

Reference Specification

150°C Operation Leaded MLCC for Automotive with AEC-Q200 RH Series

Product specifications in this catalog are as of Jul. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to 150°C Operation Leaded MLCC RHE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

• Applied maximum temperature up to 150°C

Note: Maximum accumulative time to 150°C is within 2000 hours.

• Part Number Configuration

ex.)	RHE	L8	_1E_	104	K	0	A2	H03	B
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

Series

Code	Content
RHE	Epoxy coated, 150°C max.

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range
L8	X8L	-55∼125°C	+/-15%	25°C	-55∼150°C
LO	(Murata code)	125~150°C	+15/-40%	25 C	-55~ 150 C

Rated Voltage

Code	Rated voltage
1E	DC25V
1H	DC50V
2A	DC100V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 104

 $10 \times 10^4 = 100000 pF$

• Capacitance Tolerance

Code	Capacitance Tolerance
K	+/-10%
M	+/-20%

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
DB	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

Please refer to [Part number list].

• Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

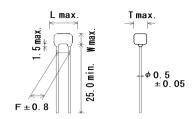
3. Marking

: Letter code : 8 (X8L char.): 3 digit numbers Temp. char.

Capacitance

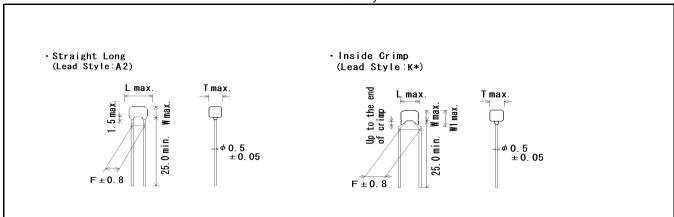
Capacitance tolerance : Code

Rated voltage : Letter code : 2 (DC25V. Except dimension code : 0,1)

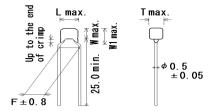

> Letter code: 5 (DC50V. Except dimension code: 0,1) Letter code: 1 (DC100V. Except dimension code: 0,1)

Company name code : Abbreviation : (Except dimension code : 0,1)

(Ex.)						
Rated voltage Dimension code	DC25V	DC50V	DC100V			
0,1	8 105K	8 102K	8 103K			
2	(m 475) (K28)	€ 225 K58	€ 224 K18			
3,W	(106 K28	(335 K58	_			

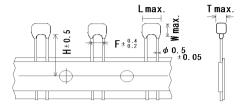

4. Part number list

• Straight Long (Lead Style:A2)


Unit : mm

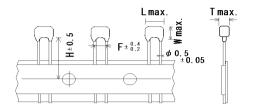
Customer	Murata Part Number	T.C.	T.C. DC Rated Cap. Cap. Tol.						Dimension (LxW)	Pack qty.		
Part Number			Volt. (V)		Tol.	L	W	W1	F	Т	Lead Style	(pcs)
	RHEL81E104K0A2H03B	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E154K0A2H03B	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E224K0A2H03B	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E334K1A2H03B	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E474K1A2H03B	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E684K1A2H03B	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E105K1A2H03B	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E155K2A2H03B	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E225K2A2H03B	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E335K2A2H03B	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E475K2A2H03B	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E106K3A2H03B	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H221K0A2H03B	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H331K0A2H03B	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H471K0A2H03B	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H681K0A2H03B	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H102K0A2H03B	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H152K0A2H03B	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H222K0A2H03B	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H332K0A2H03B	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H472K0A2H03B	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H682K0A2H03B	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H103K0A2H03B	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H153K0A2H03B	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H223K0A2H03B	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H333K0A2H03B	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H473K0A2H03B	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H683K0A2H03B	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H104K0A2H03B	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H154K1A2H03B	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H224K1A2H03B	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H334K1A2H03B	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H474K2A2H03B	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H684K2A2H03B	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H105K2A2H03B	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H155K2A2H03B	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H225K2A2H03B	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H335K3A2H03B	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H475K3A2H03B	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL82A221K0A2H03B	X8L	100	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500

Unit: mm DC: Dimension (mm) Dimension Pack Customer Rated Cap. T.C. Murata Part Number Cap. (LxW) qty. Part Number Volt Tol Lead Style (pcs) L W W1 F Т (V) X8L 100 330pF 500 RHEL82A331K0A2H03B +10% 3 6 3.5 2.5 2.5 NA2 RHEL82A471K0A2H03B X8L 100 470pF ±10% 3.6 3.5 2.5 2.5 0A2 500 RHEL82A681K0A2H03B 100 ±10% 2.5 0A2 500 X8L 680pF 3.6 3.5 2.5 RHEL82A102K0A2H03B X8L 100 1000pF ±10% 3.6 3.5 2.5 2.5 0A2 500 3.6 2.5 NA2 RHEL82A152K0A2H03B X8L 100 1500pF ±10% 3.5 2.5 500 RHEL82A222K0A2H03B X8L 100 2200pF ±10% 3.6 3.5 2.5 2.5 NA2 500 RHEL82A332K0A2H03B XXI 100 3300pF +10% 3.6 3.5 2.5 2.5 NA2 500 RHEL82A472K0A2H03B X8L 100 4700pF ±10% 3.6 3.5 2.5 2.5 0A2 500 X8L 100 500 RHEL82A682K0A2H03B 6800pF ±10% 3.6 3.5 2.5 2.5 NA2 10000pF RHEL82A103K0A2H03B X8L 100 ±10% 3.6 3.5 2.5 2.5 0A2 500 RHEL82A153K0A2H03B X8L 100 15000pF ±10% 3.6 3.5 2.5 2.5 0A2 500 RHEL82A223K0A2H03B X8L 100 22000pF ±10% 3.6 3.5 2.5 2.5 NA2 500 RHEL82A333K1A2H03B X8L 100 33000pF ±10% 4.0 3.5 2.5 2.5 1A2 500 X8L 100 47000pF ±10% 4.0 2.5 1A2 RHEL82A473K1A2H03B 3.5 2.5 500 RHEL82A683K1A2H03B X8L 100 68000pF ±10% 4.0 3.5 2.5 2.5 1A2 500 100 ±10% 4.0 RHEL82A104K1A2H03B XXI 0.1uF 3.5 2.5 2.5 1A2 500 RHEL82A154K2A2H03B X8L 100 0.15µF ±10% 5.5 4.0 2.5 3.15 2A2 500 RHEL82A224K2A2H03B X8L 100 0.22µF ±10% 5.5 4 0 2.5 3.15 2A2 500 X8L 25 2.5 500 RHEL81E104K0K1H03B 0.1µF +10% 3.6 3.5 6.0 5.0 NK1 2.5 RHEL81E154K0K1H03B X8L 25 0.15µF ±10% 3.6 3.5 6.0 5.0 0K1 500 RHEL81E224K0K1H03B X8L 25 0.22µF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500 RHEL81E334K1K1H03B X8L 25 0.33µF ±10% 4.0 3.5 5.0 5.0 2.5 1K1 500 4.0 5.0 5.0 2.5 500 RHEL81E474K1K1H03B X8L 25 0.47µF ±10% 3.5 1K1 RHEL81E684K1K1H03B X8L 25 0.68µF ±10% 4.0 3.5 5.0 5.0 2.5 1K1 500 RHEL81E105K1K1H03B X8L 25 1.0µF ±10% 4.0 3.5 5.0 5.0 2.5 1K1 500 RHEL81E155K2K1H03B X8L 25 1.5µF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 500 RHEL81E225K2K1H03B XXI 25 2.2µF ±10% 5.5 4 0 6.0 5.0 3.15 2K1 500 RHEL81E335K2K1H03B X8L 25 3.3µF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 500 RHEL81E475K2K1H03B X8L 25 4.7µF ±10% 5.5 4.0 6.0 5.0 3.15 2K1 500 XXI 25 ±10% 5.5 5.0 7.5 5.0 4 0 3K1 500 RHEL81E106K3K1H03B 10_uF RHEL81E226MWK1H03B X8L 25 22µF ±20% 5.5 7.5 10.0 5.0 4.0 WK1 500 RHEL81H221K0K1H03B X8L 50 220pF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500 RHEL81H331K0K1H03B X8L 50 5.0 2.5 330pF ±10% 3.6 3.5 6.0 0K1 500 5.0 2.5 RHEL81H471K0K1H03B X8L 50 470pF ±10% 3.6 3.5 6.0 0K1 500 RHEL81H681K0K1H03B X8L 50 680pF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500 RHEL81H102K0K1H03B X8L 50 1000pF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500 RHEL81H152K0K1H03B X8L 50 1500pF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500 RHEL81H222K0K1H03B X8L 50 2200pF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500 2.5 RHEL81H332K0K1H03B X8L 50 3300pF ±10% 3.6 3.5 6.0 5.0 0K1 500 RHEL81H472K0K1H03B X8L 50 4700pF ±10% 3.6 3.5 6.0 5.0 2.5 0K1 500


·Inside Crimp (Lead Style:K*)

Unit: mm

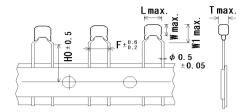
											Onit : mm	
Customer	Murata Part Number	T.C.	DC Dimension (mm)					Dimension (LxW)	Pack qty.			
Part Number			Volt. (V)	С	Tol.	L	W	W1	F	Т	Lead Style	(pcs)
	RHEL81H682K0K1H03B	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H103K0K1H03B	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H153K0K1H03B	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H223K0K1H03B	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H333K0K1H03B	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H473K0K1H03B	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H683K0K1H03B	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H104K0K1H03B	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H154K1K1H03B	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H224K1K1H03B	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H334K1K1H03B	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H474K2K1H03B	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H684K2K1H03B	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H105K2K1H03B	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H155K2K1H03B	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H225K2K1H03B	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H335K3K1H03B	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H475K3K1H03B	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H106MWK1H03B	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RHEL82A221K0K1H03B	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A331K0K1H03B	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A471K0K1H03B	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A681K0K1H03B	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A102K0K1H03B	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A152K0K1H03B	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A222K0K1H03B	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A332K0K1H03B	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A472K0K1H03B	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A682K0K1H03B	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A103K0K1H03B	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A153K0K1H03B	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A223K0K1H03B	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A333K1K1H03B	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A473K1K1H03B	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A683K1K1H03B	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A104K1K1H03B	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A154K2K1H03B	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL82A224K2K1H03B	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500


Straight Taping (Lead Style:D*)

Unit : mm

Customer Part Number	Murata Part Number	T.C.	DC Rated Volt. (V)	Сар.	Cap. Tol.	L	Di W	imensi W1	on (mr F	n) T	H/H0	Dimension (LxW) Lead Style	qty
	DUEL 04E404K0DDLI00A	V01	`	24	: 400/	2.0	2.5		2.5	2.5	10.0	^DD	200
	RHEL81E104K0DBH03A	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0		200
	RHEL81E154K0DBH03A	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	16.0		200
	RHEL81E224K0DBH03A	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0		200
	RHEL81E334K1DBH03A	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0		20
	RHEL81E474K1DBH03A	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0		20
	RHEL81E684K1DBH03A	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0		20
	RHEL81E105K1DBH03A	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0		20
	RHEL81E155K2DBH03A	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0		20
	RHEL81E225K2DBH03A	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0		20
	RHEL81E335K2DBH03A	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0		20
	RHEL81E475K2DBH03A	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0		20
	RHEL81E106K3DBH03A	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0		15
	RHEL81H221K0DBH03A	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H331K0DBH03A	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H471K0DBH03A	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H681K0DBH03A	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H102K0DBH03A	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H152K0DBH03A	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H222K0DBH03A	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H332K0DBH03A	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H472K0DBH03A	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H682K0DBH03A	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H103K0DBH03A	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H153K0DBH03A	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H223K0DBH03A	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H333K0DBH03A	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H473K0DBH03A	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H683K0DBH03A	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H104K0DBH03A	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H154K1DBH03A	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RHEL81H224K1DBH03A	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RHEL81H334K1DBH03A	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RHEL81H474K2DBH03A	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RHEL81H684K2DBH03A	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RHEL81H105K2DBH03A	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	-		20
	RHEL81H155K2DBH03A	X8L	50	1.5µF	±10%	5.5	4.0	_	2.5				20
	RHEL81H225K2DBH03A	X8L	50	2.2µF	±10%	5.5	4.0		2.5	3.15			20
	RHEL81H335K3DBH03A	X8L	50	3.3µF	±10%	5.5	5.0	_	2.5	4.0			1:
	RHEL81H475K3DBH03A	X8L	50	4.7μF	±10%	5.5	5.0	_	2.5	4.0			15
	RHEL82A221K0DBH03A	X8L	100	220pF	±10%	3.6	3.5		2.5	2.5			20

 Straight Taping (Lead Style:D*)


Inside Crimp Taping (Lead Style: M*)

Unit: mm

Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Сар.	Cap. Tol.	L	D W	imensi W1	on (mr F	n) T	H/H0	Dimension (LxW) Lead Style	qty
			(V)			L VV VVI			Г	'	11/110	,	\r
	RHEL82A331K0DBH03A	X8L	100	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A471K0DBH03A	X8L	100	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A681K0DBH03A	X8L	100	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A102K0DBH03A	X8L	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A152K0DBH03A	X8L	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A222K0DBH03A	X8L	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A332K0DBH03A	X8L	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A472K0DBH03A	X8L	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A682K0DBH03A	X8L	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A103K0DBH03A	X8L	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A153K0DBH03A	X8L	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A223K0DBH03A	X8L	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A333K1DBH03A	X8L	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL82A473K1DBH03A	X8L	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL82A683K1DBH03A	X8L	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL82A104K1DBH03A	X8L	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL82A154K2DBH03A	X8L	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL82A224K2DBH03A	X8L	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81E104K0M1H03A	X8L	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81E154K0M1H03A	X8L	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81E224K0M1H03A	X8L	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81E334K1M1H03A	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81E474K1M1H03A	X8L	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81E684K1M1H03A	X8L	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81E105K1M1H03A	X8L	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81E155K2M1H03A	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E225K2M1H03A	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E335K2M1H03A	X8L	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E475K2M1H03A	X8L	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E106K3M1H03A	X8L	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RHEL81E226MWM1H03A	X8L	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	15
	RHEL81H221K0M1H03A	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H331K0M1H03A	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H471K0M1H03A	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H681K0M1H03A	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H102K0M1H03A	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H152K0M1H03A	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5			20
	RHEL81H222K0M1H03A	X8L	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5			20
	RHEL81H332K0M1H03A	X8L	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0		20
	RHEL81H472K0M1H03A	X8L	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0		20

Inside Crimp Taping (Lead Style: M*)

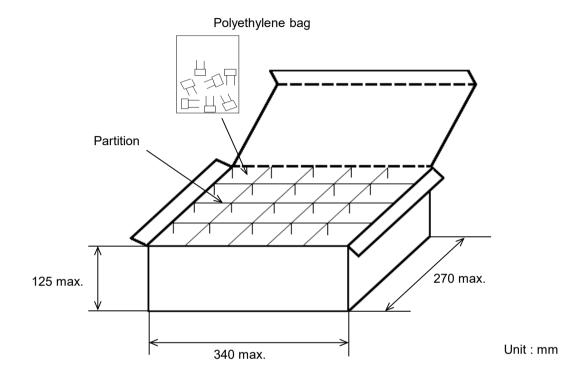
Unit : mm

										Unit : mm			
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dimension (mm)				ı —	Dimension (LxW)	Pack qty.
Part Number			Volt. (V)		Tol.	L	W	W1	F	Т	H/H0	Lead Style	(pcs)
	RHEL81H682K0M1H03A	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H103K0M1H03A	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H153K0M1H03A	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H223K0M1H03A	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H333K0M1H03A	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H473K0M1H03A	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H683K0M1H03A	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H104K0M1H03A	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H154K1M1H03A	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H224K1M1H03A	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H334K1M1H03A	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H474K2M1H03A	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H684K2M1H03A	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H105K2M1H03A	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H155K2M1H03A	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H225K2M1H03A	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H335K3M1H03A	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RHEL81H475K3M1H03A	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RHEL81H106MWM1H03A	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	150
	RHEL82A221K0M1H03A	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A331K0M1H03A	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A471K0M1H03A	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A681K0M1H03A	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A102K0M1H03A	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A152K0M1H03A	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A222K0M1H03A	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A332K0M1H03A	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A472K0M1H03A	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A682K0M1H03A	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A103K0M1H03A	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A153K0M1H03A	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A223K0M1H03A	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A333K1M1H03A	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RHEL82A473K1M1H03A	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RHEL82A683K1M1H03A	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RHEL82A104K1M1H03A	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RHEL82A154K2M1H03A	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL82A224K2M1H03A	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000

5. AF	C-Q200 Murata	Standard Spec	Referer Cifications and Test Methods	loc orny							
		-Q200		450 0000 T 144 II 1							
No.	Test	t Item	Specification	AEC-Q200 Test Method							
1	Pre-and Post-S	Stress									
	Electrical Test	1									
2	High	Appearance	No defects or abnormalities.	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2 hours							
	Temperature	Capacitance	within ±12.5%	at *room condition, then measure.							
	Exposure	Change	0.04	- Burton street							
	(Storage)	D.F. I.R.	0.04 max. More than 1,000MΩ or 50MΩ∙μF	Perform the heat treatment at 150+0/-10°C for 60±5 min and							
		I.K.	(Whichever is smaller)	then let sit for 24±2 hours at *room condition.							
3	Temperature	Appearance	No defects or abnormalities except color	Perform the 1000 cycles according to the four heat treatments listed							
J	Cycling	Арреаганос	change of outer coating.	in the following table. Let sit for 24±2 hours at *room condition, then measu							
	Cyoming .	Capacitance	within ±12.5%	Step 1 2 3 4							
		Change		Temp Room Room							
		D.F.	0.05 max.	(°C) -55+0/-3 Temp. 150+3/-0 Temp.							
		I.R.	1,000MΩ or 50MΩ•μF min.	Time 45.2 4 45.2 4							
			(Whichever is smaller)	(min.) 15±3 1 15±3 1							
				•Pretreatment							
				Perform the heat treatment at 150+0/-10°C for 60±5 min and							
				then let sit for 24±2 hours at *room condition.							
4	Moisture	Appearance	No defects or abnormalities.	Apply the 24 hours heat (25 to 65°C) and humidity (80 to 98%)							
	Resistance	Capacitance	within ±12.5%	treatment shown below, 10 consecutive times.							
		Change		Let sit for 24±2 hours at *room condition, then measure.							
		D.F.	0.05 max.	Temperature Humidity Humidity 100 Humidity 80~98% Humidity 80~98% Humidity							
		I.R.	500MΩ or 25MΩ•μF min.	(°C) Humidity 90~98%							
			(Whichever is smaller)	65							
				60 55							
				§50 §45							
				\$40 \$35							
				±33 // // // // // // // // // // // // /							
				25 5 10							
				20 15							
				10 Initial measurement							
				5							
				0 -5							
				-10							
				One cycle 24 hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24							
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours							
				•Pretreatment							
				Perform the heat treatment at 150+0/-10°C for 60±5 min and							
				then let sit for 24±2 hours at *room condition.							
5	Biased	Appearance	No defects or abnormalities.	Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)							
	Humidity	Capacitance	within ±12.5%	at 85±3°C and 80 to 85% humidity for 1,000±12 hours.							
		Change		Remove and let sit for 24±2 hours at *room condition, then measure.							
		D.F.	0.05 max.	The charge/discharge current is less than 50mA.							
		I.R.	500MΩ or 25MΩ•μF min.	Pretreatment							
			(Whichever is smaller)	Perform a heat treatment at 150+0/-10°C for one hour.							
				and then set at room temperature for 24±2 hours.							
6	Operational	Appearance	No defects or abnormalities except color	Apply 150% of the rated voltage for 1,000±12 hours at 150±3°C.							
	Life		change of outer coating.	Let sit for 24±2 hours at *room condition, then measure.							
		Capacitance	within ±12.5%	The charge/discharge current is less than 50mA.							
		Change		•Pretreatment							
		D.F.	0.04 max.	Apply test voltage for 60±5 min at test temperature.							
		I.R.	1,000MΩ or 50MΩ•μF min.	Remove and let sit for 24±2 hours at *room condition.							
			(Whichever is smaller)	<u> </u>							
			No defects or abnormalities.	Visual inspection.							
7	External Visua			tree to the second seco							
8	Physical Dimer		Within the specified dimensions.	Using calipers and micrometers.							
9	Physical Dimer Marking	nsion	Within the specified dimensions. To be easily legible.	Visual inspection.							
9	Physical Dimer Marking Resistance	Appearance	Within the specified dimensions. To be easily legible. No defects or abnormalities.	Visual inspection. Per MIL-STD-202 Method 215							
8	Physical Dimer Marking	Appearance Capacitance	Within the specified dimensions. To be easily legible. No defects or abnormalities. Within the specified tolerance.	Visual inspection. Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol							
8 9	Physical Dimer Marking Resistance	Appearance Capacitance D.F.	Within the specified dimensions. To be easily legible. No defects or abnormalities. Within the specified tolerance. 0.025 max.	Visual inspection. Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits							
8 9	Physical Dimer Marking Resistance	Appearance Capacitance	Within the specified dimensions. To be easily legible. No defects or abnormalities. Within the specified tolerance. 0.025 max. More than 10,000ΜΩ or 500 ΜΩ•μF	Visual inspection. Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer							
9	Physical Dimer Marking Resistance	Appearance Capacitance D.F.	Within the specified dimensions. To be easily legible. No defects or abnormalities. Within the specified tolerance. 0.025 max.	Visual inspection. Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water							
8 9	Physical Dimer Marking Resistance	Appearance Capacitance D.F.	Within the specified dimensions. To be easily legible. No defects or abnormalities. Within the specified tolerance. 0.025 max. More than 10,000ΜΩ or 500 ΜΩ•μF	Visual inspection. Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer							

Reference only

			Referen	ce only						
No.		-Q200 t Item	Specification	AEC-Q200 Test Method						
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in each direction should be applied along 3						
	Shock	Capacitance	Within the specified tolerance.	mutually perpendicular axes of the test specimen (18 shocks).						
	0.100.1	D.F.	0.025 max.	The specified test pulse should be Half-sine and should have a						
		D.1 .	0.025 Max.	i i						
12	Vibration	Annogrange	No defects or abnormalities.	duration: 0.5ms, peak value: 1500G and velocity change: 4.7m/s.						
12	Vibration	Appearance		The capacitor should be subjected to a simple harmonic motion						
		Capacitance	Within the specified tolerance.	having a total amplitude of 1.5mm, the frequency being varied						
		D.F.	0.025 max.	uniformly between the approximate limits of 10 and 2000Hz.						
				The frequency range, from 10 to 2000Hz and return to 10Hz,						
				should be traversed in approximately 20 min. This motion						
				should be applied for 12 items in each 3 mutually perpendicular						
				directions (total of 36 times).						
13-1	Resistance	Appearance	No defects or abnormalities.	The lead wires should be immersed in the melted solder 1.5 to 2.0mm						
	to Soldering	Capacitance	Within ±7.5%	from the root of terminal at 260±5°C for 10±1 seconds.						
	Heat	Change								
	(Non-	Dielectric	No defects.	Pre-treatment						
	Preheat)	Strength		Capacitor should be stored at 150+0/-10°C for one hour,						
		(Between		then place at *room condition for 24±2 hours before initial measurement.						
		terminals)		Post-treatment						
				Capacitor should be stored for 24±2 hours at *room condition.						
13-2	Resistance	Appearance	No defects or abnormalities.	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 seconds.						
l	to Soldering	Capacitance	Within ±7.5%	Then, the lead wires should be immersed in the melted solder						
	Heat	Change		1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 seconds.						
	(On-	Dielectric	No defects.	1.3 to 2.0mm from the root of terminal at 20013 C for 7.3 for 1 seconds.						
	`		ino delects.	. Dro trootmont						
	Preheat)	Strength		• Pre-treatment						
		(Between		Capacitor should be stored at 150+0/-10°C for one hour,						
		terminals)		then place at *room condition for 24±2 hours before initial measurement.						
				Post-treatment						
				Capacitor should be stored for 24±2 hours at *room condition.						
13-3	Resistance	Appearance	No defects or abnormalities.	Test condition						
	to Soldering	Capacitance	Within ±7.5%	Temperature of iron-tip: 350±10°C						
	Heat	Change		Soldering time : 3.5±0.5 seconds						
	(soldering	Dielectric	No defects	Soldering position						
	iron method)	Strength		Straight Lead: 1.5 to 2.0mm from the root of terminal.						
		(Between		Crimp Lead: 1.5 to 2.0mm from the end of lead bend.						
		terminals)								
				Pre-treatment						
				Capacitor should be stored at 150+0/-10°C for one hour,						
				then place at *room condition for 24±2 hours before initial measurement.						
				Post-treatment						
				Capacitor should be stored for 24±2 hours at *room condition.						
14	Thermal	Appearance	No defects or abnormalities.	Perform the 300 cycles according to the two heat treatments listed in the						
'	Shock	Capacitance	within ±12.5%	following table (Maximum transfer time is 20 seconds.).						
		Change		Let sit for 24±2 hours at *room condition, then measure.						
		D.F.	0.05 max.							
		I.R.		 						
		1.13.	1,000MΩ or 50MΩ•μF min.	Temp. (°C) -55+0/-3 150+3/-0						
			(Whichever is smaller)							
				Time 15±3 15±3						
				(min.)						
				•Pretreatment						
				Perform the heat treatment at 150+0/-10°C for 60±5 min and						
				then let sit for 24±2 hours at *room condition.						
15	ESD	Appearance	No defects or abnormalities.	Per AEC-Q200-002						
		Capacitance	Within the specified tolerance.	」						
		D.F.	0.025 max.							
		I.R.	More than 10,000MΩ or 500MΩ · μF							
		<u></u>	(Whichever is smaller)							
16	Solderability		Lead wire should be soldered with	The terminal of a capacitor is dipped into a solution of ethanol						
			uniform coating on the axial direction	(JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight propotion)						
			over 95% of the circumferential direction.	and then into molten solder (JIS-Z-3282) for 2±0.5 seconds. In both cases						
				the depth of dipping is up to about 1.5 to 2mm from the terminal body.						
				Temp. of solder :						
				245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu)						
				,						
* "		'amama:t-: 1:	E to 25°C Poloting burnish 45 to 75°C	235±5°C H60A or H63A Eutectic Solder						
roor	m condition" T	emperature : 18	5 to 35°C, Relative humidity : 45 to 75%, Atm	osphere pressure : 86 to TU6KPa						


Reference only

			1	Reference of	only					
No.		t Item	Specifications		AEC-Q200 Test Method					
17	Electrical	Appearance	No defects or a	abnormalities.	Visual inspection.					
	Characte-	Capacitance	Within the spe	cified tolerance.	The capacitance/D.F. should be measured at 25°C at the					
	rization	D.F.	0.025 max.		frequency and voltage shown in the table.					
					Nominal Cap. Frequency Voltage					
					C≦10μF 1±0.1kHz AC1±0.2V (r.m.s.)					
					C>10μF 120±24Hz AC0.5±0.1V (r.m.s.)					
		Insulation	Room 10,000MΩ or 500MΩ•μF min.		The insulation resistance should be measured at 25±3 °C with					
		Resistance	Temperature	(Whichever is smaller)	a DC voltage not exceeding the rated voltage at normal temperature					
		(I.R.)	'		and humidity and within 2 min. of charging.					
		,			(Charge/Discharge current ≤ 50mA.)					
			High	100MΩ or 5MΩ•μF min. (Whichever is smaller)	The insulation resistance should be measured at 150±3 °C with					
			Temperature		a DC voltage not exceeding the rated voltage at normal temperature					
				(**************************************	and humidity and within 2 min. of charging.					
					(Charge/Discharge current ≤ 50mA.)					
		Dielectric	Between	No defects or abnormalities.	The capacitor should not be damaged when DC voltage of 250%					
		Strength	Terminals	no defects of apriormanties.	of the rated voltage is applied between the terminations for					
		g			1 to 5 seconds.					
					(Charge/Discharge current ≦ 50mA.)					
			Body	No defects or abnormalities.	The capacitor is placed in a container with metal					
			Insulation		balls of 1mm diameter so that each terminal,					
					short-circuit is kept approximately 2mm from Approx.					
					the balls, and 250% of the rated DC voltage is					
					impressed for 1 to 5 seconds between					
					capacitor terminals and metal balls. Meta					
					(Charge/Discharge current ≤ 50mA.)					
18	Terminal	Tensile	Termination no	ot to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually					
	Strength	Strength			to each lead in the radial direction of the capacitor until reaching					
					10N and then keep the force applied for 10±1 seconds.					
					<u> </u>					
					Ĭ 					
		Bending	Termination no	ot to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then					
		Strength			be bent 90° at the point of egress in one direction.					
					Each wire is then returned to the original position and bent 90°					
					in the opposite direction at the rate of one bend per 2 to 3 seconds.					
19	Capacitance		Within the spe	cified Tolerance.	The capacitance change should be measured after 5min.					
	Temperature		-55 to 125°C :	within ±15%	at each specified temperature step.					
	Characteristic	S	125 to 150°C :	within +15/-40%	Step Temperature(°C)					
					1 25±2					
					2 -55±3					
					3 25±2					
					4 150±3					
					5 25±2					
					The ranges of capacitance change compared with the above					
					25°C value over the temperature ranges shown in the table					
					should be within the specified ranges.					
					•Pretreatment					
					Perform the heat treatment at 150+0/-10°C for 60±5 min and					
					then let sit for 24±2 hours at *room condition.					
					Perform the initial measurement.					
				ve humidity : 45 to 75%, Atmosphe						

6. Packing specification

•Bulk type (Packing style code : B)

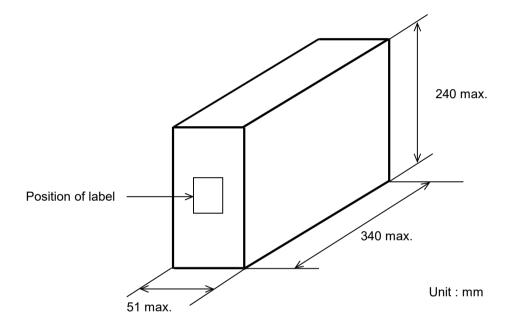
The size of packing case and packing way

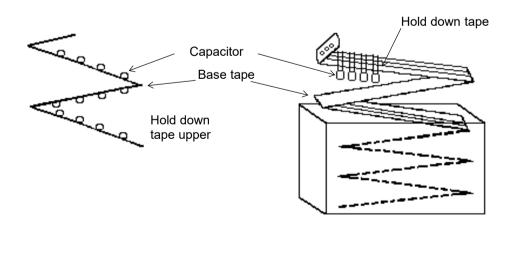
The number of packing = *1 Packing quantity × *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

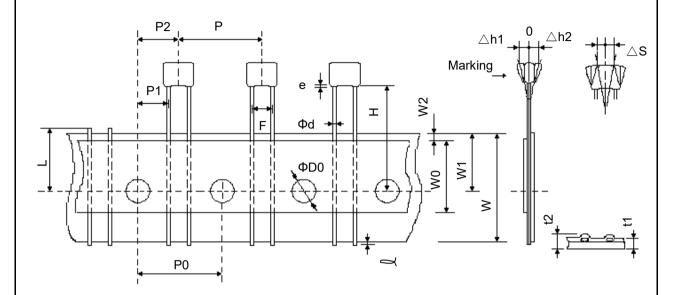

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

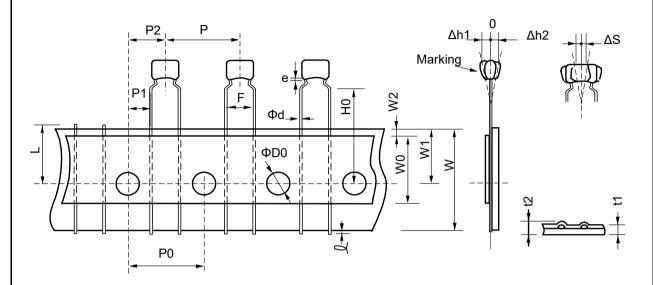
The size of packing case and packing way


EKTRPE01

7. Taping specification

7-1. Dimension of capacitors on tape

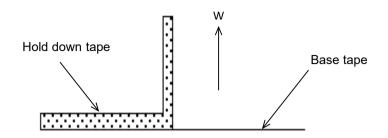
Straight taping type < Lead Style : DB >


Pitch of component 12.7mm / Lead spacing 2.5mm

Unit: mm

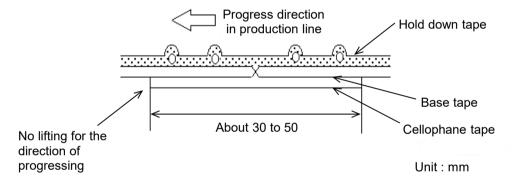
Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	2.5+0.4/-0.2		
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	5.1+/-0.7		
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	Н	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ФD0	4.0+/-0.1		
Lead diameter	Фd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape	
Total thickness of tape and lead wire	t2	1.5 max.	thickness	
Deviation across tape	Δh1	1.0 max.		
Deviation across tape	Δh2	1.0 IIIax.		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	1.5 max.		

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

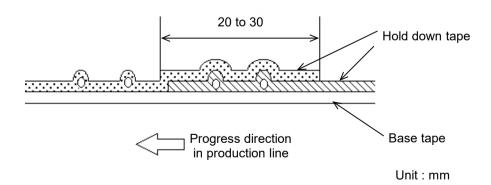


Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	Δh1	2.0 max. (Di	mension code : W)
Deviation across tape	Δh2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

b) When hold down tape is spliced

•Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01