SILICON LABS

EFM32JG1 Reference Manual ®

The EFM32 Gecko MCUs are the world’s most energy-friendly mi-
Crocontrollers ENERGY FRIENDLY FEATURES

ARM Cortex-M3 at 40 MHz

EFM32JG1 features a powerful 32-bit ARM® Cortex-M3 and a wide selection of periph-
Ultra low energy operation:

erals, including a unique cryptographic hardware engine supporting AES, ECC, and

SHA. These features, combined with ultra-low current active mode and short wake-up * 21pA EM:; Stop /CF‘;X&M (CRYOTIMER
time from energy-saving modes, make EFM32JG1 microcontrollers well suited for any running with state, retention)
battery-powered application, as well as other systems requiring high performance and * 2.5 YA EM2 DeepSileep current (RTCC
low-energy consumption. running with state and RAM retention)

* 63 pA/MHz in Energy Mode 0 (EMO)
Hardware cryptographic engine supports
« 10T devices and sensors * Home automation and security AES, ECC, and SHA

:] Integrated dc-dc converter
. * Industrial and factory automation
Health and fitness CRYOTIMER operates down to EM4

5V tolerant I/O

Example applications:

* Smart accessories

Core / Memory Clock Management Energy Management

Voltage :
Regulator Voltage Monitor

ARM Cortex™ M3 processor P Men.iory .
rotection Unit Auxiliary High
Frequency RC

Oscillator

Low Frequency
RC Oscillator

DC-DC

Converter Power-On Reset

Low Frequency Ultra Low B
RAM Memory Debug Interface DMA Controller Crystal Frequency RC

Oscillator Oscillator

32-bit bus

Detector

Peripheral Reflex System
|

Serial Interfaces 1/0 Ports Timers and Triggers Analog Interfaces

External Interrupts Low Energy Timer

General Purpose 1/O

Low Energy UART™ Pulse Counter Real Time Counter

: and Calendar Analog Comparator
Pin Reset

2 .
I1’C Pin Wakeup Watchdog Timer CRYOTIMER

Lowest power mode with peripheral operational:

EMO - Active _ EM2 — Deep Sleep EM3 - Stop EM4 - Shutoff

silabs.com | Building a more connected world.

Table of Contents

1.

About This Document
1.1 Introduction .
1.2 Conventions.

1.3 Related Documentation .

. System Overview .

2.1 Introduction .

2.2 Block Diagrams.

2.3 MCU Features Overview

2.4 Oscillators and Clocks

2.5 Hardware CRC Support .

2.6 Data Encryption and Authentication .
2.7 Timers.

. System Processor

3.1 Introduction .
3.2 Features .

3.3 Functional Description
3.3.1 Interrupt Operation .
3.3.2 Interrupt Request Lines (IRQ)

. Memory and Bus System .

4.1 Introduction .

4.2 Functional Description
4.2.1 Peripheral Non-Word Access Behawor
4.2.2 Bit-banding. . .
4.2.3 Peripheral Bit Set and Clear .
4.2.4 Peripherals.
4.2.5 Bus Matrix .

4.3 Access to Low Energy Peripherals (Asynchronous Registers) .

4.3.1 Writing
4.3.2 Reading. .
4.3.3 FREEZE Register

4.4 Flash .
4.5 SRAM .
4.6 DI Page Entry Map

4.7 DI Page Entry Description . :
4.7.1 CAL - CRC of DI-page and callbratlon temperature .
4.7.2 EUI48L - EUI48 OUI and Unique identifier .

4.7.3 EUI48H - OUI .
4.7.4 CUSTOMINFO - Custom mformatlon
4.7.5 MEMINFO - Flash page size and misc. chip mformatlon

silabs.com | Building a more connected world.

. 22
22
22
.23

24
.24
.25
.26
27
27
.28
.29

.30
.30
.31

.31
.32
.33

34
.34

.35
.36
37
.38
.39
.39

42
42
44
44

44
45
46

A7
A7
48
48
.48
49

Rev.1.0| 2

4.7.6

4.7.7

4.7.8

4.7.9

4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16
4.7.17
4.7.18
4.7.19
4.7.20
4.7.21
4.7.22
4.7.23
4.7.24
4.7.25
4.7.26
4.7.27
4.7.28
4.7.29
4.7.30
4.7.31
4.7.32
4.7.33
4.7.34
4.7.35
4.7.36
4.7.37
4.7.38
4.7.39
4.7.40
4.7.41
4.7.42
4.7.43

UNIQUEL - Low 32 bits of device unique number
UNIQUEH - High 32 bits of device unique number
MSIZE - Flash and SRAM Memory size in kB .

PART - Part description .
DEVINFOREYV - Device mformatlon page revision . .
EMUTEMP - EMU Temperature Calibration Information .
ADCOCALO - ADCQO calibration register O .

ADCOCAL1 - ADCO calibration register 1 .

ADCOCALZ - ADCO calibration register 2 .

ADCOCALS3 - ADCO calibration register 3 . .o
HFRCOCALO - HFRCO Calibration Register (4 MHz) .
HFRCOCAL3 - HFRCO Calibration Register (7 MHz) .
HFRCOCALS6 - HFRCO Calibration Register (13 MHz)
HFRCOCAL?Y - HFRCO Calibration Register (16 MHz)
HFRCOCALS - HFRCO Calibration Register (19 MHz) .
HFRCOCAL10 - HFRCO Calibration Register (26 MHz) .
HFRCOCAL11 - HFRCO Calibration Register (32 MHz) .
HFRCOCAL12 - HFRCO Calibration Register (38 MHz) .
AUXHFRCOCALO - AUXHFRCO Calibration Register (4 MHz)
AUXHFRCOCAL3 - AUXHFRCO Calibration Register (7 MHz)
AUXHFRCOCALG6 - AUXHFRCO Calibration Register (13 MHz)
AUXHFRCOCALY - AUXHFRCO Calibration Register (16 MHz)
AUXHFRCOCALS - AUXHFRCO Calibration Register (19 MHz)
AUXHFRCOCAL10 - AUXHFRCO Calibration Register (26 MHz)
AUXHFRCOCAL11 - AUXHFRCO Calibration Register (32 MHz)
AUXHFRCOCAL12 - AUXHFRCO Calibration Register (38 MHz)
VMONCALO - VMON Calibration Register 0 .

VMONCAL1 - VMON Calibration Register 1 .

VMONCAL2 - VMON Calibration Register 2 .

IDACOCALO - IDACO Calibration Register 0 .

IDACOCAL1 - IDACO Calibration Register 1

DCDCLNVCTRLO - DCDC Low-noise VREF Trim Reglster 0
DCDCLPVCTRLO - DCDC Low-power VREF Trim Register 0 .
DCDCLPVCTRL1 - DCDC Low-power VREF Trim Register 1 .
DCDCLPVCTRL2 - DCDC Low-power VREF Trim Register 2 .
DCDCLPVCTRL3 - DCDC Low-power VREF Trim Register 3

DCDCLPCMPHYSSELO - DCDC LPCMPHYSSEL Trim Reglster 0 :

DCDCLPCMPHYSSEL1 - DCDC LPCMPHYSSEL Trim Register 1

5. DBG - Debug Interface .

5.1 Introduction .

5.2 Features .

5.3 Functional Description
5.3.1 Debug Pins. :
5.3.2 Debug and EM2 DeepSIeep/EM3 Stop
5.3.3 Authentication Access Point .
5.3.4 Debug Lock
5.3.5 AAP Lock

.50
.50
.50
.51
.53
.53
.54
.55
.56
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
71
72
73
.74
.75
.76
a7
a7
.78
.79
.80
.81
.81
.82

83

.83
.83

.83
.84
.84
.84
.85
.85

5.3.6
5.3.7

5.4 Reg

5.5 Reg
5.5.1
5.5.2
5.5.3
554
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9

Debugger Reads of Actionable Registers
Debug Recovery .

ister Map

ister Description .

AAP_CMD - Command Reglster .
AAP_CMDKEY - Command Key Register .
AAP_STATUS - Status Register
AAP_CTRL - Control Register . .
AAP_CRCCMD - CRC Command Reglster
AAP_CRCSTATUS - CRC Status Register
AAP_CRCADDR - CRC Address Register .
AAP_CRCRESULT - CRC Result Register
AAP_IDR - AAP |dentification Register .

6. MSC - Memory System Controller

6.1 Introduction .

6.2 Features .

6.3 Functional Description

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11

6.4 Reg

6.5 Reg
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16

User Data (UD) Page Descrlptlon .
Lock Bits (LB) Page Description.
Device Information (DI) Page
Bootloader . .
Post-reset Behavior .
Flash Startup .
Wait-states . .
Suppressed Condltlonal Branch Target Prefetch (SCBTP)
Cortex-M3 If-Then Block Folding
Instruction Cache .
Erase and Write Operatlons

ister Map

ister Description
MSC_CTRL - Memory System Control Reglster
MSC_READCTRL - Read Control Register
MSC_WRITECTRL - Write Control Register
MSC_WRITECMD - Write Command Register
MSC_ADDRSB - Page Erase/Write Address Buffer
MSC_WDATA - Write Data Register .
MSC_STATUS - Status Register
MSC_IF - Interrupt Flag Register
MSC_IFS - Interrupt Flag Set Register
MSC_IFC - Interrupt Flag Clear Register
MSC_IEN - Interrupt Enable Register
MSC_LOCK - Configuration Lock Register .
MSC_CACHECMD - Flash Cache Command Reglster
MSC_CACHEHITS - Cache Hits Performance Counter

MSC_CACHEMISSES - Cache Misses Performance Counter .

MSC_MASSLOCK - Mass Erase Lock Register

.86
.86

.86

.87
.87
.87
.88
.88
.89
.89
.90
.90
91

.92

.92
.93

.94
.94
.95
.95
.96
.96
.96
.96
.97
.97
.98
.99

100

.101
. 101

102

103

104

. 105
. 105
. 106

. 107
.108

. 109

. 110
11
12
.12
. 113

114

6.5.17
6.5.18

7. LDMA -

MSC_STARTUP - Startup Control
MSC_CMD - Command Register

Linked DMA Controller.

7.1 Introduction

7.1.1

Features

7.2 Block Diagram

7.3 Functional Description

7.3.1
7.3.2
7.3.3
7.34
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10

Channel Descriptor
Channel Configuration
Channel Select Configuration
Starting a Transfer
Managing Transfer Errors .
Arbitration
Channel Descriptor Data Structure .
Interaction With the EMU
Interrupts

Debugging

7.4 Examples.

7.4.1
7.4.2
743
744
7.4.5
7.4.6
7.4.7
7.4.8

7.5 Reqi

7.6 Reg
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10
7.6.11
7.6.12
7.6.13
7.6.14
7.6.15
7.6.16
7.6.17
7.6.18

Single Direct Reglster DMA Transfer
Descriptor Linked List .o
Single Descriptor Looped Transfer .
Descriptor List With Looping

Simple Inter-Channel Synchronization.
2D Copy.

Ping-Pong

Scatter-Gather

ister Map

ister Description .

LDMA_CTRL - DMA Control Reglster

LDMA_STATUS - DMA Status Register .

LDMA_SYNC - DMA Synchronization Trigger Reglster (Slngle CycIe RMW)
LDMA_CHEN - DMA Channel Enable Register (Single-Cycle RMW)
LDMA_CHBUSY - DMA Channel Busy Register .

LDMA_CHDONE - DMA Channel Linking Done Register (Slngle Cycle RMW) .

LDMA_DBGHALT - DMA Channel Debug Halt Register
LDMA_SWREQ - DMA Channel Software Transfer Request Reglster
LDMA_REQDIS - DMA Channel Request Disable Register
LDMA_REQPEND - DMA Channel Requests Pending Register
LDMA_LINKLOAD - DMA Channel Link Load Register
LDMA_REQCLEAR - DMA Channel Request Clear Register
LDMA_IF - Interrupt Flag Register
LDMA_IFS - Interrupt Flag Set Register
LDMA_IFC - Interrupt Flag Clear Register
LDMA_IEN - Interrupt Enable Register
LDMA_CHx_REQSEL - Channel Peripheral Request Select Reglster
LDMA_CHx_CFG - Channel Configuration Register

.115

116

. 117
117

118

.19

120

. 120
. 125

125

. 125
. 126

. .126
. 128

. 132

132
132

. 132
.133
. 134
. 136
137

138
140

. 142

143
144

.145

145

. 146
. 147
. 147
. 148
. 148
149

149

.150
.150
151
151
.162
152

153
153

154
.156

7.6.19 LDMA CHx LOOP - Channel Loop Counter Register .

7.6.20 LDMA_CHx_ CTRL - Channel Descriptor Control Word Register

7.6.21 LDMA_CHx_SRC - Channel Descriptor Source Data Address Register
7.6.22 LDMA_CHx_DST - Channel Descriptor Destination Data Address Register
7.6.23 LDMA_CHx_LINK - Channel Descriptor Link Structure Address Register

8. RMU - Reset Management Unit .
8.1 Introduction
8.2 Features

8.3 Functional Description
8.3.1 Reset Levels :
8.3.2 RMU_RSTCAUSE Reglster
8.3.3 Power-On Reset (POR)
8.3.4 Brown-Out Detector (BOD)
8.3.5 RESETn Pin Reset
8.3.6 Watchdog Reset .
8.3.7 Lockup Reset . .
8.3.8 System Reset Request .
8.3.9 Reset State
8.3.10 Register Reset Slgnals

8.4 Register Map

8.5 Register Description :
8.5.1 RMU_CTRL - Control Reglster . .
8.5.2 RMU_RSTCAUSE - Reset Cause Reglster
8.5.3 RMU_CMD - Command Register
8.5.4 RMU_RST - Reset Control Register .
8.5.5 RMU_LOCK - Configuration Lock Register .

9. EMU - Energy Management Unit
9.1 Introduction
9.2 Features

9.3 Functional Description
9.3.1 Energy Modes. . .
9.3.2 Entering Low Energy Modes .
9.3.3 Exiting a Low Energy Mode
9.3.4 Power Configurations
9.3.5 DC-to-DC Interface
9.3.6 Analog Peripheral Power Selectlon.
9.3.7 10VDD Connection
9.3.8 Brown Out Detector (BOD)
9.3.9 Voltage Monitor (VMON)
9.3.10 Powering Off SRAM Blocks .
9.3.11 Temperature Sensor
9.3.12 Registers latched in EM4
9.3.13 Register Resets .

9.4 Register Map

157

. 158

161

. 161
. 162

. 163
.163
.163

164

. .165
. 166

167
167

.168
. 168
. 168
. 168

168

168

170

.7
. 171

173

. 174
. 174
. 175

176
176
176

177

. 178
. 182
. 184
. 185
. .188
. 190
.190

190

.19
. 192
.192

193

. 193

194

9.5 Register Description

9.5.1

9.56.2

9.5.3

9.54

9.55

9.5.6

9.5.7

9.5.8

9.5.9

9.5.10
9.5.11
9.56.12
9.5.13
9.5.14
9.5.15
9.5.16
9.5.17
9.5.18
9.5.19
9.5.20
9.5.21
9.56.22
9.56.23
9.5.24
9.5.25
9.5.26
9.5.27
9.5.28
9.5.29
9.5.30
9.5.31
9.56.32
9.56.33

EMU_CTRL - Control Reglster .
EMU_STATUS - Status Register .
EMU_LOCK - Configuration Lock Register .
EMU_RAMOCTRL - Memory Control Register
EMU_CMD - Command Register
EMU_EMACTRL - EM4 Control Register .o
EMU_TEMPLIMITS - Temperature Limits for Interrupt Generatlon .
EMU_TEMP - Value of Last Temperature Measurement
EMU_IF - Interrupt Flag Register
EMU_IFS - Interrupt Flag Set Register .
EMU_IFC - Interrupt Flag Clear Register
EMU_IEN - Interrupt Enable Register . .
EMU_PWRLOCK - Regulator and Supply Lock Reglster
EMU_PWRCFG - Power Configuration Register
EMU_PWRCTRL - Power Control Register
EMU_DCDCCTRL - DCDC Control
EMU_DCDCMISCCTRL - DCDC Miscellaneous Control Reglster .
EMU_DCDCZDETCTRL - DCDC Power Train NFET Zero Current Detector Control Reglster
EMU_DCDCCLIMCTRL - DCDC Power Train PFET Current Limiter Control Register .
EMU_DCDCLNCOMPCTRL - DCDC Low Noise Compensator Control Register
EMU_DCDCLNVCTRL - DCDC Low Noise Voltage Register
EMU_DCDCTIMING - DCDC Controller Timing Value Register
EMU_DCDCLPVCTRL - DCDC Low Power Voltage Register
EMU_DCDCLPCTRL - DCDC Low Power Control Register
EMU_DCDCLNFREQCTRL - DCDC Low Noise Controller Frequency Control
EMU_DCDCSYNC - DCDC Read Status Register .
EMU_VMONAVDDCTRL - VMON AVDD Channel Control
EMU_VMONALTAVDDCTRL - Alternate VMON AVDD Channel Control
EMU_VMONDVDDCTRL - VMON DVDD Channel Control
EMU_VMONIOOCTRL - VMON IOVDDO Channel Control
EMU_BIASCONF - Configurations Related to the Bias
EMU_TESTLOCK - Test Lock Register
EMU_BIASTESTCTRL - Test Control Register for Regulator and BIAS

10. CMU - Clock Management Unit

10.1 Introduction.
10.2 Features

10.3 Functional Description

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9

System Clocks

Oscillators .o
Configuration for Operatlng Frequenmes
Energy Modes

Clock Output on a Pin.

Clock Output on PRS .

Error Handling

Interrupts

Wake-up

. .195
. 195
. .196
. 197

198

. 199

200

. 201
.201

. .202
. 204
. 206

. .208
. 210

211

.21
. 212

213
214

. 215
. 216
217

218

. .219
. 220
. 221
. 221
. 222
. .223
. 224
.225
226

227

. 228

.229
. 229
. 229

. 230
. .231
. 233

250

. .251
. 252
. 252
. .252
. 252
.252

10.3.10

Protection

10.4 Register Map
10.5 Register Description .

10.5.1

10.5.2

10.5.3

10.5.4

10.5.5

10.5.6

10.5.7

10.5.8

10.5.9

10.5.10
10.5.11
10.5.12
10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18
10.5.19
10.5.20
10.5.21
10.5.22
10.5.23
10.5.24
10.5.25
10.5.26
10.5.27
10.5.28
10.5.29
10.5.30
10.5.31
10.5.32
10.5.33
10.5.34
10.5.35
10.5.36
10.5.37
10.5.38
10.5.39
10.5.40
10.5.41
10.5.42
10.5.43
10.5.44
10.5.45

CMU_CTRL - CMU Control Reglster
CMU_HFRCOCTRL - HFRCO Control Reglster .
CMU_AUXHFRCOCTRL - AUXHFRCO Control Register
CMU_LFRCOCTRL - LFRCO Control Register .
CMU_HFXOCTRL - HFXO Control Register .
CMU_HFXOCTRL1 - HFXO Control 1 .o
CMU_HFXOSTARTUPCTRL - HFXO Startup Control
CMU_HFXOSTEADYSTATECTRL - HFXO Steady State Control
CMU_HFXOTIMEOUTCTRL - HFXO Timeout Control
CMU_LFXOCTRL - LFXO Control Register
CMU_ULFRCOCTRL - ULFRCO Control Register
CMU_CALCTRL - Calibration Control Register
CMU_CALCNT - Calibration Counter Register .
CMU_OSCENCMD - Oscillator Enable/Disable Command Reglster
CMU_CMD - Command Register .
CMU_DBGCLKSEL - Debug Trace Clock Select .
CMU_HFCLKSEL - High Frequency Clock Select Command Reglster
CMU_LFACLKSEL - Low Frequency A Clock Select Register
CMU_LFBCLKSEL - Low Frequency B Clock Select Register
CMU_LFECLKSEL - Low Frequency E Clock Select Register
CMU_STATUS - Status Register . .
CMU_HFCLKSTATUS - HFCLK Status Reglster .
CMU_HFXOTRIMSTATUS - HFXO Trim Status
CMU_IF - Interrupt Flag Register
CMU_IFS - Interrupt Flag Set Register
CMU_IFC - Interrupt Flag Clear Register
CMU_IEN - Interrupt Enable Register :
CMU_HFBUSCLKENO - High Frequency Bus Clock Enable Reglster 0
CMU_HFPERCLKENO - High Frequency Peripheral Clock Enable Register 0
CMU_LFACLKENO - Low Frequency a Clock Enable Register 0 (Async Reg)
CMU_LFBCLKENO - Low Frequency B Clock Enable Register 0 (Async Reg)
CMU_LFECLKENO - Low Frequency E Clock Enable Register 0 (Async Reg)
CMU_HFPRESC - High Frequency Clock Prescaler Register
CMU_HFCOREPRESC - High Frequency Core Clock Prescaler Reglster

CMU_HFPERPRESC - High Frequency Peripheral Clock Prescaler Register

CMU_HFEXPPRESC - High Frequency Export Clock Prescaler Register
CMU_LFAPRESCO - Low Frequency a Prescaler Register 0 (Async Reg)
CMU_LFBPRESCO - Low Frequency B Prescaler Register 0 (Async Reg)
CMU_LFEPRESCO - Low Frequency E Prescaler Register 0 (Async Reg)
CMU_SYNCBUSY - Synchronization Busy Register .

CMU_FREEZE - Freeze Register

CMU_PCNTCTRL - PCNT Control Reglster

CMU_ADCCTRL - ADC Control Register :
CMU_ROUTEPEN - I/0O Routing Pin Enable Reglster
CMU_ROUTELOCO - I/0O Routing Location Register

253

. 254
. 256

256
258
260

. 261
. 262
. 264

265

. 266

267
270

272

273

. 275

276

.L2T7
. 278

278
279
279
280

. .281
. 282

. 283
.284
.286

288
290

291
.292
.293
. 293
. 294

295
296

.296

297

298
.299
. .299
. 300
. 303

304
305

.306

307

10.5.46
11. RTCC -

CMU_LOCK - Configuration Lock Register .

Real Time Counter and Calendar

11.1 Introduction.

11.2 Features

11.3 Functional Description

11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.3.8
11.3.9

11.4 Reg

11.5 Reg
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.5.7
11.5.8
11.5.9
11.5.10
11.5.11
11.5.12
11.5.13
11.5.14
11.5.15
11.5.16
11.5.17
11.5.18
11.5.19
11.5.20
11.5.21

12. WDOG

Counter

Capture/Compare Channels
Interrupts and PRS Output
Energy Mode Availability .
Register Lock .o
Oscillator Failure Detection .
Retention Registers

Frame Controller Interface
Debug Session

ister Map

ister Description . .

RTCC_CTRL - Control Reglster (Async Reg) .
RTCC_PRECNT - Pre-Counter Value Register (Async Reg)
RTCC_CNT - Counter Value Register (Async Reg)

RTCC_COMBCNT - Combined Pre-Counter and Counter Value Reglster .

RTCC_TIME - Time of Day Register (Async Reg)

RTCC_DATE - Date Register (Async Reg)

RTCC_IF - RTCC Interrupt Flags

RTCC_IFS - Interrupt Flag Set Register

RTCC_IFC - Interrupt Flag Clear Register
RTCC_IEN - Interrupt Enable Register
RTCC_STATUS - Status Register .
RTCC_CMD - Command Register (Async Reg)
RTCC_SYNCBUSY - Synchronization Busy Register

RTCC_POWERDOWN - Retention RAM Power-down Register (Async Reg)

RTCC_LOCK - Configuration Lock Register (Async Reg)
RTCC_EM4WUEN - Wake Up Enable :
RTCC_CCx_CTRL - CC Channel Control Register (Async Reg)
RTCC_CCx_CCV - Capture/Compare Value Register (Async Reg)
RTCC_CCx_TIME - Capture/Compare Time Register (Async Reg)
RTCC_CCx_DATE - Capture/Compare Date Register (Async Reg)
RTCC_RETx_REG - Retention Register

- Watchdog Timer

12.1 Introduction.
12.2 Features

12.3 Functional Description

12.3.1
12.3.2
12.3.3
12.3.4

Clock Source

Debug Functionality
Energy Mode Handling
Register Access.

. 308

. 309
. 309
. 309

. 310

311
315

. .37
. 318

318

. 318

318

. .318
. 318

.319
. 320

320
322
322

. 323
. 324
325

326

327

328

. .329
. 330
.330
331

331

. 332

332
333
335
336
337

. 337

338

. 338
. 338

. .338
. 339

339
339

. 339

12.3.5 Warning Interrupt

12.3.6 Window Interrupt .
12.3.7 PRS as Watchdog Clear .
12.3.8 PRS Rising Edge Monitoring

12.4 Register Map

12.5 Register Description .
12.5.1 WDOG_CTRL - Control Reglster (Async Reg)
12.5.2 WDOG_CMD - Command Register (Async Req)
12.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

12.5.4 WDOGn_PCHx_PRSCTRL - PRS Control Register (Async Reg)

12.5.5 WDOG_IF - Watchdog Interrupt Flags .
12.5.6 WDOG_IFS - Interrupt Flag Set Register
12.5.7 WDOG_IFC - Interrupt Flag Clear Register
12.5.8 WDOG_IEN - Interrupt Enable Register

13. PRS - Peripheral Reflex System .

13.1 Introduction.
13.2 Features

13.3 Functional Description
13.3.1 Channel Functions .
13.3.2 Producers.

13.3.3 Consumers

13.3.4 Eventon PRS

13.3.5 DMA Request on PRS
13.3.6 Example

13.4 Register Map

13.5 Register Description . . .
13.5.1 PRS_SWPULSE - Software Pulse Reglster
13.5.2 PRS_SWLEVEL - Software Level Register

13.5.3 PRS_ROUTEPEN - I/O Routing Pin Enable Reglster .

13.5.4 PRS_ROUTELOCO - I/0O Routing Location Register
13.5.5 PRS_ROUTELOC1 - I/O Routing Location Register
13.5.6 PRS_ROUTELOC?2 - I/0 Routing Location Register
13.5.7 PRS_CTRL - Control Register

13.5.8 PRS_DMAREQO - DMA Request 0 Reglster
13.5.9 PRS_DMAREQ1 - DMA Request 1 Register .
13.5.10 PRS_PEEK - PRS Channel Values

13.5.11 PRS_CHx_CTRL - Channel Control Reglster

14. PCNT - Pulse Counter

14.1 Introduction.
14.2 Features

14.3 Functional Description
14.3.1 Pulse Counter Modes .
14.3.2 Hysteresis
14.3.3 Auxiliary Counter

339

340

. 341

341

.342

. 343
. 343
346

347

. 348
. 349
. 350
.351
352

. 353
. 353
. 353

. .354
. 354
. 355
356

357
357

.357
. 358

. 359
. 359
. .360
. 361
.362
.365
.367

369

. 370
. 371
. 372
. 373

. 378
. 378
. 378

. .379
. 379
. 386

387

14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.3.10
14.3.11

14.4 Reg

14.5 Reg
14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7
14.5.8
14.5.9
14.5.10
14.5.11
14.5.12
14.5.13
14.5.14
14.5.15
14.5.16

Triggered Compare and Clear .

Register Access.

Clock Sources

Input Filter

Edge Polarity :

PRS and PCNTn_SOIN, PCNTn S1IN Inputs
Interrupts
Cascading Pulse Counters

ister Map

ister Description . .

PCNTn_CTRL - Control Reglster (Async Reg)

PCNTn_CMD - Command Register (Async Reg)

PCNTn_STATUS - Status Register .

PCNTn_CNT - Counter Value Register

PCNTn_TOP - Top Value Register

PCNTn_TOPB - Top Value Buffer Register (Async Reg)

PCNTn_IF - Interrupt Flag Register .

PCNTnN_IFS - Interrupt Flag Set Register .

PCNTn_IFC - Interrupt Flag Clear Register
PCNTn_IEN - Interrupt Enable Register . .
PCNTn_ROUTELOCO - I/O Routing Location Reglster :
PCNTn_FREEZE - Freeze Register
PCNTn_SYNCBUSY - Synchronization Busy Reglster
PCNTn_AUXCNT - Auxiliary Counter Value Register
PCNTn_INPUT - PCNT Input Register
PCNTn_OVSCFG - Oversampling Config Reglster (Async Reg)

15. 12C - Inter-Integrated Circuit Interface .

15.1 Introduction.

15.2 Features

15.3 Functional Description

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7
15.3.8
15.3.9
15.3.10
15.3.11
15.3.12
15.3.13
15.3.14
15.3.15

15.4 Reg

I2C-Bus Overview
Enable and Reset .
Safely Disabling and Changlng SIave Conflguratlon
Clock Generation
Arbitration .
Buffers .
Master Operation
Bus States
Slave Operation
Transfer Automation .
Using 10-bit Addresses .
Error Handling .
DMA Support
Interrupts
Wake-up .

ister Map

. . 388
. 389
.389

389

. 389
. 390

390

. 392
.393

. 394
. 394

. .398
. 398

399

. .399
. 400
. 400

. 401

. .402
. 403

. 404

. .406
. 407

407

. .408
. 409

. 410
. 410
. 410

411
.412
. .416
. 416
. 416
. 417
. 417
419

427
427

. 431
. 432
. 432
434

434

. 434
435

15.5 Register Description .

15.5.1
15.5.2
15.5.3
15.5.4
15.5.5
15.5.6
15.5.7
15.5.8
15.5.9
15.5.10
15.5.11
15.5.12
15.5.13
15.5.14
15.5.15
15.5.16
15.5.17
15.5.18
15.5.19

16. USART -

12Cn_CTRL - Control Reglster

[2Cn_CMD - Command Register

I2Cn_STATE - State Register .

[2Cn_STATUS - Status Register .

I2Cn_CLKDIV - Clock Division Register

I2Cn_SADDR - Slave Address Register

12Cn_SADDRMASK - Slave Address Mask Reglster
I2Cn_RXDATA - Receive Buffer Data Register (Actionable Reads)

I2Cn_RXDOUBLE - Receive Buffer Double Data Register (Actionable Reads)

I2Cn_RXDATAP - Receive Buffer Data Peek Register
12Cn_RXDOUBLEP - Receive Buffer Double Data Peek Reglster
12Cn_TXDATA - Transmit Buffer Data Register
12Cn_TXDOUBLE - Transmit Buffer Double Data Reglster
I12Cn_IF - Interrupt Flag Register

12Cn_IFS - Interrupt Flag Set Register

12Cn_IFC - Interrupt Flag Clear Register

[2Cn_IEN - Interrupt Enable Register .

[2Cn_ROUTEPEN - I/0 Routing Pin Enable Reglster
I2Cn_ROUTELOCO - I/O Routing Location Register .

Universal Synchronous Asynchronous Receiver/Transmitter

16.1 Introduction.
16.2 Features

16.3 Functional Description
16.3.1 Modes of Operation
16.3.2 Asynchronous Operation.
16.3.3 Synchronous Operation
16.3.4 Hardware Flow Control
16.3.5 Debug Halt
16.3.6 PRS-triggered Transm|33|ons

16.3.7
16.3.8

PRS RX Input
PRS CLK Input .

16.3.9 DMA Support

16.3.10
16.3.11
16.3.12

Timer .
Interrupts .
IrDA Modulator/ Demodulator

16.4 Register Map
16.5 Register Description .

16.5.1
16.5.2
16.5.3
16.5.4
16.5.5
16.5.6
16.5.7
16.5.8

USARTNn_CTRL - Control Reglster

USARTn_FRAME - USART Frame Format Reglster
USARTNn_TRIGCTRL - USART Trigger Control Register
USARTn_CMD - Command Register
USARTNn_STATUS - USART Status Register
USARTN_CLKDIV - Clock Control Register

USARTNn_RXDATAX - RX Buffer Data Extended Reglster (Actlonable Reads)

USARTNn_RXDATA - RX Buffer Data Register (Actionable Reads)

. 436

436

. 439
. 440
. 441

442

. 442
. 443
. 443

444

. 444
.445

445
446

447

449

. 451
. 453

454

. 455

A58

. 458
. 459
. 460

461

. 461
. 478

484
484

.484
. 484
. 485
. 485
. 486

491

. 492
.493

. 494
. 494
. .499
. 501
.503

504

.505

506
506

16.5.9 USARTn_RXDOUBLEX - RX Buffer Double Data Extended Register (Actionable Reads)
USARTn_RXDOUBLE - RX FIFO Double Data Register (Actionable Reads)

16.5.10
16.5.11
16.5.12
16.5.13
16.5.14
16.5.15
16.5.16
16.5.17
16.5.18
16.5.19
16.5.20
16.5.21
16.5.22
16.5.23
16.5.24
16.5.25
16.5.26
16.5.27
16.5.28
16.5.29
16.5.30
16.5.31

USARTn_RXDATAXP - RX Buffer Data Extended Peek Register

USARTn_RXDOUBLEXP - RX Buffer Double Data Extended Peek Reglster

USARTNn_TXDATAX - TX Buffer Data Extended Register
USARTNn_TXDATA - TX Buffer Data Register
USARTNn_TXDOUBLEX - TX Buffer Double Data Extended Reglster
USARTNn_TXDOUBLE - TX Buffer Double Data Register
USARTN_IF - Interrupt Flag Register .

USARTN_IFS - Interrupt Flag Set Register

USARTN_IFC - Interrupt Flag Clear Register
USARTN_IEN - Interrupt Enable Register
USARTN_IRCTRL - IrDA Control Register
USARTN_INPUT - USART Input Register
USARTN_I2SCTRL - 12S Control Register
USARTN_TIMING - Timing Register .o
USARTNn_CTRLX - Control Register Extended

USARTNn_TIMECMPO - Used to Generate Interrupts and Varlous Delays

USARTNn_TIMECMP1 - Used to Generate Interrupts and Various Delays
USARTNn_TIMECMP2 - Used to Generate Interrupts and Various Delays
USARTn_ROUTEPEN - I/O Routing Pin Enable Register
USARTn_ROUTELOCO - I/0 Routing Location Register
USARTn_ROUTELOCH1 - I/0O Routing Location Register

17. LEUART - Low Energy Universal Asynchronous Receiver/Transmitter

17.1 Introduction.
17.2 Features

17.3 Functional Description

17.3.1
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6
17.3.7
17.3.8

Frame Format

Clock Source

Clock Generation

Data Transmission .

Data Reception .

Loopback . . .
Half Duplex Communlcatlon
Transmission Delay

17.3.9 PRS RX Input

17.3.10 DMA Support : .
17.3.11 Pulse Generator/ Pulse Extender
17.3.12 Register Access

17.4 Register Map
17.5 Register Description .

17.5.1
17.5.2
17.5.3
17.5.4
17.5.5

LEUARTN_CTRL - Control Reglster (Async Reg)
LEUARTN_CMD - Command Register (Async Reg)
LEUARTN_STATUS - Status Register .
LEUARTN_CLKDIV - Clock Control Register (Async Reg)

LEUARTn_STARTFRAME - Start Frame Register (Async Reg)

507
508

.508

509

. 510

. 511
.512

. .513
. 514
. 516
.518

. 520
. 522
.524

. 526

. 528

530

. 531
. 533
. 835
. 537
539
544

547

. 547
. 548
. 549

550

. 550

. .551
. 551

. 5563

. . 556
. 556

557

.557
.558

558

.559
.559

. 560
.560
. .563
. 564
.565
565

17.5.6 LEUARTn_SIGFRAME - Signal Frame Register (Async Reg)

17.5.7 LEUARTNn_RXDATAX - Receive Buffer Data Extended Register (Actlonable Reads)

17.5.8 LEUARTNn_RXDATA - Receive Buffer Data Register (Actionable Reads)
17.5.9 LEUARTNn_RXDATAXP - Receive Buffer Data Extended Peek Register

17.5.10 LEUARTNn_TXDATAX - Transmit Buffer Data Extended Register (Async Reg)

17.5.11 LEUARTNn_TXDATA - Transmit Buffer Data Register (Async Reg)
17.5.12 LEUARTN_IF - Interrupt Flag Register

17.5.13 LEUARTN_IFS - Interrupt Flag Set Register

17.5.14 LEUARTN_IFC - Interrupt Flag Clear Register .

17.5.15 LEUARTN_IEN - Interrupt Enable Register .

17.5.16 LEUARTn_PULSECTRL - Pulse Control Register (Async Reg)
17.5.17 LEUARTn_FREEZE - Freeze Register

17.5.18 LEUARTNn_SYNCBUSY - Synchronization Busy Reglster
17.5.19 LEUARTn_ROUTEPEN - I/O Routing Pin Enable Register
17.5.20 LEUARTNn_ROUTELOCO - I/O Routing Location Register .
17.5.21 LEUARTN_INPUT - LEUART Input Register

18. TIMER - Timer/Counter

18.1 Introduction.
18.2 Features

18.3 Functional Description
18.3.1 Counter Modes .
18.3.2 Compare/Capture Channels
18.3.3 Dead-Time Insertion Unit
18.3.4 Debug Mode . .
18.3.5 Interrupts, DMA and PRS Output .
18.3.6 GPIO Input/Output .

18.4 Register Map

18.5 Register Description .
18.5.1 TIMERn_CTRL - Control Reglster
18.5.2 TIMERn_CMD - Command Register
18.5.3 TIMERn_STATUS - Status Register
18.5.4 TIMERN_IF - Interrupt Flag Register
18.5.5 TIMERN_IFS - Interrupt Flag Set Register
18.5.6 TIMERN_IFC - Interrupt Flag Clear Register .
18.5.7 TIMERN_IEN - Interrupt Enable Register
18.5.8 TIMERnN_TOP - Counter Top Value Register .
18.5.9 TIMERN_TOPB - Counter Top Value Buffer Register .
18.5.10 TIMERnN_CNT - Counter Value Register .
18.5.11 TIMERn_LOCK - TIMER Configuration Lock Reglster
18.5.12 TIMERn_ROUTEPEN - I/O Routing Pin Enable Register
18.5.13 TIMERn_ROUTELOCO - I/O Routing Location Register
18.5.14 TIMERn_ROUTELOC?2 - I/O Routing Location Register
18.5.15 TIMERn_CCx_CTRL - CC Channel Control Register
18.5.16 TIMERn_CCx_CCV - CC Channel Value Register (Actionable Reads)
18.5.17 TIMERn_CCx_CCVP - CC Channel Value Peek Register .
18.5.18 TIMERn_CCx_CCVB - CC Channel Buffer Register .

. 566
.566
.567

567

. 568
. 569

570
571

. 572
. 573

. 574

. .575
. 576

577

. 578

581
582

. 582
. 583

. 584
. 585

591

. 601
. 605
. 605
. 605

.606

. 607
.607

609
610
613
614

. 615
. . 617
. 618
. 618
. 619
.620
.621

622
627
631
634

. 634
. 635

18.5.19
18.5.20
18.5.21
18.5.22
18.5.23
18.5.24
18.5.25

TIMERNn_DTCTRL - DTI Control Register
TIMERn_DTTIME - DTI Time Control Register
TIMERNn_DTFC - DTI Fault Configuration Register
TIMERNn_DTOGEN - DTI Output Generation Enable Reglster
TIMERNn_DTFAULT - DTI Fault Register :
TIMERNn_DTFAULTC - DTI Fault Clear Register
TIMERNn_DTLOCK - DTI Configuration Lock Register

19. LETIMER - Low Energy Timer .
19.1 Introduction.
19.2 Features

19.3 Functional Description

19.3.1
19.3.2
19.3.3
19.3.4
19.3.5
19.3.6
19.3.7

Timer

Compare Reglsters

Top Value. .
Underflow Output Actlon :
PRS Output

Examples .

Register Access.

19.4 Register Map
19.5 Register Description .

19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.5.6
19.5.7
19.5.8
19.5.9
19.5.10
19.5.11
19.5.12
19.5.13
19.5.14
19.5.15
19.5.16

LETIMERNn_CTRL - Control Reglster (Async Reg) .
LETIMERNn_CMD - Command Register (Async Reg)
LETIMERN_STATUS - Status Register
LETIMERN_CNT - Counter Value Register
LETIMERn_COMPO - Compare Value Register 0 (Async Reg)
LETIMERn_COMP1 - Compare Value Register 1 (Async Reg)
LETIMERN_REPO - Repeat Counter Register 0 (Async Reg)
LETIMERN_REP1 - Repeat Counter Register 1 (Async Reg)
LETIMERN_IF - Interrupt Flag Register
LETIMERN_IFS - Interrupt Flag Set Register
LETIMERN_IFC - Interrupt Flag Clear Register
LETIMERN_IEN - Interrupt Enable Register
LETIMERNn_SYNCBUSY - Synchronization Busy Reglster
LETIMERn_ROUTEPEN - I/0O Routing Pin Enable Register
LETIMERn_ROUTELOCO - I/0O Routing Location Register
LETIMERNn_PRSSEL - PRS Input Select Register

20. CRYOTIMER - Ultra Low Energy Timer/Counter
20.1 Introduction.
20.2 Features

20.3 Functional Description
20.3.1 Block Diagram
20.3.2 Operation .
20.3.3 Debug Mode .
20.3.4 Energy Mode Avallablllty

20.4 Register Map

636

638

.640

642

. 643
. 644
645
. 646
. 646
. 646

. 647
647

647

. 648

. 654

. .656
. . 656
. 659

.660

. 661
. 661
. 663

663

664

664
665

.665
.666

666

.667

668
669

. 669
.670

671
674

.677
. 677
. 677

. 677

. .678
. 679

. 679
. 679

.680

20.5 Register Description. . . . o)

20.5.1 CRYOTIMER_CTRL - Control Reglster o)
20.5.2 CRYOTIMER_PERIODSEL - Interrupt Duration e 1 ¥4
20.5.3 CRYOTIMER_CNT - Counter Value e e 683
20.5.4 CRYOTIMER_EM4WUEN - Wake Up Enable b8
20.5.5 CRYOTIMER_IF - Interrupt Flag Register C e 084
20.5.6 CRYOTIMER_IFS - Interrupt Flag Set Register 684
20.5.7 CRYOTIMER_IFC - Interrupt Flag Clear Register685
20.5.8 CRYOTIMER_IEN - Interrupt Enable Register685
21. ACMP - Analog Comparator . 686
21.1 Introduction e o 1< &)
21.2 Features e e e e oo b8
21.3 Functional Description .687
21.3.1 Power Supply o o1 V4
21.3.2 Warm-upTime . 0688
21.3.3 Response Time e e 088
21.3.4 Hysteresis .o P o1¢5¢ |
21.3.5 Input Pin ConS|derat|ons N 1o 0]
21.3.6 Input Selection .69
21.3.7 Capacitive Sense Mode e 1ok
21.3.8 Interruptsand PRSOutput. .69
21.3.9 Output to GPIO 1K
21.3.10 APORT Conflicts e s 1K
21.3.11 Supply Voltage Monitoring N 1K
214 RegisterMap L L L L. 8%
21.5 Register Description. . . . P ¢ 12 [+
21.5.1 ACMPn_CTRL - Control Reglster .o e <15
21.5.2 ACMPn_INPUTSEL - Input Selection Reglster O 101
21.5.3 ACMPn_STATUS - Status Register. 17103
21.5.4 ACMPnN_IF - Interrupt Flag Register Y {0 K]
21.5.5 ACMPnN_IFS - Interrupt Flag Set Register 704
21.5.6 ACMPn_IFC - Interrupt Flag Clear Register705
21.5.7 ACMPnN_IEN - Interrupt Enable RegisterT06
21.5.8 ACMPn_APORTREQ - APORT Request Status Reglster e 4 0 X 4
21.5.9 ACMPn_APORTCONFLICT - APORT Conflict Status Register 708
21.5.10 ACMPn_HYSTERESISO - Hysteresis O Register710
21.5.11 ACMPn_HYSTERESIS1 - Hysteresis 1 Register71
21.5.12 ACMPn_ROUTEPEN - I/O Routing Pine Enable Register712
21.5.13 ACMPn_ROUTELOCO - I/O Routing Location Register 713
22. ADC - Analog to Digital Converter .T15
22.1 Introduction. .T115
22.2 Features A S
22.3 Functional Description
22.3.1 Clock Selection .T18

22.3.2 Conversions, .. T18

22.3.3
22.34
22.3.5
22.3.6
22.3.7
22.3.8
22.3.9
22.3.10
22.3.11
22.3.12
22.3.13
22.3.14
22.3.15
22.3.16
22.3.17

22.4 Reg

22.5 Reg
22.51
22.5.2
2253
2254
2255
2256
2257
22.5.8
22.5.9
22.5.10
22.5.11
22.5.12

ADC Modes
Warm-up Time
Power Supply
Input Pin Considerations .
Input Selection .
Reference Selection and Input Range Def|n|t|on .
Programming of Bias Current
Feature Set . .o
Interrupts, PRS Output
DMA Request
Calibration .
EM2 DeepSleep or EM3 Stop Operatlon
ASYNC ADC_CLK Usage Restrictions and Beneflts
Window Compare Function
ADC Programming Model

ister Map

ister Description . .

ADCn_CTRL - Control Reglster

ADCn_CMD - Command Register

ADCn_STATUS - Status Register

ADCn_SINGLECTRL - Single Channel Control Reglster

ADCn_SINGLECTRLX - Single Channel Control Register Contlnued

ADCn_SCANCTRL - Scan Control Register .

ADCn_SCANCTRLX - Scan Control Register Contlnued

ADCn_SCANMASK - Scan Sequence Input Mask Register .

ADCn_SCANINPUTSEL - Input Selection Register for Scan Mode
ADCn_SCANNEGSEL - Negative Input Select Register for Scan
ADCn_CMPTHR - Compare Threshold Register

ADCn_BIASPROG - Bias Programmlng Reglster for Varlous Analog Blocks Used in ADC

Operation

22.513
22.5.14
22.5.15
22.5.16
22.5.17
22.5.18
22.5.19
22.5.20
22.5.21
22.5.22

ADCn_CAL - Callbratlon Reglster

ADCn_IF - Interrupt Flag Register .

ADCn_IFS - Interrupt Flag Set Register

ADCn_IFC - Interrupt Flag Clear Register

ADCn_IEN - Interrupt Enable Register

ADCn_SINGLEDATA - Single Conversion Result Data (Actlonable Reads)
ADCn_SCANDATA - Scan Conversion Result Data (Actionable Reads)
ADCn_SINGLEDATAP - Single Conversion Result Data Peek Register
ADCn_SCANDATAP - Scan Sequence Result Data Peek Register .
ADCn_SCANDATAX - Scan Sequence Result Data + Data Source Register (Actlonable

Reads)

22.5.23
22.5.24
22.5.25
22.5.26
22.5.27
22.5.28
22.5.29

ADCn SCANDATAXP Scan Sequence Result Data + Data Source Peek Reglster
ADCn_APORTREQ - APORT Request Status Register

ADCn_APORTCONFLICT - APORT Conflict Status Register .
ADCn_SINGLEFIFOCOUNT - Single FIFO Count Register
ADCn_SCANFIFOCOUNT - Scan FIFO Count Register
ADCn_SINGLEFIFOCLEAR - Single FIFO Clear Register .
ADCn_SCANFIFOCLEAR - Scan FIFO Clear Register .

. 719
.720

721

. 721
.. 122
. 726
. .729
. 730
. 735
. 735
.735
. 736
.137

737

. 738
.739

. 740
. 740
743

. .744
. 745

750

. 753

756

. 759
761

. 764
. 766

. 767
. 768
. 770
. 771
772
. 173
. 774
. 774
775

775

. 776
. 776

7

. 778
779

. 179
. 780

. 780

22.5.30 ADCn_APORTMASTERDIS - APORT Bus Master Disable Register
23. IDAC - Current Digital to Analog Converter.

23.1 Introduction.
23.2 Features

23.3 Functional Description
23.3.1 Current Programming
23.3.2 IDAC Enable and Warm-up
23.3.3 Output Control
23.3.4 APORT Configuration .
23.3.5 Interrupts .
23.3.6 Minimizing Output Transmon
23.3.7 Duty Cycle Configuration.
23.3.8 Calibration
23.3.9 PRS Triggered Charge InJectlon

23.4 Register Map

23.5 Register Description . .
23.5.1 IDAC_CTRL - Control Reglster .
23.5.2 IDAC_CURPROG - Current Programmlng Reglster
23.5.3 IDAC_DUTYCONFIG - Duty Cycle Configuration Register
23.5.4 IDAC_STATUS - Status Register
23.5.5 IDAC_IF - Interrupt Flag Register
23.5.6 IDAC_IFS - Interrupt Flag Set Register
23.5.7 IDAC_IFC - Interrupt Flag Clear Register .
23.5.8 IDAC_IEN - Interrupt Enable Register
23.5.9 IDAC_APORTREQ - APORT Request Status Reglster
23.5.10 IDAC_APORTCONFLICT - APORT Request Status Register

24. GPCRC - General Purpose Cyclic Redundancy Check
24.1 Introduction.
24.2 Features

24.3 Functional Description
24.3.1 Polynomial Specification .
24.3.2 Input and Output Specification .
24.3.3 Initialization
24.3.4 DMA Usage .
24 3.5 Byte-Level Bit Reversal and Byte Reorderlng

24 4 Register Map

24.5 Register Description .
2451 GPCRC_CTRL - Control Reglster
24.5.2 GPCRC_CMD - Command Register
24.5.3 GPCRC_INIT - CRC Init Value
2454 GPCRC_POLY - CRC Polynomial Value
2455 GPCRC_INPUTDATA - Input 32-bit Data Reglster .
2456 GPCRC_INPUTDATAHWORSD - Input 16-bit Data Register
24.5.7 GPCRC_INPUTDATABYTE - Input 8-bit Data Register

.781

. 784
. 784
. 1784

. 785

785

. 185
. .785
. 786
. 786

786

. 786

786

. 187
. 787

. 788
.788

. 790
. 791

791
792
792

. 793
. 793
794

794

. 195
. 795
. 795

. 796

. 797

. 797
797

. 197
. 798

.800

. 801
801

802

. 802

. . 803
. 803

. 804

. 804

24.5.8
24.5.9
24.5.10

GPCRC_DATA - CRC Data Register . .
GPCRC_DATAREYV - CRC Data Reverse Reglster
GPCRC_DATABYTEREYV - CRC Data Byte Reverse Reglster

25. CRYPTO - Crypto Accelerator.
25.1 Introduction.
25.2 Features

25.3 Usage and Programming Interface .

25.4 Functional Description

25.41
254.2
254.3
2544
254.5
2546
254.7
2548
2549

25.5 Reg

25.6 Reg
25.6.1
25.6.2
25.6.3
25.6.4
25.6.5
25.6.6
25.6.7
25.6.8
25.6.9
25.6.10
25.6.11
25.6.12
25.6.13
25.6.14
25.6.15
25.6.16
25.6.17
25.6.18
25.6.19
25.6.20
25.6.21
25.6.22
25.6.23
25.6.24
25.6.25

Data and Key Registers
Instructions and Execution
Repeated Sequence
AES.

SHA.

ECC .o

GCM and GMAC

DMA

Debugging

ister Map

ister Description . . .

CRYPTO_CTRL - Control Reglster .

CRYPTO_WAC - Wide Arithmetic Conflguratlon

CRYPTO_CMD - Command Register

CRYPTO_STATUS - Status Register

CRYPTO_DSTATUS - Data Status Register .

CRYPTO_CSTATUS - Control Status Register .

CRYPTO_KEY - KEY Register Access (No Bit Access) (Actlonable Reads)

CRYPTO_KEYBUF - KEY Buffer Register Access (No Bit Access) (Actionable Reads)

CRYPTO_SEQCTRL - Sequence Control
CRYPTO_SEQCTRLB - Sequence Control B
CRYPTO_IF - AES Interrupt Flags
CRYPTO_IFS - Interrupt Flag Set Register .
CRYPTO_IFC - Interrupt Flag Clear Register
CRYPTO_IEN - Interrupt Enable Register
CRYPTO_SEQO - Sequence Register 0 .
CRYPTO_SEQ1 - Sequence Register 1 .
CRYPTO_SEQ2 - Sequence Register 2 .
CRYPTO_SEQ3 - Sequence Register 3 .
CRYPTO_SEQ4 - Sequence Register 4 .
CRYPTO_DATAO - DATAO Register Access (No B|t Access) (Actlonable Reads

)
CRYPTO_DATA1 - DATA1 Register Access (No Bit Access) (Actionable Reads) .
)

CRYPTO_DATAZ2 - DATA2 Register Access (No Bit Access) (Actionable Reads

CRYPTO_DATAS - DATA3 Register Access (No Bit Access) (Actionable Reads) .

.805

805

.806

. 807
. 807
. 808

. 808

. 809
.810
.812

. .817
. 818
. 820
. 820

821
821
822

.823

. 825
. 825

828

. 830

. .835
. 836
. 837
.838
839

840

. 841

841

. 842
. 842
. .843
. 843
. 844
. 844
. 845
. 845
. 846
. 846
. 847
. 847

CRYPTO_DATAOXOR - DATAOXOR Register Access (No Bit Access) (Actionable Reads) 848

CRYPTO_DATAOBYTE - DATAO Register Byte Access (No Bit Access) (Actionable Reads)

25.6.26 CRYPTO_DATA1BYTE - DATA1 Register Byte Access (No Bit Access) (Actionable Reads)

. 849

25.6.27 CRYPTO_DATAOXORBYTE - DATAO Register Byte XOR Access (No Bit Access)
(Actionable Reads) . .

25.6.28 CRYPTO_DATAOBYTE12 - DATAO Reglster Byte 12 Access (No B|t Access)
25.6.29 CRYPTO_DATAOBYTE13 - DATAO Register Byte 13 Access (No Bit Access)
25.6.30 CRYPTO_DATAOBYTE14 - DATAO Register Byte 14 Access (No Bit Access)
25.6.31 CRYPTO_DATAOBYTE15 - DATAO Register Byte 15 Access (No Bit Access)
25.6.32 CRYPTO_DDATAO - DDATAO Register Access (No Bit Access) (Actionable Reads) .
25.6.33 CRYPTO_DDATA1 - DDATA1 Register Access (No Bit Access) (Actionable Reads) .
25.6.34 CRYPTO_DDATAZ2 - DDATAZ2 Register Access (No Bit Access) (Actionable Reads) .
25.6.35 CRYPTO_DDATAS3 - DDATA3 Register Access (No Bit Access) (Actionable Reads) .
25.6.36 CRYPTO_DDATA4 - DDATAA4 Register Access (No Bit Access) (Actionable Reads) .

25.6.37 CRYPTO_DDATAOBIG - DDATAO Register Big Endian Access (No Bit Access) (Actlonable
Reads)

25.6.38 CRYPTO_ DDATAOBYTE DDATAO Reglster Byte Access (No B|t Access) (Actlonable
Reads)

25.6.39 CRYPTO_ DDATA1 BYTE DDATA1 Reglster Byte Access (No B|t Access) (Actlonable
Reads) .

25.6.40 CRYPTO_ DDATAOBYTE32 DDATAO Reglster Byte 32 Access (No B|t Access)

25.6.41 CRYPTO_QDATAO - QDATAO Register Access (No Bit Access) (Actionable Reads)

25.6.42 CRYPTO_QDATA1 - QDATA1 Register Access (No Bit Access) (Actionable Reads)

25.6.43 CRYPTO_QDATA1BIG - QDATA1 Register Big Endian Access (No Bit Access) (Actionable
Reads)

25.6.44 CRYPTO QDATAOBYTE QDATAO Reglster Byte Access (No Blt Access) (Actlonable
Reads)

25.6.45 CRYPTO QDATA1BYTE QDATA1 Reglster Byte Access (No B|tAccess) (Actlonable
Reads)

26. GPIO - General Purpose Input/Output.
26.1 Introduction.
26.2 Features

26.3 Functional Description
26.3.1 Pin Configuration
26.3.2 EM4 Wake-up
26.3.3 EM4 Retention
26.3.4 Alternate Functions
26.3.5 Interrupt Generation
26.3.6 Output to PRS
26.3.7 Synchronization .

26.4 Register Map

26.5 Register Description . .
26.5.1 GPIO_Px_CTRL - Port Control Reglster
26.5.2 GPIO_Px_MODEL - Port Pin Mode Low Reglster
26.5.3 GPIO_Px_MODEH - Port Pin Mode High Register .
26.5.4 GPIO_Px_DOUT - Port Data Out Register :
26.5.5 GPIO_Px_DOUTTGL - Port Data Out Toggle Reglster
26.5.6 GPIO_Px_DIN - Port Data in Register

. 849
. 850
. 850
. 851
. 851
. 852
. 852
. 853
. 853

854

. 854

. 855

. 855
. 856
. 856
. 857

. 857

. 858

. 858

. 859
. 859
. 860

. 861
862

865

.865

866

866
. .868
. 868

. 869

. 871
.871

. .873
. 878

883

. .883
. 884

26.5.7 GPIO_Px_PINLOCKN - Port Unlocked Pins Register .
26.5.8 GPIO_Px_OVTDIS - Over Voltage Disable for All Modes
26.5.9 GPIO_EXTIPSELL - External Interrupt Port Select Low Register

26.5.10
26.5.11
26.5.12
26.5.13
26.5.14
26.5.15
26.5.16
26.5.17
26.5.18
26.5.19
26.5.20
26.5.21
26.5.22
26.5.23
26.5.24

27. APORT

GPIO_EXTIPSELH - External Interrupt Port Select High Register
GPIO_EXTIPINSELL - External Interrupt Pin Select Low Register

GPIO_EXTIPINSELH - External Interrupt Pin Select High Register .
GPIO_EXTIRISE - External Interrupt Rising Edge Trigger Register .

GPIO_EXTIFALL - External Interrupt Falling Edge Trigger Register
GPIO_EXTILEVEL - External Interrupt Level Register
GPIO_IF - Interrupt Flag Register

GPIO_IFS - Interrupt Flag Set Register

GPIO_IFC - Interrupt Flag Clear Register
GPIO_IEN - Interrupt Enable Register
GPIO_EM4WUEN - EM4 Wake Up Enable Reglster
GPIO_ROUTEPEN - I/O Routing Pin Enable Register
GPIO_ROUTELOCO - I/O Routing Location Register
GPIO_INSENSE - Input Sense Register .
GPIO_LOCK - Configuration Lock Register

- Analog Port .

27.1 Introduction
27.2 Features

27.3 Functional Description .
27.3.1 1/O Pin Considerations
27.3.2 APORT ABUS Naming
27.3.3 Managing ABUSes.

28. Revision History.

Appendix 1. Abbreviations

. 884

885

. 886
.889

. . 892
. 895
. 897

898

. 899
. 900
. 900

901

901

. 902
. 903

904

. 904
. 905

. 906

906
906

. 907

907
908

. 911
. 913
917

EFM32JG1 Reference Manual
About This Document

1. About This Document

1.1 Introduction

This document contains reference material for the EFM32 Gecko devices. All modules and peripherals in the EFM32 Gecko devices
are described in general terms. Not all modules are present in all devices and the feature set for each device might vary. Such differen-
ces, including pinout, are covered in the device data sheets and applicable errata documents.

1.2 Conventions

Register Names

Register names are given with a module name prefix followed by the short register name:
TIMERN_CTRL - Control Register

The "n" denotes the module number for modules which can exist in more than one instance.
Some registers are grouped which leads to a group name following the module prefix:
GPIO_Px_DOUT - Port Data Out Register

The "x" denotes the different ports.

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Bit fields wider than 1 bit are given with start (x) and stop (y) bit
[y:x].

Bit fields containing more than one bit are unsigned integers unless otherwise is specified.

Unspecified bit field settings must not be used, as this may lead to unpredictable behaviour.

Address

The address for each register can be found by adding the base address of the module found in the Memory Map (see Figure 4.2 Sys-
tem Address Space With Core and Code Space Listing on page 35), and the offset address for the register (found in module Register
Map).

Access Type

The register access types used in the register descriptions are explained in Table 1.1 Register Access Types on page 22.

Table 1.1. Register Access Types

Access Type Description

R Read only. Writes are ignored

RwW Readable and writable

Rw1 Readable and writable. Only writes to 1 have effect

(R)w1 Sometimes readable. Only writes to 1 have effect. Currently only
used for IFC registers (see 3.3.1.2 IFC Read-clear Operation)

W1 Read value undefined. Only writes to 1 have effect

w Write only. Read value undefined.

RWH Readable, writable, and updated by hardware

RW(nB), RWH(nB), etc. "(nB)" suffix indicates that register explicitly does not support pe-

ripheral bit set or clear (see 4.2.3 Peripheral Bit Set and Clear)

silabs.com | Building a more connected world. Rev. 1.0 | 22

EFM32JG1 Reference Manual
About This Document

Access Type Description

RW(a), R(a), etc. "(a)" suffix indicates that register has actionable reads (see
5.3.6 Debugger Reads of Actionable Registers)

Number format
0x prefix is used for hexadecimal numbers
0b prefix is used for binary numbers

Numbers without prefix are in decimal representation.

Reserved

Registers and bit fields marked with reserved are reserved for future use. These should be written to 0 unless otherwise stated in the
Register Description. Reserved bits might be read as 1 in future devices.

Reset Value

The reset value denotes the value after reset.

Registers denoted with X have unknown value out of reset and need to be initialized before use. Note that read-modify-write operations
on these registers before they are initialized results in undefined register values.

Pin Connections

Pin connections are given with a module prefix followed by a short pin name:

CMU_CLKOUT1 (Clock management unit, clock output pin number 1)

The location for the pin names given in the module documentation can be found in the device-specific data sheet.

1.3 Related Documentation
Further documentation on the EFM32 Gecko devices and the ARM Cortex-M3 can be found at the Silicon Labs and ARM web pages:
www.silabs.com

www.arm.com

silabs.com | Building a more connected world. Rev. 1.0 | 23

http://www.silabs.com
http://www.arm.com

EFM32JG1 Reference Manual
System Overview

2. System Overview

2.1 Introduction

Quick Facts
What?

The EFM32 Gecko is a highly integrated, configura-
ble and low power MCU with a complete set of pe-
ripherals.

Why?

EFM32 Gecko features an Cortex-M3 core, a unique
cryptographic hardware engine supporting AES,
ECC, and SHA, ultra-low current active mode, and
short wake-up time from energy-saving modes.

How?

EFM32 Gecko microcontrollers are well suited for
any battery-powered application, as well as other
systems requiring high performance and low-energy
consumption

The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-
M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32
Gecko microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-

energy consumption.

silabs.com | Building a more connected world.

Rev. 1.0 | 24

EFM32JG1 Reference Manual
System Overview

2.2 Block Diagrams

The block diagram for the EFM32 Gecko MCU series is shown in (Figure 2.1 EFM32 Gecko System-On-Chip Block Diagram on page
25).

Core / Memory Clock Management Energy Management

Voltage

Regulator Voltage Monitor

Memory

Protection Unit T :
Low Frequency Axiliaiyiioh

RC Oscillator

ARM Cortex™ M3 processor

DC-DC
Freque.)ncy RC Converter Power-On Reset
Oscillator

Low Frequency Ultra Low
RAM Memory Debug Interface DMA Controller Crystal Frequency RC
Oscillator Oscillator

Brown-Out
Detector

32-bit bus
Peripheral Reflex System
|

Serial Interfaces 1/0 Ports Timers and Triggers Analog Interfaces

External Interrupts Low Energy Timer

General Purpose 1/O
Real Time Counter

™
Low Energy UART S) Pulse Counter 1) CAleET Analog Comparator
in Rese

2 .
I1’C Pin Wakeup Watchdog Timer CRYOTIMER

Lowest power mode with peripheral operational:

EMO - Active _ EM2 — Deep Sleep m EM4 - Hibernate EM4 - Shutoff

Figure 2.1. EFM32 Gecko System-On-Chip Block Diagram

silabs.com | Building a more connected world. Rev. 1.0 | 25

EFM32JG1 Reference Manual
System Overview

2.3 MCU Features Overview

* ARM Cortex-M3 CPU platform
» High Performance 32-bit processor @ up to 40 MHz
* Memory Protection Unit
» Wake-up Interrupt Controller
* Flexible Energy Management System
» Power routing configurations including DCDC control
» Voltage Monitoring and Brown Out Detection
» State Retention
+ 256 KB Flash
+ 32 KB RAM
* Up to 32 General Purpose I/O pins
» Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
» Configurable peripheral I/O locations
» 16 asynchronous external interrupts
» Output state retention and wake-up from Shutoff Mode
+ 8 Channel DMA Controller
» Alternate/primary descriptors with scatter-gather/ping-pong operation
* 12 Channel Peripheral Reflex System
» Autonomous inter-peripheral signaling enables smart operation in low energy modes
* CRYPTO Advanced Encryption Standard Accelerator
» AES encryption / decryption, with 128 or 256 bit keys

» Multiple AES modes of operation, including Counter (CTR), Galois/Counter Mode (GCM), Cipher Block Chaining (CBC), Cipher
Feedback (CFB) and Output Feedback (OFB).

» Accelerated SHA-1 and SHA-2
» Accelerated Elliptic Curve Cryptography (ECC), with binary or prime fields
» Flexible 256-bit ALU and sequencer
* General Purpose Cyclic Redundancy Check
» Programmable 16-bit polynomial, fixed 32-bit polynomial
+ Communication interfaces
» 2xUniversal Synchronous/Asynchronous Receiver/Transmitter
* UART/SPI/SmartCard (ISO 7816)/IrDA/I12S
 Triple buffered full/half-duplex operation
» Hardware flow control
* 4-16 data bits
* 1x Low Energy UART
» Autonomous operation with DMA in Deep Sleep Mode
* 1x|2C Interface with SMBus support
» Address recognition in Stop Mode
* Timers/Counters
» 2x 16-bit Timer/Counter
* 3 or 4 Compare/Capture/PWM channels
* Dead-Time Insertion on TIMERO
* 16-bit Low Energy Timer
» 32-bit Ultra Low Energy Timer/Counter (CRYOTIMER) for periodic wake-up from any Energy Mode
» 32-bit Real-Time Counter and Calendar
* 16+16+32 bit Protocol Timer
» 16-bit Pulse Counter
» Asynchronous pulse counting/quadrature decoding
+ Watchdog Timer with dedicated RC oscillator @ 50 nA

silabs.com | Building a more connected world. Rev. 1.0 | 26

EFM32JG1 Reference Manual
System Overview

+ Ultra low power precision analog peripherals
» 12-bit 1 Msamples/s Analog to Digital Converter
» 8 input channels and on-chip temperature sensor
» Single ended or differential operation
» Conversion tailgating for predictable latency
» Current Digital to Analog Converter
» Source or sink a configurable constant current
» 2% Analog Comparator
* Programmable speed/current
» Capacitive sensing with up to 8 inputs
* Analog Port
+ Ultra efficient Power-on Reset and Brown-Out Detector
* Debug Interface
* 4-pin Joint Test Action Group (JTAG) interface
+ 2-pin serial-wire debug (SWD) interface

2.4 Oscillators and Clocks

EFM32 Gecko has six different oscillators integrated, as shown in Table 2.1 EFM32 Gecko Oscillators on page 27

Table 2.1. EFM32 Gecko Oscillators

Oscillator Frequency Optional? External Description

components

HFXO 38 MHz - 40 MHz Yes Crystal High accuracy, low jitter high frequency crystal oscillator. Tun-
able crystal loading capacitors are fully integrated.

HFRCO 1 MHz - 38 MHz No - Medium accuracy RC oscillator, typically used for timing dur-
ing startup of the HFXO or if a precise oscillator is not re-
quired.

AUXHFRCO |1 MHz - 38 MHz No - Medium accuracy RC oscillator, typically used as alternative

clock source for Analog to Digital Converter or Debug Trace.

LFRCO 32768 Hz No - Medium accuracy frequency reference typically used for medi-
um accuracy RTCC timing.

LFXO 32768 Hz Yes Crystal High accuracy frequency reference typically used for high ac-
curacy RTCC timing. Tunable crystal loading capacitors are
fully integrated.

ULFRCO 1000 Hz No - Ultra low frequency oscillator typically used for the watchdog
timer.

The RC oscillators can be calibrated against either of the crystal oscillators in order to compensate for temperature and voltage supply
variations. Hardware support is included to measure the frequency of various oscillators against each other.

Oscillator and clock management is available through the Clock Management Unit (CMU), see section 10. CMU - Clock Management
Unit for details.

2.5 Hardware CRC Support
EFM32 Gecko supports a configurable CRC generation:

+ 8, 16, 24 or 32 bit CRC value

» Configurable polynomial and initialization value

» Optional inversion of CRC value over air

» Configurable CRC byte ordering

» Support for multiple CRC values calculated and verified per transmitted or received frame

silabs.com | Building a more connected world. Rev. 1.0 | 27

EFM32JG1 Reference Manual
System Overview

2.6 Data Encryption and Authentication

EFM32 Gecko has hardware support for AES encryption, decryption and authentication modes. These security operations can be per-
formed on data in RAM or any data buffer, without further CPU intervention. The key size is 128 bits.

AES modes of operations directly supported by the EFM32 Gecko hardware are listed in Table 2.2 AES Modes of Operation With Hard-
ware Support on page 28. In addition to these modes, other modes can also be implemented by using combinations of modes. For
example, the CCM mode can be implemented using the CTR and CBC-MAC modes in combination.

Table 2.2. AES Modes of Operation With Hardware Support

AES Mode Encryption / Decryption Authentication Comment

ECB Yes - Electronic Code Book

CTR Yes - Counter mode

CCM Yes Yes Counter with CBC-MAC

CCM* Yes Yes CCM with encryption-only and
integrity-only capabilities

GCM Yes Yes Galois Counter Mode

CBC Yes - Cipher Block Chaining

CBC-MAC - Yes Cipher Block Chaining, Mes-
sage Authentication Code

CMAC - Yes Cipher-basec MAC

CFB Yes - Cipher Feedback

OFB Yes - Output Feedback

The CRYPTO module can provide data directly from the embedded Cortex-M3 or via DMA.

silabs.com | Building a more connected world. Rev. 1.0 | 28

EFM32JG1 Reference Manual
System Overview

2.7 Timers

EFM32 Gecko includes multiple timers, as can be seen from Table 2.3 EFM32 Gecko Timers Overview on page 29.

Table 2.3. EFM32 Gecko Timers Overview

Timer Number of instances Typical clock source Overview
RTCC 1 Low frequency (LFXO or 32 bit Real Time Counter and
LFRCO) Calendar, typically used to ac-
curately time inactive periods
and enable wakeup on compare
match.
TIMER 2 High frequency (HFXO or 16 bit general purpose timer.
HFRCO)
Systick timer 1 High frequency (HFXO or 32 bit systick timer integrated in
HFRCO) the Cortex-M3. Typically used
as an Operating System timer.
WDOG 1 Low frequency (LFXO, LFRCO | Watch dog timer. Once enabled,
or ULFRCO) this module must be periodically
accessed. If not, this is consid-
ered an error and the EFM32
Gecko is reset in order to recov-
er the system.
LETIMER 1 Low frequency (LFXO, LFRCO |Low energy general purpose
or ULFRCO) timer.

Advanced interconnect features allows synchronization between timers. This includes:

» Start/ stop any high frequency timer synchronized with the RTCC

» Trigger RSM state transitions based on compare timer compare match, for instance to provide clock cycle accuracy on frame trans-
mit timing

silabs.com | Building a more connected world. Rev. 1.0 | 29

EFM32JG1 Reference Manual
System Processor

3. System Processor

HENEEEEEEENENEEEEEE

CM3Core

32-bit ALU

Single cycle

Hardware divider 32-bit multiplier

Thumb & Thumb-2

Control Logic Decode

== Instruction Interface Data Interface o

NVIC Interface

HEEEEEEEEENEEEEEEEE

HENENENREREEEENRERE

HEEENEEEEREENEER NN

3.1 Introduction

Quick Facts
What?

The industry leading Cortex-M3 processor from
ARM is the CPU in the EFM32 Gecko devices.

Why?

The ARM Cortex-M3 is designed for exceptionally
short response time, high code density, and high 32-
bit throughput while maintaining a strict cost and
power consumption budget.

How?

Combined with the ultra low energy peripherals
available in EFM32 Gecko devices, the Cortex-M3
processor's Harvard architecture, 3 stage pipeline,
single cycle instructions, Thumb-2 instruction set
support, and fast interrupt handling make it perfect
for 8-bit, 16-bit, and 32-bit applications.

The ARM Cortex-M3 32-bit RISC processor provides outstanding computational performance and exceptional system response to inter-

rupts while meeting low cost requirements and low power consumption.

The ARM Cortex-M3 implemented is revision r2p1.

silabs.com | Building a more connected world.

Rev. 1.0 | 30

EFM32JG1 Reference Manual
System Processor

3.2 Features

Harvard architecture
» Separate data and program memory buses (No memory bottleneck as in a single bus system)
3-stage pipeline
Thumb-2 instruction set
» Enhanced levels of performance, energy efficiency, and code density
Single cycle multiply and hardware divide instructions
» 32-bit multiplication in a single cycle
» Signed and unsigned divide operations between 2 and 12 cycles
Atomic bit manipulation with bit banding
« Direct access to single bits of data
» Two 1MB bit banding regions for memory and peripherals mapping to 32MB alias regions
» Atomic operation, cannot be interrupted by other bus activities
1.25 DMIPS/MHz
Memory Protection Unit
» Up to 8 protected memory regions
24 bits System Tick Timer for Real Time OS
Excellent 32-bit migration choice for 8/16 bit architecture based designs

« Simplified stack-based programmer's model is compatible with traditional ARM architecture and retains the programming simplici-
ty of legacy 8-bit and 16-bit architectures

Alligned or unaligned data storage and access
» Contiguous storage of data requiring different byte lengths
» Data access in a single core access cycle
Integrated power modes
» Sleep Now mode for immediate transfer to low power state
» Sleep on Exit mode for entry into low power state after the servicing of an interrupt
 Ability to extend power savings to other system components
Optimized for low latency, nested interrupts

3.3 Functional Description

For a full functional description of the ARM Cortex-M3 implementation in the EFM32 Gecko family, the reader is referred to the ARM
Cortex-M3 documentation provided by ARM.

silabs.com | Building a more connected world. Rev. 1.0 | 31

EFM32JG1 Reference Manual

3.3.1 Interrupt Operation

Module Cortex-M NVIC
[IFSnl || IFCIn] || IEN[n] | H
| SETENA[)/CLRENA[n] |
S = cl;'ar - Active interrupt termunt
conditiopn IF[n] —zi\/ Ra > po Cletr request
I SETPEND[n]/CLRPENDIn]
| Software generated interrupt

Figure 3.1. Interrupt Operation

The interrupt request (IRQ) lines are connected to the Cortex-M3. Each of these lines (shown in Table 3.1 Interrupt Request Lines
(IRQ) on page 33) is connected to one or more interrupt flags in one or more modules. The interrupt flags are set by hardware on an
interrupt condition. It is also possible to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified
with its own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the IRQ. A high IRQ line will
set the corresponding pending bit (can also be set/cleared with the SETPEND/CLRPEND bits in ISPRO/ICPRO) in the Cortex-M3 NVIC.
The pending bit is then qualified with an enable bit (set/cleared with SETENA/CLRENA bits in ISER0/ICERO) before generating an in-
terrupt request to the core. Figure 3.1 Interrupt Operation on page 32 illustrates the interrupt system. For more information on how the
interrupts are handled inside the Cortex-M3, the reader is referred to the ARM Cortex-M3 Technical Reference Manual.

3.3.1.1 Avoiding Extraneous Interrupts

There can be latencies in the system such that clearing an interrupt flag could take longer than leaving an Interrupt Service Routine
(ISR). This can lead to the ISR being re-entered as the interrupt flag has yet to clear immediately after leaving the ISR. To avoid this,
when clearing an interrupt flag at the end of an ISR, the user should execute ARM's Data Synchronization Barrier (DSB) instruction.
Another approach is to clear the interrupt flag immediately after identifying the interrupt source and then service the interrupt as shown
in the pseudo-code below. The ISR typically is sufficiently long to more than cover the few cycles it may take to clear the interrupt sta-
tus, and also allows the status to be checked for further interrupts before exiting the ISR.

i rgXServiceRoutine() {
do {
clearlrgXstatus();
servicelrgX();
} while(irgXstatuslsActive());

3.3.1.2 IFC Read-clear Operation

In addition to the normal interrupt setting and clearing operations via the IFS/IFC registers, there is an additional atomic Read-clear
operation that can be enabled by setting IFCREADCLEAR=1 in the MSC_CTRL register. When enabled, reads of peripheral IFC regis-
ters will return the interrupt vector (mirroring the IF register), while at the same time clearing whichever interrupt flags are set. This oper-
ation is functionally equivalent to reading the IF register and then writing the result immediately back to the IFC register.

EFM32JG1 Reference Manual
System Processor

3.3.2 Interrupt Request Lines (IRQ)

Table 3.1. Interrupt Request Lines (IRQ)

IRQ # Source(s)

0 EMU

2 WDOGO0

8 LDMA

9 GPIO_EVEN

10 TIMERO

11 USARTO_RX

12 USARTO_TX

13 ACMPO
ACMP1

14 ADCO

15 IDACO

16 12C0

17 GPIO_ODD

18 TIMER1

19 USART1_RX

20 USART1_TX

21 LEUARTO

22 PCNTO

23 CMU

24 MSC

25 CRYPTO

26 LETIMERO

29 RTCC

31 CRYOTIMER

33 FPUEH

silabs.com | Building a more connected world. Rev. 1.0 | 33

EFM32JG1 Reference Manual

4. Memory and Bus System

01

ARM Cortex-M

Flash

DMA Controller

4.1 Introduction

RAM

Peripherals

Quick Facts
What?

A low latency memory system including low energy
Flash and RAM with data retention which makes the
energy modes attractive.

Why?

RAM retention reduces the need for storing data in
Flash and enables frequent use of the ultra low en-
ergy modes EM2 DeepSleep and EM3 Stop.

How?

Low energy and non-volatile Flash memory stores
program and application data in all energy modes
and can easily be reprogrammed in system. Low
leakage RAM with data retention in EMO Active to
EM3 Stop removes the data restore time penalty,
and the DMA ensures fast autonomous transfers
with predictable response time.

The EFM32 Gecko contains an AMBA AHB Bus system to allow bus masters to access the memory mapped address space. A multi-
layer AHB bus matrix connects the 4 master bus interfaces to the AHB slaves (Figure 4.1 EFM32 Gecko Bus System on page 34).
The bus matrix allows several AHB slaves to be accessed simultaneously. An AMBA APB interface is used for the peripherals, which
are accessed through an AHB-to-APB bridge connected to the AHB bus matrix. The 4 AHB bus masters are:

» Cortex-M3 ICode: Used for instruction fetches from Code memory (valid address range: 0x00000000 - Ox1FFFFFFF)
» Cortex-M3 DCode: Used for debug and data access to Code memory (valid address range: 0x00000000 - Ox1FFFFFFF)

» Cortex-M3 System: Used for data and debug access to system space. It can access entire memory space except Code memory
(valid address range: 0x20000000 - OxFFFFFFFF)

+ DMA: Can access the entire memory space except the internal core memory region and the DMEM code region

ARM
Cortex-M
| 4 ICode
Y L
| 4 DCode
) L
| 4 System o
) L
DMA
A A

AHB Multilayer
Bus Matrix

Flash

I ¢

A
\ 4

RAMO

RAMn

CRYPTO

AHB/ 4—>| Peripheral 0

APB
Bridge

<—>| Peripheral n

Figure 4.1. EFM32 Gecko Bus System

EFM32JG1 Reference Manual
Memory and Bus System

4.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-M3 into the system memory map shown by Fig-
ure 4.2 System Address Space With Core and Code Space Listing on page 35.

OXTTTTTTTe
0xe0100000
OXe00TTTTT
CM4 Peripherals ™
0xe0000000
OXATTITTTTT N
N
0x46070000
oxa6oerrrr | \ N
Bit Set <
(Peripherals)
0x46000000 0xe0100000
OXA5TTTTTT CM4 ROM Table
0x44070000 A orenoriaoe
X
Ox440eT TTT \ TPIL 0xe0041000
Bit Clear 0xe0040000
(Peripherals) 0xe000f000
0x44000000 \ System Control Space
OXA3TTTTIT < 0xe000e000
0x43e00000 0xe0003000
OxA3dTTTTT FPB 0xe0002000
Bit-Band \ DWT
(Peripherals) { 0xe0001000
0x42000000 ™
OxATTITITT 0xe0000000
0x40070000
Ox400eTTTT
Peripherals / 0x10040000
0x40000000 RAMH
Ox3TTTTTIT / (code space) OX10037c00
X Cl
0x22400000 4 0x10007€00
OXx223TT71F
RAMO
SRAM (bit-band) (code space)
0x22000000 / P 0x10000000
OX2LTTTTrT
/ T 0x0fe08400
0x20008000 ip config
0x0fe08000
©x20007771 / OX0T04800
RAMH (data space) - x0fe
0x20007c00 7 Lock bits 0x0fe04000
©x20007b7T 000800
RAMO (data space) xOre!
0x20000000 |/ User Data 0x0fe00000
OXLTTTTTrT
0x00040000
Code
Flash (256 KB)
000000000 _ 0X00000000

Figure 4.2. System Address Space With Core and Code Space Listing

Additionally, the peripheral address map is detailed by Figure 4.3 System Address Space With Peripheral Listing on page 36.

Rev.1.0 | 35

silabs.com | Building a more connected world.

EFM32JG1 Reference Manual

PRS OXTTTTTTTe
0x4006000
0x400e5400 T CHEOUEIID
OXe00TTTTT
0x400e5000 \ CM4 Peripherals
0x400e4400 =T 0xe0000000
0x4004000 OXATTTITTT
0x400€3400 =T \ 0x460£0000
gXﬁgezggg TOMA \ Ox460effTT

X: e, Bit Set
0x4001400 — (Peripherals)
0x400€1000 \ 0x46000000

OXA5TITTTT
4
0x4000800 = \
0x400€0000 0x440£0000
040052400 — Ox440eT 1T
0x40052000 \ Bit Clear
0x40046400 (Peripherals)

Aavase PCNTO \ 0x44000000
0x4004€000 OXA3TITTTT
0x4004a400 MRV
0x40042000 \ §X2§Z?$$$?
0x40046400 X

LETIMERO Bit-Band
0x40046000 \ (Peripherals)

400424
0x40042400 — 0x42000000
0x40042000 OXALTTITTT
0x4001e400 SROTIER \ 0x400£0000
0x4001e000 0x400effff
0x4001c400 e Peripherals 9x40000000

X
0x4001¢000

X400 1c OX3TITTITT
0x40018800 e
0x40018400 TG 0x22400000

OX223T111T
gxiggizggg SRAM (bit-band)

X USARTL 0x22000000
0x40010400 s OX2LTTTTTT
0x40010000 OX28008080
0x4000c400 =5 Ox20007 11T
0x4000c000 RAMH (data space)

0x20007C00
0x4000b000

x GPIO Ox20007D7T
0x4000a000 RAMO (data space)
0x40006400 SACo 0x20000000
0x40006000 y OXITTTTTIT
0x40002400 =
0x40002000 / Code
0x40000800 T /
0x40000400 ACMPO 7 0x00000000
0x40000000 X

Figure 4.3. System Address Space With Peripheral Listing

The embedded SRAM is located at address 0x20000000 in the memory map of the EFM32 Gecko. When running code located in
SRAM starting at this address, the Cortex-M3 uses the System bus interface to fetch instructions. This results in reduced performance
as the Cortex-M3 accesses stack, other data in SRAM and peripherals using the System bus interface. To be able to run code from
SRAM efficiently, the SRAM is also mapped in the code space at address 0x10000000.

When running code from this space, the Cortex-M3 fetches instructions through the I/D-Code bus interface, leaving the System bus
interface for data access.

The SRAM mapped into the code space can however only be accessed by the CPU and not any other bus masters, e.g. DMA. See
4.5 SRAM for more detailed info on the system SRAM.

4.2.1 Peripheral Non-Word Access Behavior

When writing to peripheral registers, all accesses are treated as 32-bit accesses. This means that writes to a register need to be large
enough to cover all bits of register, otherwise, any uncovered bits may become corrupted from the partial-word transfer. Thus, the saf-
est practice is to always do 32-bit writes to peripheral registers.

When reading, there is generally no issue with partial word accesses, however, note that any read action (e.g. FIFO popping) will be
triggered regardless of whether the actual FIFO bit-field was included in the transfer size.

Note: The implementation of bit-banding in the core is such that bit-band accesses forward the transfer size info into the actual bus
transfer size, so the same restrictions apply to bit-band accesses as apply to normal read/write accesses.

EFM32JG1 Reference Manual
Memory and Bus System

4.2.2 Bit-banding

The SRAM bit-band alias and peripheral bit-band alias regions are located at 0x22000000 and 0x42000000 respectively. Read and
write operations to these regions are converted into masked single-bit reads and atomic single-bit writes to the embedded SRAM and
peripherals of the EFM32 Gecko.

Note: Bit-banding is only available through the CPU. No other AHB masters (e.g. DMA) can perform Bit-banding operations.

Using a standard approach to modify a single register or SRAM bit in the aliased regions, would require software to read the value of
the byte, half-word or word containing the bit, modify the bit, and then write the byte, half-word or word back to the register or SRAM
address. Using bit-banding, this can be done in a single operation, consuming only two bus cycles. As read-writeback, bit-masking and
bit-shift operations are not necessary in software, code size is reduced and execution speed improved.

The bit-band regions allow each bit in the SRAM and Peripheral areas of the memory map to be addressed. To set or clear a bit in the
embedded SRAM, write a 1 or a 0 to the following address:

bit_address = 0x22000000 + (address — 0x20000000) x 32 + bit x 4

where address is the address of the 32-bit word containing the bit to modify, and bit is the index of the bit in the 32-bit word.

To modify a bit in the Peripheral area, use the following address:

bit_address = 0x42000000 + (address — 0x40000000) x 32 + bit x 4

silabs.com | Building a more connected world. Rev. 1.0 | 37

EFM32JG1 Reference Manual
Memory and Bus System

4.2.3 Peripheral Bit Set and Clear

The EFM32 Gecko supports bit set and bit clear access to all peripherals except those listed in Table 4.1 Peripherals that Do Not Sup-
port Bit Set and Bit Clear on page 38. The bit set and bit clear functionality (also called Bit Access) enables modification of bit fields
(single bit or multiple bit wide) without the need to perform a read-modify-write (though it is functionally equivalent). Also, the operation
is contained within a single bus access (for HF peripherals), unlike the Bit-banding operation described in section 4.2.2 Bit-banding
which consumes two bus accesses per operation. All AHB masters can utilize this feature.

The bit clear aliasing region starts at 0x44000000 and the bit set aliasing region starts at 0x46000000. Thus, to apply a bit set or clear
operation, write the bit set or clear mask to the following addresses:

bit_clear_address = address + 0x04000000
bit_set_address = address + 0x06000000

For bit set operations, bit locations that are 1 in the bit mask will be set in the destination register:
register = (register OR mask)
For bit clear operations, bit locations that are 1 in the bit mask will be cleared in the destination register:

register = (register AND (NOT mask))

Note: It is possible to combine bit clear and bit set operations in order to arbitrarily modify multi-bit register fields, without affecting other
fields in the same register. In this case, care should be taken to ensure that the field does not have intermediate values that can lead to
erroneous behavior. For example, if bit clear and bit set operations are used to change an analog tuning register field from 25 to 26, the
field would initially take on a value of zero. If the analog module is active at the time, this could lead to undesired behavior.

The peripherals listed in Table 4.1 Peripherals that Do Not Support Bit Set and Bit Clear on page 38 do not support Bit Access for any
registers. All other peripherals do support Bit Access, however, there may be cases of certain registers that do not support it. Such
registers have a note regarding this lack of support.

Table 4.1. Peripherals that Do Not Support Bit Set and Bit Clear

EMU
RMU

CRYOTIMER

silabs.com | Building a more connected world. Rev. 1.0 | 38

EFM32JG1 Reference Manual
Memory and Bus System

4.2.4 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range according to Table 4.2 Periph-
erals on page 39, Table 4.3 Low Energy Peripherals on page 39, and Table 4.4 Core Peripherals on page 39.

Table 4.2. Peripherals

Address Range Module Name

0x400E6000 - 0x400E6400 PRS
0x4001E000 - 0x4001E400 CRYOTIMER
0x4001C000 - 0x4001C400 GPCRC
0x40018400 - 0x40018800 TIMER1
0x40018000 - 0x40018400 TIMERO
0x40010400 - 0x40010800 USART1
0x40010000 - 0x40010400 USARTO
0x4000C000 - 0x4000C400 12C0
0x4000A000 - 0x4000B000 GPIO
0x40006000 - 0x40006400 IDACO
0x40002000 - 0x40002400 ADCO
0x40000400 - 0x40000800 ACMP1
0x40000000 - 0x40000400 ACMPO

Table 4.3. Low Energy Peripherals

Address Range Module Name

0x40052000 - 0x40052400 WDOGO0
0x4004E000 - 0x4004E400 PCNTO
0x4004A000 - 0x4004A400 LEUARTO
0x40046000 - 0x40046400 LETIMERO
0x40042000 - 0x40042400 RTCC

Table 4.4. Core Peripherals

Address Range Module Name

0xE0000000 - 0xE0040000 CM4
0x400F0000 - 0x400F0400 CRYPTO
0x400E2000 - 0x400E3000 LDMA
0x400E1000 - 0x400E1400 FPUEH
0x400E0000 - 0x400E0800 MSC

4.2.5 Bus Matrix

The Bus Matrix connects the memory segments to the bus masters as detailed in 4.1 Introduction.

silabs.com | Building a more connected world. Rev. 1.0 | 39

EFM32JG1 Reference Manual
Memory and Bus System

4.2.5.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency, while starvation of simultane-
ous accesses to the same bus slave are eliminated. Round-robin does not assign a fixed priority to each bus master. The arbiter does
not insert any bus wait-states during peak interaction. However, one wait state is inserted for master accesses occurring after a pro-
longed inactive time. This wait state allows for increased power efficiency during master idle time.

4.2.5.2 Peripheral Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth of 4x a single AHB interface.

The Cortex-M3, DMA Controller, and peripherals (not peripherals in the low frequency clock domain) run on clocks which can be pre-
scaled separately. Clocks and prescaling are described in more detail in 10. CMU - Clock Management Unit . This section describes the
expected bus wait states for a peripheral based on its frequency relative to the HFCLK frequency. For this discussion, PERCLK refers
to a selected peripheral's clock frequency, which is some integer division of the HFCLK frequency.

4.2.5.2.1 WS0 Mode

In general, when accessing a peripheral, the latency in number of HFCLK cycles, not including master arbitration, is given by:

Nbus cycles = Nsiave cycles * fHFcLK/fPERCLK, best-case write accesses
Nbus cycles = Nslave cycles * fHFCLK/fPERCLK + 1, best-case read accesses
Nbus cycles = (Nslave cycles + 1) * furcLk/fPERCLK - 1, Worst-case write accesses
Nbus cycles = (Nsiave cycles ¥ 1) % furcLk/fPERCLK, WOrst-case read accesses

where Ngjave cycles IS the throughput of the slave's bus interface in number of PERCLK cycles per transfer, including any wait cycles
introduced by the slave.

Figure 4.4. Bus Access Latency (General Case)

Note that a latency of 1 cycle corresponds to 0 wait states.

Additionally, for back-to-back accesses to the same peripheral, the throughput in number of cycles per transfer is given by:

Nbus cycles = Nslave cycles X THFCLK/fPERCLK, Write accesses
Npus cycles = (Nsiave cycles + 1) * fHFcLk/fPERCLK, read accesses

Figure 4.5. Bus Access Throughput (Back-to-Back Transfers)

Lastly, in the highest performing case, where PERCLK equals HFCLK and the slave does not introduce any additional wait states, the
access latency in number of cycles is given by:

Nbus cycles = 1, Write accesses

Nbus cycles = 2, read accesses

Figure 4.6. Bus Access Latency (Max Performance)

silabs.com | Building a more connected world. Rev. 1.0 | 40

EFM32JG1 Reference Manual

4.2.5.2.2 WS1 Mode

In general, when accessing a peripheral, the latency in number of HFCLK cycles, not including master arbitration, is given by:

Npus cycles = Nslave cycles * fHFCLK/fPERCLK * 2, best-case write accesses
Npus cycles = Nslave cycles * fHFCLK/fPERCLK + 1, best-case read accesses
Npus cycles = (Nsiave cycles + 1) * furcLk/fPERCLK * 1, wWorst-case write accesses
Nbus cycles = (Nsiave cycles ¥ 1) % furcLk/fPERCLK, WOrst-case read accesses

where Ngjave cycles iS the throughput of the slave's bus interface in number of PERCLK cycles per transfer, including any wait cycles
introduced by the slave.

Figure 4.7. Bus Access Latency (General Case)

Note that a latency of 1 cycle corresponds to 0 wait states.

Additionally, for back-to-back accesses to the same peripheral, the throughput in number of cycles per transfer is given by:

Npus cycles = Max{fyrcLk/fPERCLK: 2} + Nslave cycles * fHFCLK/fPERCLK, Write accesses

Nbus cycles = (Nslave cycles T 1) * furcLk/fPERCLK, read accesses

Figure 4.8. Bus Access Throughput (Back-to-Back Transfers)

Lastly, in the highest performing case, where PERCLK equals HFCLK and the slave does not introduce any additional wait states, the
access latency in number of cycles is given by:

Nbus cycles = 3, Write accesses

Nbus cycles = 2, read accesses

Figure 4.9. Bus Access Latency (Max Performance)

4.2.5.2.3 Core Access Latency

Note that the cycle counts in the equations above is in terms of the HFCLK. When the core is prescaled from the bus clock, the core will
see a reduced number of latency cycles given by:

Ncore cycles = Ceiling(Nbus cycles * fHFCORECLK/fHFCLK)

where master arbitration is not included.

Figure 4.10. Core Access Latency

4.2.5.3 Bus Faults

System accesses from the core can receive a bus fault in the following condition(s):

» The core attempts to access an address that is not assigned to any peripheral or other system device. These faults can be enabled
or disabled by setting the ADDRFAULTEN bit appropriately in MSC_CTRL.

» The core attempts to access a peripheral or system device that has its clock disabled. These faults can be enabled or disabled by
setting the CLKDISFAULTEN bit appropriately in MSC_CTRL.

In addition to any condition-specific bus fault control bits, the bus fault interrupt itself can be enabled or disabled in the same way as all
other internal core interrupts.

Note: The icache flush is not triggered at the event of a bus fault. As a result, when an instruction fetch results in a bus fault, invalid
data may be cached. This means that the next time the instruction that caused the bus fault is fetched, the processor core will get the
invalid cached data without any bus fault. In order to avoid invalid cached data propagation to the processor core, software should man-
ually invalidate cache by writing 1 to MSC_CMD_INVCACHE bitfield at the event of a bus fault.

EFM32JG1 Reference Manual
Memory and Bus System

4.3 Access to Low Energy Peripherals (Asynchronous Registers)

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system is powered off, i.e. in energy
mode EM2 DeepSleep and in some cases also EM3 Stop. This enables the peripherals to perform tasks while the system energy con-
sumption is minimal.

The Low Energy Peripherals are listed in Table 4.3 Low Energy Peripherals on page 39.

All Low Energy Peripherals are memory mapped, with automatic data synchronization. Because the Low Energy Peripherals are run-
ning on clocks asynchronous to the high frequency system clock, there are some constraints on how register accesses are performed,
as described in the following sections.

4.3.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized into the Low Energy clock domain to
maintain data consistency and predictable operation. There are two different synchronization mechanisms on the EFM32JG1, immedi-
ate synchronization, and delayed synchronization. Immediate synchronization is available for the RTCC and LETIMER, and results in
an immediate update of the target registers. Delayed synchronization is used for the remaining Low Energy Peripherals, and for these
peripherals, a write operation requires 3 positive edges of the clock on the Low Energy Peripheral being accessed. Registers requiring
synchronization are marked "Async Reg" in their description header.

Note: On the Gecko series of devices, all LE peripherals are subject to delayed synchronization.

High Frequency Clock Domain Low Frequency Clock Domain

Freeze

|
|
|
|
High Frequ‘ency Clock | : Low Frequ‘ency Clock Low Frequ‘ency Clock
Wit t 0
e reques > Register 0 : > Synchronizer 0 > Register 0 Sync
Write request 1 > Register 1 » o Synchronizer 1 > Register 1 Sync >
[
|
|
Write request n - ! — —
> Register n o o Synchronizer n > Register n Sync >
|
|
] Synchronization Done
Write request [0:n] :
|
| SetO,, Syncbusy Register 0 | Clear 0 | :
| Setl,,] Syncbusy Register 1 g Clear 1] |
|
’ |
|
Setn P Clear n I
= Syncbusy Register n D — |
|
|
|
I

Figure 4.11. Write Operation to Low Energy Peripherals

silabs.com | Building a more connected world. Rev. 1.0 | 42

EFM32JG1 Reference Manual

4.3.1.1 Delayed Synchronization

After writing data to a register which value is to be synchronized into the Low Energy Peripheral using delayed synchronization, a corre-
sponding busy flag in the <module_name>_SYNCBUSY register (e.g. LETIMER_SYNCBUSY) is set. This flag is set as long as syn-
chronization is in progress and is cleared upon completion.

Note: Subsequent writes to the same register before the corresponding busy flag is cleared is not supported. Write before the busy flag
is cleared may result in undefined behavior. In general the SYNCBUSY register only needs to be observed if there is a risk of multiple
write access to a register (which must be prevented). It is not required to wait until the relevant flag in the SYNCBUSY register is
cleared after writing a register. E.g., EM2 DeepSleep can be entered directly after writing a register.

See Figure 4.12 Write Operation to Low Energy Peripherals on page 43 for an overview of the writing mechanism operation.

High Frequency Clock Domain Low Frequency Clock Domain

|
|
|
Freeze |
High Frequ‘ency Clock | : Low Frequ‘ency Clock Low Frequ‘ency Clock
Wri
fite request 0 - Register 0 » o : - Synchronizer 0 - Register 0 Sync
Write request 1 > Register 1 o Synchronizer 1 > Register 1 Sync >
[
|
|
Write request n - ! ; °
- Register n » o P Synchronizer n - Register n Sync
|
|
1 Synchronization Done
Write request [0:n] :
|
| SetOy, Syncbusy Register 0 | Clear 0 | :
| Setly, Syncbusy Register 1 g Clear 1] |
|
|
|
Setn o Clear n I
E—— Syncbusy Register n = |
|
|
|
1

Figure 4.12. Write Operation to Low Energy Peripherals

4.3.1.2 Immediate Synchronization

In contrast to the peripherals with delayed synchronization, peripherals with immediate synchronization do not experience a register
write delay for most registers. Registers are updated immediately on the peripheral write access. If such a write is done close to an
edge on the clock of the peripheral, the write can be delayed until after that clock edge. This will introduce wait-states on the peripheral
access.

One exception is made for commands (writing to the CMD register) in peripherals with immediate synchronization. Peripherals with im-
mediate synchronization each have a SYNCBUSY register with a bit for the CMD register status. Commands written to a peripheral with
immediate synchronization are not executed before the first peripheral clock after the write. In this period, the SYNCBUSY flag for the
command register is set, indicating that the command has not yet been performed.

To maintain compatibility with earlier Gecko series, the SYNCBUSY register reserves placeholders where other register synchroniza-
tion bits resided. These bits always read 0, indicating that register writes are always safe.

Note: If compatibility with earlier Gecko series is a requirement for a given application, the rules that apply to delayed synchronization
with respect to SYNCBUSY should also be followed for the peripherals that support immediate synchronization.

EFM32JG1 Reference Manual
Memory and Bus System

4.3.2 Reading

When reading from a Low Energy Peripheral, the data read is synchronized regardless if it originates in the Low Energy clock domain
or High Frequency clock domain. See Figure 4.13 Read Operation From Low Energy Peripherals on page 44 for an overview of the
reading operation.

Note: Writing a register and then immediately reading the new value of the register may give the impression that the write operation is
complete. This may not be the case. Refer to the SYNCBUSY register for correct status of the write operation to the Low Energy
Peripheral.

High Frequency Clock Domain Low Frequency Clock Domain

Freeze

|
|
|
|
High Frequ‘ency Clock : Low Frequency Clock Low Frequency Clock
-t Register 0 : Synchronizer 0 Register 0 Sync
Register 1 | Synchronizer 1 Register 1 Sync
|
|
|
. | . .
Register n | Synchronizer n Register n Sync
|
|
’ | |
|
|
- : HW Status Register 0 -t
Read : Low Ener:
. - - qy
Synchronizer | HW Status Register 1 Peripheral
| Main
| Function
| .
- HW Status Register m -
Read Data :
|
|
I

Figure 4.13. Read Operation From Low Energy Peripherals

4.3.3 FREEZE Register

In all Low Energy Peripheral with delayed synchronization there is a <module_name>_FREEZE register (e.g. RTCC_FREEZE). The
register contains a bit named REGFREEZE. If precise control of the synchronization process is required, this bit may be utilized. When
REGFREEZE is set, the synchronization process is halted allowing the software to write multiple Low Energy registers before starting
the synchronization process, thus providing precise control of the module update process. The synchronization process is started by
clearing the REGFREEZE bit.

Note: The FREEZE register is also present on peripherals with immediate synchronization, but there it has no effect

4.4 Flash

The Flash retains data in any state and typically stores the application code, special user data and security information. The Flash
memory is typically programmed through the debug interface, but can also be erased and written to from software.

* Up to 256 KB of memory

» Page size of 2 KB (minimum erase unit)

* Minimum 10K erase cycles endurance

» Greater than 10 years data retention at 85 °C
» Lock-bits for memory protection

» Data retention in any state

silabs.com | Building a more connected world. Rev. 1.0 | 44

EFM32JG1 Reference Manual
Memory and Bus System

4.5 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute instructions from SRAM, and
the DMA may be set up to transfer data between the SRAM, flash and peripherals.

* Up to 32 KB of memory

» Bit-band access support

» Set of RAM blocks may be powered down when not in use

+ Data retention of the entire memory in EMO Active to EM3 Stop

The SRAM memory may be split among two or more different AHB slaves (e.g., RAMO, RAM1, ...) in order to allow simultaneous ac-

cess to different sections of the memory from two different AHB masters. For example, the Cortex-M3 can access RAMO while the DMA
controller accesses RAM1 in parallel. See 4.1 Introduction for AHB slave connectivity details.

silabs.com | Building a more connected world. Rev. 1.0 | 45

EFM32JG1 Reference Manual
Memory and Bus System

4.6 DI Page Entry Map

The DI page contains production calibration data as well as device identification information. See the peripheral chapters for how each
calibration value is to be used with the associated peripheral.

The offset address is relative to the start address of the DI page (see 6.3 Functional Description).

Offset Name Type Description

0x000 CAL RO CRC of DI-page and calibration temperature
0x028 EUI48L RO EUI48 OUI and Unique identifier

0x02C EUI48H RO oul

0x030 CUSTOMINFO RO Custom information

0x034 MEMINFO RO Flash page size and misc. chip information
0x040 UNIQUEL RO Low 32 bits of device unique number
0x044 UNIQUEH RO High 32 bits of device unique number
0x048 MSIZE RO Flash and SRAM Memory size in kB
0x04C PART RO Part description

0x050 DEVINFOREV RO Device information page revision

0x054 EMUTEMP RO EMU Temperature Calibration Information
0x060 ADCOCALO RO ADCO calibration register 0

0x064 ADCOCAL1 RO ADCO calibration register 1

0x068 ADCOCAL2 RO ADCO calibration register 2

0x06C ADCOCAL3 RO ADCO calibration register 3

0x080 HFRCOCALO RO HFRCO Calibration Register (4 MHz)
0x08C HFRCOCAL3 RO HFRCO Calibration Register (7 MHz)
0x098 HFRCOCALG RO HFRCO Calibration Register (13 MHz)
0x09C HFRCOCAL7 RO HFRCO Calibration Register (16 MHz)
0x0A0 HFRCOCALS8 RO HFRCO Calibration Register (19 MHz)
0x0A8 HFRCOCAL10 RO HFRCO Calibration Register (26 MHz)
0x0AC HFRCOCAL11 RO HFRCO Calibration Register (32 MHz)
0x0BO HFRCOCAL12 RO HFRCO Calibration Register (38 MHz)
0x0EO AUXHFRCOCALO RO AUXHFRCO Calibration Register (4 MHz)
0x0EC AUXHFRCOCAL3 RO AUXHFRCO Calibration Register (7 MHz)
0x0F8 AUXHFRCOCALS6 RO AUXHFRCO Calibration Register (13 MHz)
0xOFC AUXHFRCOCAL?7 RO AUXHFRCO Calibration Register (16 MHz)
0x100 AUXHFRCOCALS8 RO AUXHFRCO Calibration Register (19 MHz)
0x108 AUXHFRCOCAL10 RO AUXHFRCO Calibration Register (26 MHz)
0x10C AUXHFRCOCAL11 RO AUXHFRCO Calibration Register (32 MHz)
0x110 AUXHFRCOCAL12 RO AUXHFRCO Calibration Register (38 MHz)
0x140 VMONCALO RO VMON Calibration Register 0

0x144 VMONCALA1 RO VMON Calibration Register 1

silabs.com | Building a more connected world. Rev. 1.0 | 46

EFM32JG1 Reference Manual
Memory and Bus System

Offset Name Type Description

0x148 VMONCAL2 RO VMON Calibration Register 2

0x158 IDACOCALO RO IDACO Calibration Register 0

0x15C IDACOCAL1 RO IDACO Calibration Register 1

0x168 DCDCLNVCTRLO RO DCDC Low-noise VREF Trim Register O
0x16C DCDCLPVCTRLO RO DCDC Low-power VREF Trim Register 0
0x170 DCDCLPVCTRLA1 RO DCDC Low-power VREF Trim Register 1
0x174 DCDCLPVCTRL2 RO DCDC Low-power VREF Trim Register 2
0x178 DCDCLPVCTRL3 RO DCDC Low-power VREF Trim Register 3
0x17C DCDCLPCMPHYSSELO | RO DCDC LPCMPHYSSEL Trim Register 0

0x180 DCDCLPCMPHYSSEL1 |RO DCDC LPCMPHYSSEL Trim Register 1

4.7 DI Page Entry Description

4.7.1 CAL - CRC of DI-page and calibration temperature

Bit Position
000 |5/3RRNQRIRYSR2RTCLI2YC 20w~ onvodax-o
Access Q Q
Name % e
w 5
Bit Name Access Description
31:24 Reserved Reserved for future use
23:16 TEMP RO Calibration temperature as an usigned int in DegC (25 =
25DegC)
15:0 CRC RO CRC of DI-page (CRC-16-CCITT)

silabs.com | Building a more connected world.

Rev. 1.0 | 47

EFM32JG1 Reference Manual
Memory and Bus System

4.7.2 EUI48L - EUI48 OUI and Unique identifier

Offset Bit Position
0028 |58 /R/QNIQIRI RN TR 22T LT 220w ~ow< oo~ o
o o
Access T T
a
w
-
)
Name g 3
) z
(@))
Bit Name Access Description
31:24 oul48L RO Lower Octet of EUI48 Organizationally Unique Identifier
23:0 UNIQUEID RO Unique identifier

4.7.3 EUI48H - OUI

Offset Bit Position
0x02C 2 QIFQ LIV I eI e|¥IfT@|low~lojw|t m|la|~]|o
o
Access o
T
o]
Name i
)
o
Bit Name Access Description
31:16 Reserved Reserved for future use
15:0 OUI48H RO Upper two Octets of EUI48 Organizationally Unique Identifier

4.7.4 CUSTOMINFO - Custom information

Offset Bit Position

0x030 S 3IQQRILIQIQIN IR T 2¥It|Qlow(m|lojv|d|o|la|~|o
Access 8
@)
z
Name E
<
o
Bit Name Access Description
31:16 PARTNO RO Custom part identifier as unsigned integer (e.g. 903) 65535 for
standard product
15:0 Reserved Reserved for future use

silabs.com | Building a more connected world. Rev. 1.0 | 48

EFM32JG1 Reference Manual
Memory and Bus System

4.7.5 MEMINFO - Flash page size and misc. chip information

Offset

Bit Position

x034 151828 KQQIQNJ|IRIEEg2 T e ~|lo|w|st|o|lal-|o
Access 8 8 8 8
L
N
P
L w
O @)
Name E e w é
T 3 = o
0 %) =
< = ©} =
_J = X L
L o o -
Bit Name Access Description
31:24 FLASH_PAGE_SIZE RO Flash page size in bytes coded as 2 * (MEM_IN-
FO_PAGE_SIZE + 10) & OxFF). le. the value OxFF = 512 bytes.
23:16 PINCOUNT RO Device pin count as unsigned integer (eg. 48)
15:8 PKGTYPE RO Package Identifier as character
Value Mode Description
74 WLCSP WLCSP package
77 QFN QFN package
81 QFP QFP package
7:0 TEMPGRADE RO Temperature Grade of product as unsigned integer enumeration
Value Mode Description
0 N40TO85 -40 to 85degC
1 N40TO125 -40 to 125degC
2 N40TO105 -40 to 105degC
3 NOTO70 0 to 70degC

silabs.com | Building a more connected world.

Rev. 1.0 | 49

EFM32JG1 Reference Manual
Memory and Bus System

4.7.6 UNIQUEL - Low 32 bits of device unique number

Offset Bit Position

0040 |58/ QINERIQNFTR2RT L LT T 2o lw~oo von o
o
Access g
-
5
Name g
zZ
)
Bit Name Access Description
31:0 UNIQUEL RO Low 32 bits of device unique number

4.7.7 UNIQUEH - High 32 bits of device unique number

Bit Position

0x044 1513 IQQRNIQIQIIQ QIR EIge ¥ e¥t|Qloo|~|lo|jov|t|m|a|-]|o
o
Access g
T
w
Name 8
pd
)
Bit Name Access Description
31:0 UNIQUEH RO High 32 bits of device unique number

4.7.8 MSIZE - Flash and SRAM Memory size in kB

Offset Bit Position

x048 |5 |8IQIRINQQ IR N IR eI 2 ¥ tQ|loo|~lo|lw|¢|m|a|- o
o o
Access h A
s T
Name é <</(>
-
) T
Bit Name Access Description
31:16 SRAM RO Ram size, kbyte count as unsigned integer (eg. 16)
15:0 FLASH RO Flash size, kbyte count as unsigned integer (eg. 128)

silabs.com | Building a more connected world. Rev. 1.0 | 50

EFM32JG1 Reference Manual
Memory and Bus System

4.7.9 PART - Part description

Offset Bit Position
004C 53R ENIQRIRN TR 222 T2 T 20 0~oow oo
Access 8 o 8
> i
=
Name E E 2,
g o &
% @ o
a a o
Bit Name Access Description
31:24 PROD_REV RO Production revision as unsigned integer
23:16 DEVICE_FAMILY RO Device Family
Value Mode Description
16 EFR32MG1P EFR32 Gecko Family Series 1 Device Config 1
17 EFR32MG1B EFR32 Gecko Family Series 1 Device Config 1
18 EFR32MG1V EFR32 Gecko Family Series 1 Device Config 1
19 EFR32BG1P EFR32 Gecko Family Series 1 Device Config 1
20 EFR32BG1B EFR32 Gecko Family Series 1 Device Config 1
21 EFR32BG1V EFR32 Gecko Family Series 1 Device Config 1
25 EFR32FG1P EFR32 Gecko Family Series 1 Device Config 1
26 EFR32FG1B EFR32 Gecko Family Series 1 Device Config 1
27 EFR32FG1V EFR32 Gecko Family Series 1 Device Config 1
28 EFR32MG12P EFR32 Gecko Family Series 1 Device Config 2
29 EFR32MG12B EFR32 Gecko Family Series 1 Device Config 2
30 EFR32MG12V EFR32 Gecko Family Series 1 Device Config 2
31 EFR32BG12P EFR32 Gecko Family Series 1 Device Config 2
32 EFR32BG12B EFR32 Gecko Family Series 1 Device Config 2
33 EFR32BG12V EFR32 Gecko Family Series 1 Device Config 2
37 EFR32FG12P EFR32 Gecko Family Series 1 Device Config 2
38 EFR32FG12B EFR32 Gecko Family Series 1 Device Config 2
39 EFR32FG12V EFR32 Gecko Family Series 1 Device Config 2
40 EFR32MG13P EFR32 Gecko Family Series 1 Device Config 3
41 EFR32MG13B EFR32 Gecko Family Series 1 Device Config 3
42 EFR32MG13V EFR32 Gecko Family Series 1 Device Config 3
43 EFR32BG13P EFR32 Gecko Family Series 1 Device Config 3
44 EFR32BG13B EFR32 Gecko Family Series 1 Device Config 3

silabs.com | Building a more connected world.

Rev. 1.0 | 51

EFM32JG1 Reference Manual
Memory and Bus System

Bit Name
45
46
49
50
51
52
53
54
55
56
57
58
61
62
63
71
71
72
72
73
73
74
74
75
75
76
76
77
77
81
83
85
87
100
103
106
120

silabs.com | Building a more connected world.

Access
EFR32BG13V
EFR32ZG13P
EFR32FG13P
EFR32FG13B
EFR32FG13V
EFR32MG14P
EFR32MG14B
EFR32MG14V
EFR32BG14P
EFR32BG14B
EFR32BG14V
EFR32ZG14P
EFR32FG14P
EFR32FG14B
EFR32FG14V
EFM32G

G

EFM32GG

GG

TG

EFM32TG
EFM32LG

LG

EFM32WG
WG

ZG

EFM322G

HG

EFM32HG
EFM32PG1B
EFM32JG1B
EFM32PG12B
EFM32JG12B
EFM32GG11B
EFM32TG11B
EFM32GG12B
EZR32LG

Description

EFR32 Gecko Family Series 1 Device Config 3
EFR32 Gecko Family Series 1 Device Config 3
EFR32 Gecko Family Series 1 Device Config 3
EFR32 Gecko Family Series 1 Device Config 3
EFR32 Gecko Family Series 1 Device Config 3
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFR32 Gecko Family Series 1 Device Config 4
EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Device Family

EFM32 Gecko Family Series 1 Device Config 1
EFM32 Gecko Family Series 1 Device Config 1
EFM32 Gecko Family Series 1 Device Config 2
EFM32 Gecko Family Series 1 Device Config 2
EFM32 Gecko Family Series 1 Device Config 1
EFM32 Gecko Family Series 1 Device Config 1
EFM32 Gecko Family Series 1 Device Config 2
EZR32 Gecko Device Family

Rev. 1.0 | 52

EFM32JG1 Reference Manual
Memory and Bus System

Bit Name Access Description
121 EZR32WG EZR32 Gecko Device Family
122 EZR32HG EZR32 Gecko Device Family
15:0 DEVICE_NUMBER RO Part number as unsigned integer (e.g., 233 for

EFR32BG1P233F256GM48-B0)

4.7.10 DEVINFOREV - Device information page revision

Bit Position

%050 |5 8RN &LRIQNTIRI22E L T2YC2o0lo~owv voa o
(@)
Access A
>
[
o
N 2
ame <
>
i
a
Bit Name Access Description
31:8 Reserved Reserved for future use
7:0 DEVINFOREV RO DEVINFO layout revision as unsigned integer (initially 1)

4.7.11 EMUTEMP - EMU Temperature Calibration Information

Offset

Bit Position

0x054 2 QXL QI Q]I e|¥If@loo~lojv|t m|la|-]|o

Access 8
=
o
o
&

Name s
L
'_
)
=
i

Bit Name Access Description

31:8 Reserved Reserved for future use

7:0 EMUTEMPROOM RO EMU_TEMP temperature reading at room

silabs.com | Building a more connected world.

Rev. 1.0 | 53

EFM32JG1 Reference Manual
Memory and Bus System

4.7.12 ADCOCALDO - ADCO calibration register 0

Offset Bit Position
0x060 S RIQAQIRILIQIQIN IIRIZ 2T 2¥It|Qlow|~|lojlv|d|w|a|~|o
Access 8 8 8 8 8 8
Te)
0 N
> >
N ~
m 1L
N n ©
Name - g o ° S
0 3 m S 3 "
z & % z & %
< w L < w o
O zZ (@] 0] zZ O
Bit Name Access Description
31 Reserved Reserved for future use
30:24 GAIN2V5 RO Gain for 2.5V reference
23:20 NEGSEOFFSET2V5 RO Negative single ended offset for 2.5V reference
19:16 OFFSET2V5 RO Offset for 2.5V reference
15 Reserved Reserved for future use
14:8 GAIN1V25 RO Gain for 1.25V reference
7:4 NEGSEOFFSET1V25 RO Negative single ended offset for 1.25V reference
3.0 OFFSET1V25 RO Offset for 1.25V reference

silabs.com | Building a more connected world. Rev. 1.0 | 54

EFM32JG1 Reference Manual
Memory and Bus System

4.7.13 ADCOCAL1 - ADCO calibration register 1

Offset Bit Position
0x064 S RIQAQIRILIQIQIN IIRIZ 2T 2¥It|Qlow|~|lojlv|d|w|a|~|o
Access 8 8 8 8 8
L
L
n [m)
2 S
[L ~
3 < 3 o
Name i t g & a
9 O i 3 @ e
> o a w
2 2 & 2 2 &
= 2 i 3 D i
O z (@] O pd O
Bit Name Access Description
31 Reserved Reserved for future use
30:24 GAIN5SVDIFF RO Gain for for 5V differential reference
23:20 NEGSEOFFSET5VDIFF RO Negative single ended offset with for 5V differential reference
19:16 OFFSET5VDIFF RO Offset for 5V differential reference
15 Reserved Reserved for future use
14:8 GAINVDD RO Gain for VDD reference
7:4 NEGSEOFFSETVDD RO Negative single ended offset for VDD reference
3:0 OFFSETVDD RO Offset for VDD reference

silabs.com | Building a more connected world. Rev. 1.0 | 55

EFM32JG1 Reference Manual
Memory and Bus System

4.7.14 ADCOCAL2 - ADCO calibration register 2

Offset Bit Position

%068 |5 8IRRNELRIQY TR L L T2 2 olo~ow vloa o

Access 8 8
@)
@)
>
x
o
Lu 8

Name P S
L &
o —
I-ImJ 1]
0] @
w L
z (@)

Bit Name Access Description

31 Reserved Reserved for future use

30:24 Reserved Reserved for future use

23:20 Reserved Reserved for future use

19:16 Reserved Reserved for future use

15:8 Reserved Reserved for future use

74 NEGSEOFFSET2XVDD RO Negative single ended offset for 2XVDD reference

3:0 OFFSET2XVDD RO Offset for 2XVDD reference

4.7.15 ADCOCAL3 - ADCO calibration register 3

Offset Bit Position
x06C 158 QX JQLLIQ QIR T eI ¥ |2 olo|~rlolv|t| o a0
@)
Access A
[Te)
N
z
@)
Name E
x
[N
=
L
'_
Bit Name Access Description
31:16 Reserved Reserved for future use
15:4 TEMPREAD1V25 RO Temperature reading at 1V25 reference
3:0 Reserved Reserved for future use

silabs.com | Building a more connected world. Rev. 1.0 | 56

EFM32JG1 Reference Manual
Memory and Bus System

4.7.16 HFRCOCALO - HFRCO Calibration Register (4 MHz)

Offset Bit Position
0x080 |15 18 IR QX RNIQIRII QNIRRT e¥t|Qloo|~|lojv|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 57

EFM32JG1 Reference Manual
Memory and Bus System

4.7.17 HFRCOCALS3 - HFRCO Calibration Register (7 MHz)

Offset Bit Position
0x08C 15 181X RNIQIQII QNIRRT 2¥t|Qloo|~|lo|jov|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 58

EFM32JG1 Reference Manual
Memory and Bus System

4.7.18 HFRCOCALS6 - HFRCO Calibration Register (13 MHz)

Offset Bit Position
0x098 |15 18I RNIQIRI QNIRRT e¥t|Qlowo|~lojv|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 59

EFM32JG1 Reference Manual
Memory and Bus System

4.7.19 HFRCOCALY?7 - HFRCO Calibration Register (16 MHz)

Offset Bit Position
x09C 15 18I QX RIQIQIIQYIIRIZ2 T2 e¥t|Qloo|~|lo|jv|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 60

EFM32JG1 Reference Manual
Memory and Bus System

4.7.20 HFRCOCALS - HFRCO Calibration Register (19 MHz)

Offset Bit Position
0x0A0 |15 181X RIQIRIIQNIIRIZI2 T2 ¥t |Qloo|~|lo|jv|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 61

EFM32JG1 Reference Manual
Memory and Bus System

4.7.21 HFRCOCAL10 - HFRCO Calibration Register (26 MHz)

Offset Bit Position
0x0A8 1518 IR X RXIQIRIIQNIIRIZ2 T2 ¥t|Qloo|~|lo|jv|t|m|a|~]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 62

EFM32JG1 Reference Manual
Memory and Bus System

4.7.22 HFRCOCAL11 - HFRCO Calibration Register (32 MHz)

Offset Bit Position
0x0AC |15 181X XIQIRIIQNIIRIZI2 T2 ¥ 2¥t|Qloo|~|lo|jo|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 63

EFM32JG1 Reference Manual
Memory and Bus System

4.7.23 HFRCOCAL12 - HFRCO Calibration Register (38 MHz)

Offset Bit Position
0x0B0O |15 18 I1Q QX RNQIRII QNIRRT e¥t|Qloo|~|lojv|t|m|a|-]|o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g ~ z
g 2 58 = y z 3
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO HFRCO Temperature Coefficient Trim on Comparator Refer-
ence
27 FINETUNINGEN RO HFRCO enable reference for fine tuning
26:25 CLKDIV RO HFRCO Clock Output Divide
24 LDOHP RO HFRCO LDO High Power Mode
23:21 CMPBIAS RO HFRCO Comparator Bias Current
20:16 FREQRANGE RO HFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO HFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO HFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 64

EFM32JG1 Reference Manual
Memory and Bus System

4.7.24 AUXHFRCOCALO - AUXHFRCO Calibration Register (4 MHz)

Offset Bit Position
00E0 |58 IR/R NIRRT RN TR 2T L T2 20w ~oo< oo~ o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 65

EFM32JG1 Reference Manual
Memory and Bus System

4.7.25 AUXHFRCOCAL3 - AUXHFRCO Calibration Register (7 MHz)

Offset Bit Position
0EC |5 /8/R/Q NIRRT RN TR 22T L T2 20w ~oo<oa - o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 66

EFM32JG1 Reference Manual
Memory and Bus System

4.7.26 AUXHFRCOCALG6 - AUXHFRCO Calibration Register (13 MHz)

Offset Bit Position
0x0F8 |5 13IRIN LR IRQNITRSRTLLT2Y T2 o0lw~oo von o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 67

EFM32JG1 Reference Manual
Memory and Bus System

4.7.27 AUXHFRCOCAL? - AUXHFRCO Calibration Register (16 MHz)

Offset Bit Position
MOFC |5 /8/R/Q NIRRT RN TR 2SI L T2 20w ~ow< oo~ o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 68

EFM32JG1 Reference Manual
Memory and Bus System

4.7.28 AUXHFRCOCALS - AUXHFRCO Calibration Register (19 MHz)

Offset Bit Position
0100 |58 /R/QNIQILI RN TRS2E|eL T2 20w ~ow< oo~ o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 69

EFM32JG1 Reference Manual
Memory and Bus System

4.7.29 AUXHFRCOCAL10 - AUXHFRCO Calibration Register (26 MHz)

Offset Bit Position
0x108 |58 /R/QNIQILI QI TR 22 T2 T2 20w ~ow<oa - o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev.1.0 | 70

EFM32JG1 Reference Manual
Memory and Bus System

4.7.30 AUXHFRCOCAL11 - AUXHFRCO Calibration Register (32 MHz)

Offset Bit Position
010 |5 /8/R/QN|QIRI QI TR 22 T2 T2 20w ~ow< oo~ o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 71

EFM32JG1 Reference Manual
Memory and Bus System

4.7.31 AUXHFRCOCAL12 - AUXHFRCO Calibration Register (38 MHz)

Offset Bit Position
110 5 /8/R/QNQIRI QI TIR 22 T2 T2 20w ~ow< oo~ o
Access % g &2 B & % % %
i
)))
Z " > Z
zZ zZ
Name o S > la < = S e
L =l Aa | m g = z
& |2 33 = 2 2 5
= | o 8 & & T =
Bit Name Access Description
31:28 VREFTC RO AUXHFRCO Temperature Coefficient Trim on Comparator Ref-
erence
27 FINETUNINGEN RO AUXHFRCO enable reference for fine tuning
26:25 CLKDIV RO AUXHFRCO Clock Output Divide
24 LDOHP RO AUXHFRCO LDO High Power Mode
23:21 CMPBIAS RO AUXHFRCO Comparator Bias Current
20:16 FREQRANGE RO AUXHFRCO Frequency Range
15:14 Reserved Reserved for future use
13:8 FINETUNING RO AUXHFRCO Fine Tuning Value
7 Reserved Reserved for future use
6:0 TUNING RO AUXHFRCO Tuning Value

silabs.com | Building a more connected world. Rev. 1.0 | 72

EFM32JG1 Reference Manual
Memory and Bus System

4.7.32 VMONCALDO - VMON Calibration Register 0

Offset Bit Position

x40 |5/2/12/8NILRIZ QN TIR2R e TN |20 o ~ow <t oo

Access | @ 2 2 2 2 2 2
L w
e e

w w

S = S = %) 7
O o O E x w x w
) 0) %) < <
LU L ul 1l (@] P) z
¥ x Y I O [TH (@] TR
T T T T @ @ @ @

Name 5 5 5 5 z ¢ z :
> > > > [[i~ =
8 8 g 5 3 3 $ g
[a))) @) = > > >
> > > > 8 8 E E
< < < <
H H H H S S S =
< < < < < < < <

Bit Name Access Description

31:28 ALTAVDD2V98THRESCOARSE RO ALTAVDD 2.98 V Coarse Threshold Adjust

27:24 ALTAVDD2V98THRESFINE RO ALTAVDD 2.98 V Fine Threshold Adjust

23:20 ALTAVDD1V86THRESCOARSE RO ALTAVDD 1.86 V Coarse Threshold Adjust

19:16 ALTAVDD1V86THRESFINE RO ALTAVDD 1.86 V Fine Threshold Adjust

15:12 AVDD2V98THRESCOARSE RO AVDD 2.98 V Coarse Threshold Adjust

11:8 AVDD2V98THRESFINE RO AVDD 2.98 V Fine Threshold Adjust

74 AVDD1V86THRESCOARSE RO AVDD 1.86 V Coarse Threshold Adjust

3.0 AVDD1V86THRESFINE RO AVDD 1.86 V Fine Threshold Adjust

silabs.com | Building a more connected world. Rev.1.0 | 73

EFM32JG1 Reference Manual
Memory and Bus System

4.7.33 VMONCAL1 - VMON Calibration Register 1

Offset Bit Position

x4 53 RENSRIRIIS K222 I 2N 2060~ o0o0 0 N-o

Access | @ 2 g g 2 2 2 2

7 7

0 7 x w x w
1 1 (@) Z @) z
< 4 < g &) i &) T
@) Z o Z 1%5] n D n
O [T O T w u iy L
0 %) 0N 7 x 74 x o

Name uJ i i i T T T T
: : : : : : - -
b b o to 2 2 S S
[} [} (<] <o} AN AN - —
< < = = : : 2 3
S S S S 3 3 3 3

Bit Name Access Description

31:28 1002V98THRESCOARSE RO 100 2.98 V Coarse Threshold Adjust

27:24 I002V98THRESFINE RO 100 2.98 V Fine Threshold Adjust

23:20 1001V86 THRESCOARSE RO 100 1.86 V Coarse Threshold Adjust

19:16 I001V86THRESFINE RO 100 1.86 V Fine Threshold Adjust

15:12 DVDD2V98THRESCOARSE RO DVDD 2.98 V Coarse Threshold Adjust

11:8 DVDD2V98THRESFINE RO DVDD 2.98 V Fine Threshold Adjust

7:4 DVDD1V86THRESCOARSE RO DVDD 1.86 V Coarse Threshold Adjust

3:0 DVDD1V86THRESFINE RO DVDD 1.86 V Fine Threshold Adjust

silabs.com | Building a more connected world. Rev.1.0 | 74

EFM32JG1 Reference Manual
Memory and Bus System

4.7.34 VMONCAL2 - VMON Calibration Register 2

Offset Bit Position

x148 518128888 3Ig ¥ T IgeleteeT 2N Do o~ ob v oal-|o

Access % % % % % & % %

L L

3 3 2 2
Z W E‘E W S Z S Y
o Z o Z O T Q L
3 5 3 5 i 2 i 2
L L L L Y e Y e

Name o o 14 x T T T T
T T I I = = [=
& = = 5 3 3 $ $
& 2 S g 2 2 > >
X X z z Qa Qa Qa [m)
8 a a8 a8 S S S =
z T T T & 5 5 a‘

Bit Name Access Description

31:28 FVDD2V98THRESCOARSE RO FVDD 2.98 V Coarse Threshold Adjust

27:24 FVDD2V98THRESFINE RO FVDD 2.98 V Fine Threshold Adjust

23:20 FVDD1V86THRESCOARSE RO FVDD 1.86 V Coarse Threshold Adjust

19:16 FVDD1V86THRESFINE RO FVDD 1.86 V Fine Threshold Adjust

15:12 PAVDD2V98THRESCOARSE RO PAVDD 2.98 V Coarse Threshold Adjust

11:8 PAVDD2V98THRESFINE RO PAVDD 2.98 V Fine Threshold Adjust

7:4 PAVDD1V86THRESCOARSE RO PAVDD 1.86 V Coarse Threshold Adjust

3:0 PAVDD1V86THRESFINE RO PAVDD 1.86 V Fine Threshold Adjust

silabs.com | Building a more connected world. Rev.1.0 | 75

EFM32JG1 Reference Manual
Memory and Bus System

4.7.35 IDACOCALDO - IDACO Calibration Register 0

Offset Bit Position
x158 15 18I QX RIQIQII QNIRRT e¥t|Qloo|~|lojv|t|m|a|-]|o

o] o o o
Access A & & b

O]) O] O]

Z Z Z Z

zZ zZ zZ zZ

=) =) =) =)

[= [=

™ N ~ o

L L L w

O) O] O]
Name Z pd pd z

& s x &

4 v

[| [L

O O O (@]

x x x x

))) o)

o] o] o] O

n n n n
Bit Name Access Description
31:24 SOURCERANGES3TUNING RO Calibrated middle step (16) of current source mode range 3
23:16 SOURCERANGE2TUNING RO Calibrated middle step (16) of current source mode range 2
15:8 SOURCERANGE1TUNING RO Calibrated middle step (16) of current source mode range 1
7:0 SOURCERANGEOTUNING RO Calibrated middle step (16) of current source mode range 0

silabs.com | Building a more connected world. Rev. 1.0 | 76

EFM32JG1 Reference Manual
Memory and Bus System

4.7.36 IDACOCAL1 - IDACO Calibration Register 1

Offset Bit Position
x15¢ |5 8/ RIN QR IQNTRI22T LR T2 2 olo~owv von o
Access 8 8 8 8

O) O] O]

Z Z Z Z

zZ zZ zZ zZ

=)) =) >

= = [[

2 3 y 3
Name o o o o

Z Z zZ Z

& S & &

[0 [

X 4 X X

Z Zz =z Z

) n %) »n
Bit Name Access Description
31:24 SINKRANGE3TUNING RO Calibrated middle step (16) of current sink mode range 3
23:16 SINKRANGE2TUNING RO Calibrated middle step (16) of current sink mode range 2
15:8 SINKRANGE1TUNING RO Calibrated middle step (16) of current sink mode range 1
7:0 SINKRANGEOTUNING RO Calibrated middle step (16) of current sink mode range 0

4.7.37 DCDCLNVCTRLO - DCDC Low-noise VREF Trim Register 0

Offset Bit Position

0x168 S RIQAQIRILTIQIQIN IR e T 2¥It|Qlow~|lojv|d|w|a|~|o
o] o] @] (@]

Access h & & A
-~ — o o
— |— = [
= = = =
< < < <

Name z zZ pd z
- - — —
o o [ee) N
> > > >
o ~ ~ ~

Bit Name Access Description

31:24 3VOLNATT1 RO DCDC LNVREF Trim for 3.0V output, LNATT=1

23:16 1VBLNATT1 RO DCDC LNVREF Trim for 1.8V output, LNATT=1

15:8 1VBLNATTO RO DCDC LNVREF Trim for 1.8V output, LNATT=0

7:0 1V2LNATTO RO DCDC LNVREF Trim for 1.2V output, LNATT=0

silabs.com | Building a more connected world. Rev.1.0 | 77

EFM32JG1 Reference Manual
Memory and Bus System

4.7.38 DCDCLPVCTRLO - DCDC Low-power VREF Trim Register 0

Offset Bit Position
x16C |5 SR IQNQ QI QNIRRT 2|¥ Qom0 /b|ld|m|a|~|0O
Access 8 8 8 8

~ ~ o o

)]) 9] (9]

< < < <

o o o o

o o o o

= = = =

(@] O (@] O
Name 5 5 5 5

o o o o

— - |— [

= = = =

< < < <

o o o o

— - - —

o) N o N

2 2 2 2
Bit Name Access Description
31:24 1V8LPATTOLPCMPBIAS1 RO DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=1
23:16 1V2LPATTOLPCMPBIAS1 RO DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=1
15:8 1V8LPATTOLPCMPBIASO RO DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=0
7:0 1V2LPATTOLPCMPBIASO RO DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=0

silabs.com | Building a more connected world. Rev. 1.0 | 78

EFM32JG1 Reference Manual
Memory and Bus System

4.7.39 DCDCLPVCTRL1 - DCDC Low-power VREF Trim Register 1

Offset Bit Position
0x170 S RIQAQIRILIQIQIN IIRIZ 2T 2¥It|Qlow|~|lojlv|d|w|a|~|o
Access 8 8 8 8

™ [42] N (oY)

)])]) 7))

< < < <

o o o o

o o o o

= = = =

(@] O (@] O
Name 5 5 5 5

o o o o

— - |— [

= = = =

< < < <

o o o o

— - - —

o) N o N

2 2 2 2
Bit Name Access Description
31:24 1V8LPATTOLPCMPBIAS3 RO DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=3
23:16 1V2LPATTOLPCMPBIAS3 RO DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=3
15:8 1V8LPATTOLPCMPBIAS2 RO DCDC LPVREF Trim for 1.8V output, LPATT=0, LPCMPBIAS=2
7:0 1V2LPATTOLPCMPBIAS2 RO DCDC LPVREF Trim for 1.2V output, LPATT=0, LPCMPBIAS=2

silabs.com | Building a more connected world. Rev. 1.0 | 79

EFM32JG1 Reference Manual
Memory and Bus System

4.7.40 DCDCLPVCTRL2 - DCDC Low-power VREF Trim Register 2

Offset Bit Position

0x174

31
30
29
28
27
26
25
24
23
22

Access

RO
RO

Name

3VOLPATT1LPCMPBIAS1
1V8LPATT1LPCMPBIAS1
3VOLPATT1LPCMPBIASO | RO
1VBLPATT1LPCMPBIASO | RO

Bit Name

>
3]
s
o
o
7]

Description

31:24 3VOLPATT1LPCMPBIAS1

Py
]

DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=1

23:16 1V8LPATT1LPCMPBIAS1 RO DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=1

15:8 3VOLPATT1LPCMPBIASO RO DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=0

7:0 1VBLPATT1LPCMPBIASO RO DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=0

silabs.com | Building a more connected world. Rev. 1.0 | 80

EFM32JG1 Reference Manual
Memory and Bus System

4.7.41 DCDCLPVCTRL3 - DCDC Low-power VREF Trim Register 3

Offset Bit Position
178 |58/ RN &QRIQN TRI22- L T2 2 olo~owv von o
Access 8 8 8 8

™ [42] N (oY)

)])]) 7))

< < < <

o o o o

o o o o

= = = =

(@] O (@] O
Name 5 5 5 5

= c h C

= = = =

< < < <

o o o o

— - - —

o o) o (o)

> > > >

™ ~— (30} —
Bit Name Access Description
31:24 3VOLPATT1LPCMPBIAS3 RO DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=3
23:16 1V8LPATT1LPCMPBIAS3 RO DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=3
15:8 3VOLPATT1LPCMPBIAS2 RO DCDC LPVREF Trim for 3.0V output, LPATT=1, LPCMPBIAS=3
7:0 1V8LPATT1LPCMPBIAS2 RO DCDC LPVREF Trim for 1.8V output, LPATT=1, LPCMPBIAS=2

4.7.42 DCDCLPCMPHYSSELO - DCDC LPCMPHYSSEL Trim Register 0

Bit Position

x17C 15181218 INIL QI QNIRRT e I¥ Qoo ~oviwbi <t|o/lal~|o
(@) O

Access T T
~ o
[[
= =
< <
o o
| -1
- -1
7 7

Name 5 A
> >
T T
o o
= =
O O
o o
| -1

Bit Name Access Description

31:16 Reserved Reserved for future use

15:8 LPCMPHYSSELLPATT1 RO DCDC LPCMPHYSSEL Trim, LPATT=1

7:0 LPCMPHYSSELLPATTO RO DCDC LPCMPHYSSEL Trim, LPATT=0

silabs.com | Building a more connected world.

Rev. 1.0 | 81

EFM32JG1 Reference Manual
Memory and Bus System

4.7.43 DCDCLPCMPHYSSEL1 - DCDC LPCMPHYSSEL Trim Register 1

Offset Bit Position

0x180 S RIQAQIRILIQIQIN IIRIZ 2T 2¥It|Qlow|~|lojlv|d|w|a|~|o

Access 8 8 8 8
[32] N ~ o
)])) (9]
< < < <
o o o o
o o o o
= = = =
O O O O
o o o o
- - - -

Name o o o o
0 0 N (7]
%] %] %] (9]
> > > >
I T T I
o o o o
= = = =
O O O O
o o o o
- - | -

Bit Name Access Description

31:24 LPCMPHYSSELLPCMPBIAS3 RO DCDC LPCMPHYSSEL Trim, LPCMPBIAS=3

23:16 LPCMPHYSSELLPCMPBIAS2 RO DCDC LPCMPHYSSEL Trim, LPCMPBIAS=2

15:8 LPCMPHYSSELLPCMPBIAS1 RO DCDC LPCMPHYSSEL Trim, LPCMPBIAS=1

7:0 LPCMPHYSSELLPCMPBIASO RO DCDC LPCMPHYSSEL Trim, LPCMPBIAS=0

silabs.com | Building a more connected world. Rev. 1.0 | 82

EFM32JG1 Reference Manual
DBG - Debug Interface

5. DBG - Debug Interface

Quick Facts
What?

The Debug Interface is used to program and debug
EFM32 Gecko devices.

Why?
OO nnnQ The Debug Interface makes it easy to re-program
and update the system in the field, and allows de-
[] bugging with minimal I/O pin usage.
L] How?
O ARM Cortex-M] The Cortex-M3 supports advanced debugging fea-
]] tures. EFM32 Gecko devices can use a minimum of
two port pins for debugging or programming. The in-
]] ternal and external state of the system can be exam-
] ' u ined with debug extensions supporting instruction or
' data access break and watch points.
L] ']
L < N » Debug Data
L]]
]]

bbbt og

5.1 Introduction

The EFM32 Gecko devices include hardware debug support through a 2-pin serial-wire debug (SWD) interface or a 4-pin Joint Test
Action Group (JTAG) interface.

For more technical information about the debug interface the reader is referred to:

* ARM Cortex-M3 Technical Reference Manual

* ARM CoreSight Components Technical Reference Manual

* ARM Debug Interface v5 Architecture Specification

» |[EEE Standard for Test Access Port and Boundary-Scan Architecture, IEEE 1149.1-2013

5.2 Features

» Debug Access Port Serial Wire JTAG (DAP SWJ-DP)
* Implements the ADIv5 debug interface
 Authentication Access Point (AAP)
* Implements various user commands
+ Flash Patch and Breakpoint (FPB) unit
» Implement breakpoints and code patches
Data Watch point and Trace (DWT) unit
» Implement watch points, trigger resources and system profiling
* Instrumentation Trace Macrocell (ITM)
» Application-driven trace source that supports printf style debugging

5.3 Functional Description

Operation of the available debug interface is described in the following sections.

silabs.com | Building a more connected world. Rev. 1.0 | 83

EFM32JG1 Reference Manual

5.3.1 Debug Pins

The following pins are the debug connections for the device:

+ Serial Wire Clock Input and Test Clock Input (SWCLKTCK) : This pin is enabled after power-up and has a built-in pull down.

+ Serial Wire Data Input/Output and Test Mode Select Input (SWDIOTMS) : This pin is enabled after power-up and has a built-in pull-
up.

» Test Data Output (TDO): This pin is assigned to JTAG functionality after power-up. However, it remains in high-Z state until the first
valid JTAG command is received.

» Test Data Input (TDI): This pin is assigned to JTAG functionality after power-up. However, it remains in high-Z state until the first
valid JTAG command is received. Once enabled, the pin has a built-in pull-up.

The debug pins have pull-down and pull-up enabled by default, so leaving them enabled may increase the current consumption if left
connected to supply or ground. The debug pins can be enabled and disabled through GPIO_ROUTEPEN, see 26.3.4.2.3 Disabling De-
bug Connections. Remember that upon disabling the debug pins, debug contact with the device is lost once the DAP SWJ-DP power
request bits are deasserted. By default after power cycle the part's debug pins are in JTAG mode. If during debugging session the pins
are switched to SWD mode, a power cycle is required to bring restore the pins to JTAG mode.

5.3.2 Debug and EM2 DeepSleep/EM3 Stop

Leaving the debugger connected when issuing a WFI or WFE to enter EM2 DeepSleep or EM3 Stop will make the system enter a spe-
cial EM2 DeepSleep. This mode differs from regular EM2 DeepSleep and EM3 Stop in that the high frequency clocks are still enabled,
and certain core functionality is still powered in order to maintain debug-functionality. Because of this, the current consumption in this
mode is closer to EM1 Sleep and it is therefore important to deassert the power requests in the DAP SWJ-DP and disconnect the de-
bugger before doing current consumption measurements.

5.3.3 Authentication Access Point

The Authentication Acces Point (AAP) is a set of registers that provide a minimal amount of debugging and system level commands.
The AAP registers contain commands to issue a FLASH erase, a system reset, a CRC of user code pages, and stalling the system bus.
The user must program the APSEL bit field to 255 inside of the ARM DAP SWJ Debug Port SELECT register to access the AAP. The
AAP is only accessible from a debugger and not from the core.

5.3.3.1 System Bus Stall

The system bus can be stalled at any time using the SYSBUSSTALL register bit. Once the SYSBUSSTALL is set, the system bus will
remain stalled until SYSBUSSTALL is cleared. While the system bus is stalled, only the registers inside the Cortex-M3, AAP and the
debugger can be accessed. The SYSBUSSTALL register is available at all times through the AAP.

5.3.3.2 Command Key

The AAP uses a command key to enable the DEVICEERASE and SYSRESETREQ AAP commands. The command key must be writ-
ten with the correct key in order for the commands to execute.

5.3.3.3 Device Erase

The device can be erased by stalling the system bus, writing AAP_CMDKEY, and then writing the DEVICEERASE register bit. Upon
writing the command bit, the ERASEBUSY bit is asserted. The ERASEBUSY bit will be de-asserted once the erase is complete. The
SYSRESETREQ bit must then be set to resume a normal debugger session. The DEVICEERASE register is available at all times
through the AAP once the CMDKEY is entered.

5.3.3.4 System Reset

The system can be reset by writing AAP_CMDKEY followed by writing the SYSRESTREQ register bit. This must be done after assert-
ing DEVICEERASE or CRCREQ. Depending on the reset level setting for system reset, asserting SYSRESETREQ will either reset the
entire AAP register space or just the SYSRESETREQ bit. See 8.3.1 Reset Levels for more details on reset levels. The SYSRESETREQ
register is available at all times through the AAP once the CMDKEY is enetered.

EFM32JG1 Reference Manual

5.3.3.5 User Flash Page CRC

The CRCREQ command initiates a CRC calculation on a given Flash Page. The CRC is only available on the Main, User Data, and
Lock Bit pages. It is highly recommended that the system bus is stalled before any CRCREQ commands are issued. The CRC calcula-
tion uses the on chip CRC block configured in 32 bit CRC mode. The Flash Page address for the CRCREQ command is written to the
CRCADDR register. After issuing the CRCREQ, the CRCBUSY flag is asserted. Once the CRCBUSY flag is de-asserted, the resulting
page CRC can be found in the CRCRESULT register. Once issuing a CRC command, the CPU is stalled and remains stalled until a
system reset occurs. Multiple CRC requests can occur before resetting the system. However, a CRC request that occurs while the
CRCBUSY flag is asserted will be ignored. The CRC registers are available at all times through the AAP, even when the device is de-
bug locked.

5.3.4 Debug Lock

The debug access to the Cortex-M3 is locked by clearing the Debug Lock Word (DLW) and resetting the device, see 6.3.2 Lock Bits
(LB) Page Description.

When debug access is locked, the debugger can access the DAP SWJ-DP and AAP registers. However, the connection to the Cortex-
M3 core and the whole bus-system is blocked. This mechanism is controlled by the Authentication Access Port (AAP) as illustrated by
Figure 5.1 AAP - Authentication Access Port on page 85.

ALW[3:0] == OxF

» DEVICEERASE

—
—

ERASEBUSY

Cortex
DLW[3:0] == OxF

A 4

SerialWire Authentication i
debug < SW-DP &P Access Port 4—/ —) AHB-AP
interface (AAP)

Figure 5.1. AAP - Authentication Access Port

If the DLW is cleared, the device is locked. If the device is locked and the the AAP Lock Word (ALW) has not been cleared, it can be
unlocked by writing a valid key to the AAP_CMDKEY register and then setting the DEVICEERASE bit of the AAP_CMD register via the
debug interface. This operation erases the main block of flash, clears all lock bits, and debug access to the Cortex-M3 and bus-system
is enabled. The operation takes tens of mili seconds to complete. Note that the SRAM contents will also be deleted during a device
erase, while the UD-page is not erased.

The debugger may read the status of the device erase from the AAP_STATUS register. When the ERASEBUSY bit is set low after
DEVICEERASE of the AAP_CMD register is set, the debugger may set the SYSRESETREQ bit in the AAP_CMD register. After reset,
the debugger may resume a normal debug session through the AHB-AP.

5.3.5 AAP Lock

Take extreme caution when using this feature. Once the AAP has been locked, the state of the FLASH can not be changed via the
debugger.

EFM32JG1 Reference Manual
DBG - Debug Interface

5.3.6 Debugger Reads of Actionable Registers

Some peripheral registers cause particular actions when read, e.g FIFOs which pop and IFC registers which clear the IF flags when
read. This can cause problems when debugging and the user wants to read the value without triggering the read action. For this rea-
son, by default, the peripherals will not execute these triggered actions when an attached debugger is performing the read accesses
through the AAP. To override this behavior, the debugger can configure the MASTERTYPE bitfield of the Cortex-M3 AHB Access Port
CSW register in order to emulate a core access when performing system bus transfers.

Note:
* Registers with actionable reads are noted in their register descriptions. Refer to Table 1.1 Register Access Types on page 22.

5.3.7 Debug Recovery

Debug recovery is the ability to stall the system bus before the Cortex-M3 executes code. For example, the first few instructions may
disconnect the debugger pins. When this occurs it is difficult to connect the debugger and halt the Cortex-M3 before the Cortex-M3
starts to execute. By holding down pin reset, issuing the System Bus Stall AAP instruction, then releasing pin reset, the debugger can
stall the system bus before the Cortex-M3 has a chance to execute. Because the system is under reset during this procedure the De-
bugger can not look for ACK's from the part. Once the system bus is stalled, the FLASH can be erased by issuing the AAP_CMDKEY
and then the writting the DEVICEERASE in the AAP_CMD register.

5.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 |AAP_CMD WA1 Command Register

0x004 |AAP_CMDKEY W1 Command Key Register
0x008 AAP_STATUS R Status Register

0x00C |AAP_CTRL RW Control Register

0x010 AAP_CRCCMD W1 CRC Command Register
0x014 AAP_CRCSTATUS R CRC Status Register
0x018 |AAP_CRCADDR RwW CRC Address Register
0x01C | AAP_CRCRESULT R CRC Result Register
0xOFC |AAP_IDR R AAP Identification Register

silabs.com | Building a more connected world. Rev. 1.0 | 86

EFM32JG1 Reference Manual
DBG - Debug Interface

5.5 Register Description

5.5.1 AAP_CMD - Command Register

Offset Bit Position

0000 5|8 /RKKLRIQNTIRR LRI VT2 o0 o/ ~ov <o a~|o

Reset o|o

Access E E
oy
o
Ak
g

Name D
bio
[
23
»n |0

Bit Name Reset Access Description

31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

tions
1 SYSRESETREQ 0 W1 System Reset Request
A system reset request is generated when set to 1. This register is write enabled from the AAP_CMDKEY register.
0 DEVICEERASE 0 W1 Erase the Flash Main Block, SRAM and Lock Bits

When set, all data and program code in the main block is erased, the SRAM is cleared and then the Lock Bit (LB) page is
erased. This also includes the Debug Lock Word (DLW), causing debug access to be enabled after the next reset. The
information block User Data page (UD) is left unchanged, but the User data page Lock Word (ULW) is erased. This register
is write enabled from the AAP_CMDKEY register.

5.5.2 AAP_CMDKEY - Command Key Register

Bit Position
0x004 SRR IQQIIQIF QR I 2 ¥tQlolo~o|lw|t|mw|n|-]|o
o
o
o
o
Reset S
o
R
o
Access ‘;
>_
i
X
Name =
04
=
Bit Name Reset Access Description
31:0 WRITEKEY 0x00000000 W1 CMD Key Register

The key value must be written to this register to write enable the AAP_CMD register.

Value Mode Description

0xCFACC118 WRITEEN Enable write to AAP_CMD

silabs.com | Building a more connected world. Rev. 1.0 | 87

EFM32JG1 Reference Manual
DBG - Debug Interface

5.5.3 AAP_STATUS - Status Register

Offset Bit Position
%008 |5 8IRXNELRIRQN TR LL T2 2 olo~owv voa o
Reset o
Access x|l
>
%)
)
O m
Name W |w
S|
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
1 LOCKED 0 R AAP Locked
Set when the AAP is locked, .e.g the AAP Lock Word AAP Isb bits are not OxF
0 ERASEBUSY 0 R Device Erase Command Status

This bit is set when a device erase is executing.

5.5.4 AAP_CTRL - Control Register

Offset Bit Position

x00C 15|88 KN&LRIQNTRR LRI N2 o0 o/ ~ov <o a~|o

Reset o

Access E
-
2
|_
A

Name)
M
n
>
@)

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

tions
0 SYSBUSSTALL 0 RW Stall the System Bus

When this bit is set, the system bus is stalled. Only the Cortex registers are accessible

silabs.com | Building a more connected world.

Rev. 1.0 | 88

EFM32JG1 Reference Manual
DBG - Debug Interface

5.5.5 AAP_CRCCMD - CRC Command Register

Offset Bit Position

010 |58 IRXJCQIQVN IR 22Eg2Fe ¥ TR0 w/~lojv|v o a0

Reset o

Access =
]
o2

Name O
o
O

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

tions
0 CRCREQ 0 W1 CRC Request

A CRC request is generated when set to 1. This register is always available.

5.5.6 AAP_CRCSTATUS - CRC Status Register

Offset Bit Position

014 153 RRNERIRQNIR2RT|2R I QY206 w~owsowxo

Reset o

Access x
>
(%)
)

Name m
O
o
O

Bit Name Reset Access Description

31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-

tions
0 CRCBUSY 0 R CRC Calculation is Busy

Set when the CRC calculation is executing. Will transition from 1 to 0 on valid data.

silabs.com | Building a more connected world.

Rev. 1.0 | 89

EFM32JG1 Reference Manual
DBG - Debug Interface

5.5.7 AAP_CRCADDR - CRC Address Register

Offset Bit Position
0x018 15 18I RQIQII QNIRRT ge I e¥t|Qloo|~|lojv|t|m|a|-]|o
o
o
o
o
Reset S
o
(=)
X
o
Access E
o
8
Name S
O
o
O
Bit Name Reset Access Description
31:0 CRCADDR 0x00000000 RW Starting Page Address for CRC Execution

Set this to the address the CRC executes on.

5.5.8 AAP_CRCRESULT - CRC Result Register

Offset Bit Position
01 |5/8/R8/NE R IQNTR22T L T2 2olw~oo von o

o

o

o

o
Reset S

o

o

X

o
Access o

|_

—

)

0
Name v

O

o

O
Bit Name Reset Access Description
31:0 CRCRESULT 0x00000000 R CRC Result of the CRCADDRESS

Result of the CRC calculation using the CRCADDRESS.

silabs.com | Building a more connected world. Rev. 1.0 | 90

EFM32JG1 Reference Manual
DBG - Debug Interface

5.5.9 AAP_IDR - AAP Identification Register

Offset Bit Position
FC |58/ RN QR IQN TIRIZ2T L T2 2 olon~owbvon o
S
o
Reset 9
©
N
X
S
Access o
Name @]
Bit Name Reset Access Description
31:0 ID 0x26E60011 R AAP Identification Register

Access port identification register in compliance with the ARM ADI v5 specification (JEDEC Manufacturer ID) .

silabs.com | Building a more connected world. Rev. 1.0 | 91

EFM32JG1 Reference Manual

6. MSC - Memory System Controller

01

01000101011011100110010101110010
01100111011110010010000001001101
01101001011000110111001001101111

00100000011100100111010101101100
01100101011100110010000001110100
01101000011001010010000001110111
01101111011100100110110001100100
00100000011011110110011000100000
01101100011011110111011100101101

01100101011011100110010101110010

01100111011110010010000001101101
01101001011000110111001001101111
01100011011011110110111001110100
01110010011011110110110001101100
01100101011100100010000001100100
01100101011100110110100101100111
01101110001000010100010101101110

Quick Facts
What?

The user can perform flash memory read, read con-
figuration and write operations through the Memory
System Controller (MSC) .

Why?

The MSC allows the application code, user data and
flash lock bits to be stored in non-volatile flash mem-
ory. Certain memory system functions, such as pro-
gram memory wait-states and bus faults are also
configured from the MSC peripheral register inter-
face, giving the developer the ability to dynamically
customize the memory system performance, securi-
ty level, energy consumption and error handling ca-
pabilities to the requirements at hand.

How?

The MSC integrates a low-energy flash IP with a
charge pump, enabling minimum energy consump-
tion while eliminating the need for external program-
ming voltage to erase the memory. An easy to use
write and erase interface is supported by an internal,
fixed-frequency oscillator and autonomous flash tim-
ing and control reduces software complexity while
not using other timer resources.

Application code may dynamically scale between
high energy optimization and high code execution
performance through advanced read modes.

A highly efficient low energy instruction cache re-
duces the number of flash reads significantly, thus
saving energy. Performance is also improved when
wait-states are used, since many of the wait-states
are eliminated. Built-in performance counters can be
used to measure the efficiency of the instruction
cache.

6.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFM32 Gecko microcontroller. The flash memory is readable
and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block.
Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock
bits. There is also a read-only page in the information block containing system and device calibration data, and bootloader. Read and
write operations are supported in the energy modes EMO Active and EM1 Sleep.

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.2 Features

* AHB read interface
» Scalable access performance to optimize the Cortex-M3 code interface
» Zero wait-state access up to 25 MHz
» Advanced energy optimization functionality
» Conditional branch target prefetch suppression
« Cortex-M3 disfolding of if-then (IT) blocks
* Instruction Cache
+ DMA read support in EMO Active and EM1 Sleep
« Command and status interface
» Flash write and erase
» Accessible from Cortex-M3 in EMO Active
* DMA write support in EMO Active and EM1 Sleep
+ Core clock independent flash timing
* Internal oscillator and internal timers for precise and autonomous flash timing
» General purpose timers are not occupied during flash erase and write operations
» Configurable interrupt erase abort
« Improved interrupt predictability
* Memory and bus fault control
» Security features
» Lockable debug access
» Page lock bits
* SW mass erase lock bits
» Authentication Access Port (AAP) lock bits
» End-of-write and end-of-erase interrupts

silabs.com | Building a more connected world. Rev. 1.0 | 93

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.3 Functional Description

The size of the main block is device dependent. The largest size available is 256 KB (128 pages). The information block has 2 KB
available for user data. The information block also contains chip configuration data located in a reserved area. The main block is map-
ped to address 0x00000000 and the information block is mapped to address 0OXxOFEO0000. Table 6.1 MSC Flash Memory Mapping on
page 94 outlines how the flash is mapped in the memory space. All flash memory is organized into 2 KB pages.

Table 6.1. MSC Flash Memory Mapping

Base address Write/Erase by... Software Reada- Purpose/Name

ble?
Main? 0 0x00000000 Software, debug Yes User code and data 16 KB - 256 KB
Software, debug Yes
127 0x0003F800 Software, debug | Yes
Reserved - 0x00040000 - - Rese_rved for flash ex- ~24 MB
pansion
Information 0 0xOFEO00000 Software, debug | Yes User Data (UD) 2 kB
- 0xOFE00800 - - Reserved -
1 0xO0FE04000 Write: Software, Yes Lock Bits (LB) 2 kB
debug
Erase: Debug only
- O0xOFE04800 - - Reserved -
2 O0xOFE081B0 - Yes Device Information (DI) |1 kB
- 0xOFE08400 - - Reserved -
2 0xOFEOC000 - - 1kB
- 0xOFE0C400 - - Reserved -
3 O0xOFE10000 - Yes Bootloader (BL) 10 kB
7 0x0FE12000 - -
Reserved - 0x0FE12800 - Reserv_ed for flash | Rest of code space -
expansion
Note:
1. Block/page erased by a device erase.

6.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The page is erased by the ERA-
SEPAGE command of the MSC_WRITECMD register. Note that the page is not erased by a device erase operation. The device erase
operation is described in 5.3.3 Authentication Access Point.

silabs.com | Building a more connected world. Rev. 1.0 | 94

EFM32JG1 Reference Manual

6.3.2 Lock Bits (LB) Page Description

This page contains the following information:

» Main block Page Lock Words (PLWSs)

» User data page Lock Word (ULWs)

* Debug Lock Word (DLW)

* Mass erase Lock Word (MLW)

+ Authentication Access Port (AAP) lock word (ALW)
» Bootloader enable (CLWO0)

* Pin reset soft (CLWO)
The words in this page are organized as shown in Table 6.2 Lock Bits Page Structure on page 95:

Table 6.2. Lock Bits Page Structure

127 DLW
126 uLw
125 MLW
124 ALW
122 CLWO
N PLWIN]
1 PLW[1]
0 PLW[O]

There are 32 page lock bits per page lock word (PLW). Bit O refers to the first page and bit 31 refers to the last page within a PLW.
Thus, PLW[0] contains lock bits for page 0-31 in the main block, PLW[1] contains lock bits for page 32-63 etc. A page is locked when
the bit is 0. A locked page cannot be erased or written.

Word 127 is the debug lock word (DLW). The four LSBs of this word are the debug lock bits. If these bits are OxF, then debug access is
enabled. Debug access to the core is disabled from power-on reset until the DLW is evaluated immediately before the Cortex-M3 starts
execution of the user application code. If the bits are not OxF, then debug access to the core remains blocked.

Word 126 is the user page lock word (ULW). Bit 0 of this word is the User Data Page lock bit. Bit 1 in this word locks the Lock Bits
Page. The lock bits can be reset by a device erase operation initiated from the Authentication Access Port (AAP) registers. The AAP is
described in more detail in 5.3.3 Authentication Access Point. Note that the AAP is only accessible from the debug interface, and can-
not be accessed from the Cortex-M3 core.

Word 125 is the mass erase lock word (MLW). Bit O locks the entire flash. The mass erase lock bits will not have any effect on device
erases initiated from the Authenitcation Access Port (AAP) registers. The AAP is described in more detail in 5.3.3 Authentication Ac-
cess Point.

Word 124 is the Authentication Access Port (AAP) lock word (ALW) and the four LSBs of this word are the lock bits. If these bits are
OxF, then AAP access is enabled. If the bits are not OxF, AAP is disabled and it is impossible to access the device through the AAP.
NOTE - locking the AAP completely is irreversible. Once the AAP is locked, it will be impossible to perform an external mass
erase and the AAP lock cannot be reset. The only way to program the device when the AAP is locked is through a boot loader or by
SW already loaded into the FLASH.

Word 122 is Configuration Lock Word 0 (CLWO). Bit 2 is the Pin Reset Soft bit. By default, a pin reset is handled as a soft reset (See
8.3.5 RESETn Pin Reset). Bit 1 is the bootloader enable bit. Because the state of erased flash bits is 1, the bootloader is enabled by
default.

6.3.3 Device Information (DI) Page

This read-only page holds calibration data from the production test as well as a unique device ID. The page is further described in
4. Memory and Bus System.

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.3.4 Bootloader

The system is configured by default to boot from a pre-programmed bootloader automatically after system reset. The bootloader is de-
scribed in AN0003: UART Bootloader (www.silabs.com/32bit-appnotes). Users can bypass the bootloader by clearing bit 1 in Configu-
ration Lock Word 0 (CLWO) at word 122 in the lock bits page.

The bootloader area is readable by software but not writeable in this device family.

6.3.5 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The values are also available to
read from the DI page for later reference by software. Other information such as the device ID and production date is also stored in the
DI page and is readable from software.

If the bootloader is not bypassed, the system will boot up from the bootloader at address OxOFE10000.

6.3.6 Flash Startup

On transitions from EM2/3 to EMO, the flash must be powered up. The time this takes depends on the current operating conditions. To
have a deterministic startup-time, set STDLYO in MSC_STARTUP to 0x64 and clear STDLY1, ASTWAIT, STWSEN and STWS. This
will result in a 10 us delay before the flash is ready. The system will wake up before this, but the Cortex will stall on the first access to
the flash until it is ready. Execute code from RAM or cache to get a quicker startup.

To get the fastest possible startup when waking, i.e. a startup that depends on the current operating conditions, set STDLYO to 0x28
and set ASTWAIT in MSC_STARTUP. When configured this way, the system will poll the flash to determine when it is ready, and then
start execution.

For even quicker startup, run code in beginning with a set of wait-states. Set STDLYO to 0x32, STDLY1 to 0x32, and set ASTWAIT and
STWSEN. Then configure STWS in MSC_STARTUP to the number of waitstates to run with. With this setup, sampling will begin with
the given number of waitstates after 5 us, and the system will run with this number of waitstates for the remaining 5 us before returning
to normal operation

A recommended setting for MSC_STARTUP register is to leave STDLYO at its reset value and set ASTWAIT to one for active sampling
Set STWSEN to zero to bypass the second delay period.

Flash wakeup on demand is supported when wakeup from EM2/3 to EMO. Set bit PWRUPONDEMAND of register MSC_CTRL to one
to enable the power up on demand. When enabled during powerup, flash will enter sleep mode and waiting for either pending flash
read transaction or software command to MSC_CMD.PWRUP bit. If software command wakeup, and interrupt of MSC_IF.PWRUPF will
be flaged if the MSC_IEN.PWRUPF is set

6.3.7 Wait-states

Table 6.3. Flash Wait-States

Wait-States Frequency

WSO no more than 25 MHz

WS1 above 25 MHz and no more than 40 MHz

6.3.7.1 One Wait-state Access

After reset, the HFCORECLK is normally 19 MHz from the HFRCO and the MODE field of the MSC_READCTRL register is set to WS1
(one wait-state). Software must not select a zero wait-state mode unless the clock is guaranteed to be 25 MHz or below, otherwise the
resulting behavior is undefined. If a HFCORECLK frequency above 25 MHz is to be set by software, the MODE field of the
MSC_READCTRL register must be set to WS1 or WS1SCBTP before the core clock is switched to the higher frequency clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register must be set to WSO or WSOSCBTP only after
the frequency transition has completed. If the HFRCO is used, wait until the oscillator is stable on the new frequency. Otherwise, the
behavior is unpredictable.

To run at a frequency higher than 40 MHz, WS2 or WS2SCBTP must be selected to insert two wait-states for every flash access.

silabs.com | Building a more connected world. Rev. 1.0 | 96

http://www.silabs.com/32bit-appnotes

EFM32JG1 Reference Manual

6.3.7.2 Zero Wait-state Access

At 25 MHz and below, read operations from flash may be performed without any wait-states. Zero wait-state access greatly improves
code execution performance at frequencies from 25 MHz and below. By default, the Cortex-M3 uses speculative prefetching and If-
Then block folding to maximize code execution performance at the cost of additional flash accesses and energy consumption.

6.3.7.3 Operation Above
To run at frequencies higher than 25 MHz, MODE in MSC_READCTRL must be set to WS1 or WS1SCBTP.

6.3.8 Suppressed Conditional Branch Target Prefetch (SCBTP)

MSC offers a special instruction fetch mode which optimizes energy consumption by cancelling Cortex-M3 conditional branch target
prefetches. Normally, the Cortex-M3 core prefetches both the next sequential instruction and the instruction at the branch target ad-
dress when a conditional branch instruction reaches the pipeline decode stage. This prefetch scheme improves performance while one
extra instruction is fetched from memory at each conditional branch, regardless of whether the branch is taken or not. To optimize for
low energy, the MSC can be configured to cancel these speculative branch target prefetches. With this configuration, energy consump-
tion is more optimal, as the branch target instruction fetch is delayed until the branch condition is evaluated.

The performance penalty with this mode enabled is source code dependent, but is normally less than 1% for core frequencies from 25
MHz and below. To enable the mode at frequencies from 25 MHz and below write WSOSCBTP to the MODE field of the
MSC_READCTRL register. For frequencies above 25 MHz, use the WS1SCBTP mode, and for frequencies above 40 MHz, use the
WS2SCBTP mode. An increased performance penalty per clock cycle must be expected compared to WSOSCBTP mode. The perform-
ance penalty in WS1SCBTP/WS2SCBTP mode depends greatly on the density and organization of conditional branch instructions in
the code.

6.3.9 Cortex-M3 If-Then Block Folding

The Cortex-M3 offers a mechanism known as if-then block folding. This is a form of speculative prefetching where small if-then blocks
are collapsed in the prefetch buffer if the condition evaluates to false. The instructions in the block then appear to execute in zero cy-
cles. With this scheme, performance is optimized at the cost of higher energy consumption as the processor fetches more instructions
from memory than it actually executes. To disable the mode, write a 1 to the DISFOLD bit in the NVIC Auxiliary Control Register; see
the Cortex-M3 Technical Reference Manual for details. Normally, it is expected that this feature is most efficient at core frequencies
above 25 MHz. Folding is enabled by default.

EFM32JG1 Reference Manual

6.3.10 Instruction Cache

The MSC includes an instruction cache. The instruction cache for the internal flash memory is enabled by default, but can be disabled
by setting IFCDIS in MSC_READCTRL. When enabled, the instruction cache typically reduces the number of flash reads significantly,
thus saving energy. In most cases a cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache
the data is returned to the processor in one clock cycle. Thus, performance is also improved when wait-states are used (i.e. running at
frequencies above 25 MHz).

The instruction cache is connected directly to the ICODE bus on the ARM core and functions as a memory access filter between the
processor and the memory system, as illustrated in Figure 6.1 Instruction Cache on page 98. The cache consists of an access filter,
lookup logic, SRAM, and two performance counters. The access filter checks that the address for the access is to on-chip flash memory
(instructions in RAM are not cached). If the address matches, the cache lookup logic and SRAM is enabled. Otherwise, the cache is
bypassed and the access is forwarded to the memory system. The cache is then updated when the memory access completes. The
access filter also disables cache updates for interrupt context accesses if caching in interrupt context is disabled. The performance
counters, when enabled, keep track of the number of cache hits and misses. The cachelines are filled up continuously one word at a
time as the individual words are requested by the processor. Thus, not all words of a cacheline might be valid at a given time.

Instruction Cache

Cache
ICODE Look-up Logic Access ICODE
L S— AHB-Lite B
AHB-Lite Bus > Filter ite Bus
SRAM
IDCODE
CODE AHB-Lite Bus IDCODE ARM Core
Perfi
Memory Space —P VX erformance Counters
- DCODE -
AHB-Lite Bus

Figure 6.1. Instruction Cache

By default, the instruction cache is automatically invalidated when the contents of the flash is changed (i.e. written or erased). In many
cases, however, the application only makes changes to data in the flash, not code. In this case, the automatic invalidate feature can be
disabled by setting AIDIS in MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing 1
to INVCACHE in MSC_CMD.

Note: The instruction cache flush is not triggered at the event of a bus fault. As a result, when an instruction fetch results in a bus fault,
invalid data may be cached. This means that the next time the instruction that caused the bus fault is fetched, the processor core will
get the invalid cached data without any bus fault. In order to avoid invalid cached data propagation to the processor core, software
should manually invalidate the instruction cache by writing 1 to INVCACHE in MSC_CMD at the event of a bus fault.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections of code with very low cache hit-
rate more energy-efficient execution can be achieved by disabling the cache temporarily. To measure the hit-rate of a code-section, the
built-in performance counters can be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC_CMD.
This starts the performance counters, counting from 0. At the end of the section, stop the performance counters by writing 1 to
STOPPC in MSC_CMD. The number of cache hits and cache misses for that section can then be read from MSC_CACHEHITS and
MSC_CACHEMISSES respectively. The total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES.
Thus, the cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES). When MSC_CA-
CHEHITS overflows the CHOF interrupt flag is set. When MSC_CACHEMISSES overflows the CMOF interrupt flag is set. These flags
must be cleared explicitly by software. The range of the performance counters can thus be extended by increasing a counter in the
MSC interrupt routine. The performance counters only count when a cache lookup is performed. If the lookup fails, MSC_CACHEMISS-
ES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For example, a cache lookup is not performed if the cache
is disabled or the code is executed from RAM.

Note: When caching of vector fetches and instructions in interrupt routines is disabled (ICCDIS in MSC_READCTRL is set), the per-
formance counters do not count when these types of fetches occur (i.e. while in interrupt context).

By default, interrupt vector fetches and instructions in interrupt routines are also cached. Some applications may get better cache uti-
lization by not caching instructions in interrupt context. This is done by setting ICCDIS in MSC_READCTRL. You should only set this bit
based on the results from a cache hit ratio measurement. In general, it is recommended to keep the ICCDIS bit cleared. Note that look-
ups in the cache are still performed, regardless of the ICCDIS setting - but instructions are not cached when cache misses occur inside

EFM32JG1 Reference Manual

the interrupt routine. So, for example, if a cached function is called from the interrupt routine, the instructions for that function will be
taken from the cache.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless of the setting of AIDIS in
MSC_READCTRL when entering these energy modes. Applications that switch frequently between EMO and EM2/3 and executes the
very same non-looping code almost every time will most likely benefit from putting this code in RAM. The interrupt vectors can also be
put in RAM to reduce current consumption even further.

6.3.11 Erase and Write Operations

Both page erase and write operations require that the address is written into the MSC_ADDRB register. For erase operations, the ad-
dress may be any within the page to be erased. Load the address by writing 1 to the LADDRIM bit in the MSC_WRITECMD register.
The LADDRIM bit only has to be written once when loading the first address. After each word is written the internal address register
ADDR will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the loaded address is outside
the flash and the LOCKED bit of the MSC_STATUS register is set if the page addressed is locked. Any attempts to command erase of
or write to the page are ignored if INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set
the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC_WDATA register, the WDATAREADY bit of the MSC_STATUS register is cleared. When this status
bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC_WRITECMD register. The operation is complete when
the BUSY bit of the MSC_STATUS register is cleared and control of the flash is handed back to the AHB interface, allowing application
code to resume execution.

For a DMA write the software must write the first word to the MSC_WDATA register and then set the WRITETRIG bit of the
MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the MSC_STATUS register is set.

It is possible to write words twice between each erase by keeping at 1 the bits that are not to be changed. Let us take as an example
writing two 16 bit values, OXAAAA and 0x5555. To safely write them in the same flash word this method can be used:

+ Write OXFFFFAAAA (word in flash becomes OxFFFFAAAA)
» Write 0x5555FFFF (word in flash becomes 0x5555AAAA)

Note:
* There is a maximum of two writes to the same word between each erase due to a physical limitation of the flash.

» During a write or erase, flash read accesses will be stalled, effectively halting code execution from flash. Code execution continues
upon write/erase completion. Code residing in RAM may be executed during a write/erase operation.

6.3.11.1 Mass Erase

A mass erase can be initiated from software using ERASEMAINO MSC_WRITECMD. This command will start a mass erase of the en-
tire flash. Prior to initiating a mass erase, MSC_MASSLOCK must be unlocked by writing Ox631A to it. After a mass erase has been
started, this register can be locked again to prevent runaway code from accidentally triggering a mass erase.

The regular flash page lock bits will not prevent a mass erase. To prevent software from initiating mass erases, use the mass erase
lock bits in the mass erase lock word (MLW).

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.4 Register Map

The offset register address is relative to the registers base address.

Offset Name Type Description

0x000 MSC_CTRL RWH Memory System Control Register
0x004 MSC_READCTRL RWH Read Control Register

0x008 |MSC_WRITECTRL RW Write Control Register

0x00C |MSC_WRITECMD WA1 Write Command Register

0x010 MSC_ADDRB RW Page Erase/Write Address Buffer
0x018 MSC_WDATA RwW Write Data Register

0x01C | MSC_STATUS R Status Register

0x030 MSC_IF Interrupt Flag Register

0x034 MSC_IFS WA1 Interrupt Flag Set Register
0x038 MSC_IFC (R)W1 Interrupt Flag Clear Register
0x03C |MSC_IEN RW Interrupt Enable Register

0x040 MSC_LOCK RWH Configuration Lock Register
0x044 MSC_CACHECMD WA1 Flash Cache Command Register
0x048 MSC_CACHEHITS R Cache Hits Performance Counter
0x04C |MSC_CACHEMISSES R Cache Misses Performance Counter
0x054 MSC_MASSLOCK RWH Mass Erase Lock Register
0x05C |MSC_STARTUP RwW Startup Control

0x074 MSC_CMD WA1 Command Register

silabs.com | Building a more connected world.

Rev. 1.0 | 100

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5 Register Description

6.5.1 MSC_CTRL - Memory System Control Register

Offset Bit Position
0000 5|8 /RKKLRIQNTIRR LRI VT2 o0 o/ ~ov <o a~|o
Reset o|o|o
Access E § E E
@)
Z =z
o
> |z
D@5
= I I
Name O|Z |z |5
Q|0 |w |z
<\ v o
w 25|
%225
L | |0 <D(
Bit Name Reset Access Description
31:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
3 IFCREADCLEAR 0 RW IFC Read Clears IF
This bit controls what happens when an IFC register in a module is read.
Value Description
0 IFC register reads 0. No side-effect when reading.
1 IFC register reads the same value as IF, and the corresponding inter-
rupt flags are cleared.
2 PWRUPONDEMAND 0 RW Power Up on Demand During Wake Up
When set, during wake up, pending AHB transfer will cause MSC to issue power up request to CMU. If not set, will always
issue power up request if PWRUPONCMD is not set either.
1 CLKDISFAULTEN 0 RW Clock-disabled Bus Fault Response Enable
When this bit is set, busfaults are generated on accesses to peripherals/system devices with clocks disabled
0 ADDRFAULTEN 1 RW Invalid Address Bus Fault Response Enable

When this bit is set, busfaults are generated on accesses to unmapped parts of system and code address space

silabs.com | Building a more connected world. Rev. 1.0 | 101

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.2 MSC_READCTRL - Read Control Register

Offset Bit Position
X004 |5 I2IRIRNLRIRQYTRIZI2T R I Y 20w~ v o~ o
Reset o x o |~ olo|o
I
Access E % 5 E E E 5
|_
o5
o g m) %)
Name i = 9
B =) oy o2 a
@) ©) 0l Qa0
D = S la Qg |
Bit Name Reset Access Description
31:29 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
28 SCBTP 0 RW Suppress Conditional Branch Target Perfetch
Enable suppressed Conditional Branch Target Prefetch (SCBTP) function. SCBTP saves energy by delaying Cortex-M con-
ditional branch target prefetches until the conditional branch instruction is in the execute stage. When the instruction rea-
ches this stage, the evaluation of the branch condition is completed and the core does not perform a speculative prefetch of
both the branch target address and the next sequential address. With the SCBTP function enabled, one instruction fetch is
saved for each branch not taken, with a negligible performance penalty.
27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
25:24 MODE 0x1 RWH Read Mode
After reset, the core clock is 19 MHz from the HFRCO and the MODE field of MSC_READCTRL register is set to WS1. The
reset value is WS1 because the HFRCO may produce a frequency above 19 MHz before it is calibrated. A large wait states
is associated with high frequency. When changing to a higher frequency, this register must be set to a large wait states first
before the core clock is switched to the higher frequency. When changing to a lower frequency, this register should be set
to lower wait states after the frequency transition has been completed. If the HFRCO is used as clock source, wait until the
oscillator is stable on the new frequency to avoid unpredictable behavior.See Flash Wait-States table for the corresponding
threshold for different wait-states.
Value Mode Description
0 WSO Zero wait-states inserted in fetch or read transfers
1 WSH1 One wait-state inserted for each fetch or read transfer. See Flash Wait-
States table for details
23:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
9 USEHPROT 0 RW AHB_HPROT Mode
Use ahb_hrpot to determine if the instruction is cacheable or not
8 PREFETCH 1 RW Prefetch Mode
Set to configure level of prefetching.
7:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
5 ICCDIS 0 RW Interrupt Context Cache Disable

Set this bit to automatically disable caching of vector fetches and instruction fetches in interrupt context. Cache lookup will
still be performed in interrupt context. When set, the performance counters will not count when these types of fetches occur.

silabs.com | Building a more connected world. Rev. 1.0 | 102

EFM32JG1 Reference Manual
MSC - Memory System Controller

Bit Name Reset Access Description
4 AIDIS 0 RW Automatic Invalidate Disable

When this bit is set the cache is not automatically invalidated when a write or page erase is performed.

3 IFCDIS 0 RW Internal Flash Cache Disable

Disable instruction cache for internal flash memory.

2:0 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions

6.5.3 MSC_WRITECTRL - Write Control Register

Offset Bit Position
%008 |5 /8IR RN &R IQNTIR22T L T2 2 o0lo~owv v oo
Reset olo
Access 5 5
|_
o
o]
@
m
Name g
z
w
<Al
X =
Bit Name Reset Access Description
31:2 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
1 IRQERASEABORT 0 RW Abort Page Erase on Interrupt
When this bit is set to 1, any Cortex-M interrupt aborts any current page erase operation. Executing that interrupt vector
from Flash will halt the CPU.
0 WREN 0 RW Enable Write/Erase Controller

When this bit is set, the MSC write and erase functionality is enabled

silabs.com | Building a more connected world. Rev. 1.0 | 103

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.4 MSC_WRITECMD - Write Command Register

Offset Bit Position
0x00C |5 8/ XN &LRIQYNTR22TLL T2 2olon~owv von o
Reset o o o|lo|o|o|o|o
Access = = 222222
< =
= S 1% L w
< £ ololola|@
0l Z2 z|< s
Name < = <|F|O|d|la |2
e LUl Wiy | olwlw|x
< 2] DIE|E|IF|9Q O
L < < 7 7 7 1< A
- o Y XXy g
&) | w2 | /= w3
Bit Name Reset Access Description
31:13 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
12 CLEARWDATA 0 W1 Clear WDATA State
Will set WDATAREADY and DMA request. Should only be used when no write is active.
11:9 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
8 ERASEMAINO 0 W1 Mass Erase Region 0
Initiate mass erase of region 0. Before use MSC_MASSLOCK must be unlocked. To completely prevent access from soft-
ware, clear bit 0 in the mass erase lock-word (MLW)
7:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
5 ERASEABORT 0 W1 Abort Erase Sequence
Writing to this bit will abort an ongoing erase sequence.
4 WRITETRIG 0 W1 Word Write Sequence Trigger
Start write of the first word written to MSC_WDATA, then add 4 to ADDR and write the next word if available within a 30us
timeout. When ADDR is incremented past the page boundary, ADDR is set to the base of the page. If WDOUBLE is set,
two words are required every time, and ADDR is incremented by 8.
3 WRITEONCE 0 W1 Word Write-Once Trigger
Write the word in MSC_WDATA to ADDR. Flash access is returned to the AHB interface as soon as the write operation
completes. The WREN bit in the MSC_WRITECTRL register must be set in order to use this command. Only a single word
is written, but the internal address is also incremented to allow a direct write of a new word without loading a new address
2 WRITEEND 0 W1 End Write Mode
Write 1 to end write mode when using the WRITETRIG command.
1 ERASEPAGE 0 W1 Erase Page
Erase any user defined page selected by the MSC_ADDRB register. The WREN bit in the MSC_WRITECTRL register must
be set in order to use this command.
0 LADDRIM 0 W1 Load MSC_ADDRSB Into ADDR

Load the internal write address register ADDR from the MSC_ADDRSB register. The internal address register ADDR is in-
cremented automatically by 4 after each word is written. When ADDR is incremented past the page boundary, ADDR is set
to the base of the page.

silabs.com | Building a more connected world. Rev. 1.0 | 104

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.5 MSC_ADDRB - Page Erase/Write Address Buffer

Offset Bit Position
0x010 15 18I RQIQIIQ QIR Ege I e¥t|Qloo|~|lojv|t|m|a|-]|o
o
o
o
o
Reset S
o
(=)
X
o
Access E
%
Name a
(]
<
Bit Name Reset Access Description
31:0 ADDRB 0x00000000 RW Page Erase or Write Address Buffer

This register holds the page address for the erase or write operation. This register is loaded into the internal MSC_ADDR
register when the LADDRIM field in MSC_WRITECMD is set.

6.5.6 MSC_WDATA - Write Data Register

Offset Bit Position
x018 |15 3 IQIQNQQIQINIRNS T e 2|¥t|Q|lololm|o|b|lt|m|a|~]|0o

o

o

o

o
Reset S

o

(=)

X

o
Access 5

>
Name S

=
Bit Name Reset Access Description
31:0 WDATA 0x00000000 RW Write Data

The data to be written to the address in MSC_ADDR. This register must be written when the WDATAREADY bit of
MSC_STATUS is set.

silabs.com | Building a more connected world. Rev. 1.0 | 105

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.7 MSC_STATUS - Status Register

Offset Bit Position
x01C |5 /8/RXIN LR IQNTRZ2T L L T2 2olon~owvvon o
Reset oo |+~
Access r| r| x| x| o
[a]
w5
o|x|o|Q
z oW g
Name z |2 2 @lx A
Z |l '5 < |2 |5
Slalg B2
74 < < 0@
d w2 €2 m
Bit Name Reset Access Description
31:7 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
6 PCRUNNING 0 R Performance Counters Running
This bit is set while the performance counters are running. When one performance counter reaches the maximum value,
this bit is cleared.
5 ERASEABORTED 0 R The Current Flash Erase Operation Aborted
When set, the current erase operation was aborted by interrupt.
4 WORDTIMEOUT 0 R Flash Write Word Timeout
When this bit is set, MSC_WDATA was not written within the timeout. The flash write operation timed out and access to the
flash is returned to the AHB interface. This bit is cleared when the ERASEPAGE, WRITETRIG or WRITEONCE commands
in MSC_WRITECMD are triggered.
3 WDATAREADY 1 R WDATA Write Ready
When this bit is set, the content of MSC_WDATA is read by MSC Flash Write Controller and the register may be updated
with the next 32-bit word to be written to flash. This bit is cleared when writing to MSC_WDATA.
2 INVADDR 0 R Invalid Write Address or Erase Page
Set when software attempts to load an invalid (unmapped) address into ADDR
1 LOCKED 0 R Access Locked
When set, the last erase or write is aborted due to erase/write access constraints
0 BUSY 0 R Erase/Write Busy

When set, an erase or write operation is in progress and new commands are ignored

silabs.com | Building a more connected world. Rev. 1.0 | 106

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.8 MSC_IF - Interrupt Flag Register

Offset Bit Position
0x030 S8R RIQQI QNS IEIE2TI 2 ¥ |lo|lo~o 0 ola |~ o
Reset o
Access rl ol vl oo
o
&
Name 5 a 6 E‘) LEJ (I:éJ
S35 58
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
5 ICACHERR 0 R ICache RAM Parity Error Flag
If one, iCache RAM parity Error detected
4 PWRUPF 0 R Flash Power Up Sequence Complete Flag
Set after MSC_CMD.PWRUP received, flash powered up complete and ready for read/write
3 CMOF 0 R Cache Misses Overflow Interrupt Flag
Set when MSC_CACHEMISSES overflows
2 CHOF 0 R Cache Hits Overflow Interrupt Flag
Set when MSC_CACHEHITS overflows
1 WRITE 0 R Write Done Interrupt Read Flag
Set when a write is done
0 ERASE 0 R Erase Done Interrupt Read Flag

Set when erase is done

silabs.com | Building a more connected world.

Rev.1.0 | 107

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.9 MSC_IFS - Interrupt Flag Set Register

Offset Bit Position
0034 |58 /R/QNIQILI RN TR 22T L T2 20w ~ow< oo~ o
Reset o|lo|o oo
Access = zzzz/2
x
&
Name 5 a 6 ("'5 LEJ %
JHEEEE
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
5 ICACHERR 0 W1 Set ICACHERR Interrupt Flag
Write 1 to set the ICACHERR interrupt flag
4 PWRUPF 0 W1 Set PWRUPF Interrupt Flag
Write 1 to set the PWRUPF interrupt flag
3 CMOF 0 W1 Set CMOF Interrupt Flag
Write 1 to set the CMOF interrupt flag
2 CHOF 0 W1 Set CHOF Interrupt Flag
Write 1 to set the CHOF interrupt flag
1 WRITE 0 W1 Set WRITE Interrupt Flag
Write 1 to set the WRITE interrupt flag
0 ERASE 0 WA1 Set ERASE Interrupt Flag

Write 1 to set the ERASE interrupt flag

silabs.com | Building a more connected world.

Rev. 1.0 | 108

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.10 MSC_IFC - Interrupt Flag Clear Register

Offset Bit Position
0x038 |5 8RN ERIQY TR LL T2 2olo~owv von o
Reset o|lo|lo|o|o|o
Access S2|212 22
SIS
o
f&
T w
Name S Zl6l%E|2
<z 2|8
Cla |0 0|2 |w
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
5 ICACHERR 0 (R)W1 Clear ICACHERR Interrupt Flag
Write 1 to clear the ICACHERR interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt
flags (This feature must be enabled globally in MSC.).
4 PWRUPF 0 (R)W1 Clear PWRUPF Interrupt Flag
Write 1 to clear the PWRUPF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags
(This feature must be enabled globally in MSC.).
3 CMOF 0 (R)W1 Clear CMOF Interrupt Flag
Write 1 to clear the CMOF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags
(This feature must be enabled globally in MSC.).
2 CHOF 0 (R)W1 Clear CHOF Interrupt Flag
Write 1 to clear the CHOF interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags
(This feature must be enabled globally in MSC.).
1 WRITE 0 (R)W1 Clear WRITE Interrupt Flag
Write 1 to clear the WRITE interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags
(This feature must be enabled globally in MSC.).
0 ERASE 0 (R)w1 Clear ERASE Interrupt Flag

Write 1 to clear the ERASE interrupt flag. Reading returns the value of the IF and clears the corresponding interrupt flags
(This feature must be enabled globally in MSC.).

silabs.com | Building a more connected world. Rev. 1.0 | 109

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.11 MSC_IEN - Interrupt Enable Register

Offset Bit Position
03¢ 53R ENIQRIRYSTR 222 T2 T 20 o~oow oo
Reset olo olo
Access SBHBEE
4
Name 5 a 6 (uj g %
JHEEEE
Bit Name Reset Access Description
31:6 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
5 ICACHERR 0 RW ICACHERR Interrupt Enable
Enable/disable the ICACHERR interrupt
4 PWRUPF 0 RW PWRUPF Interrupt Enable
Enable/disable the PWRUPF interrupt
3 CMOF 0 RW CMOF Interrupt Enable
Enable/disable the CMOF interrupt
2 CHOF 0 RW CHOF Interrupt Enable
Enable/disable the CHOF interrupt
1 WRITE 0 RW WRITE Interrupt Enable
Enable/disable the WRITE interrupt
0 ERASE 0 RW ERASE Interrupt Enable

Enable/disable the ERASE interrupt

silabs.com | Building a more connected world.

Rev. 1.0 | 110

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.12 MSC_LOCK - Configuration Lock Register

(0] 1= Bit Position
0040 153 RRNQERIRQNIR2RT|R I 2N 206w~ows oo
o
o
Reset =
x
o
I
Access <
o
>
L
Name 4
(6]
o
—
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
15:0 LOCKKEY 0x0000 RWH Configuration Lock

Write any other value than the unlock code to lock access to MSC_CTRL, MSC_READCTRL, MSC_WRITECMD,
MSC_STARTUP and MSC_AAPUNLOCKCMD. Write the unlock code to enable access. When reading the register, bit 0 is

set when the lock is enabled.

Mode Value Description

Read Operation

UNLOCKED 0 MSC registers are unlocked
LOCKED 1 MSC registers are locked
Write Operation

LOCK 0 Lock MSC registers
UNLOCK 0x1B71 Unlock MSC registers

silabs.com | Building a more connected world.

Rev.1.0 | 111

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.13 MSC_CACHECMD - Flash Cache Command Register

Offset Bit Position
0044 53RN QRIRIIR 22T I2dT 206w~ 0w oo
Reset oclo|lo
Access =2z
L
qEE
Name o 'n_: S
o< |9
e e
nln|Z
Bit Name Reset Access Description
31:3 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
2 STOPPC 0 W1 Stop Performance Counters
Use this commant bit to stop the performance counters.
1 STARTPC 0 W1 Start Performance Counters
Use this command bit to start the performance counters. The performance counters always start counting from 0.
0 INVCACHE 0 W1 Invalidate Instruction Cache

Use this register to invalidate the instruction cache.

6.5.14 MSC_CACHEHITS - Cache Hits Performance Counter

Offset Bit Position
0x048 |15 S IQIQINQQIQINIIQRS =T 2|¥CtQ|lololm|o|b|lt|m|a|~]|0O
o
3
Reset S
o
X
o
Access x
)
=
i
Name T
(@]
<
(@]
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
19:0 CACHEHITS 0x00000 R Cache Hits Since Last Performance Counter Start Command

Use to measure cache performance for a particular code section.

silabs.com | Building a more connected world.

Rev.1.0 | 112

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter

Offset Bit Position
X04C |5 /8/28INISILIFIQINTIR2RNCLT 2 N2 glo~ow <o o
o
8
Reset S
o
X
o
Access o
)
L
%)
)
Name =
I
(G]
<
(@]
Bit Name Reset Access Description
31:20 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
19:0 CACHEMISSES 0x00000 R Cache Misses Since Last Performance Counter Start Command

Use to measure cache performance for a particular code section.

silabs.com | Building a more connected world. Rev. 1.0 | 113

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.16 MSC_MASSLOCK - Mass Erase Lock Register

(0] 1= Bit Position
0x054 2 QXL QI QNI I e|¥If@loo~lov|t m|la|-]|o
)
Reset =
x
o
I
Access <
o
>
L
Name 4
(6]
o
—
Bit Name Reset Access Description
31:16 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
15:0 LOCKKEY 0x0001 RWH Mass Erase Lock

Write any other value than the unlock code to lock access the the ERASEMAINN commands. Write the unlock code 631A to
enable access. When reading the register, bit 0 is set when the lock is enabled. Locked by default.

Mode Value Description

Read Operation

UNLOCKED 0 Mass erase unlocked
LOCKED 1 Mass erase locked
Write Operation

LOCK 0 Lock mass erase
UNLOCK 0x631A Unlock mass erase

silabs.com | Building a more connected world.

Rev.1.0 | 114

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.17 MSC_STARTUP - Startup Control

Offset Bit Position
0x05C |5 8/ RN LR IQNTR22T L T2 2 olo~owv von o
< S g
Reset % P I S §
o o
Access E E E E E E
E z|E
Name (2] 5 Ic'})J ‘;‘ > g
2 2|2 B a a
~ ~ W [=
”n n n|< () (7))
Bit Name Reset Access Description
31 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
30:28 STWS 0x1 RW Startup Waitstates
Active wait for flash startup startup after SDLYO.
27 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
26 STWSAEN 0 RW Startup Waitstates Always Enable
Use the number of waitstates given by STWS during startup always.
25 STWSEN 1 RW Startup Waitstates Enable
Use the number of waitstates given by STWS during startup. During the optional STDLY1 timeout.
24 ASTWAIT 1 RW Active Startup Wait
Active wait for flash startup startup after SDLYO.
23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
21:12 STDLY1 0x001 RW Startup Delay 0
Number of cycles with startup waitstates, and also the maximum number of cycles startup sampling will be attempted be-
fore starting up system. Note that the reset value of this field may differ from the value shown in this description. The reset
value programmed in the device is the optimal value.
11:10 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
9:0 STDLYO 0x04D RW Startup Delay 0

Number of idle cycles from exiting sleep mode. Note that the reset value of this field may differ from the value shown in this
description. The reset value programmed in the device is the optimal value.

silabs.com | Building a more connected world. Rev. 1.0 | 115

EFM32JG1 Reference Manual
MSC - Memory System Controller

6.5.18 MSC_CMD - Command Register

Offset Bit Position

X074 |5/8/28INSILIFIQNTIR2RTCLT2 N2 glo~ow <t oo
Reset o
Access =
o
N 2
ame
=
o
Bit Name Reset Access Description
31:1 Reserved To ensure compatibility with future devices, always write bits to 0. More information in 1.2 Conven-
tions
0 PWRUP 0 W1 Flash Power Up Command

Write to this bit to power up the Flash. IRQ PWRUPF will be fired when power up sequence completed.

silabs.com | Building a more connected world. Rev. 1.0 | 116

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7. LDMA - Linked DMA Controller

—— Flash

DMA
controller [*® > RAM
l————

—»| Peripherals

7.1 Introduction

Quick Facts
What?

The LDMA controller can move data without CPU in-
tervention, effectively reducing the energy consump-
tion for a data transfer.

Why?

The LDMA can perform data transfers more energy
efficiently than the CPU and allows autonomous op-
eration in low energy modes. For example the
LEUART can provide full UART communication in
EM2 DeepSleep, consuming only a few pA by using
the LDMA to move data between the LEUART and
RAM.

How?

The LDMA controller has multiple highly configura-
ble, prioritized DMA channels. A linked list of flexible
descriptors makes it possible to tailor the controller
to the specific needs of an application.

The Linked Direct Memory Access (LDMA) controller performs memory transfer operations independently of the CPU. This has the
benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes while
still routing data to memory and peripherals. For example, moving data from the LEUART to memory or memory to LEUART. Each of
the DMA channels on the EFM32 can be connected to any of the EFM32 peripherals.

silabs.com | Building a more connected world.

Rev.1.0 | 117

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.1.1 Features

+ Flexible Source and Destination transfers
* Memory-to-memory
* Memory-to-peripheral
» Peripheral-to-memory
» Peripheral-to-peripheral
+ DMA transfers triggered by peripherals, software, or linked list
 Single or multiple data transfers for each peripheral or software request
* Inter-channel and hardware event synchronization via trigger and wait functions
» Supports single or multiple descriptors
« Single descriptor
* Linked list of descriptors
« Circular and ping-pong buffers
 Scatter-Gather
* Looping
» Pause and restart triggered by other channels
» Sophisticated flow control which can function without CPU interaction
» Channel arbitration includes:
* Fixed priority
» Simple round robin
* Round robin with programmable multiple interleaved entries for higher priority requesters
* Programmable data size and source and destination address strides
» Programmable interrupt generation at the end of each DMA descriptor execution
« Little-endian/big-endian conversion
* DMA write-immediate function

silabs.com | Building a more connected world. Rev. 1.0 | 118

EFM32JG1 Reference Manual

7.2 Block Diagram

An overview of the LDMA and the modules it interacts with is shown in Figure 7.1 LDMA Block Diagram on page 119.

Cortex
AHB
RAM
Interrupts
— LDMA Core
Channel
done
Channel 0 [
Peripheral
Channel1 [
Peripheral — : .
Channel | ACK/ . Descriptor A
select = i
Peripheral ChannelN [Descriptor B
Descriptor C
Peripheral
LDMA

Figure 7.1. LDMA Block Diagram

The Linked DMA Controller consists of three main parts

» A DMA core that executes transfers and communicates status to the core
» A channel select block that routes peripheral DMA requests and acknowledge signals to the DMA
» A set of internal channel configuration registers for tracking the progress of each DMA channel

The DMA has access to all system memory through the AHB bus and the AHB->APB bridge. It can load channel descriptors from mem-

ory with no CPU intervention.

EFM32JG1 Reference Manual

7.3 Functional Description

The Linked DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory without involvement
from the processor core. This can be used to increase system performance by off-loading the processor from copying large amounts of
data or avoiding frequent interrupts to service peripherals needing more data or having available data. It can also be used to reduce the
system energy consumption by making the LDMA work autonomously with some EMZ2/3 peripherals for data transfer without having to
wake up the processor core from sleep.

The Linked DMA Controller has 8 independent channels. Each of these channels can be connected to any of the available peripheral
DMA transfer request input sources by writing to the channel configuration registers, see 7.3.2 Channel Configuration. In addition, each
channel can also be triggered directly by software, which is useful for memory-to-memory transfers.

The channel descriptors determine what the Linked DMA Controller will do when it receives DMA transfer request. The initial descriptor
is written directly to the LDMA's channel registers. If desired, the initial descriptor can link to additional linked descriptors stored in mem-
ory (RAM or Flash). Alternatively, software may also load the initial descriptor by writing the descriptor address to the LDMA_CHx_LINK
register and then setting the corresponding bit the LDMA_LINKLOAD register.

Before enabling a channel, the software must take care to properly configure the channel registers including the link address and any
linked descriptors. When a channel is triggered, the Linked DMA Controller will perform the memory transfers as specified by the de-
scriptors. A descriptor contains the memory address to read from, the memory address to write to, link address of the next descriptor,
the number of bytes to be transferred, etc. The channel descriptor is described in detail in 7.3.7 Channel Descriptor Data Structure.

The Linked DMA Controller supports both fixed priority and round robin arbitration. The number of fixed and round robin channels is
programmable. For round robin channels, the number of arbitration slots requested for each channel is programmable. Using this
scheme, it is possible to ensure that timing-critical transfers are serviced on time.

DMA transfers take place by reading a block of data at a time from the source, storing it in the LDMA’s local FIFO, then writing the block
out to the destination from the FIFO. Interrupts may optionally be signaled to the CPU’s interrupt controller at the end of any DMA trans-
fer or at the completion of a descriptor if the DONEIFSEN bit is set. An AHB error will always generate an interrupt.

7.3.1 Channel Descriptor

Each DMA channel has descriptor registers. A transfer can be initialized by software writing to the registers or by the DMA itself copying
a descriptor from RAM to memory. When using a linked list of descriptors the first descriptor should be initialized by the CPU. The DMA
itself will then copy linked descriptors to its descriptor registers as required. In addition to manually initializing the first transfer, software
may also cause the LDMA to load the initial descriptor by writing the descriptor address to the LDMA_CHx_LINK register and then set-
ting the corresponding bit the LDMA_LINKLOAD register.

The contents of the descriptor registers are dynamically updated during the DMA transfer. The contents of descriptors in memory are
not edited by the controller.

Some descriptor field values are only used for linked descriptors. For example, the SRCMODE and DSTMODE bits of the
LDMA_CHx_CTRL registers determine if a linked descriptor is using relative or absolute addressing. Software writes to the address
registers will always use absolute addressing and never set these bits. Therefore, these bits are read only.

7.3.1.1 DMA Transfer Size

A DMA transfer is the smallest unit of data that can be transfered by the LDMA. The LDMA supports byte, half-word and word sized
transfers. The SIZE field in the LDMA_CHx_CTRL register specifies the data width of one DMA transfer.

7.3.1.2 Source/Destination Increments

The SRCINC and DSTINC in the LDMA_CHx_CTRL register determines the increment between DMA transfers. The increment is in
units of DMA transfers and using an increment size of 1 will transfer contiguous bytes, half-words, or words depending on the value of
the SIZE field. Multiple unit increments are useful for transferring or packing/unpacking alligned data. For example using an increment
of 4 with a size of BYTE will transfer word aligned bytes. An increment of 2 units with a size of HALFWORD is suitable for the transfer
of word aligned half-word data. The LDMA can also pack or unpack data by using a different increment size for source and destination.
For example - to convert from word aligned byte data (unpacked) to contiguous byte data (packed), set the SIZE to BYTE, SRCINC to
4, and DSTINC to 1.

SRCINC or DSTINC may also be set to NONE which will cause the LDMA to read or write the same location for every DMA transfer.
This is useful for accessing peripheral FIFO or data registers.

EFM32JG1 Reference Manual

7.3.1.3 Block Size

The block size defines the amount of data transferred in one arbitration. It consists of one or more DMA transfers. See 7.3.6.1 Arbitra-
tion Priority for more details.

7.3.1.4 Transfer Count

The descriptor transfer count defines how many DMA transfers to perform. The number of bytes transferred by the descripter will de-
pend on both the transfer count XFERCNT and the SIZE field settings. TOTAL_BYTES = XFERCNT * SIZE

7.3.1.5 Descriptor List

A descriptor list consists of one or more descriptors which are executed in serially. This list may be a simple sequence of descriptors, a
loop of descriptors, or a combination of the two.

Each descriptor in the list can be one of several types.

+ Single Transfer descriptor: Transfers TOTAL_BYTES of data and then stops.

 Linked Transfer descriptor: Transfers TOTAL_BYTES of data and then loads the next linked descriptor.

» Loop Transfer descriptor: Transfers TOTAL_BYTES of data and performs loop control (see 7.3.2.2 Loop Counter).
» Sync descriptor: Handle synchronization of the list with other entities (see 7.3.7.2 SYNC Descriptor Structure).

* WRI descriptor: Writes a value to a location in memory (see 7.3.7.3 WRI Descriptor Structure).

7.3.1.6 Addresses

Before initiating a transfer, software should write the source address, destination address, and if applicable the link address to the de-
scriptor registers. Alternatively, software may load a descriptor from memory by writing the descriptor address to the LDMA_CHx_LINK
register and setting the corresponding bit in the LDMA_LINKLOAD register.

During a DMA transfer, the DMA source and destination address registers are pointers to the next transfer address. The LDMA wiill
update the SRC and DST addresses after each transfer. If software halts a DMA transfer by clearing the enable bit, the SRC and DST
addresses will indicate the next transfer address.

When a desriptor is finished the DMA will either halt or load the next (linked) descriptor depending on the value of the LINK field in the
LDMA_Chx_LINK register. After loading a linked descriptor, the descriptor registers will reflect the content of the loaded descriptor.
Note that the linked descriptor must be word aligned in memory. The two least significant bits of the LDMA_CHx_LINK register are used
by the LINK and LINKMODE bits. The two least significant bits of the link address are always zero.

7.3.1.7 Addressing Modes

The DMA descriptors support absolute addressing or relative addressing. When using relative addressing, the offset is relative to the
current contents of the respective address registers. Regardless of the descriptor addressing modes, the address registers always indi-
cate the absolute address. For example, when loading a descriptor using relative SRC addressing, the LDMA will add the descriptor
source address (offset) to the contents of the SRCADDR register (base address). After loading, the SRCADDR register will indicate the
absolute address of the loaded descriptor.

The initial descriptor must use absolute addressing. The LDMA will ignore the DSTMODE, SRCMODE, and LINKMODE bits for the
initial descriptor and interpret the addresses as an absolute addresses.

Relative addressing is most useful for the link address. The initial descriptor will indicate the absolute address of the linked descriptors
in memory. The linked descriptors might be an array of structures. In this case the offset between descriptors is constant and is always
4 words or 16 bytes (each descriptor has 4 words). The LINK address is not incremented or decremented after each transfer. Thus, a
relative offset of 0x10 may be used for all linked descriptors.

The source and destination addresses also support relative addressing. When using relative addressing with the source or destination
address registers, the LDMA adds the relative offset to the current contents of the respective address register. Since the source and
destination addresses are normally incremented after each transfer, the final address will point to one unit past the last transfer. Thus,
an offset of zero will give the next sequential data address.

See the example 7.4.6 2D Copy for an common use of relative addressing.

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.3.1.8 Byte Swap

Enabling byte swap reverses the endianness of the incoming source data read into the LDMA’s FIFO. Byte swap is only valid for trans-
fer sizes of word and half-word. Note that linked structure reads are not byte swapped.

B3b7 B3b0 | B2b7 B2b0 | B1b7 B1b0 | BOb7 BObO
B3 B2 B1 BO
BYTESWAP=1
SIZE=WORD
BOb7 BOb0O | B1b7 B1b0 | B2b7 B2b0 | B3b7 B3b0
BO B1 B2 B3
B3b7 B3b0 | B2b7 B2b0 | B1b7 B1b0 | BOb7 BObO
B1 BO
BYTESWAP=1
SIZE=HALF
B2b7 B2b0 | B3b7 B3b0 | BOb7 o BOb0O | B1b7 o B1b0

Figure 7.2. Word and Half-Word Endian Byte Swap Examples

silabs.com | Building a more connected world.

Rev. 1.0 | 122

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.3.1.9 DMA Size and Source/Destination Increment Programming

The DMA channels’ SIZE, SRCINC, and DSTINC bit-fields are programmed to best utilize memory resources. They provide a means
for memory packing and unpacking, as well as for matching the size of data being transmitted to or received from an IO peripheral. The
following figure shows how 32-bit words of data are read from a memory source into the DMA'’s internal transfer FIFO, and then written
out to the memory destination. The memory organization in bytes is shown as well as the first read to and write from the DMA’s FIFO.

source Memory
0x200 | kB3 | kB2 | kB1 | kB0
1B3 1B2 1B1 1BO
mB3 | mB2 | mB1 | mB0
nB3 | nB2 | nB1 nBO
oB3 | oB2 | oB1 | oB0
pB3 | pB2 | pB1 | pB0
qB3 | qB2 | gB1 | gB0
rB3 rB2 rB1 rB0
sB3 | sB2 | sB1 sB0
tB3 tB2 tB1 tBO
uB3 | uB2 | uB1 uB0
vB3 | vB2 | vB1 vB0
wB3 | wB2 | wB1 | wB0
xB3 | xB2 | xB1 xB0
yB3 | yB2 | yB1 | yB0O
zB3 | zB2 | zB1 zB0
destination
0x400 kB3 | kB2 | kB1 | kB0
1B3 1B2 1B1 1BO
mB3 | mB2 | mB1 | mB0

First read transmit data=

Next write data= .~

First write transmit data=

size[1:0] = WORD
src_inc[1:0]= WORD
dst_inc[1:0]= WORD

Figure 7.3. Memory-to-Memory Transfer WORD Size Example

The next example shows four variations of half-word sized transfers, with all possible combinations of half- and full-word source and
destination increments. Note that when the size and source/destination increments are all configured for half-word, the resulting DMA
transfer organization is equivalent to the full-word sized transfer in the previous example. The difference is that the half-word configura-

tion requires twice as many DMA transfers.

silabs.com | Building a more connected world.

Rev. 1.0 | 123

EFM32JG1 Reference Manual

source Memory i source Memory.
0x200([kB3 | kB2 | kBT | kBO || i 0x200 | kB3 | kB2 || kB1 | kBO ||
B3 [B2 | 1B1 | 1BO || T 1B3 | 1B2 | 1B1 | IBO T
mB3 | mB2 | mB1 | mBO First read tranismit data= mB3 | mB2 | mB1 | mBO First read trafismit data=
nB3 | nB2 | nB1 | nBO |! kB0 nB3 | nB2 || nB1 | nBO kB1 kB0
oB3 | oB2 | oB1 | oB0 oB3 | oB2 || oB1 | oB0O \
pB3 | pB2 | pB1 | pB0 \ / pB3 | pB2 || pB1 | pBO Y
qB3 | qB2 | qB1 | qBO qB3 | qB2 || qB1 | qBO
rB3 rB2 rB1 rB0 rB3 rB2 rB1 rB0
sB3 | sB2 | sB1 sB0 sB3 | sB2 7 sB1 sBO
tB3 | tB2 | tB1 | tBO kB3 | kB2 | kB1 | kBO tB3 | 182 | tB1 | tBO :,?311 ,I,?g% ,:3311 :,I:;(:,
uB3 | uB2 | uB1 | uB0 IB3 | 1B2 | IB1 | 1BO uB3 | uB2 | uB1 | uB0 pB1 | pBO | oB1 | oBO
vB3 | vB2 | vB1 | vBO mB3 | mB2 | mB1 | mBO vB3 | vB2 | vB1 | vBO rB1 | rB0 | qB1 | qBO
wB3 | wB2 | wB1 | wB0 nB3 | nB2 | nB1 | nBO wB3 | wB2 | wB1 | wB0
xB3 | xB2 | xB1 | xB0O xB3 | xB2 | xB1 xB0
yB3 | yB2 | yB1 | yBO yB3 | yB2 | yB1 | yB0O
zB3 | zB2 | zB1 zB0 zB3 | zB2 | zB1 zB0
destination destination
0x400 kB3 | kB2 | kB1 kB0 0x400 kB1 kB0
I1B3 1B2 1B1 1BO 1B1 1BO
mB3 | mB2 | mB1 | mB0 mB1 | mB0
nB3 | nB2 | nB1 | nBO nB1 | nB0O
oB1 | oB0
pB1 pB0O
. qB1 | qB0 :
First write transmit data= rB1 | rBO First write transmit data=
kB1 | kB0 \ [kB1 | kBO
size[1:0] = HALF size[1:0] = HALF
src_inc[1:0] = HALF src_inc[1:0] = WORD
dst_inc[1:0] = HALF dst_inc[1:0] = WORD
source Memory i sourc Memory :
ox200 | kB3 [kB2 [kB1 | KBO || 0x200 |[kB3 | kB2 | kB1 | kBO || i
B3 | 1B2 | 1B1 | IBO | ! B3 | 1B2 | 1B1 | 1BO || T
mB3 | mB2 | mB1 | mB0 mB3 | mB2 | mB1 | mB0 First read t\r;ﬁsmit data=
nB3 | nB2 | nB1 nBO | ! kB0 nB3 | nB2 | nB1 nB0 | kB0
oB3 | oB2 | oB1 | oB0 oB3 | oB2 | oB1 | oB0O
pB3 | pB2 | pB1 | pBO || v pB3 | pB2 | pB1 | pBO v
qB3 | qB2 | gqB1 | qBO ‘ qB3 | qB2 | qB1 | qBO
rB3 | rB2 | rB1 | rB0 | | rB3 | rB2 | rB1 | rBO _
sB3 | sB2 | sB1 | sBO sB3 | sB2 | sB1 | sB0O
tB3 tB2 tB1 tB0 1B1 1BO kB1 kB0 tB3 tB2 tB1 tBO kB3 | kB2 | kB1 kB0
uB3 | uB2 | uB1 uB0 nB1 nB0 | mB1 | mBO uB3 | uB2 | uB1 uB0 1B3 1B2 1B1 1=1]
vB3 | vB2 | vB1 | vBO pB1 | pBO | oB1 | oBO vB3 | vB2 | vB1 | vBO mB3 | mB2 | mB1 | mBO
wB3 | wB2 | wB1 | wB0 81 | rBO | qB1 | qBO wB3 | wB2 | wB1 | wB0 nB3 | nB2 | nB1 | nBO
xB3 | xB2 | xB1 | xB0 xB3 | xB2 | xB1 | xBO
yB3 | yB2 | yB1 | yBO yB3 | yB2 | yB1 | yBO
zB3 | zB2 | zB1 zB0 zB3 | zB2 | zB1 zB0
destination destination
0x400 1B1 IBO kB1 kB0 0x400 kB1 kB0
nB1 nB0 | mB1 | mB0 kB3 | kB2
pB1 pB0 | oB1 | oBO 1B1 1BO
rB1 rB0 | gqB1 | qBO 1B3 1B2
mB1 | mB0
mB3 | mB4
eese———— nB1 | nBO eese————
First write transmit data= nB3 | nB2 First write transmit data=
\ [kB1 | kBO kB1 | kBO
size[1:0] = HALF size[1:0] = HALF
src_inc[1:0] = WORD src_inc[1:0] = HALF
dst_inc[1:0] = HALF dst_inc[1:0] = WORD

Figure 7.4. Memory-to-Memory Transfer HALF Size Examples

Fields SRCINCSIGN and DSTINCSIGN allow for address decrement. These can be used to mirror an image, for example, in the pixel
copy application.

EFM32JG1 Reference Manual

7.3.2 Channel Configuration

Each DMA channel has associated configuration and loop counter registers for controlling direction of address increment , arbitration
slots, and descriptor looping.

7.3.2.1 Address Increment/Decrement

Normally DMA transfers increment the source and destination addresses after each DMA transfer. Each channel is also capable of dec-
rementing the source and/or destination addresses after each DMA transfer. This may be useful for flipping an array or copying data
from tail to head. For example, a data packet might be prepared as an array of data with increasing addresses and then transmitted
from the highest address to the lowest address, from tail to head.

After reset the SRCINCSIGN and DSTINCSIGN bits in the LDMA_CHx_CFG register are cleared causing the source and destination
addresses to increment after each transfer. If the SRCINCSIGN bit is set , the DMA will decrement the source address after each trans-
fer. If the DSTINCSIGN bit in the LDMA_CHx_CFG register is set , the DMA will decrement the destination address after each transfer.
Setting only one of these bits will flip the data. Setting both bits will copy from tail to head, but will not flip the data.

The SRCINCSIGN and DSTINCSIGN bits apply to all descriptors used by that channel. Software should take care to set the starting
source and/or destination address to the highest data address when decrementing.

7.3.2.2 Loop Counter

Each channel has a LDMA_CHx_LOOP register that includes a loop counter field. To use looping, software should initialize the loop
counter with the desired number of repetitions before enabling the transfer. A descriptor with the DECLOOPCNT bit set to TRUE will
repeat the loop and decrement the loop counter until LOOPCNT = 0.

For a looping descriptor, with DECLOOPCNT=1, the LINK address in the LDMA_CHx_LINK register is used as the loop address. While
LOOPCNT is greater than zero, the descriptor will execute and then the LDMA will load the next descriptor using the address specified
in the LDMA_CHx_LINK register. This feature enables looping of multiple descriptors. To repeat a single descriptor, the LINK address
of the descriptor should point to itself.

After LOOPCNT reaches zero, if the LINK bit in the descriptor LINK word is clear the transfer stops. If the LINK bit is set, the LDMA will
load the next sequential descriptor located immediately following the looping descriptor. The behavior of the LINK bit is different for a
looping descriptor. This is necessary because the LINK address is re-purposed as the loop address for a looping descriptor.

Note that LOOPCNT sets the number of repeats, not the number of iterations. The total number of loop iterations will be LOOPCNT
plus 1. Normally, the LOOPCNT should be set to one or more repeats.

Also note that because there is only one LOOPCNT per channel, software intervention is required to update the LOOPCNT if a se-
quence of transfers contains multiple loops. It is also possible to use a write immediate DMA data transfer to update the
LDMA_CHx_LOORP register.

7.3.3 Channel Select Configuration
The channel select block determines which peripheral request signal connects to each DMA channel.

This configuration is done by software through the SOURCESEL and SIGSEL fields of the LDMA_CHn_REQSEL register. SOURCE-
SEL selects the peripheral and SIGSEL picks which DMA request signals to use from the selected peripheral.

7.3.4 Starting a Transfer

A transfer may be started by software, a peripheral request, or a descriptor load.

Software may initiate a transfer by setting the bit for the desired channel in the LDMA_SREQ register. In this case the channel should
set SOURCESEL to NONE to prevent unintentional triggering of the channel by a peripheral.

A peripheral may trigger the channel by configuring the peripheral source and signal as described in 7.3.3 Channel Select Configuration

The LDMA may also be configured to begin a transfer immediately after a new descriptor is loaded by setting the STRUCTREQ field of
the LDMA_CHx_CTRL register or descriptor word.

This configuration is done by software through the SOURCESEL and SIGSEL fields of the LDMA_CHn_REQSEL register. SOURCE-
SEL selects the peripheral and SIGSEL picks which DMA request signals to use from the selected peripheral.

EFM32JG1 Reference Manual

7.3.4.1 Peripheral Transfer Requests

By default peripherals issue a Single Request (SREQ) when any data is present. For peripherals with a data buffer or FIFO this occurs
any time the FIFO is not empty. Upon receiving an SREQ the LDMA will perform one DMA transfer and stop till another request is
made.

It is generally more efficient to wait for a peripheral to accumulate data and transfer in a burst. This both reduces overhead of the DMA
engine and allows EM2 peripherals to save power by using the LDMA less often. To enable this set the IGNORESREQ bit in the
LDMA_CHx_CTRL register (or descriptor) which will cause the LDMA to ignore SREQ's and wait for a full Request (REQ) signal. When
the REQ is received the entire descriptor will be executed. For most peripherals with a FIFO the REQ signal is set when the FIFO is full,
or a predetermined threshold has been reached. See the individual peripheral chapters for more information.

7.3.5 Managing Transfer Errors

LDMA transfer errors are normally managed using interrupts. Software should clear the ERROR flag in the bit in the LDMA_IF register
and enable error interrupts by setting the ERROR bit in the LDMA_IEN register before initiating a DMA transfer.

The LDMA interrupt handler should check the ERROR flag bit in the LDMA_IF register. If the ERROR flag bit is set, it should then read
the CHERROR field in the LDMA_STATUS register to determine the errant channel. The interrupt handler should reset the channel and
clear the ERROR flag bit in the LDMA _IF register before returning.

7.3.6 Arbitration

While multiple channels are configured simultaneously the LDMA engine can only be actively copying data for one channel at a time.
Arbitration determines which channel is being serviced at any point in time. The LDMA will choose a channel through arbitration, trans-
fer BLOCK_SIZE elements of that channel and then arbitrate again choosing another channel to service. This allows high priority chan-
nels to be serviced while lower priority channels are in the middle of a transfer.

7.3.6.1 Arbitration Priority
There are two modes in determining priority when the controller arbitrates: fixed priority and round robin priority.

In fixed priority mode, channel 0 has the highest priority. As the channel number increases, the priority decreases. When the LDMA
controller is idle or when a transfer completes, the highest priority channel with an active request is granted the transfer. This mode
guarantees smallest latency for the highest priority requesters. It is best suited for systems where peak bandwidth is well below LDMA
controller's maximum ability to serve. The drawback of this mode is the possibility of starvation for lowest priority requesters.

In the round robin priority mode, each active requesting channel is serviced in the order of priority. A late arriving request on a higher
priority channel will not get serviced until the next round. This mode minimizes the risk of starving low-priority latency-tolerant reques-
ters. The drawback of this mode is higher risk of starving low-latency requesters.

The NUMFIXED field in the LDMA_CTRL register determines which channels are fixed priority and which are round robin. Channels
lower than NUMFIXED are fixed priority while those above it are round robin. A value of 0x0 implies all channels are round robin. A
value of 0x4 implies channels 0 through 3 are fixed priority and 4 through 7 are round robin. A value of 7 implies that channels 0
through 6 are fixed and channel 7 is round robin. This is functionally equivalent to having 8 fixed priority channels.

Fixed priority channels always take priority over round robin. As long as NUMFIXED is greater than 0, there is a possibility that a higher
priority channel can starve the remaining channels.

To address the drawbacks of using fixed priority or round robin priority the LDMA implements the concept of arbitration slots. This al-
lows for channels to have high bandwidth and low latency while preventing starvation of latency tolerant low priority channels.

Each channel has a two bit ARBSLOT field in its LDM_CHx_CFG register. This field only applies to channels marked as round robin
(determined by NUMFIXED). The channels in the same arbitration slot are treated equally with round robin scheduling. Channels
marked with a higher arbitration slot will get serviced more frequently. By default all channels are placed in arbitration slot 1.

Every time the channels in slot 1 get serviced the channels in slot 2 get serviced twice, those in slot 4 get serviced 4 times, and those in
slot 8 get serviced 7 times. The specific arbitration allocation can be seen by the following table. The highest arbitration slot is serviced
every other arbitration cycle, allowing for low latency response. If there are no requests from channels in arbitration slot then that slot is
immediately skipped.

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

Table 7.1. Arbitration Slot Order

Arbslot order

Arbslot1 1

Arbslot2 1 1

Arbslot4 1 1 1 1

Arbslot8 1 1 1 1 1 1 1

The top row shows the order at which the arbitration slots are executed. The remaining part of the table shows a more visual interpreta-
tion of the arbitration order.

For example, if we have one low latency channel (CHNLO) and two latency tolerant channels (CHNL1 and CHNLZ2). We could use the
following settings.

LDMA_CTRL.NUMFIXED = 0; set round robin for all channels.
CHNLO_CFG.ARBSLOTS = TWO;
CHNL1_CFG.ARBSLOTS = ONE;
CHNL2_CFG.ARBSLOTS = ONE;

If all channels are constantly requesting transfers, then the arbitration order is: CHNLO, CHNL1, CHNLO, CHNL2, CHNLO, CHNLA1,
CHNLO, CHNL2, CHNLO, etc

Note, there are no channels assigned to arbitration slot four or eight in this example, so those slots are skipped and the final sequence
is ARBSLOT2, ARBSLOT1, ARBSLOT2, ARBSLOTT1, etc...

Channel 1 and Channel 2 are selected in round robin order when arbitration slot 1 is executed.
If we replace the ARBSLOTS value for channel 0 with EIGHT, then the sequence would look like the following:
CHNLO, CHNLO, CHNLO, CHNLO, CHNL1, CHNLO, CHNLO, CHNLO, CHNL2, CHNLO, CHNLO, CHNLO, CHNLO, CHNLA1, etc.

silabs.com | Building a more connected world. Rev. 1.0 | 127

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.3.6.2 DMA Transfer Arbitration

In addition to the inter channel arbitration, software can configure when the controller arbitrates during a DMA transfer. This provides
reduced latency to higher priority channels when configuring low priority transfers with more arbitration cycles.

The LDMA provides four bits that configure how many DMA transfers occur before it re-arbitrates. These bits are known as the BLOCK-
SIZE bits and they map to the arbitration rate as shown below. For example, if BLOCKSIZE =4 then the arbitration rate is 6, that is, the
controller arbitrates every 6 DMA transfers.

Table 7.2 AHB Bus Transfer Arbitration Interval on page 128 lists the arbitration rates.

Table 7.2. AHB Bus Transfer Arbitration Interval

BLOCKSIZE Arbitrate After x DMA transfers

0 x=1

N

x=2

x=3

x=4

X=6

© @ | N | O ~ w N
X
1
(oo}

-_—
o
x
1
(o]
N

11 x=128
12 x =256
13 x=512
14 x=1024
15 x =lock

Note: Software must take care not to assign a low-priority channel with a large BLOCKSIZE because this prevents the controller from
servicing high-priority requests, until it re-arbitrates.

The number of DMA transfers that need to be done is specified by the user in XFERCNT. When XFERCNT > BLOCKSIZE and is not
an integer multiple of BLOCKSIZE then the controller always performs sequences of BLOCKSIZE transfers until XFERCNT < BLOCK-
SIZE remain to be transferred. The controller performs the remaining XFERCNT transfers at the end of the DMA cycle.

Software must store the value of the BLOCKSIZE bits in the channel control data structure. See 7.3.7.1 XFER Descriptor Structure for
more information about the location of the BLOCKSIZE bits in the data structure.

7.3.7 Channel Descriptor Data Structure

Each channel descriptor consists of four 32-bit words:

» CTRL - control word contains information like transfer count and block size.
» SRC - source address points to where to copy data from

» DST - destination address points to where to copy data to

* LINK - link address points to where to load the next linked descriptor

These words map directly to the LDMA_CHx_CTRL, LDMA_CHx_SRC, LDMA_CHx_DST, and LDMA_CHx_LINK registers. The usage
of the SRC and DST fields may differ depending on the structure type

There are three different types of descriptor data structures: XFER, SYNC, and WRI

silabs.com | Building a more connected world. Rev. 1.0 | 128

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.3.7.1 XFER Descriptor Structure
This descriptor defines a typical data transfer which may be a Normal, Link, or Loop transfer.

Only this structure type can be written directly into LDMA's registers by the CPU. All descriptors may be linked to. Refer to the register
descriptions for additional information.

For specifying XFER structure type, set STRUCTTYPE to 0. See the peripheral register descriptions for information on the fields in this
structure.

Bit Position
S8R XIQQE IV S| I2 e 8 I IY¥| S lo|lo|~|lo|lv|t o a0
glE e L
W | w | Z|w|Z w o a
aal o O x|9 | ao|u N < = u >
= zZ |o|& 0 0 = -
= 2| F N C B3 2 T S @ x &) o
o FlO| o »n b Clo |z 3 ,_ L) =
0 ¥l O o 9oL T i =
o o Z 0 8 @ o x = =
9Aa n n
[3)
74 SRCADDR
n
'—
(7] DSTADDR
a
w
Q
X ¥ | O
=z LINKADDR zZ|=
| | X
z
-

silabs.com | Building a more connected world. Rev. 1.0 | 129

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.3.7.2 SYNC Descriptor Structure

This descriptor defines an intra-channel synchronizing structure. It allows the channel to wait for some external stimulus before continu-
ing on to the next descriptor. This structure is also used to provide stimulus to another channel to indicate that it may continue.

For example channel 1 may be configured to transfer a header into a buffer while channel 2 is simultaneously transferring data into the
same structure. When channel 1 has completed it can wait for a sync signal from channel 2 before transferring the now complete buffer
to a peripheral.

Synch descriptors do nothing until a condition is met. The condition is formed by the SYNCTRIG field in the LDMA_SYNC register and
the MATCHEN and MATCHVAL fields of the descriptor. When (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN) the next de-
scriptor is loaded. In addition to waiting for the condition a Link descriptor can set or clear bits in SYNCTRIG to meet the conditions of
another channel and cause it to continue. The CPU also has the ability to set and clear the SYNCTRIG bits from software.

This structure type can only be linked in from memory.

For specifying SYNC structure type, set STRUCTTYPE to 1.

Bit Position

S8R IQQI QNS |Te ¥ f|Q|o|w|l~lolb|t | m|n|~|0
L
& S
z 2 =
- w o
(&) % a
o o
Q
3:, SYNCCLR SYNCSET
'g MATCHEN MATCHVAL
w
a
X ¥ | O
=z LINKADDR Z | =
- Ol X
Z
-
Bit Name Description
1:0 STRUCTTYPE Descriptor Type
This field indicates which type of descriptor this is. It must be 1 for a SYNC descriptor.
20 DONEIFSEN Done if Set indicator
If set the interrupt flag will be set when descriptor completes.
15:8 SYNCCLR Sync Trigger Clear
This bit-field is used to clear corresponding bits within the SYNCTRIG field of the SYNC LDMA_SYNC register. To clear
a given bit, a one should be loaded to the corresponding bit. Set is given priority over clear if both corresponding bits
are loaded with a one. The sync trigger clear function can only be used when loaded from a linked structure. Alternate-
ly, the user can directly write the SYNCTRIG bit-field if required.
7:0 SYNCSET Sync Trigger Set
This bit-field is used to set corresponding bits within the SYNCTRIG bit-field. To set a given bit, a one should be loaded
to the corresponding bit. Set is given priority over clear if both corresponding bits are loaded with a one. The sync trig-
ger set function can only be used when loaded from a linked structure. Alternately, the user can directly write the SYN-
CTRIG bit-field if required.
15:8 MATCHEN Sync Trigger Match Enable
This bit-field serves as the SYNCTRIG match enable. A sync match triggers the load of the next linked DMA structure
as specified by link_mode, when: (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN).
70 MATCHVAL Sync Trigger Match Value

silabs.com | Building a more connected world. Rev. 1.0 | 130

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

Bit Name Description

This bit-field serves as the SYNCTRIG match value. A sync match triggers the load of the next linked DMA structure as
specified by link_mode, when: (SYNCTRIG & MATCHEN) == (MATCHVAL & MATCHEN).

7.3.7.3 WRI Descriptor Structure

This descriptor defines a write-immediate structure. This allows a list of descriptors to write a value to a register or memory location. For
example, if a channel wishes to perform two loops in a descriptor sequence a WRI may be used to program the loop count for the
second loop.

This structure type can only be linked in from memory.

For specifying WRI structure type, set STRUCTTYPE to 2.

Bit Position

>3RI TILIQITIQINISIQRIIe g2 ¥ 2 ¥ - Qlojo|~|lo|w|lt|o|la|~|o
L
i S
2 2 £
5 m 5
3 z
o »
g IMMVAL
(7]
@ DSTADDR
o
T
[m)
X ¥ | O
z LINKADDR Z | =
- | X
zZ
|
Bit Name Description
1:0 STRUCTTYPE Descriptor Type
This field indicates which type of descriptor this is. It must be 2 for a WRI descriptor.
20 DONEIFSEN Done if Set indicator
If set the interrupt flag will be set when descriptor completes.
31:0 IMMVAL Immediate Value for Write
This bit-field specifies the immediate data value that is to be written to the address pointed to by DSTADDR. Only one
write occurs for WRI structures.
31:0 DSTADDR Address to write

This bit-field specifies the address the immediate data should be written to.

silabs.com | Building a more connected world. Rev. 1.0 | 131

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.3.8 Interaction With the EMU

The LDMA interacts with the Energy Management Unit (EMU) to allow transfers from a low energy peripheral while in EM2 DeepSleep.
For example, when using the LEUART in EM2 DeepSleep the EMU can wake up the LDMA sufficiently long to allow data transfers to
occur. See section "DMA Support" in the LEUART documentation.

Similarly, when using the ADC in EM2 DeepSleep or EM3 Stop the EMU can wake up the LDMA as needed to allow data transfers to
occeur.

Table 7.3 List of Peripherals Capable of Waking Up LDMA in EM2 DeepSleep or EM3 Stop on page 132 shows complete list of periph-
erals that are capable of waking up LDMA via EMU in EM2 DeepSleep or EM3 Stop

Table 7.3. List of Peripherals Capable of Waking Up LDMA in EM2 DeepSleep or EM3 Stop

Peripheral

ADCO
IDACO

LEUARTO

7.3.9 Interrupts

The LDMA_IF Interrupt flag register contains one DONE bit for each channel and one combined ERROR bit. When enabled, these in-
terrupts are available as interrupts to the Cortex-M3 core. They are combined into one interrupt vector, DMA_INT. If the interrupt for the
DMA is enabled in the ARM Cortex-M3 core, an interrupt will be made if one or more of the interrupt flags in LDMA_IF and their corre-
sponding bits in LDMA_IEN are set.

When a descriptor finishes execution the interrupt flag for that channel will be set if the DONEIFSEN field of the LDMA_CHx_LOOP
register is set. If LINK and DONEIFSEN are both set when the descriptor completes the interrupt and the linked descriptor will be imme-
diatly loaded. When the final descriptor in a linked list (LINK = 0) is finished the interrupt flag is always set regardless of the state of
DONEIFSEN.

7.3.10 Debugging

For a peripheral request DMA transfer, if software sets a bit for a channel in the LDMA_DBGHALT register then the DMA will halt dur-
ring a debug halt and the SRC and DST registers in the debug window will show the transfer in progress. Otherwise, during debug halt
the DMA will continue to run and complete the entire transfer causing the descriptor registers to indicate the transfer has completed.

7.4 Examples

This section provides examples of common LDMA usage. All examples assume the LDMA is in the reset state with the channel being
configured disabled and LDAM_CHx_CFG, LDMA_CHx_LOOP, and LDMA_CHx_LINK cleared.

silabs.com | Building a more connected world. Rev. 1.0 | 132

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.4.1 Single Direct Register DMA Transfer

This simple example uses only the Channel Descriptor registers directly and does not use linking. Software writes directly to the LDMA
channel registers. This example does not use a memory based descriptor list.

This example is suitable for most simple transfers that are limited to transferring one block of data. It supports anything that can be
done using a single descriptor. This includes endian conversion and packing/unpacking data. Channel 0 is used for this example.

The LDMA will be used to copy 127 contiguous half words (254 bytes) from 0x0 to 0x1000. It will allow arbitration every 4 transfers and
is triggered by a CPU write to the LDMA_SWREQ register. The CHO interrupt flag will be set when the transfer completes since the
descriptor does not link to another descriptor.

» Configure LDMA_CHO_CTRL
+ DSTMODE = 0 (absolute)
+ SRCMODE = 0 (absolute)
» SIZE = HALFWORD (16 bits)
» DSTINC =0 (1 half-word)
* SRCINC = 0 (1 half-word)
* DECLOOPCNT=0 (unused)
+ REQMODE = 1 (one request transfers all data)
+ BLOCKSIZE = 3 (4 transfers)
* BYTESWAP=0 (no byte swap)
+ XFERCNT=127 (transfer 127 half words)
+ STRUCTTPYE=0 (TRANSFER)
» Write source address to LDMA_CHO_SRC register
» Write destination address to LDMA_CHO_DST register
» Configure the LDMA_CHOREQSEL register for the desired peripheral or select none for a memory-to-memory transfer
» Clear and enable interrupts.
» Write a 1 to bit 0 of the LDMA_IFC register to clear the CHO DONE flag
» Write a 1 to bit 0 of the LDMA_IEN register to enable the CHO interrupt
» Write a 1 to bit 0 of the LDMA_CHEN register to enable CHO

The REQMODE field is normally cleared to zero for a peripheral request transfer and will transfer the specified block size for each pe-
ripheral request. The REQMODE may be set to 1 for a memory-to-memory transfer or any time it is desired for a single DMA request to
initiate complete transfer.

silabs.com | Building a more connected world. Rev. 1.0 | 133

EFM32JG1 Reference Manual

7.4.2 Descriptor Linked List

This example shows how to use a Linked List of descriptors. Each descriptor has a link address which points to the next descriptor in
the list. A descriptor may be removed from the Linked list by altering the Link address of the one before it to point to the one after it.
Descriptor Linked lists are useful when handling an array of buffers for communication data. For example, a bad packet can be re-
moved from a receiver queue by simply removing the descriptor from the linked list.

Software loads the first descriptor into the DMA by writing the descriptor address to LDMA_CHx_LINK and setting the bit for that chan-
nel in the LDMA_LINKLOAD register. This method is preferred when using a linked list in memory since it treats the first descriptor just
like all the others. However, it is also allowed for software to write the first descriptor directly to the LDMA registers.

In this example 4 descriptors are executed in series. the interrupt flag is set after the 2nd and 4th (last) descriptors have completed.
* Prepare a list of descriptors using the XFER structure type in RAM
+ Initialize the CTRL, SRC, and DST members as desired

» Setting STRUCTREQ in the CTRL word for descritpors 2-4 will cause them to begin transfering data as soon as they are loaded.
» Write 0x00000013 to the LINK member of all but the last descriptor

* LINKMODE = 1 (relative addressing)

* LINK =1 (Link to the next descriptor)

* LINKADDR = 0x00000010 (size of descriptor)
» Set the DONEIFSEN bit in the CTRL member of the 2nd structure so that the interrupt flag will be set when it completes
» Write 0x00000000 to the LINK member of the last descriptor

* LINK = 0 (Do not link to the next descriptor)

* LINKMODE = 0 (don't care)

» LINKADDR = 0x00000000 (don't care)

Each descriptor now points to the start of the next descriptor as shown on the left in Figure 7.5 Descriptor Linked List on page 134. To
remove a descriptor from the linked list modify the LINK address of the descriptor of the one before to point to the one after. For exam-
ple to remove the third descriptor, add 0x00000010 to the LINK register of the second descriptor. The second descriptor will now point
to the forth descriptor and skip over the third descriptor as shown on the right in Figure 7.5 Descriptor Linked List on page 134.

Third
Linked Descriptor
List Deleted
° Ctrl \‘ Ctrl \‘ ‘
Src | Src |
Dst ‘/ A Dst ‘/ A
| Link |/ 0x00000013 | Link |/ 0x00000013
G 0 Citrl \‘ 0 Ctrl \‘ G
Src | Src |
Dst ‘/ . Dst ‘/ .
| Link | o0x00000013 | Link | 0x00000023
° “» Ctrl \‘ Ctrl \‘ @
Src || :’ Src ||
Dst ‘/ © Dst ‘/ ©
| Link | 0x00000013 ' | Link | 0x00000013
° "> Ctrl ‘ A Ctrl ‘ °
Src | Src |
Dst ‘/ . Dst ‘/ .
Link |) 000000000 Link | / 000000000

Figure 7.5. Descriptor Linked List

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

To start execution of the linked list of descriptors:

» Write the absolute address of the first descriptor to the LINKADR field of the LDMA_CHO_LINK register

» Set the LINK bit of LDMA_CHO_LINK register.

+ Configure the LDMA_CHOREQSEL register for the desired peripheral or select none for memory-to-memory
» Clear and enable interrupts as desired

» Set bit 0 in the LDMA_LINKLOAD register to initiate loading and execution of the first descriptor

Alternativley, software can manually copy the first descriptor contents to the LDMA_CHO_CTRL, LDMA_CHO_SRC, LDMA_CHO_DST,
and LDMA_CHO_LINK registers and then enable the channel in the LDMA_CHEN register.

silabs.com | Building a more connected world. Rev. 1.0 | 135

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.4.3 Single Descriptor Looped Transfer

This example demonstrates how to use looping using a single descriptor. This method allows a single DMA transfer to be repeated a
specified number of times. The looping descriptor is stored in memory and reloaded by hardware. After a specified number of iterations,
the transfer stops.

CHO is setup to copy 4 words from the ADC FIFO into a 15 word buffer at 0x1000. It repeats 4 times to fill the entire 16 word buffer. An
interrupt will fire when the entire 16 words have been transfered.

Initialize the Linked descriptor in memory as follows:
» Configure CTRL member
+ DSTMODE = 0 (absolute)
* SRCMODE = 0 (absolute)
* SIZE = WORD
« DSTINC =0 (1 WORD)
* SRCINC =3 (0 WORDS)
+ DECLOOPCNT=1 (decrement loop count)
+ REQMODE=1 (Use XFERCNT)
* BLOCKSIZE = 4 (4 words)
* BYTESWAP=0 (no swap)
* XFERCNT= 4 (4 words)
+ STRUCTTPYE=0 (TRANSFER)
+ IGNORESREQ-=1 (ignore single requests)
» Write the address ADCO_SINGLEDATA register to the SRC member
» Write 0x1000 address to DST member
» Configure the LINKLink member
» LINK = 0 (stop after loop)
* MODE = 1 (relative link address)
» LINKADDR = 0 (point to ourself)
» Configure the Channel
» Write the desired number of repeats to the LDMA_CHO_LOORP register
+ SOURCESEL in LDMA_CHOREQSEL = ADCO (select the ADC)
» SIG in LDMA_CHOREQSEL = ADCOSCAN (select the scan conversion request)
» Clear and enable interrupts
* Load the descriptor using LINKLOAD as described in 7.4.2 Descriptor Linked List

Memory
x 0x00 Ctrl
/ Src A
LINKADDR->A '\\ Dst .
DECLOOPCNT=1 Link link_addr->A
LINK=0

Figure 7.6. Single Descriptor Looped Transfer

Note that the looping descriptor must be stored in memory, because it must load itself from the link address in memory on each itera-
tion.

silabs.com | Building a more connected world. Rev. 1.0 | 136

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.4.4 Descriptor List With Looping

This example uses a descriptor list in memory with looping over multiple descriptors. This example also uses the looping feature and
continues on with the next sequential descriptor after looping completes.

The descriptor list in memory is shown in figure Figure 7.7 Descriptor List With Looping on page 137. Descriptor A links to descriptor B.
Descriptor B has the DECLOOPCNT bit enabled and loops back to the start of descriptor A. The LINK address of descriptor B is used
for the loop address. The LINK bit is set to indicate that execution will continue after completion of looping. Once the LOOPCNT rea-
ches zero, the LDMA will load descriptor C. Descriptor C must be located immediately following descriptor B.

Memory

0x00 f Ctrl
Src A
Dst
| Link
ox10 | Ctrl
" Src

'\ B
Dst _
Alternate link /‘\,‘\, L In k ligkSaddiz=A

ox20™ Citrl

link_addr->B

LINKADDR->B LINKADDR->A LINK=0 Src c
DECLOOPCNT=1 Dst
Link link_addr=NA

Figure 7.7. Descriptor List With Looping

Initialization is similar to the single looping descriptor with the following modifications.
» Set the LINK bit in descriptors A and B

+ write the address of descriptor A into the LIKADDRESS of descriptor B

» write the address of descriptor B into the LIKADDRESS of descriptor A

» Descriptor C must be located immediately after descriptor B in memory

silabs.com | Building a more connected world.

Rev.1.0 | 137

EFM32JG1 Reference Manual
LDMA - Linked DMA Controller

7.4.5 Simple Inter-Channel Synchronization

The LDMA controller features synchronization structures which allow differing channels and/or hardware events to pause a DMA se-
quence, and wait for a synchronizing event to restart it.

In this example DMA channel 0 and 1 are tasked with the transfer of different sets of data. Channel 0 has two transfer structures, and
channel 1 just one, but channel 0 must wait until channel 1 has completed its transfer before it starts its second transfer structure.

Pausing channel 0 is accomplished by inserting a sync wait structure between the two transfer structures. This sync structure waits on
SYNCTRIGI[7] to be set by a sync set/clear structure which is controlled by channel 1. Sync structures do not transfer data, they can
only set, clear, or wait to match the SYNCTRI