

Engineering/Process Change Notice

ECN/PCN No.: 4112

For Manufacturer									
Product Description: PLASTIC SMD MEMS OSCILLATOR	Abracon Part Number / Part Series: ASTMKH		□ Documentation only□ ECN⋈ EOL	Series □ Part Number					
Affected Revision:	New Revision:	OL	Application:	☐ Safety ☑ Non-Safety					
Prior to Change: Active https://abracon.com/Oscillators/ASTMKH.	pdf			·					
After Change: EOL									
Cause/Reason for Change: Discontinuation of manufacturing capabilit	ty.								
	Chan	ge Plan							
Effective Date: 2/7/2022	Additional Remarks	:							
Change Declaration: N/A									
Issued Date: 2/7/2022	Issued By: Brooke (Product	Cushman Engineer	Issued Department: Engineering						
Approval: Thomas Culhane Engineering Director	Approval: Reuben C Quality	uintanilla Director	Approval: Ying Huang Purchasing Director						
	For Abrac	on EOL only							
Last Time Buy (if applicable): 5/7/2022		Alternate Part Numb	per / Part Series: none						
Additional Approval:	Additional Approval	:	Additional Approval:						
	Customer Appro	oval (If Applicable)							
Qualification Status: Note: It is considered approved if there is n		□ Not accepted ustomer 1 month afte	r ECN/PCN is released.						
Customer Part Number:		Customer Project:	Project:						
Company Name:	Company Represent	ative:	Representative Signature	:					
Customer Remarks:									

Form #7020 | Rev. G | Effective: 02/22/2021 |

ASTMKH

Moisture Sensitivity Level (MSL) – 1

> **FEATURES**:

- Ultra-miniature size: 2.0 x 1.2 x 0.6mm
- \bullet Supply Voltage: 1.2V to 3.63V (-10 \sim +70°C); 1.5V to 3.63V (-40 \sim +85°C)
- Ultra-Low Current Consumption: 1.4µA max. (core current, no load)
- Frequency Stabilities include:
 - ± 75 ppm over -10 to ± 70 °C
 - ± 100 ppm over -40 to +85°C
- Internal power supply filtering eliminates external bypass capacitor for Vdd port.
- Proprietary NanoDriveTM Technology enables programmable output swing for lower power

> APPLICATIONS:

- Timekeeping
- Battery Management
- · Mobile devices
- RTC reference clock
- Wireless accessories
- Fitness/Medical monitoring sensors
- · Sport video cams

STANDARD SPECIFICATIONS:

Parameters	s	Min	Тур	Max	Unit	Notes
Output Frequency (Fout)			32.768		kHz	
Initial Frequency Tolerance (F _{tol}) (1)		-20		+20	ppm	T_A = +25°C, post reflow, V_{dd} :1.5-3.63V
Frequency Stability over	Temperature	-75		+75		$T_A = -10^{\circ}\text{C to } +70^{\circ}\text{C}, V_{dd}: 1.5-3.63\text{V}$
Frequency Stability over Temperature $(F_{stab})^{(2)}$		-100		+100	ppm	$T_A = -40$ °C to +85°C, V_{dd} :1.5-3.63V
		-250		+250		$T_A = -10^{\circ}\text{C to} + 70^{\circ}\text{C}, V_{dd} \cdot 1.2 - 1.5\text{V}$
Aging (@+25°C)		-1		+1	ppm	First year
Supply Voltage (V _{dd})		1.2		3.63	V	$T_A = -10$ °C to $+70$ °C
supply (study (v dd)		1.5	0.00	3.63	<u> </u>	T _A = -40°C to +85°C
Core Operating Current ($(I_{dd})^{(3)}$		0.90	1.3	μA	T _A = +25°C, Vdd: 1.8V. No load. T _A = -10°C to +70°C, V _{dd} max: 3.63V. No load
				1.4		V _{dd} max: 3.63V. No load T _A = -40°C to +85°C, V _{dd} max: 3.63V. No load.
Output Stage Operating (I _{dd out}) (3)			0.065	0.125	μΑ/V _{pp}	T _A = -40°C to +85°C, V _{dd} max: 1.5-3.63V. No load.
Power Supply Ramp (tvd	d_Ramp)			100	ms	T_{A} -40°C to +85°C, 0 to 90%*V _{dd}
Start-up Time at Power-u	ın (T) ⁽⁴⁾		180	300	ms	T_A = -40°C $\leq T_A \leq$ +50°C, valid output
Start-up Tillic at Tower-t	ap (1 start)			450	1115	T_A = +50°C \leq T_A \leq +85°C, valid output
Operating Temperature F	Range (Tuse)	-10		+70	°C	Option "M"
1 0 1	E (use)	-40		+85		Option "L"
Period Jitter			35		ns _{RMS}	Cycles=10000, T _A = +25°C, V _{dd} :1.5-3.63V
LVCMOS Output Opti	on ($T_A = -40^{\circ}C$	to +85°C. Typ	ical values ar	e at $T_A = +25$ °C	C)	
Output Rise/Fall Time (t	$_{ m r}/{ m t_f})$		100	200	ns	10-90%(V _{dd}), 15pF load, Vdd:1.5- 3.63V
				50		10-90%(V _{dd}), 5pF load, Vdd≥1.62V
Output Clock Duty Cycl	ę	48		52	%	
Output Voltage	V _{OH}	90%*V _{dd}			V	V_{dd} :1.5-3.63V. I_{OH} = -10 μ A, 15 p F
	V _{OL}			10%*V _{dd}		V_{dd} :1.5-3.63V. I_{OL} = 10 μ A, 15pF
NanoDrive ^{TM(5)} Program		ced Swing O	utput Optio			
Output Rise/Fall Time (t _r /t _f)				200	ns	30-70%(V _{OL} / V _{OH}), 10pF load
Output Clock Duty Cycle		48		52	%	
AC-coupled Programmable Output Swing (V_{SW})			0.20 to 0.80		V	ASTMKH does not internally AC-couple. This output description is intended for a receiver that is AC-coupled. See Part Identification section for available AC-coupled signal swing options. $Vdd:1.5-3.63V.\ 10pF\ load, \\ I_{OH}/\ I_{OL}=\pm0.2\mu A$

(Continued)

Parameters	Min	Тур	Max	Unit	Notes
DC-biased Programmable Output Voltage High Range (V _{OH})		0.60 to 1.225		V	V_{dd} :1.5-3.63 V. I_{OH} =-0.2 μ A.10 pF load. See Part Identification section for available V_{OH}/V_{OL} levels.
DC-biased Programmable Output Voltage Low Range (V _{OL})		0.35 to 0.80		V	V_{dd} :1.5-3.63V. I_{OL} =0.2 μ A.10pF load. See Part Identification section for available V_{OH}/V_{OL} levels.
Programmable Output Voltage Swing Tolerance	-0.055		+0.055	V	T_A = -40°C to +85°C, V_{dd} :1.5-3.63V

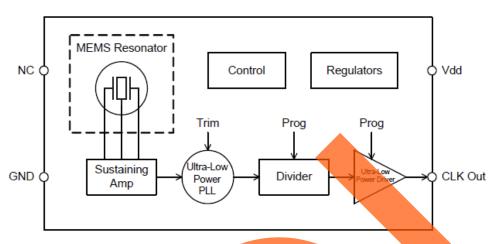
Note:

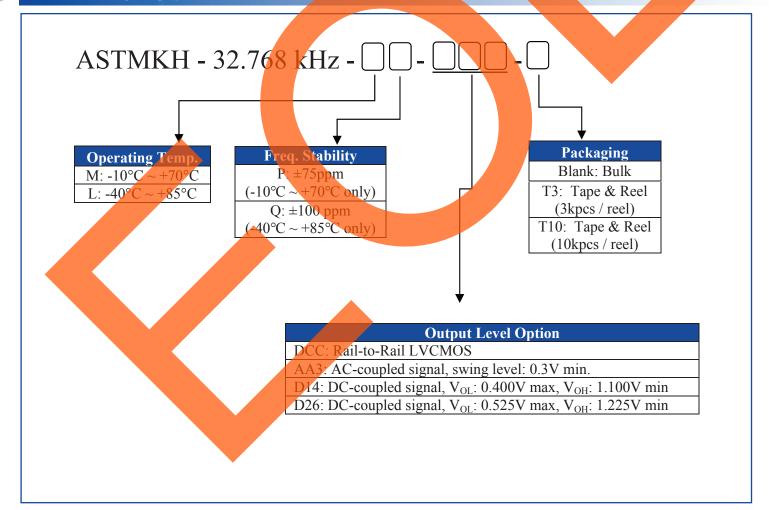
- Measured peak-to-peak. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time must be ≥100ms to ensure an accurate frequency measurement.
- Stability is specified for two operating voltage ranges. Stability progressively degrades with supply voltage below 1.5V. Measured peak-to-peak. Inclusive of initial tolerance at +25°C, and variations over operating temperature, rated power supply voltage and load.
- 3. Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + output driver operating current, where output driver operating current = C_{driver} *V_{out} *F_{out}.
- 4. Measured from the time V_{dd} reaches 1.5V
 5. NanoDriveTM is a SiTime trademark.

Absolute Maximum Ratings

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

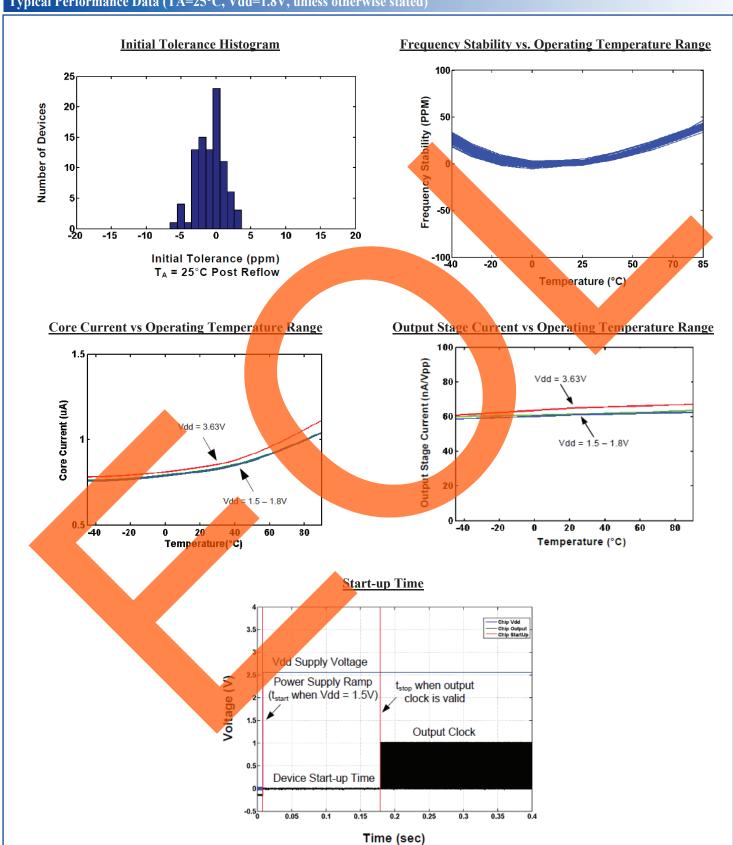
Parameters	Test Condition	Value	Unit
Continuous Power Supply Voltage Range (V _{dd})		-0.5 to 3.63	V
Short Duration Max. Power Supply Voltage (V _{dd})	≤30 minutes	4.0	V
Continuous Maximum Operating Temperature Range	Vdd:1.5-3.63V	105	$^{\circ}\mathrm{C}$
Short Duration Max. Operating Temperature Range	Vdd:1.5-3.63V, ≤30 minutes	125	°C
Human Body Model (HBM) ESD Protection	JESD22-A114	3000	V
Charge-Device Model (CDM) ESD Protection	JESD22-C101	750	V
Machine Model (MM) ESD Protection	JESD22-A115	300	V
Latch-up Tolerance	JESD78 Compli	ant	
Mechanical Shock Resistance	Mil 883, Method 2002	10000	g
Mechanical Vibration Resistance	Mil 883, Method 2007	70	g
2012 SMD Junction Temperature		150	$^{\circ}\mathrm{C}$
Storage Temperature		-65 to +150	$^{\circ}\!\mathrm{C}$



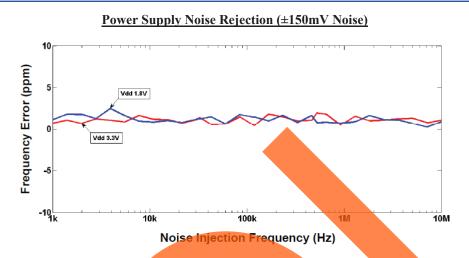


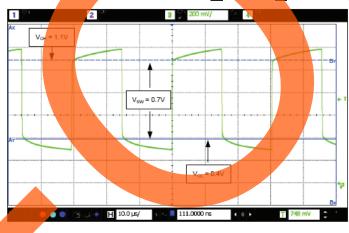
Block Diagram

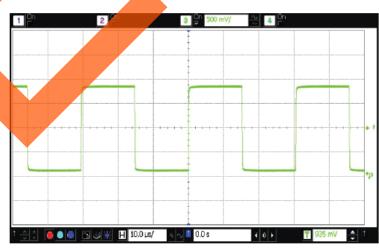
> PART IDENTIFICATION:



> Typical Performance Data (TA=25°C, Vdd=1.8V, unless otherwise stated)

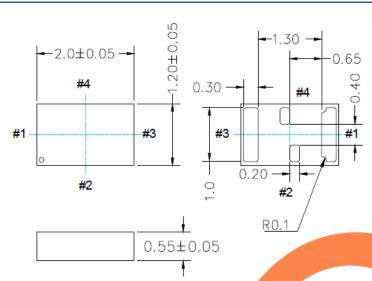


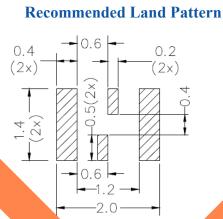



> Typical Performance Data (TA=25°C, Vdd=1.8V, unless otherwise stated)---(Continued)

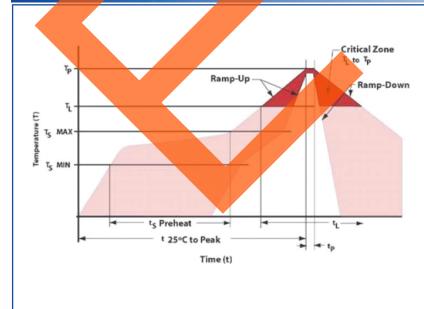
NanoDriveTM Output Waveform $(V_{OH} = 1.1V, V_{OL} = 0.4V)$

LVCMOS Output Waveform (V_{swing} = 1.8V)




ASTMKH

OUTLINE DIMENSION:

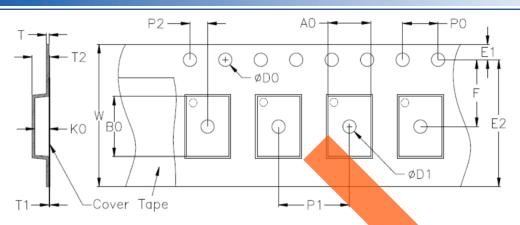


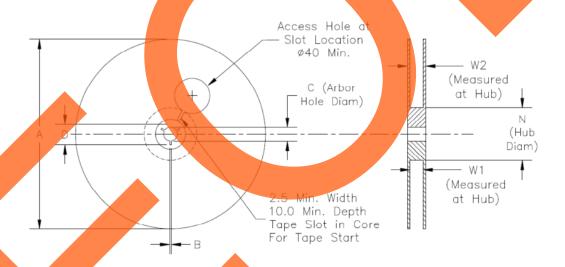
Pin	Name	I/O	Functionality
1	NC	No Connect	No connection. Will not respond to any input signal.
2	GND	Power Supply Ground	Connect to ground. All GND pins must be connected to power supply ground.
3	CLK Out	OUT	Oscillator clock output.
4	V_{dd}	Power Supply	Connect to power supply 1.5V \(\subseteq V_{dd} \le 3.63 \) V for operation over -40°C to +85°C temperature range. Under normal operating conditions, V_{dd} doesn't require external bypass/decoupling capacitor(s). Internal power supply filtering will reject more than \(\pm 150 \text{mVpp} \) with frequency components through 10MHz.

Dimensions: mm

> REFLOW PROFILE:

Item	Conditions		
T _S MAX to T _L (Ramp-up Rate)	3°C/second max		
Preheat			
Temperature Minimum (T _S MIN)	150°C		
Temperature Typical (T _S TYP)	175℃		
Temperature Maximum (T _S MAX)	200°C		
Time (t _S)	60 – 180 seconds		
Ramp-up Rate (T _L to T _P)	3°C/second max		
Time Maintained Above			
Temperature (T _L)	217℃		
Time (t _L)	60 – 150 seconds		
Peak Temperature (T _P)	260°C max		
Target Peak Temperature (T _P Target)	255°C		
Time within 5°C of actual peak (t _P)	20 – 40 seconds		
Max. Number of Reflow Cycles	3		
Ramp-down Rate	6°C/second max		
Time 25°C to Peak Temperature (t)	8 minutes max		





D0	D1 min.	E 1	E2 min.	F	P0	P1	P2
1.55±0.05	0.18	1.75±0.1	6.05	3.5±0.05	4.0±0.1	4.0±0.1	2.0 ± 0.05
T	T1 max.	T2 max.	W max.	A0	B 0	K0	
0.20±0.02	NA	NA	8.3	0.96±0.03	1.66±0.03	0.63±0.03	

Option	A max.	B min.	C	D min.	N	W1	W2 max.
T 3	180.5	1.5	13.0+0.6/-0.2	20.2	60±0.5	8.4+1.5/-0	14.4
T10	330	1.5	13.0±0.2	20.2	100±0.5	8.4+1.5/-0	14.4

T3= Tape and reel (3,000pcs/reel) T10= Tape and reel (10,000pcs/reel)

Unit: mm

ATTENTION: Abracon LLC's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependent Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon LLC is required. Please contact Abracon LLC for more information.

