Maxim > Design Support > Technical Documents > Application Notes > Display Drivers > APP 3462
Keywords: MAX6954, MAX6955, LED driver, display driver, I2C, I²C, keys, switches, keyscan, keyswitch, debounce, DS3123, DS31230, DS9123O

APPLICATION NOTE 3462

Extending MAX6954 and MAX6955 Keyscan Beyond 32 Keys

Mar 25, 2005

Abstract: This application note provides details on how to extend the MAX6954 and MAX6955 LED display drivers' keyscan capability from 32 keys to up to 80 keys.

The MAX6954/MAX6955 are 4-wire and 2-wire serial-interfaced LED drivers that control up to 7-segment, 14 -segment, and 16 -segment LED digits or an array of 16×8 LEDs. The driver also includes five I/O expander (GPIO) ports, and logic for using some or all of these ports to automatically scan and debounce up to 32 key switches. An optional function of this logic is to alert the system processor to debounced keys through an interrupt output pin. The technique described here extends a MAX6954/MAX6955's capability from 32 up to 80 or more keys with the addition of extra diodes.

Table 1. Standard 32-Key Connections to MAX6954/MAX6955

P0	P1	P2	P3

LED Output O0 SW A1 SW B1 SW C1 SW D1
LED Output O1 SW A2 SW B2 SW C2 SW D2
LED Output O2 SW A3 SW B3 SW C3 SW D3
LED Output O3 SW A4 SW B4 SW C4 SW D4
LED Output O4 SW A5 SW B5 SW C5 SW D5
LED Output O5 SW A6 SW B6 SW C6 SW D6
LED Output O6 SW A7 SW B7 SW C7 SW D7
LED Output O7 SW A8 SW B8 SW C8 SW D8

Figure 1. Standard 32-Key Connections to MAX6954/MAX6955.
Table 1 and Figure 1 show the standard key switch connections to the MAX6954/MAX6955. The key switch circuit reads 32 keys organized in a 4×8 matrix (four columns, eight rows). The eight key matrix rows are driven by the eight LED cathode drive outputs (LED Output O0 through LED Output O7). These LED cathode drive outputs alternately go low for $320 \mu \mathrm{~s}$ (nom) and drive their LEDs sequentially as part of the multiplexed LED drive. These drive outputs are also used to each pull one end of two key switches low. The other ends of the keys connect to four input pins (P0-P3), which are internally pulled up to V+ inside the MAX6954/MAX6955. If a switch is pressed, then P0, P1, P2, or P3 is pulled low by the appropriate LED Output Ox output, and the MAX6954/MAX6955 detects and debounces the key press.

The diodes in series with the switches ensure that two or more LED cathode drive outputs are not shorted together if multiple keys are pressed simultaneously. For example, if SW A1 and SW A2 are pressed together, the diodes in series with the keys prevent LED Output O0 from being shorted to LED Output O1. This is because, at any time, at least one of the diodes will be reverse biased. The diodes typically implemented are the low-cost, common-anode BAW56 in SOT23.

The MAX6954/MAX6955 distinguish and discriminate between any combination of the 32 possible keys being pressed and released on any occasion. There are only sufficient registers in the part to provide status for these 32 keys. It is obvious that there is no way to extend this scanning topology beyond the 32 keys that the MAX6954/MAX6955 are designed for. Therefore, it is necessary to take another, more inventive approach.

To be specific, we look for a redundant situation to exploit. In many cases, the application only needs to detect if one key of many is pressed. Typically two-key presses on equipment are either miskeyed entries
or a devious means to enter factory diagnostic modes. Accordingly, the redundant situations are two-key presses. The creative approach suggested here is to make additional keys appear as if certain key pairs are being pressed simultaneously. The example in Table 2 and Figure 2 adds 16 more keys by combining $P 0$ and P1, and P2 and P3. For example, when SW AB1 is pressed, it must appear to the MAX6954/MAX6955 as if SW A1 and SW B1 are pressed simultaneously. This extension architecture works well, so long as each original key pair (e.g. SW A1 and SW B1) are not placed physically next to each other, to avoid them being pressed together accidentally. The software should be written to respond to a key active-low IRQ output within the MAX6954/MAX6955's debounce cycle time, to ensure that the result from exactly one key-scan pass is being analyzed. If the software active-low $I R Q$ response is slow, it cannot distinguish between a simultaneous dual key press (identifying our extra keys) and sequential key presses of the same two keys. In either case, the key debounce registers 0x08-0x0B simply show a bit set for each key.

Table 2. Extended 48-Key Connections to MAX6954/MAX6955

| P0 | $P 1$ | P2 | P3 | P0 \& P1 | P2 \& P3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LED Output O0 SW A1 SW B1 SW C1 SW D1 SW AB1 SW CD1
LED Output O1 SW A2 SW B2 SW C2 SW D2 SW AB2 SW CD2
LED Output O2 SW A3 SW B3 SW C3 SW D3 SW AB3 SW CD3
LED Output O3 SW A4 SW B4 SW C4 SW D4 SW AB4 SW CD4
LED Output O4 SW A5 SW B5 SW C5 SW D5 SW AB5 SW CD5
LED Output O5 SW A6 SW B6 SW C6 SW D6 SW AB6 SW CD6
LED Output O6 SW A7 SW B7 SW C7 SW D7 SW AB7 SW CD7
LED Output O7 SW A8 SW B8 SW C8 SW D8 SW AB8 SW CD8

Each extra key requires a dual diode (such as the low-cost, common-cathode BAV70 in SOT23), which pulls both P0 and P1 low, or P2 and P3 low, when the switch is pressed.

Figure 2. Extended 48-Key Connections to MAX6954/MAX6955.
The Figure 2, Table 2 scheme adds 16 more keys by combining P0 and P1, and P2 and P3. There are actually four more possible two-key combinations for the P0-P3 key-scan inputs. If all six two-key combinations are used, the key count can be extended to 80 switches, as shown in Table 3. Figure 3 shows how the six extra keys are wired for the LED Output OO row. Again, each extra key switch uses a dual diode.

Table 3. Extended 80-Key Connections to MAX6954/MAX6955

LED Output O0 SW A1 SW B1 SW C1 SW D1 SW AB1 SW AC1 SW AD1 SW BC1 SW BD1 SW CD1 LED Output O1 SW A2 SW B2 SW C2 SW D2 SW AB2 SW AC2 SW AD2 SW BC2 SW BD2 SW CD2 LED Output O2 SW A3 SW B3 SW C3 SW D3 SW AB3 SW AC3 SW AD3 SW BC3 SW BD3 SW CD3 LED Output O3 SW A4 SW B4 SW C4 SW D4 SW AB4 SW AC4 SW AD4 SW BC4 SW BD4 SW CD4 LED Output O4 SW A5 SW B5 SW C5 SW D5 SW AB5 SW AC5 SW AD5 SW BC5 SW BD5 SW CD5 LED Output O5 SW A6 SW B6 SW C6 SW D6 SW AB6 SW AC6 SW AD6 SW BC6 SW BD6 SW CD6 LED Output O6 SW A7 SW B7 SW C7 SW D7 SW AB7 SW AC7 SW AD7 SW BC7 SW BD7 SW CD7 LED Output O7 SW A8 SW B8 SW C8 SW D8 SW AB8 SW AC8 SW AD8 SW BC8 SW BD8 SW CD8

Figure 3. Extended 80-Key Connections to MAX6954/MAX6955.
But why be limited to dual key presses to identify extra keys? Triple and quadruple key combinations can be used instead of or in addition to dual key presses. Table 4 shows these extra configurations. Note that the four triple combinations require a triple diode, and the quadruple combination requires a quadruple diode.

Table 4. Triple and Quadruple Key Connections

| | P0 \& P1 \& P3 | P0 \& P1 \& P4 | P0 \& P2 \& P3 | P1 \& P2 \& P4 | P0 \& P1 \& P2 \&P3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LED Output O0 SW ABC1 | SW ABD1 | SW ACD1 | SW BCD1 | SW ABCD1 | |
| LED Output O1 SW ABC2 | SW ABD2 | SW ACD2 | SW BCD2 | SW ABCD2 | |
| LED Output O2 SW ABC3 | SW ABD3 | SW ACD3 | SW BCD3 | SW ABCD3 | |
| LED Output O3 SW ABC4 | SW ABD4 | SW ACD4 | SW BCD4 | SW ABCD4 | |
| LED Output O4 SW ABC5 | SW ABD5 | SW ACD5 | SW BCD5 | SW ABCD5 | |
| LED Output O5 SW ABC6 | SW ABD6 | SW ACD6 | SW BCD6 | SW ABCD6 | |
| LED Output O6 SW ABC7 | SW ABD7 | SW ACD7 | SW BCD7 | SW ABCD7 | |
| LED Output O7 SW ABC8 | SW ABD8 | SW ACD8 | SW BCD8 | SW ABCD8 | |

There is a good reason to discard the triple and quadruple key combinations-they require more diodes. However, if the application needs only a few extra keys above the 32-key limit, then you might want to consider these five first. This is because it is more unlikely that a user would fumble three or four keys by accident than two.

Note: Each of the extension keys discussed is wired to simulate a multiple key press for keys on the same LED cathode drive outputs (LED Output O0 through LED Output O7). With this connection, the keys associated with any multiple key press combination are scanned and debounced at the same time, so the results appear simultaneously. Extra keys that simulate a multiple key press of keys scanned by different LED cathode drive outputs will be unreliable, as the keys would not be debounced simultaneously.

Related Parts

MAX6954
4-Wire Interfaced, 2.7V to 5.5V LED Display Driver with I/O Expander and Key Scan

Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact
Application Note 3462: http://www.maximintegrated.com/an3462
APPLICATION NOTE 3462, AN3462, AN 3462, APP3462, Appnote3462, Appnote 3462
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

