> <u>atmosphere temperature 25 °C</u>. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment6. Transportation equipment (vehicles, trains, ships, etc.)
- 5. Medical equipment 6 7. Traffic signal equipment 8
 - 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity : Output of 20 watts per liter or less. Rinsing time : 5 min maximum. Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

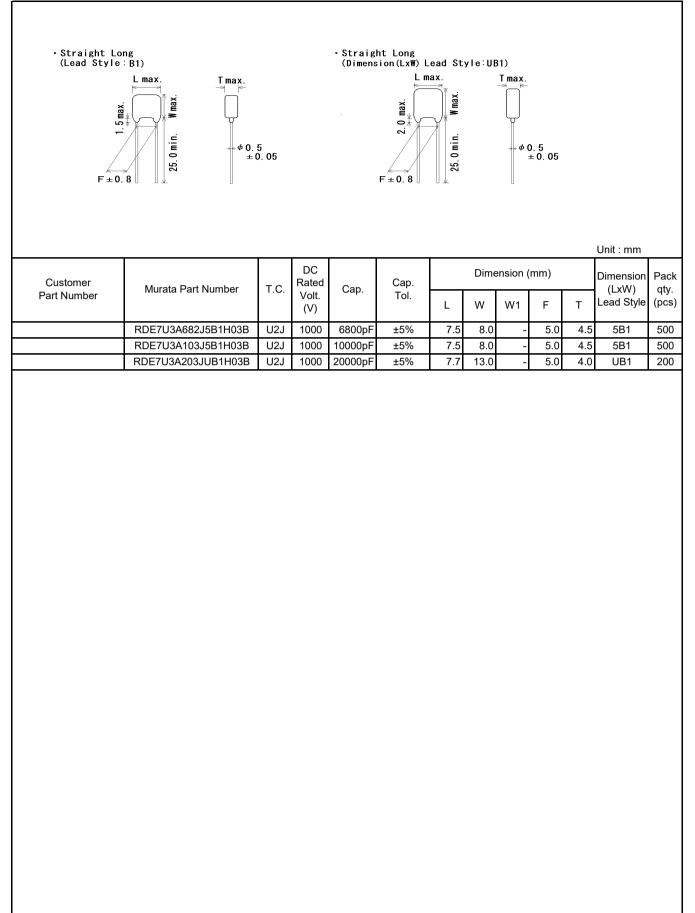
Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

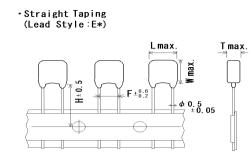
- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

for Genera Do not us	al Electronic eque e these products	is applied to Leaded lipment. s in any automotive p ery chargers for elect	ower train or s	afety	ybrids.		
2. Rating							
-							
	mber Configurat			4		1.100	
x.) <u>RDE</u> Series	7U Temperature	2E 101 Rated Capacitance	J Capacitance	1 Dimension	K1 Lead	H03 Individua	
Selles	Characteristics	Voltage	Tolerance	(LxW)	Style	Specifica	0
• Temper	ature Characteri	stics					
Code	Temp. Char.	Temp. Range	Temp.co	pef.	Stand		Operating
					Tem	ip.	Temp. Range
7U	U2J (EIA code)	-55∼25°C 25∼125°C	-750+120/-34 -750+/-120p		25°	С	-55~125°C
		25, 0125 C	-750+/-120p				
Rated Ve	oltage						
Coo		voltage					
2E		250V					
2.		630V					
34	A DC1	1000V					
	ance st two digits deno In case of 101	ote significant figures	s ; the last digit	denotes th	ie multip	lier of 10) in pF.
The firs ex.)	ance st two digits deno In case of 101 10×10 ¹ = 10	ote significant figures	s ; the last digit	denotes th	ie multip	lier of 10) in pF.
The firs ex.) • <u>Capacit</u>	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance	ote significant figures	s ; the last digit	denotes th	ie multip	lier of 10) in pF.
• Capacit	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance de Capacita	ote significant figures 00pF ance Tolerance	s ; the last digit	denotes th	ie multip	lier of 10) in pF.
The firs ex.) • <u>Capacit</u>	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance de Capacita	ote significant figures	s ; the last digit	denotes th	ie multip	lier of 10) in pF.
• Capacit Coo J • Dimensi Plea	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance de Capacita ion (LxW) se refer to [Part	ote significant figures 00pF <u>ance Tolerance</u> +/-5%	s ; the last digit	denotes th	ie multip	lier of 10) in pF.
• Capacit Coo J • Dimens Plea • Lead St	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance de Capacita ion (LxW) se refer to [Part	ote significant figures 00pF <u>ance Tolerance</u> +/-5% t number list].	s ; the last digit	denotes th	e multip	lier of 10) in pF.
• Capacit ex.) • Capacit Coo J • Dimens Plea • Lead St *Lead	ance ance t two digits deno In case of 101 10x10 ¹ = 10 ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder co	ote significant figures 00pF <u>ance Tolerance +/-5%</u> t number list]. <u>oated CP wire".</u> Lead Style	Lead spa		e multip	lier of 10	0 in pF.
• Capacit ex.) • Capacit Coo J • Dimensi Plea • Lead St *Lead <u>Coo B</u>	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder co de Straight t	ote significant figures 00pF ance Tolerance +/-5% t number list]. oated CP wire". Lead Style ype	Lead spa 5.0+/-0.8	cing (mm)	e multip	lier of 10) in pF.
• Capacit ex.) • Capacit Coo J • Dimens Plea • Lead St *Lead Coo B [*]	ance st two digits deno In case of 101 10×10 ¹ = 10 ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder co de Straight to 1 Straight to	ote significant figures 00pF ance Tolerance +/-5% t number list]. oated CP wire". Lead Style ype aping type	Lead space 5.0+/-0.8 5.0+0.6/-0.2	cing (mm)	e multip	lier of 10) in pF.
• Capacit ex.) • Capacit Coo J • Dimensi Plea • Lead St *Lead Coo Br Coo Coo	ance st two digits deno In case of 101 $10 \times 10^1 = 10^{-10}$ ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder co de 1 Straight to 1 Inside critical Straight to 1 Inside critical	ote significant figures 00pF ance Tolerance +/-5% t number list]. t number list]. <u>oated CP wire".</u> Lead Style sype aping type mp type	Lead space 5.0+/-0.8 5.0+0.6/-0.3 5.0+/-0.8	cing (mm)	e multip	lier of 10) in pF.
 The firsex.) Capacit Coold J Dimension Plea Lead State *Lead Coold Branch Erection Mathematical Muran 	ance st two digits deno In case of 101 $10 \times 10^1 = 10^{-10}$ ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder co de 1 Straight to 1 Inside critical Straight to 1 Inside critical	ote significant figures 00pF ance Tolerance +/-5% t number list]. t number list]. oated CP wire". Lead Style ype aping type imp type imp taping type e.	Lead space 5.0+/-0.8 5.0+0.6/-0.2	cing (mm)	e multip	lier of 10) in pF.
 The firsex.) Capacit Coold J Dimension Plea Lead State *Lead Coold Branch Erection Mathematical Muran 	ance ance at two digits deno In case of 101 $10 \times 10^1 = 10^{-1}$ ance Tolerance de Capacita con (LxW) se refer to [Part yle wire is "solder cond to Straight to 1 Straight to 1 Inside critical at Specification ata's control cod se refer to [Part	ote significant figures 00pF ance Tolerance +/-5% t number list]. t number list]. oated CP wire". Lead Style ype aping type imp type imp taping type e.	Lead space 5.0+/-0.8 5.0+0.6/-0.3 5.0+/-0.8	cing (mm)		lier of 10) in pF.
• Capacit ex.) • Capacit Coo J • Dimensi Plea • Lead St *Lead Coo B' E' K' M' • Individua Plea	ance ance at two digits deno In case of 101 $10 \times 10^1 = 10^2$ ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder ca de 1 Straight ta 1 Inside cri 1 Inside cri 1 Inside cri al Specification ata's control cod se refer to [Part e de 2 de 3 de 2 de 3 de 3 d	ote significant figures 00pF ance Tolerance +/-5% t number list]. t number list]. oated CP wire". Lead Style ype aping type imp taping type e. t number list]. Package	Lead space 5.0+/-0.8 5.0+0.6/-0.3 5.0+/-0.8	cing (mm)	e multip	lier of 10	D in pF.
• Capacit ex.) • Capacit Coo J • Dimens Plea • Lead St *Lead Coo B ² K ² M ² • Individua Mura Plea • Package	ance ance at two digits deno In case of 101 $10 \times 10^1 = 10^2$ ance Tolerance de Capacita ion (LxW) se refer to [Part yle wire is "solder critication to Straight to 1 Straight to 1 Inside critication ata's control cod se refer to [Part ata's control cod se refer to [Part	ote significant figures 00pF ance Tolerance +/-5% t number list]. t number list]. Lead Style ype aping type mp taping type imp taping type e. t number list].	Lead space 5.0+/-0.8 5.0+0.6/-0.3 5.0+/-0.8	cing (mm)	e multip	lier of 10	D in pF.

Reference only


3. Marking

Temp. char.	:	Letter code : U (U2J Char.)
Capacitance	:	Actual numbers (Less than 100pF)
		3 digit numbers (100pF and over)
Capacitance tolerance	:	Code
Rated voltage	:	Letter code : 4 (DC250V. Except dimension code : 1)
		Letter code : 7 (DC630V)
		Letter code : A (DC1000V)
Company name code	:	Abbreviation : M (Except dimension code : 1)

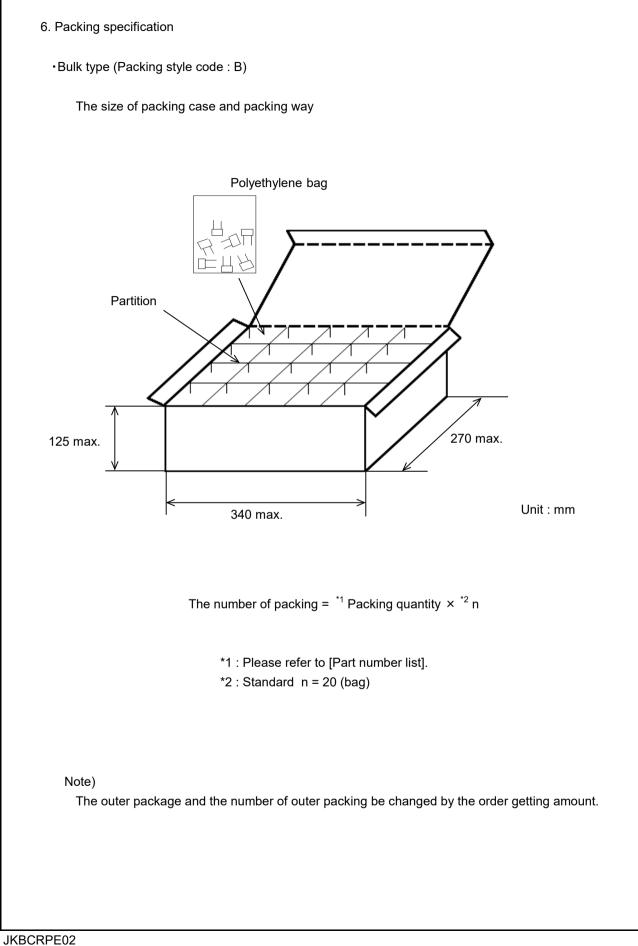

=x.)			
Rated voltage Dimension code	DC250V	DC630V	DC1000V
1	U 102J	I	_
2	(m ¹⁰³ J4U	(⁴⁷² J7U	(m ¹⁰² JAU
3,4	(M 473 J4U	(m 103 J7U	(M 472 JAU
5,U	_	ک 333 J7U	(H 103 JAU

			1101	erence on	'y							
4. Part number list												
• Inside Cri (Lead Styl				•Straig (Lead S	nt Long tyle∶B1)							
end	. .				Lm	ax. ∍		Tmax.				
5 위원 위원 위원 F ± 0, 8	L max. T max. 	05			F ± 0. 8	25.0 min. Wmax.		• • •	0.5 ±0.05			
1 ± 0. 0												
	•		1			1					Unit : mm	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	ension ((mm)		Dimension (LxW)	Pack qty.
Part Number		1.0.	Volt. (V)	oup.	Tol.	L	w	W1	F	т	Lead Style	
	RDE7U2E101J1K1H03B	U2J	250	100pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E151J1K1H03B	U2J	250	150pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E221J1K1H03B	U2J	250	220pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E331J1K1H03B	U2J	250	330pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E471J1K1H03B RDE7U2E681J1K1H03B	U2J U2J	250 250	470pF	±5% ±5%	4.5 4.5	3.5 3.5	5.0 5.0	5.0 5.0	3.15 3.15	1K1 1K1	500 500
	RDE7U2E102J1K1H03B	U2J	250	680pF 1000pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1 1K1	500
	RDE7U2E152J1K1H03B	U2J	250	1500pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E222J1K1H03B	U2J	250	2200pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E332J1K1H03B	U2J	250	3300pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E472J1K1H03B	U2J	250	4700pF	±5%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDE7U2E682J2K1H03B	U2J	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE7U2E103J2K1H03B	U2J	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE7U2E153J2K1H03B	U2J	250	15000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE7U2E223J2K1H03B	U2J	250	22000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE7U2E333J3K1H03B	U2J	250	33000pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDE7U2E473J3K1H03B	U2J	250	47000pF	±5%	5.5	5.0	7.5	5.0	4.0		500
	RDE7U2J100J2K1H03B RDE7U2J150J2K1H03B	U2J U2J	630 630	10pF 15pF	±5% ±5%	5.5 5.5	4.0 4.0	6.0 6.0	5.0 5.0	3.15 3.15		500 500
	RDE7U2J220J2K1H03B	U2J	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J330J2K1H03B	U2J	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J470J2K1H03B	U2J	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J680J2K1H03B	U2J	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE7U2J101J2K1H03B	U2J	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDE7U2J151J2K1H03B	U2J	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J221J2K1H03B	U2J	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J331J2K1H03B	U2J	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J471J2K1H03B	U2J	630	470pF	±5%	5.5 5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J681J2K1H03B RDE7U2J102J2K1H03B	U2J U2J	630 630	680pF 1000pF	±5% ±5%	5.5 5.5	4.0 4.0	6.0 6.0	5.0 5.0	3.15 3.15		500 500
	RDE702J102J2K1H03B	U2J	630	1500pF	±5%	5.5 5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J222J2K1H03B	U2J	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J332J2K1H03B	U2J	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J472J2K1H03B	U2J	630	4700pF	±5%	5.5	4.0	6.0	5.0	3.15		500
	RDE7U2J682J3K1H03B	U2J	630	6800pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDE7U2J103J3K1H03B	U2J	630	10000pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDE7U2J153J4K1H03B	U2J	630	15000pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDE7U2J223J4K1H03B	U2J	630	22000pF	±5%	7.5	5.5	8.0	5.0	4.0		500
	RDE7U2J333J5B1H03B	U2J	630	33000pF	±5%	7.5	8.0	-	5.0	4.5	5B1	500
	RDE7U2J473J5B1H03B	U2J	630	47000pF	±5%	7.5	8.0		5.0	4.5	5B1	500

c	52.	5 0. 05				25.0 min. Wmax.		max. ↓ ← ↓ ↓ ↓ ↓ ↓ ↓	5 0. 05			
			1			1					Unit : mm	
Customer Part Number	Murata Part Number	T.C.	DC Rated Volt. (V)	Cap.	Cap. Tol.	L	Dime W	ension (W1	(mm) F	Т	Dimension (LxW) Lead Style	Pa qt (po
	RDE7U2J943JUB1H03B	1121	. ,	04000pE	+5%	7.7	12.0		5.0	4.0	LIB1	20
	RDE702J943J0B1H03B	U2J U2J	630 1000	94000pF 10pF	±5% ±5%	5.5	13.0 4.0	- 6.0	5.0 5.0	4.0 3.15		20 50
	RDE7U3A150J2K1H03B	U2J	1000	15pF	±5%	5.5	4.0	6.0	5.0	3.15		50
	RDE7U3A220J2K1H03B	U2J	1000	22pF	±5%	5.5	4.0	6.0	5.0	3.15		50
	RDE7U3A330J2K1H03B	U2J	1000	33pF	±5%	5.5	4.0	6.0	5.0	3.15		50
	RDE7U3A470J2K1H03B	U2J	1000	47pF	±5%	5.5	4.0	6.0	5.0	3.15		50
	RDE7U3A680J2K1H03B	U2J	1000	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A101J2K1H03B	U2J	1000	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A151J2K1H03B	U2J	1000	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A221J2K1H03B	U2J	1000	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A331J2K1H03B	U2J	1000	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A471J2K1H03B	U2J	1000	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A681J2K1H03B	U2J	1000	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A102J2K1H03B	U2J	1000	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	50
	RDE7U3A152J3K1H03B	U2J	1000	1500pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	50
	RDE7U3A222J3K1H03B	U2J	1000	2200pF	±5%	5.5	5.0	7.5	5.0	4.0	3K1	50
	RDE7U3A332J4K1H03B	U2J	1000	3300pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	50
	RDE7U3A472J4K1H03B	U2J	1000	4700pF	±5%	7.5	5.5	8.0	5.0	4.0	4K1	50
	RDE7U3A152J3K1H03B RDE7U3A222J3K1H03B RDE7U3A332J4K1H03B	U2J U2J U2J	1000 1000 1000	1500pF 2200pF	±5% ±5% ±5%	5.5 5.5 7.5	5.0 5.0 5.5	7.5 7.5 8.0	5.0 5.0 5.0	4.0 4.0 4.0	3K1 3K1 4K1	5 5 5

• Inside Cr (Lead Sty	imp Taping le:M*)				iight Tapi d Style∶E								
	$F \pm 0.6$		ζ. ←				L F ± ^{0.6} 0.2	~\/* ³		T max	-		
												Unit : mm	
Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Cap.	Cap. Tol.		D W	imensi W1	on (mr F	n) T	11/110	Dimension (LxW) Lead Style	qty.
			(V)			L	vv	VVI	Г	-	H/H0	Loud Otylo	(poo
	RDE7U2E101J1M1H03A	U2J	250	100pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E151J1M1H03A	U2J	250	150pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E221J1M1H03A	U2J	250	220pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E331J1M1H03A	U2J	250	330pF	±5%	4.5	3.5	5.0	5.0	3.15			200
	RDE7U2E471J1M1H03A	U2J	250	470pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E681J1M1H03A	U2J	250	680pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E102J1M1H03A	U2J	250	1000pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E152J1M1H03A	U2J	250	1500pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E222J1M1H03A	U2J	250	2200pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E332J1M1H03A	U2J	250	3300pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E472J1M1H03A	U2J	250	4700pF	±5%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDE7U2E682J2M1H03A	U2J	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDE7U2E103J2M1H03A	U2J	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDE7U2E153J2M1H03A	U2J	250	15000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDE7U2E223J2M1H03A	U2J	250	22000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDE7U2E333J3M1H03A	U2J	250	33000pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	-	200
	RDE7U2E473J3M1H03A	U2J	250	47000pF	±5%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	200
	RDE7U2J100J2M1H03A	U2J	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15			200
	RDE7U2J150J2M1H03A	U2J	630	15pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J220J2M1H03A	U2J	630	22pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J330J2M1H03A	U2J	630	33pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J470J2M1H03A	U2J	630	47pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J680J2M1H03A	U2J	630	68pF	±5%	5.5	4.0 4.0	6.0	5.0	3.15			200
	RDE7U2J101J2M1H03A	U2J U2J	630	100pF	±5% ±5%	5.5 5.5	4.0	6.0	5.0				200 200
	RDE7U2J151J2M1H03A RDE7U2J221J2M1H03A	U2J U2J	630 630	150pF 220pF	±5% ±5%	5.5 5.5	4.0	6.0 6.0	5.0 5.0				200
	RDE702J221J2M1H03A	U2J	630	220pF 330pF	±5% ±5%	5.5 5.5	4.0	6.0	5.0 5.0	3.15			200
	RDE7U2J331J2M1H03A	U2J	630	470pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J681J2M1H03A	U2J	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15			200
	RDE7U2J102J2M1H03A	U2J	630	1000pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J152J2M1H03A	U2J	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15			200
	RDE7U2J222J2M1H03A	U2J	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15			200
	RDE7U2J332J2M1H03A	U2J	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15			200
	RDE7U2J472J2M1H03A	U2J	630	4700pF	±5%	5.5	4.0	6.0	5.0				200
	RDE7U2J682J3M1H03A	U2J	630	6800pF	±5%	5.5	5.0	7.5	5.0				200
	RDE7U2J103J3M1H03A	U2J	630	10000pF	±5%	5.5	5.0	7.5	5.0				200
	RDE7U2J153J4M1H03A	U2J	630	15000pF	±5%	7.5	5.5	8.0	5.0		16.0		150
	RDE7U2J223J4M1H03A	U2J	630	22000pF	±5%	7.5	5.5	8.0	5.0				150
	RDE7U2J333J5E1H03A	U2J	630	33000pF	±5%	7.5	8.0	-	5.0				150
	10L10200000L1100A												

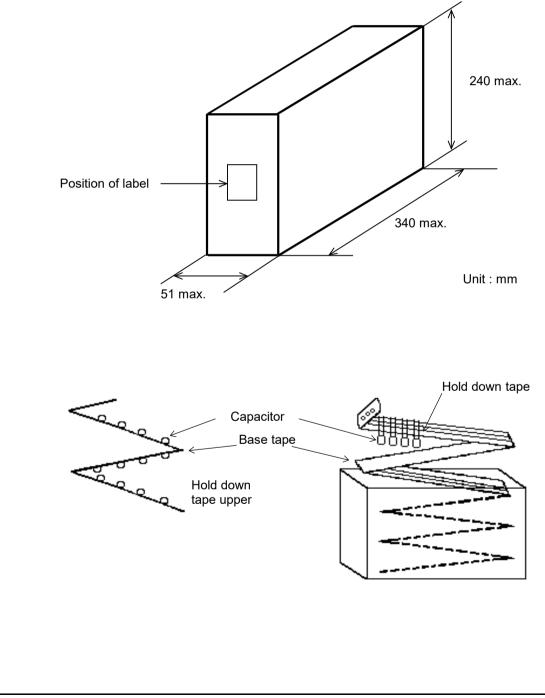
													Unit : mm	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.	Dimension (mm)						Dimension (LxW)	Pack qty.	
	Part Number		1.0.	Volt. (V)	Cap.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
I		RDE7U3A682J5E1H03A	U2J	1000	6800pF	±5%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
		RDE7U3A103J5E1H03A	U2J	1000	10000pF	±5%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
		RDE7U3A203JUE1H03A	U2J	1000	20000pF	±5%	7.7	13.0	-	5.0	4.0	17.5	UE1	1500


5.SPE	CIFICATIONS	AND TEST M	ETHODS								
No.	r	em	Specification	Test Method							
1	Appearance		No defects or abnormalities.	Visual inspection.							
2	Dimension and Marking	ł	Within the specified dimensions and Marking.	Visual inspection, Using Caliper.							
3	Dielectric Strength	Between Terminals	No defects or abnormalities.	The capacitor should not be damaged when voltage of in Table is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC250V 200% of the rated voltage DC630V 150% of the rated voltage DC1kV 130% of the rated voltage							
		Body Insulation	No defects or abnormalities.	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls, and voltage in Table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC250V DC500V							
4	Insulation Resistance (I.R.)	Between Terminals	10,000MΩ or 500MΩ+µF min. (Whichever is smaller)	DC630V·DC1kV DC1300V The insulation resistance should be measured with DC500±50V (DC250±25V in case of rated voltage : DC250V) at normal temperature and humidity and within 2 minutes of charging. (Charge/Discharge current ≤ 50mA.)							
5	Capacitance	•	Within the specified tolerance.	The capacitance, Q should be measured at 25°C at the frequency and voltage shown in the table.							
6	Q		$30pF \leq C : Q \geq 1,000$ $30pF > C : Q \geq 400+20C$ C : Nominal Capacitance (pF)	Nominal Cap.FrequencyVoltage $C \leq 1000 pF$ 1±0.2MHzAC0.5 to 5V(r.m.s.) $C > 1000 pF$ 1±0.2kHzAC1±0.2V(r.m.s.)							
7	Capacitance Temperature Characteristic:	5	Within the specified Tolerance. 25°C to 125°C : -750±120 ppm/°C -55°C to 25°C : -750+120/-347 ppm/°C	The capacitance change should be measured after 5minutes at each specified temperature stage.The temperature coefficient is determined using thecapacitance measured in step 3 as a reference.When cycling the temperature sequentially from step1 through 5 (-55°C to 125°C) the capacitance shouldbe within the specified tolerance for the temperature coefficient.Step122-55±33325±244125±35525±2							
8	Terminal Strength	Tensile Strength	Termination not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep applied the force for 10±1 seconds.							
		Bending Strength	Termination not to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.							
9	Vibration Resistance	Appearance Capacitance Q	No defects or abnormalities. Within the specified tolerance. $30pF \leq C : Q \geq 1,000$ $30pF > C : Q \geq 400+20C$ C : Nominal Capacitance (pF)	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).							

Reference only

			Refere	nce o	nly								
No.	lte	em	Specification				Test Me	ethod					
10	Solderability of	Lead	Solder is deposited on unintermittently	The	The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25%								
ļ			immersed portion in axial direction	etha									
			covering 3/4 or more in circumferential	rosii	rosin in weight propotion). Immerse in solder solution								
			direction of lead wires.	for 2	±0.5 seco	onds. In both ca	ases the dept	th of dipping					
				is up	o to about	1.5 to 2mm fro	om the termin	al body.					
				Terr	p. of sold	er :							
						ad Free Solder		-					
						0A or H63A Eι							
11-1	Resistance	Appearance	No defects or abnormalities.					e melted solder	1.5 to 2.0mm				
ļ	to	Capacitance	Within ±2.5% or ±0.25pF	from	the root o	of terminal at 2	60±5°C for 1	0±1 seconds.					
ļ	Soldering	Change	(Whichever is larger)										
	Heat	Dielectric	No defects	• Po	st-treatme	nt							
	(Non-	Strength		Сар	acitor sho	uld be stored for	or 24±2 hou	rs at *room cor	dition.				
	Preheat)	(Between											
		terminals)											
11-2	Resistance	Appearance	No defects or abnormalities.					0+0/-5°C for 60					
	to	Capacitance	Within ±2.5% or ±0.25pF					l in the melted					
	Soldering	Change	(Whichever is larger)	1.51	o 2.0mm 1	from the root o	f terminal at	260±5°C for 7.	5+0/-1 second				
	Heat	Dielectric	No defects	_									
	(On-Preheat)	Strength			st-treatme		a ·						
		(Between		Cap	acitor sho	uld be stored for	or 24±2 hou	rs at *room cor	dition.				
		terminals)											
11-3	Resistance	Appearance	No defects or abnormalities.	_	condition								
	to Coldoning	Capacitance	Within ±2.5% or ±0.25pF		-	of iron-tip : 35							
	Soldering	Change	(Whichever is larger)		-	ne : 3.5±0.5 seo	conds						
	Heat	Dielectric	No defects		lering posi								
	(soldering	Strength			-	d : 1.5 to 2.0mr							
	iron method)	(Between		Cri	mp Lead :	1.5 to 2.0mm	from the end	l of lead bend.					
		terminals)		_									
					st-treatme								
10				-				rs at *room cor					
12	Temperature	Appearance	No defects or abnormalities.		-	-	o the 4 heat	treatments liste	ed in the				
	Cycle	Capacitance	Within ±5% or ±0.5pF		wing table								
		Change	(Whichever is larger)	Set	at "room c	condition for 24	±2 nours, the	en measure.					
		Q	$30 \text{pF} \leq \text{C} : \text{Q} \geq 350$		Step	1	2	3	4				
			$10pF \leq C < 30pF : Q \geq 275+5C/2$		_	Min.		Max.	_				
			10pF > C : Q ≧ 200+10C		Temp. (°C)	Operating	Room Temp.	Operating	Room Temp.				
			C : Nominal Canaditanaa (nE)		(0)	Temp. ±3	remp.	Temp. ±3	remp.				
		I.R.	C : Nominal Capacitance (pF) 1,000MΩ or 50MΩ+μF min.		Time	2012	3	2012	3				
		1.17.	(Whichever is smaller)		(min.)	30±3	3 max.	30±3	3 max.				
		Dielectric	No defects or abnormalities.					-					
		Strength											
		(Between											
		(Between Terminals)											
13	Humidity	Appearance	No defects or abnormalities.	Set	the capaci	itor at 40+2°⊂	and relative b	numidity 90 to §	95%				
.0	(Steady State)		Within $\pm 5\%$ or ± 0.5 pF		ine capaci i00+24/-0			.amary 50 to 3					
	(Cicady Ciale)	Capacitance	(Whichever is larger)				urs at *room	condition then	measure				
		Q	$30 \text{pF} \leq \text{C}: \text{Q} \geq 350$			-51 101 Z-TZ 110		Somethion unell	measure.				
		3	$10pF \le C < 30pF : Q \ge 275+5C/2$										
			$10pF \ge C < 30pF : Q \ge 273+30/2$ $10pF > C : Q \ge 200+10C$										
			C : Nominal Capacitance (pF)										
		I.R.	1,000MΩ or $50M\Omega \cdot \mu F$ min.	\neg									
	n oondition" T	mporoture · 4/	(Whichever is smaller)	noorha	0.010000	0 + 96 to 1001-1	20						
roor		emperature : 15	5 to 35°C, Relative humidity : 45 to 75%, Atn	nosphe	e pressur	3:00 to 106kF	a						

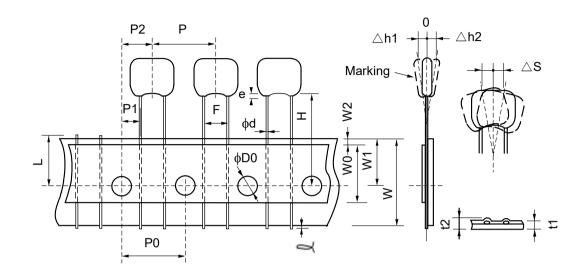
No.	Ite	Item Speci		Test Method					
14	Humidity Appearance		No defects or abnormalities.	Apply the	Apply the rated voltage at 40±2°C and relative				
	Load	Capacitance	Within ±5% or ±0.5pF	humidity o	humidity of 90 to 95% for 500+24/-0 hours.				
	Change (Whichever is larger)			Remove a	Remove and set for 24±2 hours at *room condition, then measure.				
	Q $30pF \leq C : Q \geq 200$		(Charge/D	(Charge/Discharge current \leq 50mA.)					
			30pF > C : Q ≧ 100+10C/3						
			C : Nominal Capacitance (pF)						
		I.R.	500MΩ or 25MΩ · μ F min.						
			(Whichever is smaller)						
15	High	Appearance	No defects or abnormalities.	Apply volta	Apply voltage in Table at the maximum				
	Temperature	Capacitance	Within ±3% or ±0.3pF	operating	operating temperature ±3°C for 1000+48/-0 hours.				
	Load	Change	(Whichever is larger)	Remove a	Remove and set for 24±2 hours at *room condition then measure.				
		Q	30pF ≦ C : Q ≧ 350	(Charge/D	(Charge/Discharge current \leq 50mA.)				
			$10pF \leq C < 30pF : Q \geq 275+5C/2$						
			10pF > C : Q ≧ 200+10C		Rated voltage	Test voltage			
					DC250V	150% of the rated voltage			
			C : Nominal Capacitance (pF)		DC630V, DC1kV	120% of the rated voltage			
		I.R.	1,000MΩ or 50MΩ • μF min.						
			(Whichever is smaller)						
16	Solvent	Appearance	No defects or abnormalities.	The capac	The capacitor should be fully immersed, unagitated,				
	Resistance	Marking	Legible	in reagent	in reagent at 20 to 25°C for 30±5 seconds and then				
				remove ge	remove gently. Marking on the surface of the				
				capacitor	capacitor shall immediately be visually examined.				
				Regent · Is	Regent : Isopropyl alcohol				


* "room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

-Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

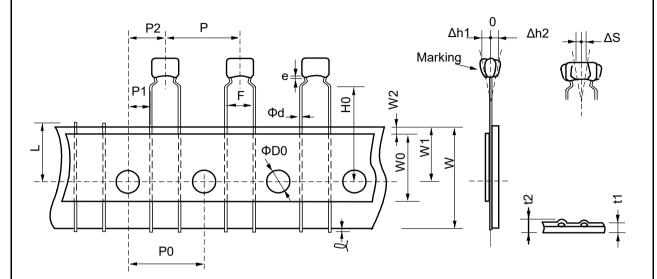
The size of packing case and packing way



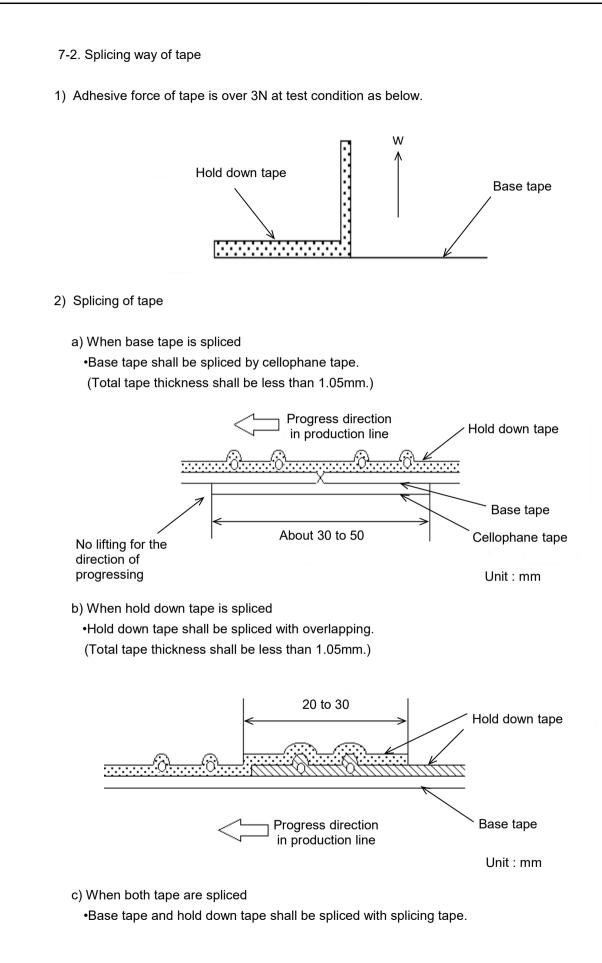
7. Taping specification

7-1. Dimension of capacitors on tape

Straight taping type < Lead code : E1 >


Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm


			Unit : mm	
Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7	1	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead ben	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
For straight lead type	Н	17.5+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	0.3 They include hold down tape	
Total thickness of tape and lead wire	t2	1.5 max.	thickness.	
Deviation corrections	∆h1	2.0 max. (Dimension code : U)		
Deviation across tape	∆h2	1.0 max. (exce	pt as above)	
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	2.0 max. (Dimension code : U)		
		1.5 max. (except as above)		

Inside crimp taping type < Lead code : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm

Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7		
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	H0	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness	
Total thickness of tape and lead wire	t2	1.5 max.		
Deviation across tape	∆h1	2.0 max. (Dimension code : W)		
Deviation across tape	∆h2	1.0 max. (except as above)		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width		9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	Up to the end of crimp		

