## S12R-SSRDSO-NCSL5-001 <br> Gear Tooth Speed Switch

> Ferrous target activated Speed Switch
> 8 to 32V DC Powered
> 150 VAC Normally Closed Form B Relay
$>$ Stainless $12 \times 1 \mathrm{~mm} \times 45 \mathrm{~mm}$ housing
> Shielded 2 pair 22 AWG $105^{\circ} \mathrm{C}$ PVC, 5 foot


[^0]Modify, update, or enhance any sensor with our modular features and functionality.

ELECTRICAL - Every sensor function available in various electrical options (NPN, PNP, TTL, etc.)

CONNECTION - Deutsch, Amphenol, many other brands, free end wires, pigtails, any length

Need a Custom Sensor Solution?... Send us your application specific requirements at sensorso.com
'Steel Gears \& Ferrous Target Actuated Speed Switch with Relay Output' Overspeed, Underspeed, Zero-Speed


## OUTPUTS



## Rev CAA

Page 1

## DESCRIPTION

- Speed switch output turns on/off dependent on factory programmed frequency.
- 001 Hz switch point functions as " 0 speed" indicator. For other switch speeds contact Sensor Solutions.
- Single channel digital square wave output for resolving actual speed.
- Detects gears and other ferrous targets using Hall Effect Technology
- Capable of detecting 0-32 pitch gears, bolt heads, holes in steel plates, and other ferrous targets
- No orientation required. Use lock nuts to set air gap within range of target


## FEATURES

- Ferrous Target Speed Switch
- No Orientation Required
- Add -xxx in Hz to End of PN contact factory for custom switch point models


## S12R-SSRDSO-NCSL5-001 <br> Gear Tooth Speed Switch

## OTHER OPTIONS

As well as these Ferrous Target Speed Switches, we offer Magnet / Magnet Tape activated Speed Switches, and Gear Tooth Speed Switches designed to work with standard gears. We have options for relay outputs, NPN outputs, and TTL outputs.

Note: Check our website or contact us to discuss any of our magnetic speed, count, and position detection sensors.

| Electrical Specifications | Conditions | Min | Max | Unit |
| :--- | :--- | :---: | :---: | :---: |
| Temperature Range | Operating | -40 | +110 | Deg C |
| Supply Voltage, Vcc | Over temperature | +8 | +32 | Volts DC |
| Supply Current | Into Vcc | 6 | 24 | mA |
| Contact Resistance | Initial | - | 0.10 | Ohms |
| Overspeed TRIP Frequency <br> 100\% Final Tested at factory | Output goes low above | 0.98 | 1.01 | Hz |
| Underspeed Release Freq. <br> 100\% Final Tested at factory | Output goes high below | 0.94 | 0.97 | Hz |
| Relay Closing Bounce Time | T=25C | - | 3 | mS |
| ESD (like product qualified) | Nondestructive | - | 2000 | Volts |
| EMI (like product qualified) | 20 k to 1 G Hz | - | 20 | $\mathrm{~V} / \mathrm{M}$ |
|  |  |  |  | Rev C |



## SL5, Ind. Shielded 2 Pair 22 AWG- 20 to $105^{\circ} \mathrm{C}$ PVC

SHIELDED 2 PAIR, 22 AWG, 7/30, 105C
CABLE: GREY PVC

DIM $=\operatorname{INCH}$

*OTHER STANDARD LENGTHS: $1^{\prime}, 2^{\prime}, 10^{\prime}$, AND $20^{\prime}$ —. Rev A

| Absolute Max Limits | Min | Max | Unit |
| :--- | :---: | :---: | :---: |
| Supply Voltage, Vcc-Gnd | -16 | +32 | Volts |
| Voltage at Relay | - | 150 | Volts AC |
| Voltage at Relay | - | 120 | Volts DC |
| Switching Current, T = 25C | - | 1 | Amp |
| Switching Current, $T=70 \mathrm{C}$ | - | .46 | Amp |
| Switching Power, T = 25C | - | 30 | Watts |
| Isolation, Surge Voltage <br> Between Supply and Relay | - | 1.5 | k Volts |


| Environmental Specifications |  |
| :--- | :---: |
| Corrosion Resistance | 500 hours salt spray ASTM B-117 |
| Installation Torque | 23 Foot-Pounds Maximum |
| Enclosure | Nema $1,3,4,6,13$ \& IEC IP67 |
| Vibration | 10 G's 2 to 2000 Hz Sinusodal |
| Mechanical Shock | 100 G's 11 mS Half-Sine |

## Sensor Characteristics

Output State at O Speed: Relay Open

| Air Gap Range, Targets | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Large $>1 / 4^{\prime \prime}$ wide and $>1 / 4^{\prime \prime}$ apart | $.000^{\prime \prime}$ | $.070^{\prime \prime}$ | $.140^{\prime *}$ |
| Med. $>1 / 8^{\prime \prime}$ wide and $>1 / 8^{\prime \prime}$ apart | $.000^{\prime \prime}$ | $.045^{\prime \prime}$ | $.080^{\prime *}$ |
| Small >1/16" wide and $>1 / 8^{\prime \prime}$ apart | $.000^{\prime \prime}$ | $.028^{\prime \prime}$ | $.030^{\prime *}$ |
| 8 Pitch Gear (.393" tooth to tooth) | $.000^{\prime \prime}$ | $.015^{\prime \prime}$ | $.085^{\prime *}$ |
| TRIP Frequency Accuracy, <br> Output LOW | $.98 \%$ | $1.0 \%$ | $1.01 \% 0^{*}$ |
| RELEASE Frequency Accuracy, <br> Output HGH | $.99 \%^{* * *}$ | $1.0 \%$ | $1.02 \%$ |
| STOP DETECT TIME, Output <br> returns high after sudden stop | 10 ms (Typical) |  |  |
| *Gap the sensor less than MAX GAP. <br> ** Relay is guaranteed OPEN if teeth are passing by <br> faster than 1.02 * Trip Frequency. <br> ***Relay is guaranteed CLOSED if teeth are passing <br> by slower than 0.99 * Release Frequency |  |  |  |

## Convert RPM to Hz

Over/Under Speed Trip Points are in Hz, pulses per second.
To convert RPM (Revolutions per Minute) to Hz, you need to know the target's pulses per revolution, " N ". A 20-tooth target produces 20 pulses, so $\mathrm{N}=20$.

$$
H z=\operatorname{RPM}^{*}(N / 60) . \text { Or RPM }=H z *(60 / N) .
$$

Example:For a 20-tooth target and 500 Hz trip point, RPM
$=500$ * ( $60 / 20$ ) so the output switches low at 1500 RPM.

| Connections Chart |  |
| :--- | :--- |
| Red Vcc | Black Ground |
| White Relay Output | Green Relay Common |
| SL5-SSRDSO |  |
| OTHER MATING CONNECTORS AND CABL-------------------------------------- |  |

Page 2

## S12R-SSRDSO-NCSL5-001 <br> Gear Tooth Speed Switch

Sensor Function


THIS SENSOR WORKS WITH ANY ORIENTATION!

## Marking



CHARACTERISTIC-OPTION_NC Relay Output MARKED ON THIS SURFACE
fff $=$ SWITCH FREQUENCY IN Hz \#

| Date Code 'YYM' $\mathrm{YY}=\mathrm{YEAR}, \mathrm{M}=\mathrm{MONTH}$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
| A JAN | D APR | H JUL | L OCT |  |  |
| B FEB | E MAY | J AUG | M NOV |  |  |
| C MAR | G JUN | K SEP | N DEC |  |  |

## Handling Instructions

DO NOT CONTACT
FACE TO FACE


CONTACT WITH OTHER MAGNETS MAY REDUCE THE MAXIMUM OPERATING GAP

[^1]
[^0]:    HOUSING -Aluminum, stainless steel, plastic, threaded, flange mount, customer specific

[^1]:    Please note: All technical specifications on this series datasheet refer to the standard product range. Modifications in the sense of technical progress are reserved. For general information only. For more specific information, please consult the product datasheet, available upon request.

    This series datasheet could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein. These change will be incorporated in future revisions.

    For deviating values, most current specifications and products please contact your nearest sales office.

