
Maxim > Design Support > Technical Documents > Application Notes > Display Drivers > APP 3729
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3729

Keywords: MAX6951,MAX6950,MAXQ2000,Assembly code examples, SPI interface, LED Drivers, 7-segment
LED

APPLICATION NOTE 3729

Using the MAX6951/MAX6950 LED Display Drivers
with SPI Interface to Communicate with the
MAXQ2000 Microcontroller
Feb 03, 2006

Abstract: This application note describes assembly language techniques for the MAX6951/MAX6950 LED
drivers using the MAXQ2000's SPI peripheral.

Introduction
The MAX6950 and MAX6951 are five-digit and eight-digit common-cathode LED display drivers controlled
through a high-speed SPI interface. These devices employ a unique multiplexing scheme to minimize the
connections between the LED driver and the LED panels. The MAXQ2000 is a high-performance 16-bit, RISC
microcontroller with an integrated SPI module, which provides an easy interface between an LED driver and
microcontroller. This application note gives a sample code in the MAXQ® assembly language that
demonstrates how to use the MAXQ2000 SPI module to experiment with MAX6951/MAX6950 functions.

Hardware and Software Requirements
To perform the interface experiment described in this application note, you need the MAX6951 Evaluation Kit
(EV kit), the MAXQ2000 Evaluation Kit (including MAX-IDE software), a +5V power supply with minimally
200mA capacity, and a PC with an available serial port.

Hardware Setup
1. MAX6951 EV kit jumper settings

To disconnect signals active-low CS, DIN and SCLK from the level-translator chip on the EV kit, cut the
traces connecting Pins 1 and 2 of JU2, JU3 and JU4.

2. MAXQ2000 EV kit jumper and DIP switch settings
Set switch SW3 1-8 to the off position.
JU1: connect Pins 1 and 2
JU2: connect Pins 1 and 2
JU3: connect Pins 1 and 2
JU4: open
JU10: open
JU11: on (The MAXQ2000 EV kit is powered by a JTAG interface board, which is powered by a +5V

Page 1 of 7

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/10/c/Display%20Drivers#c10
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/max6950
http://www.maximintegrated.com/max6951
http://www.maximintegrated.com/datasheet/index.mvp/id/3221
http://www.maximintegrated.com/datasheet/index.mvp/id/4478
http://www.maximintegrated.com/products/microcontrollers/maxq/development_tools/

power supply.)
3. Connect the two EV kits as shown in Figure 1.

Figure 1. Schematic for the connection between the MAX6951 EV Kit and the MAXQ2000 EV Kit.

Firmware Description
The complete firmware files for this example project can be downloaded from the Maxim website, and can be
compiled using Maxim's integrated development and debugging environment, MAX-IDE for the MAXQ family of
microcontrollers.

Download: Complete Firmware (ZIP, 18.8k)

main.asm file
This file is the main demo loop for this example project. It calls different routines to demo the correct data
writing to the MAX6951 registers. The firmware demonstrates the following MAX6951 functions in sequence:

1. MAX6951 SPI interface initialization.
2. In hexadecimal decode mode, the writing and displaying of 0, 1, 2, ..., A, B, C, D, E, F and 8 decimals

(i.e., lighting all LED segments) to both the P0 plane and P1 plane of all the digits on the MAX6951.
3. In no-decode mode, the writing and displaying of the above letters and other recognizable letters such as

H, L, P, Q, Y, etc., with custom built-in fonts.
4. LED dimming loop. This loop shows how to write to the MAX6951 intensity register to test the digital

brightness control.
5. Scan limit loop. This loop displays from one to eight digits with the same intensity settings.

Note: monitor the process to ensure that the brightness decreases when the scan limit increases.
6. Blinking loop, This loop writes a different digit number to plane P0 and plane P1 of every digit. It also uses

a fast blinking mode to demonstrate segment-blinking control that can be synchronized across multiple
LED drivers.

7. Scrolling loop, This loop scrolls a text message, HELLO, from left to right and right to left.
8. Bouncing loop, This loop bounces HELLO between the two LED edges.
9. The counting loop. This last loop shows, in both hexadecimal decode mode and no-decode mode, how to

design a display that counts how many milliseconds have elapsed.

max2000ev_6951.asm file
This file includes all the utility functions for communicating with the MAX6951 EV kit using the MAXQ2000

Page 2 of 7

http://www.maximintegrated.com/images/appnotes/3729/3729Firmware.zip

microcontroller. The major functions are:
1. max6951_init: This function sets the MAXQ2000 in the correct SPI mode for talking to the MAX6951. It

enables SPI and initializes the MAX6951 to display eight 0s on the display panel. Listing 1 shows this
function in detail.

Listing 1. MAX6951 initialization code sample.

;***
;* Function: max6951_init
;*
;* Sets the correct SPI modes for talking to the MAX6951, enables SPI, and
;*
;* initializes the MAX6951 to display 8 0s.
;*
;* Input: None.
;*
;* Output: None.
;*
;* Destroys: ACC, A[0] -- A[10], PSF
;*
;***
MAX6951_INIT:
 ; SET SPI BAUD RATE
 MOVE A[0], #2400H ; SYSTEM CLOCK IS 16,000,000
HZ
 MOVE A[1], #00F4H
 MOVE A[2], #4240H ; DESIRED BAUD RATE IS
1,000,000 HZ
 MOVE A[3], #000FH
 CALL SPI_SETBAUDRATE

 ; SET THE APPROPRIATE MODES FOR THE 6951
 MOVE C, #SPI_IDLE_LOW ; IDLE = LOW
 CALL SPI_SETCLOCKPOLARITY
 MOVE C, #SPI_ACTIVE_EDGE ; ACTIVE = RISING EDGE
 CALL SPI_SETCLOCKPHASE
 MOVE C, #SPI_LENGTH_16 ; ALWAYS TRANSFER 16 BITS
 CALL SPI_SETCHARACTERLENGTH
 MOVE C, #SPI_MASTER_MODE ; MAXQ2000 IS THE MASTER, MAX6951 IS THE SLAVE
 CALL SPI_SETMODE

 ; ENABLE SPI
 MOVE C, #1
 CALL SPI_ENABLE

 ; SHUTDOWN MAX6951 DISPLAY FIRST
 CALL MAX6951_SHUTDOWN

 ; SET MAX6951 IN HEXADECIMAL DECODE MODE
 MOVE ACC, #MAX6951REG_DECODE
 SLA4
 SLA4
 OR #0FFH ; HEXADECIMAL DECODE
 CALL MAX6951_TRANSMIT

 ; SET DISPLAY INTENSITY = 16/16
 MOVE ACC, #MAX6951REG_INTENSITY
 SLA4
 SLA4
 OR #0FH ; INTENSITY = 16/16
 CALL MAX6951_TRANSMIT

 ; SCAN LIMIT = 7
 MOVE ACC, #MAX6951REG_SCANLIMIT
 SLA4
 SLA4
 OR #07H ; SCAN LIMIT = 7

Page 3 of 7

 CALL MAX6951_TRANSMIT
 RET

2. max6951_transmit: This function sends a register address and a data byte (16 bits) to the Max6951.
3. max6951_set_all_n: These functions set both plane P0 and plane P1 of a digit register to number 'n'. All

the functions have both hexadecimal decode and no decode versions.
4. max6951_e_d_s_d: This function enables the MAX6951 display, then a half-second delay, shutdowns the

display, and then delays for 100ms.
5. max6951_screenshot: These functions put HELLO at eight different positions on the 8-digit LED panel.
6. max6951_scroll_R_to_L: By displaying the screenshots in different sequences, this function scrolls

HELLO from right to left in no-decode mode.
7. max6951_scroll_L_to_R: By displaying the screenshots in different sequences, this function scrolls

HELLO from left to right in no-decode mode.
8. max6951_bouncing: This function bounces HELLO between the two LED edges.
9. font_lookup: Given a digit value in hexadecimal format, this routine looks for the value that displays the

same font in no-decode mode on a standard 7-segment LED.
10. max6951_counting: This function counts and displays how many milliseconds have elapsed; the

resolution is 10 milliseconds. Listing 2 shows the code in detail.

Listing 2. MAX6951 counting code sample.

;***
;* Function: max6951_counting
;*
;* This routine counts how many 10-milliseconds have elapsed and displays
;*
;* the value from 0000 to 9999 on LED digits 3-0(no way to blank leading
digits).
;*
; The routine displays the same value on LED digits 7-4(by using no decode
;*
;* mode, individual leading digits can be blanked).
;*
;* Input: None
;*
;* Output: None
;*
;* Destroys: ACC, A[1] - A[4], A[9]
;*
;***
MAX6951_COUNTING:
 CALL MAX6951_SHUTDOWN
 CALL MAX6951_SET_ALL_0 ; SET ALL BITS OF DATA REGISTERS TO 0
 MOVE ACC, #010FH ; HEXDECIMAL DECODE DIGITS 3-0, NO DEOCDE
DIGITS 7-4
 CALL MAX6951_TRANSMIT
 ; INITIALIZE THE COUNT TO 0
 MOVE A[1], #0 ; A[1] => DIGIT 0
 MOVE A[2], #0 ; A[2] => DIGIT 1
 MOVE A[3], #0 ; A[3] => DIGIT 2
 MOVE A[4], #0 ; A[4] => DIGIT 3

COUNT_LOOP:
INCREASE_DIGIT3:
 MOVE ACC, A[4] ; PROCESS DIGIT 3
 SUB #9
 JUMP Z, INCREASE_DIGIT2 ; DIGIT 3 = 9, THERE IS CARRY
OVER
 MOVE ACC, A[4] ; DIGIT 3 < 9, CONTINUE
 ADD #1
 MOVE A[4], ACC
 CALL FONT_LOOKUP ; LOOK UP THE VALUE FOR THIS

Page 4 of 7

FONT
 ; STORE IT IN A[9], KEEP ACC
UNCHANGED
 OR #6300H
 CALL MAX6951_TRANSMIT ; NO CARRY OVER, WRITE DIGIT 3
NEW VALUE
 MOVE ACC, A[9] ; WRITE THE NO DECODE VALUE TO
DIGIT 7
 OR #6700H
 CALL MAX6951_TRANSMIT
 JUMP DISPLAY_NUMBER

INCREASE_DIGIT2:
 OR #6300H
 CALL MAX6951_TRANSMIT ; WRITE 0 TO DIGIT 3 REGISTER
FIRST
 MOVE A[4], #0 ; SET DIGIT 3 BACK TO 0
 MOVE ACC, #677EH ; NO DECODE VALUE FOR FONT '0'
IS "7EH"
 CALL MAX6951_TRANSMIT ; WRITE 7EH TO DIGIT 7
REGISTER

 MOVE ACC, A[3] ; PROCESS DIGIT 2
 SUB #9
 JUMP Z, INCREASE_DIGIT1 ; DIGIT 2 = 9, THERE IS CARRY
OVER
 MOVE ACC, A[3] ; DIGIT 2 < 9, CONTINUE
 ADD #1
 MOVE A[3], ACC
 CALL FONT_LOOKUP ; LOOK UP THE VALUE FOR THIS
FONT
 ; STORE IT IN A[9], KEEP ACC
UNCHANGED
 OR #6200H
 CALL MAX6951_TRANSMIT ; NO CARRY OVER, WRITE DIGIT 2
NEW VALUE
 MOVE ACC, A[9] ; WRITE THE NO DECODE VALUE TO
DIGIT 6
 OR #6600H
 CALL MAX6951_TRANSMIT
 JUMP DISPLAY_NUMBER

INCREASE_DIGIT1:
 OR #6200H
 CALL MAX6951_TRANSMIT ; WRITE 0 TO DIGIT 2 REGISTER
FIRST
 MOVE A[3], #0 ; SET DIGIT 2 BACK TO 0
 MOVE ACC, #667EH ; NO DECODE VALUE FOR FONT '0'
IS "7EH"
 CALL MAX6951_TRANSMIT ; WRITE 7EH TO DIGIT 6
REGISTER

 MOVE ACC, A[2] ; PROCESS DIGIT 1
 SUB #9
 JUMP Z, INCREASE_DIGIT0 ; DIGIT 1 = 9, THERE IS CARRY
OVER
 MOVE ACC, A[2] ; DIGIT 1 < 9, CONTINUE
 ADD #1
 MOVE A[2], ACC
 CALL FONT_LOOKUP ; LOOK UP THE VALUE FOR THIS
FONT
 ; STORE IT IN A[9], KEEP ACC
UNCHANGED
 OR #6100H
 CALL MAX6951_TRANSMIT ; NO CARRY OVER, WRITE DIGIT 1
NEW VALUE
 MOVE ACC, A[9] ; WRITE THE NO DECODE VALUE TO
DIGIT 5
 OR #6500H

Page 5 of 7

 CALL MAX6951_TRANSMIT
 JUMP DISPLAY_NUMBER

INCREASE_DIGIT0:
 OR #6100H
 CALL MAX6951_TRANSMIT ; WRITE 0 TO DIGIT 1 REGISTER
FIRST
 MOVE A[2], #0 ; SET DIGIT 1 BACK TO 0
 MOVE ACC, #657EH ; NO DECODE VALUE FOR FONT '0'
IS "7EH"
 CALL MAX6951_TRANSMIT ; WIRTE 7EH TO DIGIT 5
REGISTER

 MOVE ACC, A[1] ; PROCESS DIGIT 0
 SUB #9
 JUMP Z, COUNT_COMPLETE ; DIGIT 0 = 9, COUNTING IS
OVER
 MOVE ACC, A[1] ; DIGIT 0 < 9, CONTINUE
 ADD #1
 MOVE A[1], ACC
 CALL FONT_LOOKUP ; LOOK UP THE VALUE FOR THIS
FONT
 ; STORE IT IN A[9], KEEP ACC
UNCHANGED
 OR #6000H
 CALL MAX6951_TRANSMIT ; NO CARRY OVER, WRITE DIGIT 0
NEW VALUE
 MOVE ACC, A[9] ; WRITE THE NO DECODE VALUE TO
DIGIT 4
 OR #6400H
 CALL MAX6951_TRANSMIT

DISPLAY_NUMBER: ; DISPLAY DIGIT 3-0 IN HEXADECIMAL DECODE MODE
 ; DIEPLAY DIGIT 7-4 IN NO DECODE MODE
 CALL MAX6951_ENABLE
 CALL MAX6951_10MS_DELAY
 JUMP COUNT_LOOP

COUNT_COMPLETE:
 RET

maxq2000_spi.asm file: This file is the utility function for configuring and using the MAXQ2000's SPI module.
The file is integrated in the MAX-IDE; the user can use it without modification.

divide32.asm file: This is a 32-/32-bit divide routine provided in the MAX-IDE software.

maxq2000.inc, maxq2000_spi.inc, and max2000ev_6951.inc files: These are include files for MAXQ2000 pin
definitions and MAX6951 register definitions.

Conclusion
The MAX6951/MAX6950 SPI LED drivers are easy-to-use common-cathode display drivers that interface to
microcontrollers through an SPI serial interface. The MAXQ family of microcontrollers provides a convenient
integrated SPI module that communicates to LED drivers with SPI interfaces. The sample code presented here
helps a user understand how to exercise MAX6951 LED features. The sample code can also be utilized in
similar MAXQ2000-based application development.

Related Parts

MAX6950 Serially Interfaced, +2.7V to +5.5V, 5- and 8-Digit LED
Display Drivers

Free Samples

Page 6 of 7

http://www.maximintegrated.com/datasheet/index.mvp/id/3195
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX6950

MAX6951 Serially Interfaced, +2.7V to +5.5V, 5- and 8-Digit LED
Display Drivers

Free Samples

MAXQ2000 Low-Power LCD Microcontroller Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3729: http://www.maximintegrated.com/an3729
APPLICATION NOTE 3729, AN3729, AN 3729, APP3729, Appnote3729, Appnote 3729
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 7 of 7

http://www.maximintegrated.com/datasheet/index.mvp/id/3195
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX6951
http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3729
http://www.maximintegrated.com/legal

	maxim-ic.com
	Using the MAX6951/MAX6950 LED Display Drivers with SPI Interface to Communicate with the MAXQ2000 Microcontroller - Application Note - Maxim

