BLM8G0710S-60PB; BLM8G0710S-60PBG LDMOS 2-stage power MMIC

AMPLEON

Rev. 3 — 13 September 2018

Product data sheet

Product profile

1.1 General description

The BLM8G0710S-60PB(G) is a dual section, 2-stage power MMIC using Ampleon's state of the art GEN8 LDMOS technology. This multiband device is perfectly suited as general purpose driver or small cell final in the frequency range from 700 MHz to 1000 MHz. Available in gull wing or straight lead outline.

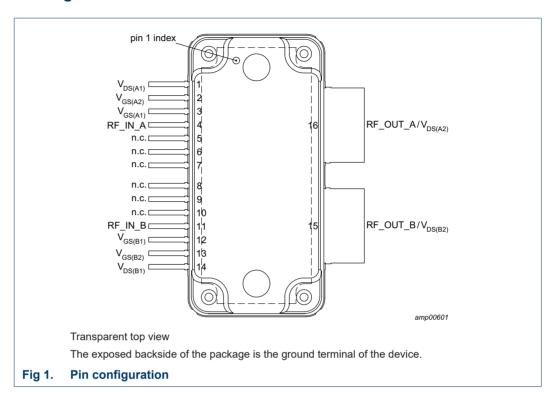
Table 1. **Performance**

Typical RF performance at T_{case} = 25 °C.

Test signal: 3GPP test model 1; 64 DPCH; PAR = 9.9 dB at 0.01% probability on CCDF; per section unless otherwise specified in a class-AB production circuit.

Test signal	f	V _{DS}	P _{L(AV)}	G _p	η _D	ACPR _{5M}
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
single carrier W-CDMA	957.5	28	6	34.7	26	-40

1.2 Features and benefits


- Designed for broadband operation (frequency 700 MHz to 1000 MHz)
- High section-to-section isolation enabling multiple combinations
- Integrated temperature compensated bias
- Biasing of individual stages is externally accessible
- Integrated ESD protection
- Excellent thermal stability
- High power gain
- On-chip matching for ease of use
- For RoHS compliance see the product details on the Ampleon website

1.3 Applications

- RF power MMIC for W-CDMA base stations in the 700 MHz to 1000 MHz frequency range. Possible circuit topologies are the following as also depicted in Section 8.1:
 - ◆ Dual section or single ended
 - Doherty
 - Quadrature combined
 - Push-pull

2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
V _{DS(A1)}	1	drain-source voltage of section A, driver stage (A1)
V _{GS(A2)}	2	gate-source voltage of section A, final stage (A2)
V _{GS(A1)}	3	gate-source voltage of section A, driver stage (A1)
RF_IN_A	4	RF input section A
n.c.	5	not connected
n.c.	6	not connected
n.c.	7	not connected
n.c.	8	not connected
n.c.	9	not connected
n.c.	10	not connected
RF_IN_B	11	RF input section B
V _{GS(B1)}	12	gate-source voltage of section B, driver stage (B1)
V _{GS(B2)}	13	gate-source voltage of section B, final stage (B2)
V _{DS(B1)}	14	drain-source voltage of section B, driver stage (B1)

Table 2. Pin description ... continued


Symbol	Pin	Description
RF_OUT_B/V _{DS(B2)}	15	RF output section B / drain-source voltage of section B, final stage (B2)
RF_OUT_A/V _{DS(A2)}	16	RF output section A / drain-source voltage of section A, final stage (A2)
GND	flange	RF ground

3. Ordering information

Table 3. Ordering information

Type number	Package							
	Name	Description	Version					
BLM8G0710S-60PB	-	plastic, heatsink small outline package; 16 leads (flat)	SOT1211-3					
BLM8G0710S-60PBG	-	plastic, heatsink small outline package; 16 leads	SOT1212-3					

4. Block diagram

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-0.5	+13	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	225	°C
T _{case}	case temperature		-	150	°C

^[1] Continuous use at maximum temperature will affect the reliability. For details refer to the online MTF calculator.

6. Thermal characteristics

Table 5. Thermal characteristics

Measured for total device.

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-c)}	thermal resistance from junction to case	final stage; T _{case} = 90 °C; P _L = 5 W	0.9	K/W
		driver stage; T _{case} = 90 °C; P _L = 5 W	3.7	K/W

^[1] When operated with a CW signal.

7. Characteristics

Table 6. DC characteristics

 T_{case} = 25 °C; per section unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit
je	e quiescent voltage $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ 1.5 2 2.7 V $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ [1] 1.7 2.65 3.6 V drain current variation $V_{CS} = 28 \text{ V}; I_D = 240 \text{ mA}$ [1] 1.7 2.65 3.6 V drain current variation $V_{CS} = 28 \text{ V}; V_{DS} = 28 \text{ V}$ - 1.4 μ ff current $V_{CS} = 0 \text{ V}; V_{DS} = 28 \text{ V}$ - 1.4 μ ff current $V_{CS} = 5.65 \text{ V}; V_{DS} = 10 \text{ V}$ - 8.3 - A ge current $V_{CS} = 1.0 \text{ V}; V_{DS} = 0 \text{ V}$ - 140 n fee preakdown voltage $V_{CS} = 0 \text{ V}; I_D = 120.6 \text{ μA}$ 65 - 1.6				
drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 482 \mu\text{A}$	65	-	-	V
gate-source quiescent voltage	V _{DS} = 28 V; I _D = 240 mA	1.5	2	2.7	V
	$V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$	1.7	2.65	3.6	V
quiescent drain current variation with temperature	$-40 ^{\circ}\text{C} \le T_{case} \le +85 ^{\circ}\text{C}$	1] _	1	-	%
drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μΑ
drain cut-off current	V _{GS} = 5.65 V; V _{DS} = 10 V	-	8.3	-	Α
gate leakage current	V _{GS} = 1.0 V; V _{DS} = 0 V	-	-	140	nA
ige	·	'		'	
drain-source breakdown voltage	V _{GS} = 0 V; I _D = 120.6 μA	65	-	-	V
gate-source quiescent voltage	V _{DS} = 28 V; I _D = 60 mA	1.5	2	2.7	V
	$V_{DS} = 28 \text{ V}; I_D = 60 \text{ mA}$	2] 1.7	2.65	3.6	V
quiescent drain current variation with temperature	$-40 ^{\circ}\text{C} \le T_{case} \le +85 ^{\circ}\text{C}$	2] _	1	-	%
drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μА
drain cut-off current	V _{GS} = 5.65 V; V _{DS} = 10 V	-	2.1	-	Α
gate leakage current	V _{GS} = 1.0 V; V _{DS} = 0 V	-	-	140	nA
	drain-source breakdown voltage gate-source quiescent voltage quiescent drain current variation with temperature drain leakage current gate leakage current gate leakage current qrain-source breakdown voltage gate-source quiescent voltage quiescent drain current variation with temperature drain leakage current drain cut-off current	drain-source breakdown voltage $V_{GS} = 0 \text{ V}; I_D = 482 \mu\text{A}$ gate-source quiescent voltage $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 240 \text{ mA}$ $V_{DS} = 28 \text{ V}; I_D = 60 \text{ mA}$ $V_{DS} = 10 \text{ V}; I_D = 60 \text{ mA}$	drain-source breakdown voltage $V_{GS} = 0 \text{ V}; \ I_D = 482 \ \mu\text{A}$ 65 gate-source quiescent voltage $V_{DS} = 28 \text{ V}; \ I_D = 240 \text{ mA}$ 1.5 $V_{DS} = 28 \text{ V}; \ I_D = 240 \text{ mA}$ 1.7 quiescent drain current variation with temperature $V_{CS} = 0 \text{ V}; \ V_{DS} = 28 \text{ V}; \ I_D = 240 \text{ mA}$ 1.1 1.7 quiescent drain current variation with temperature $V_{CS} = 0 \text{ V}; \ V_{DS} = 28 \text{ V}$ - drain leakage current $V_{CS} = 0 \text{ V}; \ V_{DS} = 28 \text{ V}$ - gate leakage current $V_{CS} = 5.65 \text{ V}; \ V_{DS} = 10 \text{ V}$ - gate leakage current $V_{CS} = 1.0 \text{ V}; \ V_{DS} = 0 \text{ V}$ - gate-source breakdown voltage $V_{CS} = 0 \text{ V}; \ I_D = 120.6 \ \mu\text{A}$ 65 gate-source quiescent voltage $V_{DS} = 28 \text{ V}; \ I_D = 60 \text{ mA}$ 1.5 $V_{DS} = 28 \text{ V}; \ I_D = 60 \text{ mA}$ 21 1.7 quiescent drain current variation with temperature $V_{CS} = 0 \text{ V}; \ V_{DS} = 28 \text{ V}; \ V_{DS$	drain-source breakdown voltage $V_{GS} = 0 \text{ V}; \ I_D = 482 \ \mu\text{A}$ 65 - gate-source quiescent voltage $V_{DS} = 28 \text{ V}; \ I_D = 240 \text{ mA}$ 1.5 2 $V_{DS} = 28 \text{ V}; \ I_D = 240 \text{ mA}$ 1.5 2 quiescent drain current variation with temperature $V_{CS} = 28 \text{ V}; \ V_D = 240 \text{ mA}$ 1.5 1 1.7 2.65 quiescent drain current variation $V_{CS} = 0 \text{ V}; \ V_{DS} = 28 \text{ V}$ - drain leakage current $V_{CS} = 0 \text{ V}; \ V_{DS} = 28 \text{ V}$ - $V_{CS} = 10 \text{ V}$ - V_{CS}	drain-source breakdown voltage V_{GS} = 0 V; I_D = 482 μA 65 -

^[1] In production circuit with 1.3 $k\Omega$ gate feed resistor.

Table 7. RF Characteristics

Typical RF performance at $T_{\text{case}} = 25 \,^{\circ}\text{C}$; $V_{DS} = 28 \,^{\circ}\text{V}$; $I_{Dq1} = 60 \,^{\circ}\text{mA}$ (driver stage); $I_{Dq2} = 240 \,^{\circ}\text{mA}$ (final stage); $P_{L(AV)} = 6 \,^{\circ}\text{W}$; unless otherwise specified, measured in an Ampleon wideband straight lead production circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Test sign	al: single carrier W-CDMA [1]					
Gp	power gain	f = 730.5 MHz	-	35.6	-	dB
		f = 957.5 MHz	33.2	34.7	36.2	dB
η_{D}	drain efficiency	f = 730.5 MHz	-	23.4	-	%
		f = 957.5 MHz	21	26	-	%

BLM8G0710S-60PB_S-60PBG

All information provided in this document is subject to legal disclaimers.

© Ampleon Netherlands B.V. 2018. All rights reserved.

^[2] In production circuit with 1.2 $k\Omega$ gate feed resistor.

Table 7. RF Characteristics ...continued

Typical RF performance at T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA (driver stage); I_{Dq2} = 240 mA (final stage); $P_{L(AV)}$ = 6 W; unless otherwise specified, measured in an Ampleon wideband straight lead production circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RLin	input return loss	f = 957.5 MHz	-	-17	-10	dB
ACPR _{5M}	adjacent channel power ratio	f = 730.5 MHz	-	-39.5	-	dBc
	(5 MHz)	f = 957.5 MHz	-	-40	-34.5	dBc
PARO	output peak-to-average ratio	f = 730.5 MHz	-	8	-	dB
		f = 957.5 MHz	6.7	8	-	dB
Test signa	al: CW [2]					
$\Delta \phi_{s21}$	phase response difference	between sections	-10	-	+10	deg
$\Delta s_{21} ^2$	insertion power gain difference	between sections	-0.5	-	+0.5	dB

^{[1] 3}GPP test model 1; 64 DPCH; PAR = 9.9 dB at 0.01% probability on CCDF.

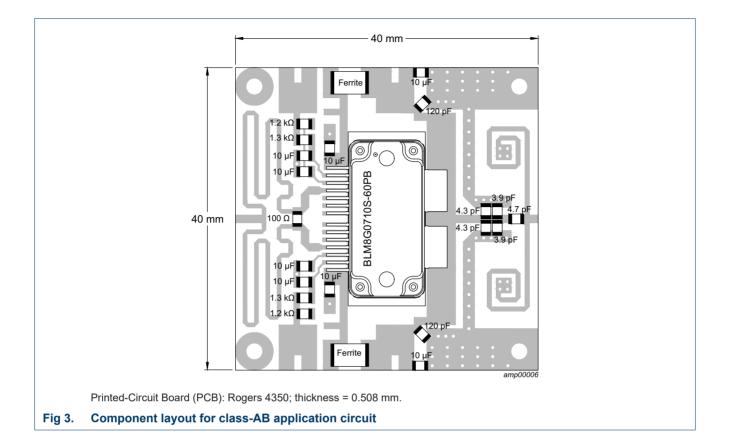
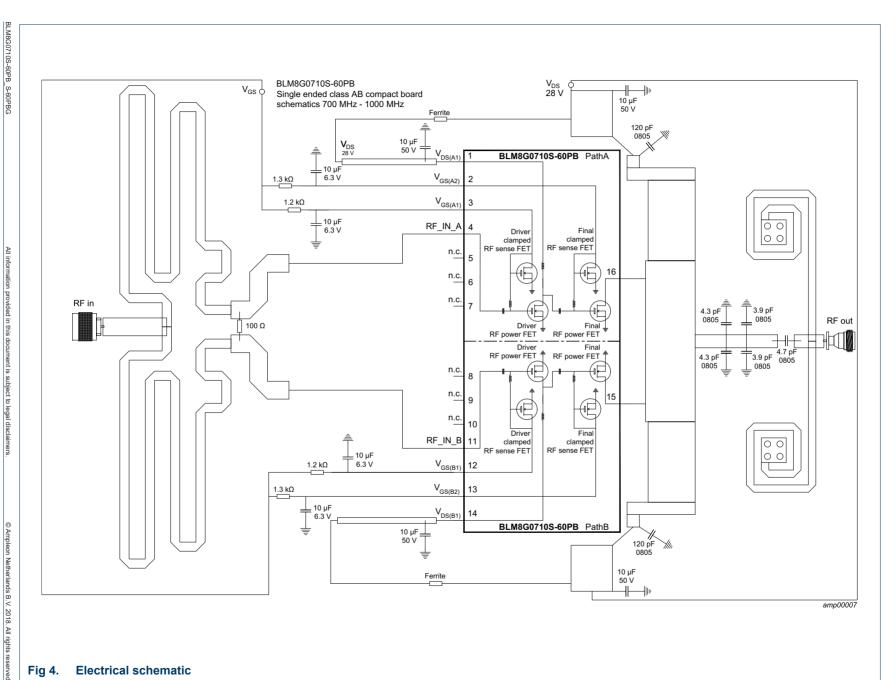
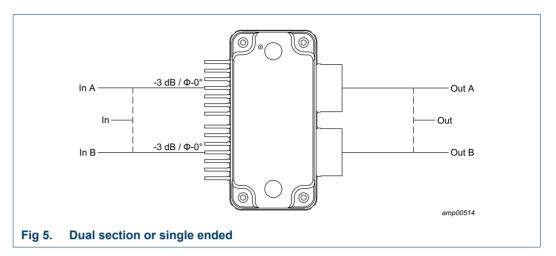

8. Application information

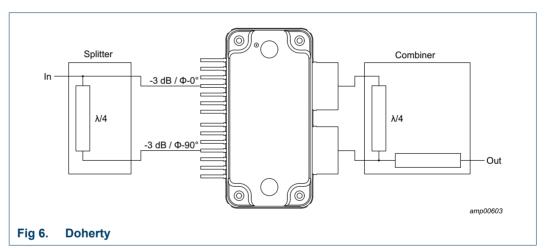
Table 8. Typical performance

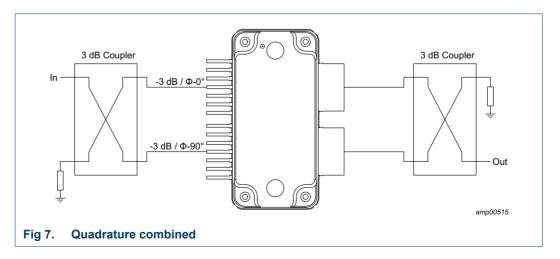

Test signal: 1-tone pulsed CW; RF performance at T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq} = 600 mA unless otherwise specified, measured in an Ampleon wideband f = 700 MHz to 1000 MHz class AB application circuit.

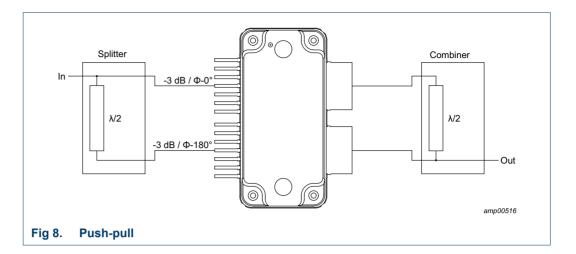
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P _{L(1dB)}	output power at 1 dB gain compression	f = 800 MHz	-	74	-	W
η_{D}	drain efficiency	at P _{L(1dB)} ; f = 800 MHz	-	58.4	-	%
Gp	power gain	P _{L(AV)} = 11.2 W; f = 800 MHz	-	36.5	-	dB
B _{video}	video bandwidth	2-tone CW; P _{L(AV)} = 40 W; f = 881.5 MHz	-	154	-	MHz
G _{flat}	gain flatness	P _{L(AV)} = 11.2 W; f = 700 MHz to 1000 MHz	-	0.3	-	dB
ΔG/ΔT	gain variation with temperature	f = 800 MHz	-	0.03	-	dB/°C
$ s_{12} ^2$	isolation	between sections A and B; P _{L(AV)} = 8 W; f = 800 MHz	-	24.5	-	dB
K	Rollett stability factor	T = -40 °C; f = 0.1 GHz to 3 GHz	-	>1.2	-	

^[2] f = 957.5 MHz.




Product data sheet




Electrical schematic

8.1 Possible circuit topologies

8.2 Ruggedness in class-AB operation

The BLM8G0710S-60PB and BLM8G0710S-60PBG are capable of withstanding a load mismatch corresponding to VSWR = 30 : 1 through all phases under the following conditions: V_{DS} = 32 V; I_{Dq1} = 60 mA; I_{Dq2} = 192 mA; P_i = 13 dBm, P_i is measured at CW and corresponding to $P_{L(3dB)}$ under Z_S = 50 Ω ; f = 840 MHz.

8.3 Impedance information

Table 9. Typical impedance tuned for maximum output power

Measured load-pull data per section; test signal: pulsed CW; T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA; I_{Dq2} = 240 mA; I_{Dq2} = 100 μs; δ = 10 %; I_{Dq2} = 50 I_{Dq2} . Typical values unless otherwise specified.

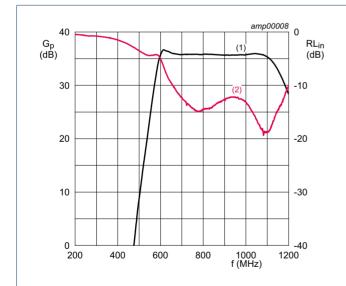
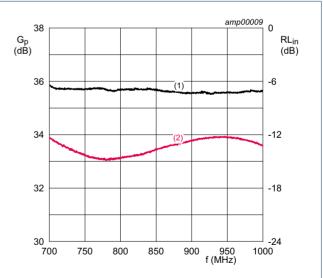

	tuned for ma		tuned for maximum power added efficiency							
f	Z _L	G _{p(max)}	P _L	η_{add}	AM-PM conversion	Z _L	G _{p(max)}	P _L	η_{add}	AM-PM conversion
(MHz)	(Ω)	(dB)	(dBm)	(%)	(deg)	(Ω)	(dB)	(dBm)	(%)	(deg)
BLM8G0	710S-60PB						•			
700	3.0 + j2.1	36.1	47.2	55.1	2.4	4.2 + j5.2	37.6	45.3	65.7	-1.5
720	3.0 + j1.7	35.9	47.3	53.4	2.5	4.4 + j5.0	37.8	45.4	64.6	-1.0
740	3.0 + j1.7	35.8	47.4	54.8	3.0	4.2 + j4.5	37.5	45.7	64.7	-0.2
760	3.0 + j1.3	35.4	47.4	53.5	3.0	4.1 + j4.8	37.2	45.4	64.3	-0.9
780	3.3 + j1.3	35.3	47.5	55.0	2.4	4.0 + j4.4	37.0	45.7	63.7	-1.3
800	3.2 + j0.9	35.2	47.5	53.8	3.1	3.9 + j4.2	37.0	45.8	64.0	-1.0
820	3.3 + j1.0	35.0	47.5	54.9	2.4	4.1 + j3.8	36.7	46.0	63.6	-0.1
840	3.4 + j0.5	34.8	47.5	53.2	2.3	3.8 + j4.0	36.8	45.7	63.4	-1.3
860	3.5 + j0.5	34.7	47.5	53.8	2.1	3.8 + j3.8	36.7	45.7	63.1	-1.2
880	3.4 + j0.4	34.8	47.4	53.2	1.8	4.0 + j3.5	36.7	45.9	63.1	-0.3
900	3.4 + j0.3	34.7	47.4	53.4	2.1	3.7 + j3.6	36.8	45.7	63.0	-0.9
920	3.4 + j0.4	34.7	47.4	54.4	1.4	3.8 + j3.7	36.8	45.5	63.0	-0.5
940	3.5 + j0.0	34.5	47.3	52.9	1.1	3.5 + j3.2	36.6	45.7	62.3	-0.5
960	3.5 – j0.1	34.2	47.3	52.7	1.3	3.5 + j3.1	36.4	45.7	62.0	-0.3
980	3.5 – j0.1	34.2	47.3	53.9	0.4	3.4 + j2.8	36.2	45.8	62.2	-1.0
BLM8G0	710S-60PBG									

Table 9. Typical impedance tuned for maximum output power ...continued

Measured load-pull data per section; test signal: pulsed CW; T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA; I_{Dq2} = 240 mA; t_p = 100 μ s; δ = 10 %; Z_S = 50 Ω . Typical values unless otherwise specified.

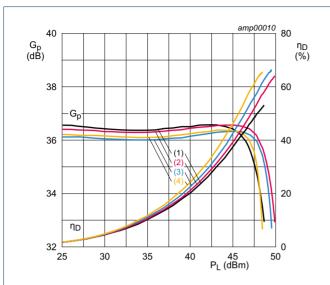
	tuned for ma	ximum o	utput po	wer		tuned for maximum power added efficiency					
f	Z _L	G _{p(max)}	PL	η _{add}	AM-PM conversion	Z _L	G _{p(max)}	PL	η _{add}	AM-PM conversion	
(MHz)	(Ω)	(dB)	(dBm)	(%)	(deg)	(Ω)	(dB)	(dBm)	(%)	(deg)	
700	3.0 + j0.6	36.3	47.5	55.1	0.3	4.5 + j3.6	37.7	45.8	66.1	-3.2	
720	3.0 + j0.6	36.4	47.5	55.6	0.6	4.4 + j3.1	37.7	46.1	65.7	-2.2	
740	2.9 + j0.3	35.9	47.6	54.6	1.9	4.1 + j3.4	37.3	45.8	65.4	-2.0	
760	3.0 + j0.2	35.6	47.7	56.0	0.6	4.4 + j2.8	37.0	46.1	65.1	-2.2	
780	3.3 – j0.1	35.5	47.7	55.9	0.9	4.3 + j2.9	37.0	46.0	64.7	-2.9	
800	3.3 – j0.5	35.4	47.7	54.4	0.8	3.9 + j2.6	37.0	46.1	64.4	-3.2	
820	3.3 – j0.5	35.8	47.7	55.2	1.3	4.1 + j2.3	37.3	46.2	64.0	-1.8	
840	3.3 – j0.5	35.5	47.6	55.4	1.3	4.1 + j2.1	36.6	46.3	63.7	-1.3	
860	3.5 – j0.9	34.5	47.7	54.9	0.6	3.8 + j2.0	35.9	46.3	63.7	-2.5	
880	3.4 – j1.0	34.7	47.6	54.2	-0.1	3.6 + j2.0	36.4	46.1	63.1	-3.2	
900	3.4 – j1.2	34.8	47.6	54.2	0.0	3.7 + j1.8	36.5	46.1	63.3	-2.7	
920	3.4 – j1.1	35	47.6	55.4	-0.4	3.7 + j1.8	36.6	45.9	63.2	-1.9	
940	3.5 – j1.4	34.7	47.5	54.7	-0.3	3.8 + j1.6	36.4	46.0	62.8	-1.2	
960	3.5 – j1.6	34.4	47.5	54.9	-0.4	3.5 + j1.3	36.1	46.0	62.8	-2.2	


8.4 Graphs

 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA; I_{Dq2} = 240 mA; P_L = 2 W. Per section.

- (1) magnitude of Gp
- (2) magnitude of RLin

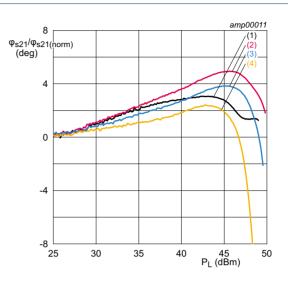
Fig 9. Wideband power gain and input return loss as function of frequency; typical values


 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA; I_{Dq2} = 240 mA; P_{I} = 2 W. Per section.

- (1) magnitude of G_p
- (2) magnitude of RLin

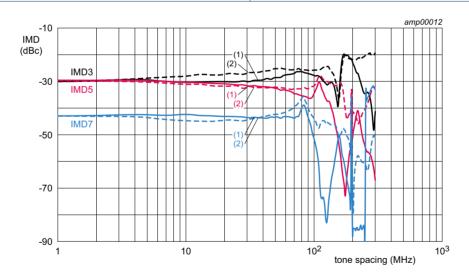
Fig 10. In-band power gain and input return loss as function of frequency; typical values

BLM8G0710S-60PB(G)


LDMOS 2-stage power MMIC

 $T_{case} = 25$ °C; $V_{DS} = 28$ V; $I_{Dq1} = 60$ mA; $I_{Dq2} = 240$ mA. Per section.

- (1) f = 700 MHz
- (2) f = 800 MHz
- (3) f = 900 MHz
- (4) f = 1000 MHz


Fig 11. Power gain and drain efficiency as function of output power; typical values

Normalized at P_L = 22 dBm; T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA; I_{Dq2} = 240 mA. Per section.

- (1) f = 700 MHz
- (2) f = 800 MHz
- (3) f = 900 MHz
- (4) f = 1000 MHz

Fig 12. Normalized phase response as a function of output power; typical values

 $T_{case} = 25 \, ^{\circ}\text{C}; V_{DS} = 28 \, \text{V}; I_{Dq1} = 60 \, \text{mA}; I_{Dq2} = 240 \, \text{mA}; f = 881.5 \, \text{MHz}; 2-tone CW, P_L = 20 \, \text{W}. Per section.$

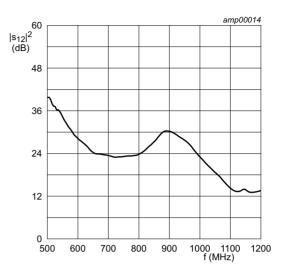

- (1) IMD low
- (2) IMD high

Fig 13. Intermodulation distortion as a function of tone spacing; typical values

 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 60 mA; I_{Dq2} = 240 mA: f = 900 MHz; 1-carrier W-CDMA; test model 1; PAR = 9.9 dB at 0.01% probability on CCDF. Per section

Fig 14. Adjacent channel power ratio and drain efficiency as function of output power; typical values

 T_{case} = 25 °C; V_{DS} = 28 V; I_{Dq1} = 40 mA; I_{Dq2} = 260 mA, measured on evaluation board.

Fig 15. Section A to B isolation as a function of frequency; typical values

9. Package outline

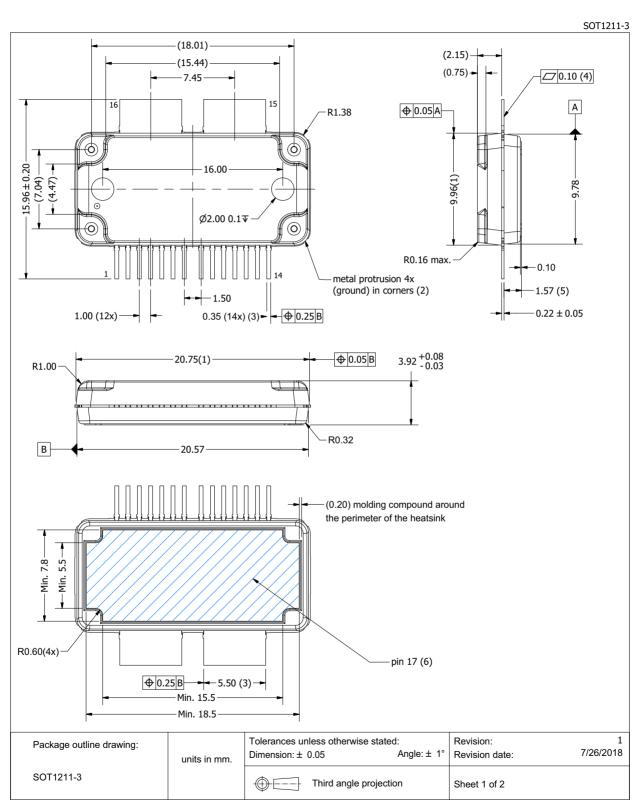


Fig 16. Package outline SOT1211-3 (sheet 1 of 2)

SOT1211-3

Drawing Notes			
Items	Description		
	Dimensions are excluding mold protrusion. Areas located adjacent to the leads have a maximum mold protrusion of 0.25		
(1)	mm (per side) and 0.62 mm max. in length. In between the 14 leads the protrusion is 0.25 mm. max. At all other areas the		
	mold protrusion is maximum 0.15 mm per side. See also detail B.		
(2)	The metal protrusion (tie bars) in the corner will not stick out of the molding compound protrusions (detail A).		
(3)	The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location.		
(4)	The lead coplanarity over all leads is 0.1 mm maximum.		
(5)	Dimension is measured 0.5 mm from the edge of the top package body.		
(6)	The hatched area indicates the exposed metal heatsink.		
(7)	The leads and exposed heatsink are plated with matte Tin (Sn).		

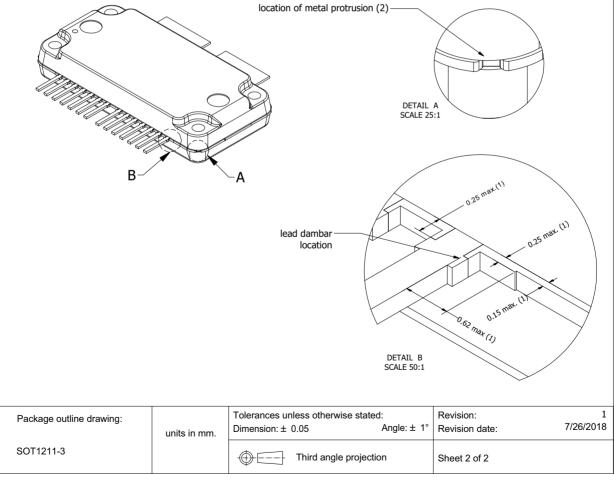


Fig 17. Package outline SOT1211-3 (sheet 2 of 2)

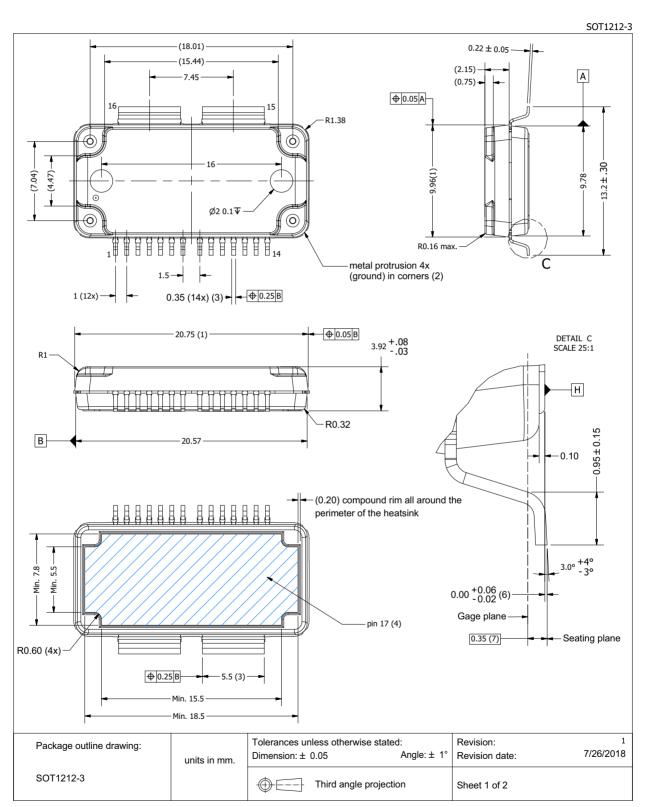


Fig 18. Package outline SOT1212-3 (sheet 1 of 2)

SOT1212-3

	Drawing Notes
Items	Description
	Dimensions are excluding mold protrusion. Areas located adjacent to the leads have a maximum mold protrusion of 0.25
(1)	mm (per side) and 0.62 mm max. in length. In between the 14 leads the protrusion is 0.25 mm max. At all other areas the
	mold protrusion is maximum 0.15 mm per side. See also detail B.
(2)	The metal protrusion (tie bars) in the corner will not stick out of the molding compound protrusions (detail A).
(3)	The lead dambar (metal) protrusions are not included. Add 0.14 mm max to the total lead dimension at the dambar location
(4)	The hatched area indicated the exposed heatsink.
(5)	The leads and exposed heatsink are plated with matte Tin (Sn).
(6)	Dimension is measured with respect to the bottom of the heatsink Datum H. Positive value means that the bottom of the
	heatsink is higher than the bottom of the lead.
(7)	Gage plane (foot length) to be measured from the seating plane.

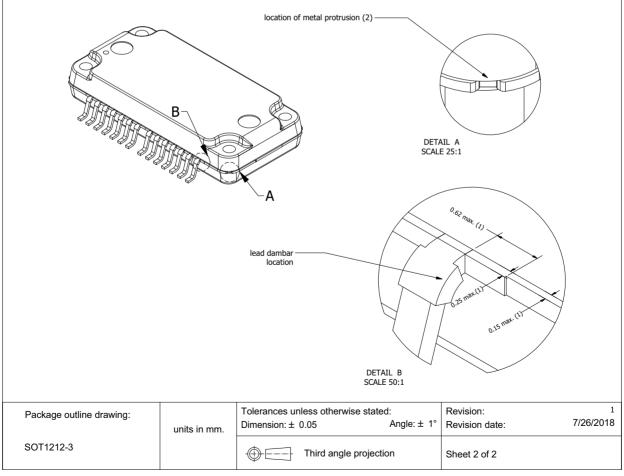


Fig 19. Package outline SOT1212-3 (sheet 2 of 2)

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

Table 10. ESD sensitivity

ESD model	Class
Charged Device Model (CDM); According to ANSI/ESDA/JEDEC standard JS-002	C1 [1]
Human Body Model (HBM); According to ANSI/ESDA/JEDEC standard JS-001	1B [2]

- [1] CDM classification C1 is granted to any part that passes after exposure to an ESD pulse of 250 V.
- [2] HBM classification 1B is granted to any part that passes after exposure to an ESD pulse of 500 V.

11. Abbreviations

Table 11. Abbreviations

Acronym	Description
AM	Amplitude Modulation
3GPP	3rd Generation Partnership Project
CCDF	Complementary Cumulative Distribution Function
CW	Continuous Wave
DPCH	Dedicated Physical CHannel
ESD	ElectroStatic Discharge
GEN8	Eighth Generation
LDMOS	Laterally Diffused Metal Oxide Semiconductor
MMIC	Monolithic Microwave Integrated Circuit
MTF	Median Time to Failure
PAR	Peak-to-Average Ratio
PM	Phase Modulation
RoHS	Restriction of Hazardous Substances
VSWR	Voltage Standing Wave Ratio
W-CDMA	Wideband Code Division Multiple Access

12. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLM8G0710S-60PB_S-60PBG v.3	20180913	Product data sheet	-	BLM8G0710S-60PB_ S-60PBG v.2
Modifications	 Table 3 on p SOT1212-3 Figure 3 on Figure 5 on Figure 6 on Figure 7 on Figure 8 on Table 9 on p Section 9 on SOT1212-2 	page 2: figure updated page 3: package outline ver page 6: figure updated page 8: figure updated page 8: figure updated page 8: figure updated page 9: figure updated page 9: typo corrected page 13: package outline to SOT1211-3 and SOT12 page 17: added table	versions changed	
BLM8G0710S-60PB_S-60PBG v.2	20160322	Product data sheet	-	BLM8G0710S-60PB_ S-60PBG v.1
BLM8G0710S-60PB_S-60PBG v.1	20160225	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an

Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

BLM8G0710S-60PB S-60PBG

All information provided in this document is subject to legal disclaimers.

© Ampleon Netherlands B.V. 2018. All rights reserved.

BLM8G0710S-60PB(G)

LDMOS 2-stage power MMIC

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon's standard warranty and Ampleon's product

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

14. Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

AMPLEON

BLM8G0710S-60PB(G)

LDMOS 2-stage power MMIC

15. Contents

1	Product profile	1
1.1	General description	1
1.2	Features and benefits	1
1.3	Applications	1
2	Pinning information	2
2.1	Pinning	
2.2	Pin description	2
3	Ordering information	3
4	Block diagram	3
5	Limiting values	3
6	Thermal characteristics	4
7	Characteristics	4
8	Application information	5
8.1	Possible circuit topologies	
8.2	Ruggedness in class-AB operation	9
8.3	Impedance information	
8.4	Graphs	
9	Package outline	3
10	Handling information 1	7
11	Abbreviations1	7
12	Revision history 1	8
13	Legal information 1	9
13.1	Data sheet status	9
13.2	Definitions	9
13.3	Disclaimers	
13.4	Trademarks2	0
14	Contact information 2	0
15	Contents 2	1

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.