

Reference Specification

Leaded MLCC for General Purpose RDE Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

 $\hbox{6. Transportation equipment (vehicles, trains, ships, etc.)}\\$

7. Traffic signal equipment

8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This product specification is applied to Leaded MLCC RDE series used for General Electronic equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

2. Rating

• Part Number Configuration

ex.)	RDE	D7	2E	333	K	2	K1	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range
D7	X7T (EIA code)	-55 ∼ 125°C	+22/-33%	25°C	-55 ∼ 125°C

Rated Voltage

Code	Rated voltage
2E	DC250V
2W	DC450V
2J	DC630V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 102

$$10 \times 10^2 = 1000 pF$$

• Capacitance Tolerance

Code	Capacitance Tolerance
K	+/-10%
М	+/-20%

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

· Individual Specification

Murata's control code.

Please refer to [Part number list].

Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

3. Marking

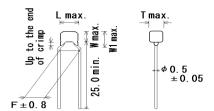
Temp. char. : Letter code : 7 (X7T char.)

Capacitance : 3 digit numbers

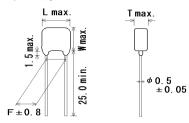
Capacitance tolerance : Code

Rated voltage : Letter code : 4 (DC250V)

Letter code: 9 (DC450V) Letter code: 7 (DC630V)

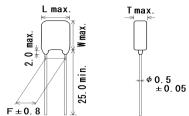

Company name code : Abbreviation : 🗀

(Fx)

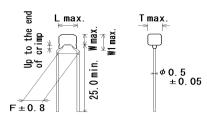

(EX.)			
Rated voltage Dimension code	DC250V	DC450V	DC630V
2	€ 683 K47	€ 153 K97	G ¹⁵³ _{K77}
3,4	(4 334) (47)	(4 104 K97	(4 223 K77
5,W	(M 225 M47	6 474 K97	6 474 M77

4. Part number list

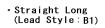
- Inside Crimp (Lead Style:K*)

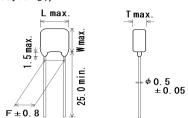


•Straight Long (Lead Style:B1)

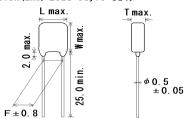


Murata Part Number	T C	DC Rated	Can	Сар.		Dime	ension (mm)		Dimension	Pack
Warda Fart Hamber	1.0.	Volt. (V)	оар.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
RDED72E333K2K1H03B	X7T	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
RDED72E473K2K1H03B	X7T	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
RDED72E683K2K1H03B	X7T	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
RDED72E104K3K1H03B	X7T	250	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
RDED72E154K3K1H03B	X7T	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
RDED72E224K4K1H03B	X7T	250	0.22µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
RDED72E334K4K1H03B	X7T	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
RDED72E474K5B1H03B	X7T	250	0.47µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
RDED72E684K5B1H03B	X7T	250	0.68µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
RDED72E105K5B1H03B	X7T	250	1.0µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
RI	DED72E473K2K1H03B DED72E683K2K1H03B DED72E104K3K1H03B DED72E154K3K1H03B DED72E224K4K1H03B DED72E334K4K1H03B DED72E474K5B1H03B DED72E684K5B1H03B	DED72E333K2K1H03B X7T DED72E473K2K1H03B X7T DED72E683K2K1H03B X7T DED72E104K3K1H03B X7T DED72E154K3K1H03B X7T DED72E224K4K1H03B X7T DED72E334K4K1H03B X7T DED72E474K5B1H03B X7T DED72E684K5B1H03B X7T	Murata Part Number T.C. Rated Volt. (V) DED72E333K2K1H03B X7T 250 DED72E473K2K1H03B X7T 250 DED72E683K2K1H03B X7T 250 DED72E104K3K1H03B X7T 250 DED72E154K3K1H03B X7T 250 DED72E224K4K1H03B X7T 250 DED72E334K4K1H03B X7T 250 DED72E474K5B1H03B X7T 250 DED72E684K5B1H03B X7T 250 DED72E684K5B1H03B X7T 250	Murata Part Number T.C. Rated Volt. (V) DED72E333K2K1H03B X7T 250 33000pF DED72E473K2K1H03B X7T 250 47000pF DED72E683K2K1H03B X7T 250 68000pF DED72E104K3K1H03B X7T 250 0.1µF DED72E154K3K1H03B X7T 250 0.15µF DED72E224K4K1H03B X7T 250 0.22µF DED72E334K4K1H03B X7T 250 0.33µF DED72E474K5B1H03B X7T 250 0.47µF DED72E684K5B1H03B X7T 250 0.68µF	Murata Part Number T.C. Rated Volt. (V) Cap. Tol. Cap. Tol. DED72E333K2K1H03B X7T 250 33000pF ±10% DED72E473K2K1H03B X7T 250 47000pF ±10% DED72E683K2K1H03B X7T 250 68000pF ±10% DED72E104K3K1H03B X7T 250 0.1μF ±10% DED72E154K3K1H03B X7T 250 0.15μF ±10% DED72E224K4K1H03B X7T 250 0.22μF ±10% DED72E334K4K1H03B X7T 250 0.33μF ±10% DED72E474K5B1H03B X7T 250 0.47μF ±10% DED72E684K5B1H03B X7T 250 0.68μF ±10%	Murata Part Number T.C. Rated Volt. (V) Cap. Tol. Cap. Tol. DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 DED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 DED72E154K3K1H03B X7T 250 0.1pF ±10% 5.5 DED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 DED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 DED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 DED72E684K5B1H03B X7T 250 0.68µF ±10% 7.5	Murata Part Number T.C. Rated Volt. (V) DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 DED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 DED72E154K3K1H03B X7T 250 0.1pF ±10% 5.5 5.0 DED72E224K4K1H03B X7T 250 0.15µF ±10% 5.5 5.0 DED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 DED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.5 DED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 DED72E684K5B1H03B X7T 250 0.68µF ±10% 7.5 7.5	Murata Part Number T.C. Rated Volt. (V) Cap. (V) Cap. Tol. L W W1 DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 DED72E104K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 DED72E154K3K1H03B X7T 250 0.15μF ±10% 5.5 5.0 7.5 DED72E224K4K1H03B X7T 250 0.22μF ±10% 7.5 5.5 8.0 DED72E334K4K1H03B X7T 250 0.33μF ±10% 7.5 5.5 8.0 DED72E474K5B1H03B X7T 250 0.47μF ±10% 7.5 7.5 - DED72E684K5B1H03B X7T 250 0.68μF ±10% 7.5 7.5 - <	Murata Part Number T.C. Rated Volt. (V) Cap. Tol. Cap. Tol. L W W1 F DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 DED72E104K3K1H03B X7T 250 0.1µF ±10% 5.5 5.0 7.5 5.0 DED72E154K3K1H03B X7T 250 0.1pF ±10% 5.5 5.0 7.5 5.0 DED72E224K4K1H03B X7T 250 0.22µF ±10% 7.5 5.5 8.0 5.0 DED72E334K4K1H03B X7T 250 0.33µF ±10% 7.5 5.5 8.0 5.0 DED72E474K5B1H03B X7T 250 0.47µF ±10% 7.5 7.5 - 5.0 </td <td>Murata Part Number T.C. Rated Volt. (V) Cap. Tol. Cap. Tol. L W W1 F T DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 3.15 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 DED72E104K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 5.0 4.0 DED72E154K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 5.0 4.0 DED72E224K4K1H03B X7T 250 0.22μF ±10% 7.5 5.5 8.0 5.0 4.0 DED72E334K4K1H03B X7T 250 0.33μF ±10% 7.5 5.5 8.0 5.0 4.0 DED72E474K5B1H03B</td> <td>Murata Part Number T.C. Rated Volt. (V) Cap. Tol. L W W1 F T DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 DED72E104K3K1H03B X7T 250 68000pF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 DED72E154K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 DED72E154K3K1H03B X7T 250 0.15μF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 DED72E224K4K1H03B X7T 250 0.22μF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 DED72E334K4K1H03B X7T 250 0.33μF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 DED72E474K5B1H03B X7T 250 0.47μF ±10% 7.5 7.5 - 5.0 4.5 5B1 DED72E684K5B1H03B X7T 250 0.68μF ±10% 7.5 7.5 - 5.0 4.5 5B1</td>	Murata Part Number T.C. Rated Volt. (V) Cap. Tol. Cap. Tol. L W W1 F T DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 3.15 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 DED72E104K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 5.0 4.0 DED72E154K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 5.0 4.0 DED72E224K4K1H03B X7T 250 0.22μF ±10% 7.5 5.5 8.0 5.0 4.0 DED72E334K4K1H03B X7T 250 0.33μF ±10% 7.5 5.5 8.0 5.0 4.0 DED72E474K5B1H03B	Murata Part Number T.C. Rated Volt. (V) Cap. Tol. L W W1 F T DED72E333K2K1H03B X7T 250 33000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 DED72E473K2K1H03B X7T 250 47000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 DED72E683K2K1H03B X7T 250 68000pF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 DED72E104K3K1H03B X7T 250 68000pF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 DED72E154K3K1H03B X7T 250 0.1μF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 DED72E154K3K1H03B X7T 250 0.15μF ±10% 5.5 5.0 7.5 5.0 4.0 3K1 DED72E224K4K1H03B X7T 250 0.22μF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 DED72E334K4K1H03B X7T 250 0.33μF ±10% 7.5 5.5 8.0 5.0 4.0 4K1 DED72E474K5B1H03B X7T 250 0.47μF ±10% 7.5 7.5 - 5.0 4.5 5B1 DED72E684K5B1H03B X7T 250 0.68μF ±10% 7.5 7.5 - 5.0 4.5 5B1

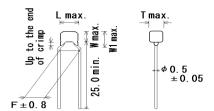

 Straight Long (Dimension(LxW) Lead Style:UB1)



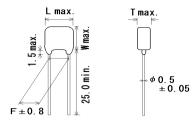
Inside Crimp (Lead Style:K*)



									OTHE : 111111			
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	ension (mm)		Dimension (LxW)	
Part Number	Warda Fart Hamber	1.0.	Volt. (V)	Оар.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
	RDED72E225MUB1H03B	X7T	250	2.2µF	±20%	7.7	12.5	-	5.0	4.5	UB1	200
	RDED72W103K2K1H03B	X7T	450	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72W153K2K1H03B	X7T	450	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72W223K2K1H03B	X7T	450	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72W333K2K1H03B	X7T	450	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72W473K2K1H03B	X7T	450	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72W683K3K1H03B	X7T	450	68000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDED72W104K3K1H03B	X7T	450	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDED72W154K4K1H03B	X7T	450	0.15µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500

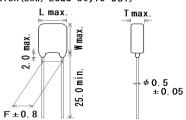


Straight Long (Dimension(LxW) Lead Style:UB1)



Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	ension (mm)		Dimension (LxW)	Pack qty.
Part Number	Murata Fart Number	1.0.	Volt. (V)	оир.	Tol.	L	W	W1	F	Т	Lead Style	
	RDED72W224K5B1H03B	X7T	450	0.22µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDED72W334K5B1H03B	X7T	450	0.33µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDED72W474K5B1H03B	X7T	450	0.47µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDED72W564K5B1H03B	X7T	450	0.56µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDED72W105MUB1H03B	X7T	450	1.0µF	±20%	7.7	12.5	-	5.0	4.5	UB1	200
	RDED72W125MUB1H03B	X7T	450	1.2µF	±20%	7.7	12.5	-	5.0	4.5	UB1	200

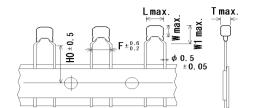
·Inside Crimp (Lead Style:K*)



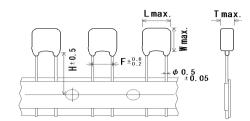
• Straight Long (Lead Style: B1)

											$\overline{}$	
Customer	Murata Part Number	T.C.	DC Rated Volt. (V)	Сар.	Cap. Tol.		Dime		Dimension (LxW)	Pack		
Part Number						L	W	W1	F	Т	Lead Style	qty. (pcs)
	RDED72J103K2K1H03B	X7T	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72J153K2K1H03B	X7T	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDED72J223K3K1H03B	X7T	630	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDED72J333K3K1H03B	X7T	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDED72J473K3K1H03B	X7T	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDED72J683K4K1H03B	X7T	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDED72J104K5B1H03B	X7T	630	0.1µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500
	RDED72J154K5B1H03B	X7T	630	0.15µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500
	RDED72J224K5B1H03B	X7T	630	0.22µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500
	RDED72J274K5B1H03B	X7T	630	0.27µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500

Straight Long (Dimension(LxW) Lead Style:UB1)

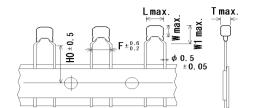


Unit : mm

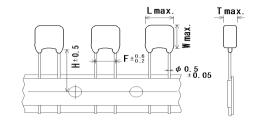

Customer	Murata Part Number	DC Rated		Сар.	Сар.		Dime	Dimension (LxW)	Pack qty.			
Part Number	Wurdta Fart Number	1.0.	Volt. (V)	Оар.	Tol.	L	W	W1	F	Т	(LXVV) Lead Style	
	RDED72J474MUB1H03B	X7T	630	0.47µF	±20%	7.7	13.0		5.0	4.5	UB1	200
	RDED72J564MUB1H03B	X7T	630	0.56µF	±20%	7.7	13.0	-	5.0	4.5	UB1	200

PNLIST

Inside Crimp Taping (Lead Style: M*)

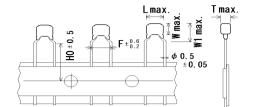


•Straight Taping (Lead Style:E*)

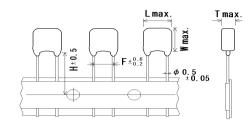


Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		D		Dimension (LxW)	Pack qty.			
Part Number	ividiata i art ivdilibei	1.0.	Volt. (V)	Сар.	Tol.	٦	W	W1	F	Т	H/H0	Lead Style	
	RDED72E333K2M1H03A	X7T	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72E473K2M1H03A	X7T	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72E683K2M1H03A	X7T	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72E104K3M1H03A	X7T	250	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72E154K3M1H03A	X7T	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72E224K4M1H03A	X7T	250	0.22µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72E334K4M1H03A	X7T	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72E474K5E1H03A	X7T	250	0.47µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72E684K5E1H03A	X7T	250	0.68µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72E105K5E1H03A	X7T	250	1.0µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72E225MUE1H03A	X7T	250	2.2µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1000

Inside Crimp Taping (Lead Style: M*)



•Straight Taping (Lead Style:E*)



												OTHE : ITHII	
Customer	Murata Part Number	T.C.	DC Rated	Сар.	Сар.		D		Dimension (LxW)	Pack qty.			
Part Number		1.0.	Volt. (V)		Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RDED72W103K2M1H03A	X7T	450	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W153K2M1H03A	X7T	450	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W223K2M1H03A	X7T	450	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W333K2M1H03A	X7T	450	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W473K2M1H03A	X7T	450	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W683K3M1H03A	X7T	450	68000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72W104K3M1H03A	X7T	450	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72W154K4M1H03A	X7T	450	0.15µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72W224K5E1H03A	X7T	450	0.22µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72W334K5E1H03A	X7T	450	0.33µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72W474K5E1H03A	X7T	450	0.47µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72W564K5E1H03A	X7T	450	0.56µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72W105MUE1H03A	X7T	450	1.0µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1500
	RDED72W125MUE1H03A	X7T	450	1.2µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1000

Inside Crimp Taping (Lead Style: M*)

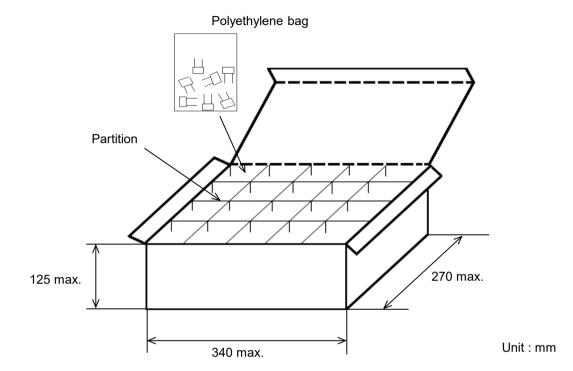
•Straight Taping (Lead Style:E*)

Customer	Murata Part Number	T.C.	DC Rated	Сар.	Сар.		D		Dimension (LxW)	Pack qty.			
Part Number	ividiata i art ivdilibei	1.0.	Volt. (V)	Сар.	Tol.	٦	W	W1	F	Т	H/H0	Lead Style	
	RDED72J103K2M1H03A	X7T	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72J153K2M1H03A	X7T	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72J223K3M1H03A	X7T	630	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72J333K3M1H03A	X7T	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72J473K3M1H03A	X7T	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72J683K4M1H03A	X7T	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72J104K5E1H03A	X7T	630	0.1µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDED72J154K5E1H03A	X7T	630	0.15µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDED72J224K5E1H03A	X7T	630	0.22µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDED72J274K5E1H03A	X7T	630	0.27µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDED72J474MUE1H03A	X7T	630	0.47µF	±20%	7.7	13.0	-	5.0	4.5	17.5	UE1	1000
	RDED72J564MUE1H03A	X7T	630	0.56µF	±20%	7.7	13.0	-	5.0	4.5	17.5	UE1	1000

5.SPF	CIFICATIONS	AND TEST M		ce only								
No.		em	Specification	Test Method								
1	Appearance		No defects or abnormalities.	Visual inspection.								
	Dimension and	d Marking	Within the specified dimensions and Marking.	Visual inspection, Using Caliper.								
3	Dielectric Strength	Between Terminals	No defects or abnormalities.	The capacitor should not be damaged when voltage in Table is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC250V 200% of the rated voltage DC450V 150% of the rated voltage DC630V 120% of the rated voltage								
		Body Insulation	No defects or abnormalities.	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC250V·DC450V 200% of the rated voltage								
				DC630V DC1300V								
4	Insulation Resistance (I.R.)	Between Terminals	10,000MΩ or 100MΩ•μF min. (Whichever is smaller)	The insulation resistance should be measured with DC500V (DC250V in case of rated voltage : DC250V, DC450V) at normal temperature and humidity and within 2 minutes of charging. (Charge/Discharge current ≤ 50mA.)								
5	Capacitance		Within the specified tolerance.	The capacitance, D.F. should be measured at 25°C at the frequency and voltage shown in the table.								
6	Dissipation Fa (D.F.)	ctor	0.01 max.	Char. X7T Item								
7	Capacitance Temperature Characteristics	\$	within +22/-33%	The capacitance change should be measured at each specified temperature stage. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 • Pretreatment Perform a heat treatment at 150+0/-10°C for one								
8	Terminal Strength	Tensile Strength	Termination not to be broken or loosened.	hour and then set at *room condition for 24±2 hours. As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep								
		Bending Strength	Termination not to be broken or loosened.	the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.								
9	Vibration Appearance No defects or abnormalities. Capacitance Within the specified tolerance. D.F. 0.01max.			The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).								

ESRDE109A

			TROICIO	nce onl	<u>y</u>					
No.	It	em	Specification				Test Me	thod		
10	Solderability of	f Lead	Solder is deposited on unintermittently	The ter	minal of	apacitor is di	pped into a	solution of		
			immersed portion in axial direction	ethano	I (JIS K 8	101) and rosi	n (JIS K 590	2) (25%		
		covering 3/4 or more in circumferential		rosin in	weight p	ropotion). Imi	merse in solo	der solution		
			direction of lead wires.		.5 second	ls. In both ca	ses the depti	n of dipping is	s up to about	t
				1.5 to 2	2mm from	the terminal	body.			
				Temp.	of solder	:				
				245±5°	C Lead F	ree Solder (S	n-3.0Ag-0.5	Cu)		
				235±5°	C H60A	or H63A Eute	ctic Solder			
11-1	Resistance	Appearance	No defects or abnormalities.	The lea	ad wires s	hould be imm	nersed in the	melted solde	r	
	to Soldering	Capacitance	Within ±10%	1.5 to 2	2.0mm fro	m the root of	terminal at 2	260±5°C for 10	t1 seconds	
	Heat	Change								
	(Non-	Dielectric	No defects.	• Pre-tr	eatment					
	Preheat)	Strength		Capaci	tor should	be stored a	t 150+0/-10°	C for one hou	r, then place	
	,	(Between		at *rooi	m condition	on for 24±2 ho	ours before i	nitial measure	ment.	
		terminals)		• Post-	treatment					
		,		Capaci	tor should	be stored fo	r 24±2 hour	s at *room cor	ndition.	
11-2	Resistance	Appearance	No defects or abnormalities.)+0/-5°C for 60		ds.
	to Soldering	Capacitance	Within ±10%					in the melted		
	Heat	Change						260±5°C for 7.		nds.
	(On-	Dielectric	No defects.	—					50001	
	Preheat)	Strength		• Pre-tr	eatment					
		(Between				he stored a	t 150+0/-10°	C for one hou	r then nlace	
		terminals)						nitial measure		
		Gillinais)					, ai a DEIUIE I	muai measule	ment.	
			 Post-treatment Capacitor should be stored for 24±2 hours at *room condition. 							
11.0	Dogistan	Anneara	No defects or characterists			i ne storea to	ı 24±2 nour	s at Toom cor	iuilion.	
11-3	Resistance	Appearance	No defects or abnormalities.	_	ondition	.f: 4: 0.F	0.4000			
	to Soldering	Capacitance	Within ±10%			of iron-tip: 35				
	Heat	Change	N. 16.4		-	: 3.5±0.5 sec	onas			
	(soldering	Dielectric	No defects.		ng positio					
	iron method)	Strength		Straight Lead: 1.5 to 2.0mm from the root of terminal.						
		(Between		Crimp	Lead: 1	.5 to 2.0mm f	rom the end	of lead bend.		
		terminals)								
					eatment					
								C for one hou		
							ours before i	nitial measure	ment.	
					treatment					
	_							s at *room cor	ndition.	
12	Temperature	Appearance	No defects or abnormalities.		•	according to	the 4 heat tr	eatments		
	Cycle	Capacitance	Within ±12.5%			wing table.				
		Change		Set at '	room cor	dition for 24±	2 hours, the	n measure.		
		D.F.	0.01max.	⊣ ∣	Step	1	2	3	4]
		I.R.	1 ,000MΩ or 50MΩ•μF min.		Torre	Min.	Dann	Max.	Door	
			(Whichever is smaller)	_	Temp. (°C)	Operating	Room Temp.	Operating	Room Temp.	
		Dielectric	No defects or abnormalities.		, 5,	Temp. ±3	. ср.	Temp. ±3	. zp.	
		Strength			Time	30±3	3 max.	30±3	3 max.	
		(Between			(min.)	3023	- max.	3023	- max.	
		Terminals)								
				• Pretre	eatment					
				Perforn	n a heat t	reatment at 1	50+0/-10°C	for one		
				hour ar	nd then se	et at *room co	ndition for 2	4±2 hours.		
13	Humidity	Appearance	No defects or abnormalities.	Set the	capacito	r at 40±2°C a	nd relative			
	(Steady	Capacitance	Within ±12.5%	humidty 90 to 95% for 500+24/-0 hours.						
	State)	Change		Remov	e and set	at *room cor	dition for 24	±2 hours, ther	n measure.	
		D.F.	0.02 max.							
		I.R.	1,000MΩ or 50MΩ•μF min.	• Pretre	eatment					
			(Whichever is smaller)	Perform	n a heat t	reatment at 1	50+0/-10°C	for one		
				Perform a heat treatment at 150+0/-10°C for one hour and then set at *room condition for 24±2 hours.						


No.	lt.	em	Specification			Test Method						
14	Humidity	Appearance	No defects or abnormalities.	Apply the rate	d voltage at 40±2°0	and relative						
	Load	Capacitance	Within ±12.5%	humidity of 90	to 95% for 500+24	-/-0 hours.						
		Change		Remove and	set at *room conditi	on for 24±2 hours, then measure.						
		D.F.	0.02 max.	(Charge/Disch	(Charge/Discharge current ≦ 50mA.)							
		I.R.	500MΩ or 25MΩ•μF min.									
			(Whichever is smaller)	 Pretreatmen 	Pretreatment							
			Perform a hea	at treatment at 150+	-0/-10°C for one							
				hour and then	set at *room condi	tion for 24±2 hours.						
15	High	Appearance	No defects or abnormalities.	Apply voltage	Apply voltage in Table for 1000+48/-0 hours at the							
	Temperature	Capacitance	Within ±12.5%	maximum ope	erating temperature	±3°C.						
	Load	Change		Remove and set at *room condition for 24±2 hours, then measure.								
		D.F.	0.02 max.	(Charge/Disch	narge current ≦ 50i	mA.)						
		I.R.	1 ,000MΩ or 50MΩ•μF min.		Rated voltage	Test voltage						
			(Whichever is smaller)		DC250V	150% of the rated voltage						
					DC450V	130% of the rated voltage						
					DC630V	120% of the rated voltage						
					DC030V	120 % of the fated voltage						
				 Pretreatmen 	t							
				Apply test volt	tage for one hour at	test temperature.						
				Remove and set at *room condition for 24±2 hours.								
16	Solvent	Appearance	No defects or abnormalities.	The capacitor	should be fully imm	nersed, unagitated,						
	Resistance	Marking	Legible.	in reagent at 2	in reagent at 20 to 25°C for 30±5 sec. and then							
				remove gently	remove gently. Marking on the surface of the							
				capacitor sha	capacitor shall immendiately be visually examined.							
				Regent : Isopi	Regent : Isopropyl alcohol							

* "room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

6. Packing specification

•Bulk type (Packing style code : B)

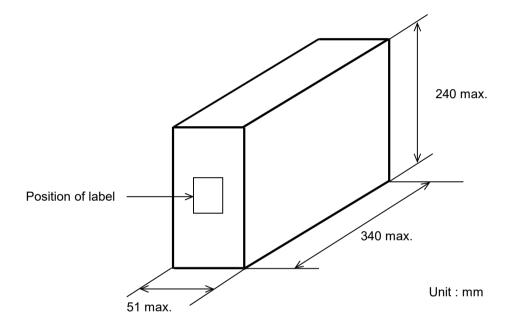
The size of packing case and packing way

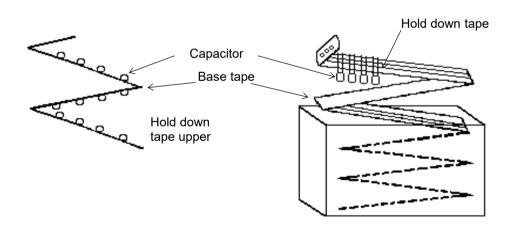
The number of packing = *1 Packing quantity × *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

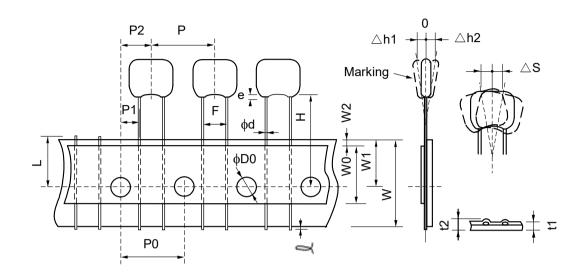

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

·Ammo pack taping type (Packing style code : A)

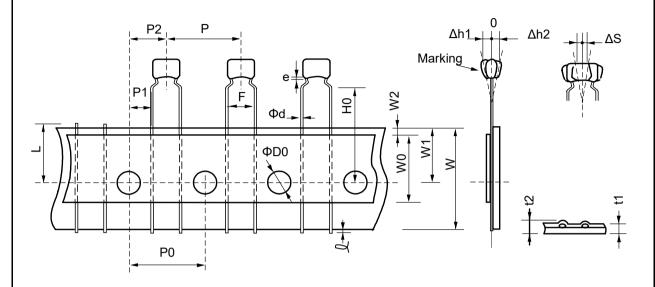
A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way



7. Taping specification

7-1. Dimension of capacitors on tape

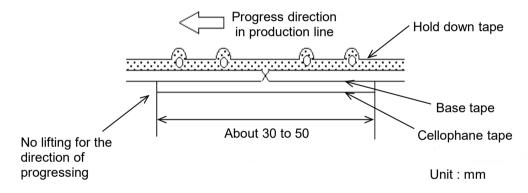

Straight taping type < Lead Style : E1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

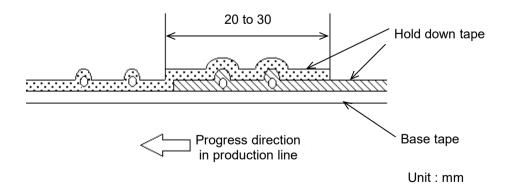
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
For straight lead type	Н	17.5+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ΦD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness.
Deviation across tape	∆h1	2.0 max. (Dime	nsion code : U)
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead		2.0 max. (Dime	nsion code : U)
Coating extension on lead	е	1.5 max. (exce	pt as above)

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	Q	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	∆h1	2.0 max. (Di	mension code : W)
Deviation across tape	Δh2	1.0 max. (e)	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.



2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.