74AUP2G125

Low-power dual buffer/line driver; 3-state

Rev. 14 — 21 June 2022

Product data sheet

1. General description

The 74AUP2G125 is a dual buffer/line driver with 3-state outputs controlled by the output enable inputs ($n\overline{OE}$). Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times. This device ensures very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- · High noise immunity
- CMOS low power dissipation
- Low static power consumption; I_{CC} = 0.9 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD78B Class II
- · Overvoltage tolerant inputs to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- · Input-disable feature allows floating input conditions
- I_{OFF} circuitry provides partial Power-down mode operation
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- · ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Low-power dual buffer/line driver; 3-state

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AUP2G125DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74AUP2G125GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm	SOT833-1
74AUP2G125GF	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1 × 0.5 mm	SOT1089
74AUP2G125GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 × 1.0 × 0.35 mm	<u>SOT1116</u>
74AUP2G125GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1.0 × 0.35 mm	SOT1203
74AUP2G125GX	-40 °C to +125 °C	X2SON8	plastic thermal enhanced extremely thin small outline package; no leads; 8 terminals; body 1.35 × 0.8 × 0.32 mm	SOT1233-2

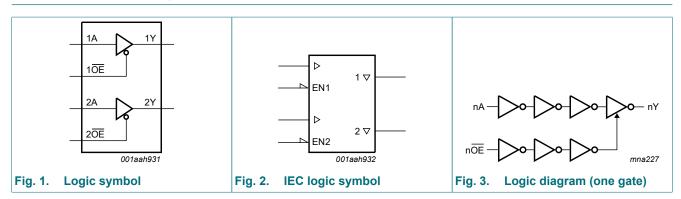
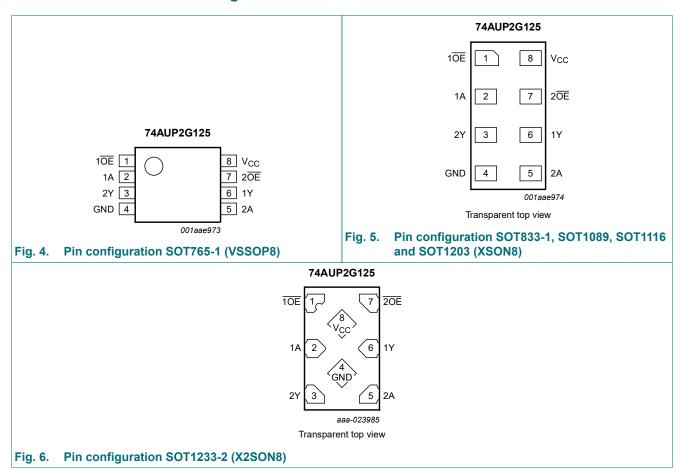

4. Marking

Table 2. Marking codes

Type number	Marking code[1]
74AUP2G125DC	p25
74AUP2G125GT	p25
74AUP2G125GF	аМ
74AUP2G125GN	аМ
74AUP2G125GS	аМ
74AUP2G125GX	аМ

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram



Product data sheet

Low-power dual buffer/line driver; 3-state

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description

Symbol	Pin	Description
10E, 20E	1, 7	output enable input (active LOW)
1A, 2A	2, 5	data input
GND	4	ground (0 V)
1Y, 2Y	6, 3	data output
Vcc	8	supply voltage

Low-power dual buffer/line driver; 3-state

7. Functional description

Table 4. Function table

 $H = HIGH \text{ voltage level}; L = LOW \text{ voltage level}; X = don't care; Z = high-impedance OFF-state.}$

Input nOE		Output
nŌE	nA	nY
L	L	L
L	Н	Н
Н	X	Z

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
VI	input voltage		[1]	-0.5	+4.6	V
Vo	output voltage	Active mode and Power-down mode	[1]	-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Io	output current	$V_O = 0 V \text{ to } V_{CC}$		-	±20	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		SOT765-1 (VSSOP8) SOT833-1 (XSON8) SOT1089 (XSON8) SOT1116 (XSON8) SOT1203 (XSON8)	[2] [3] [4] [5] [6]	- - - -	250 250 250 250 250	mW mW mW mW
		SOT1233-2 (X2SON8)	[7]	-	300	mW

- The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- For SOT765-1 (VSSOP8) package: P_{tot} derates linearly with 4.9 mW/K above 99 °C.
- For SOT833-1 (XSON8) package: Ptot derates linearly with 3.1 mW/K above 68 °C. [3]
- [5]
- For SOT1089 (XSON8) package: P_{tot} derates linearly with 4.0 mW/K above 88 °C. For SOT1116 (XSON8) package: P_{tot} derates linearly with 4.2 mW/K above 90 °C. For SOT1203 (XSON8) package: P_{tot} derates linearly with 3.6 mW/K above 81 °C. For SOT1233-2 (X2SON8) package: P_{tot} derates linearly with 7.7 mW/K above 118 °C.

Low-power dual buffer/line driver; 3-state

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	-	200	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	5 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	V _I = V _{IH} or V _{IL}				
		I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	2.05	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.72	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage	V _I = V _{IH} or V _{IL}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.44	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _I	input leakage current	V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.1	μΑ
l _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±0.2	μΑ
ΔI_{OFF}	additional power-off leakage current	V ₁ or V _O = 0 V to 3.6 V; V _{CC} = 0 V to 0.2 V	±0.2 0.5		μΑ	
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.5	μΑ
Δl _{CC}	additional supply current	data input; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; [1] $V_{CC} = 3.3 \text{ V}$	-	-	40	μΑ
		$\overline{\text{OE}}$ input; V _I = V _{CC} - 0.6 V; I _O = 0 A; [1] V _{CC} = 3.3 V	-	-	110	μΑ
		all inputs; V_I = GND to 3.6 V; [2] $n\overline{OE}$ = GND; V_{CC} = 0.8 V to 3.6 V	-	-	1	μΑ
Cı	input capacitance	$V_{CC} = 0 \text{ V to } 3.6 \text{ V; } V_I = \text{GND or } V_{CC}$	-	0.8	-	pF
Co	output capacitance	output enabled; V _O = GND; V _{CC} = 0 V	-	1.4	-	pF
		output disabled; $V_O = GND \text{ or } V_{CC} = 0 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	1.3	-	pF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
		CC = 0.8 V	-	V		
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		$ \begin{array}{c} \text{age} & \bigvee_{\text{CC}} = 0.8 \ \text{V} & 0.70 \times \text{V}_{\text{CC}} & - & - & - \\ \bigvee_{\text{CC}} = 0.9 \ \text{V to } 1.95 \ \text{V} & 0.65 \times \text{V}_{\text{CC}} & - & - \\ \bigvee_{\text{CC}} = 2.3 \ \text{V to } 2.7 \ \text{V} & 1.6 & - & - \\ \bigvee_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V} & 2.0 & - & - & 0.30 \times \text{V}_{\text{CC}} \\ \bigvee_{\text{CC}} = 0.8 \ \text{V} & - & - & 0.30 \times \text{V}_{\text{CC}} \\ \bigvee_{\text{CC}} = 0.9 \ \text{V to } 1.95 \ \text{V} & - & - & 0.35 \times \text{V}_{\text{CC}} \\ \bigvee_{\text{CC}} = 2.3 \ \text{V to } 2.7 \ \text{V} & - & - & 0.7 \\ \bigvee_{\text{CC}} = 3.0 \ \text{V to } 3.6 \ \text{V} & - & - & 0.9 \\ \bigvee_{\text{I}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ & _{0} = -20 \ \mu\text{A}; \ \text{V}_{\text{CC}} = 0.8 \ \text{V to } 3.6 \ \text{V} & \bigvee_{\text{CC}} - 0.1 & - & - \\ _{0} = -1.1 \ \text{mA}; \ \text{V}_{\text{CC}} = 1.1 \ \text{V} & 0.7 \times \text{V}_{\text{CC}} \\ & _{0} = -1.9 \ \text{mA}; \ \text{V}_{\text{CC}} = 1.4 \ \text{V} & 1.03 & - & - \\ _{0} = -1.9 \ \text{mA}; \ \text{V}_{\text{CC}} = 1.4 \ \text{V} & 1.03 & - & - \\ _{0} = -2.3 \ \text{mA}; \ \text{V}_{\text{CC}} = 1.65 \ \text{V} & 1.30 & - & - \\ _{0} = -2.3 \ \text{mA}; \ \text{V}_{\text{CC}} = 2.3 \ \text{V} & 1.85 & - & - \\ _{0} = -2.3 \ \text{mA}; \ \text{V}_{\text{CC}} = 2.3 \ \text{V} & 1.85 & - & - \\ _{0} = -2.7 \ \text{mA}; \ \text{V}_{\text{CC}} = 2.3 \ \text{V} & 1.85 & - & - \\ _{0} = -2.7 \ \text{mA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & 2.55 & - & - \\ _{0} = -2.0 \ \text{mA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & 2.55 & - & - \\ _{0} = -2.0 \ \text{mA}; \ \text{V}_{\text{CC}} = 0.8 \ \text{V} \ \text{to } 3.6 \ \text{V} & - & 0.3 \ \text{V}_{\text{CC}} & - & - \\ _{0} = -2.3 \ \text{mA}; \ \text{V}_{\text{CC}} = 2.3 \ \text{V} & - & - & 0.37 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & - & - & 0.37 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & - & - & 0.37 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 0.8 \ \text{V} \ \text{to } 3.6 \ \text{V} & - & - & 0.33 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 1.4 \ \text{V} & - & - & 0.37 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & - & - & 0.33 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & - & - & 0.33 \ \text{I}_{\text{O}} = 1.1 \ \text{MA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & - & - & 0.33 \ \text{I}_{\text{O}} = 1.0 \ \text{MA}; \ \text{V}_{\text{CC}} = 3.0 \ \text{V} & - & - & 0.33 \ \text{I}_{\text{O}} = 1.0 \ $	V			
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		I _O = -20 μA; V _{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.67	1.6	V	
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA
l _{OZ}	OFF-state output current		-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$	-	-	±0.5	μA
ΔI_{OFF}	additional power-off leakage current		-	-	±0.6	μΑ
I _{CC}	supply current		-	-	0.9	μΑ
ΔI _{CC}	additional supply current	data input; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; [1] $V_{CC} = 3.3 \text{ V}$	-	-	50	μΑ
		$\overline{\text{NOE}}$ input; V _I = V _{CC} - 0.6 V; I _O = 0 A; [1] V _{CC} = 3.3 V	-	-	120	μΑ
		all inputs; V_1 = GND to 3.6 V; [2] $n\overline{OE}$ = GND; V_{CC} = 0.8 V to 3.6 V	-	-	1	μA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.75 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.25 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.6 × V _{CC}	-	-	V
$I_{O} = -1.7 \text{ I}$ $I_{O} = -1.9 \text{ I}$ $I_{O} = -2.3 \text{ I}$ $I_{O} = -3.1 \text{ I}$ $I_{O} = -2.7 \text{ I}$ $I_{O} = -4.0 \text{ I}$		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
	I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V	
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.77	V V - 0.25 × V _{CC} V - 0.30 × V _{CC} V - 0.7 V - 0.9 V - 0.9 V 0.36 V 0.50 V 0.50 V - ±0.75 µ - ±0.75 µ - ±0.75 µ - ±0.75 µ - 1.4 µ	V	
		$I_O = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$ 1.67	V			
		I_{O} = -2.7 mA; V_{CC} = 3.0 V	2.40	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V
I _I	input leakage current	V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.75	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH} \text{ or } V_{IL}; V_O = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μΑ
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μΑ
Δl _{OFF}	additional power-off leakage current	V _I or V _O = 0 V to 3.6 V; V _{CC} = 0 V to 0.2 V	-	-	±0.75	μA
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μΑ
ΔI _{CC}	additional supply current	data input; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; [1] $V_{CC} = 3.3 \text{ V}$	-	-	75	μΑ
		$\overline{\text{NOE}}$ input; V _I = V _{CC} - 0.6 V; I _O = 0 A; [1] V _{CC} = 3.3 V	-	-	180	μΑ
		all inputs; V_I = GND to 3.6 V; [2] $n\overline{OE}$ = GND; V_{CC} = 0.8 V to 3.6 V	-	-	1	μA

Low-power dual buffer/line driver; 3-state

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9.

Symbol	Parameter	Conditions		25 °C		T _{an}	_{nb} = o +85 °C	T _{amb} = -40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
$C_L = 5 p$	F									
t _{pd}	propagation	nA to nY; see Fig. 7. [2]								
	delay	V _{CC} = 0.8 V	-	20.6	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.8	5.5	10.5	2.5	11.7	2.5	12.9	ns
		V _{CC} = 1.4 V to 1.6 V	2.2	3.9	6.1	2.0	7.3	2.0	8.1	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	3.2	4.8	1.7	6.1	1.7	6.7	ns
		V _{CC} = 2.3 V to 2.7 V	1.6	2.6	3.6	1.4	4.3	1.4	4.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.4	2.4	3.1	1.2	3.9	1.2	4.4	ns
t _{en}	enable time	nOE to nY; see Fig. 8. [3]								
		V _{CC} = 0.8 V	-	69.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.1	6.1	11.8	2.9	13.9	2.9	15.4	ns
		V _{CC} = 1.4 V to 1.6 V	2.5	4.2	6.6	2.3	7.7	2.3	8.3	ns
		V _{CC} = 1.65 V to 1.95 V	2.1	3.4	5.1	2.0	6.2	2.0	6.8	ns
		V _{CC} = 2.3 V to 2.7 V	1.8	2.6	3.7	1.7	4.5	1.7	5.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	2.4	3.1	1.7	3.5	1.7	3.9	ns
t _{dis}	disable time	nOE to nY; see Fig. 8. [4]								
		V _{CC} = 0.8 V	-	14.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.7	4.3	6.5	2.7	7.3	2.7	8.2	ns
		V _{CC} = 1.4 V to 1.6 V	2.1	3.2	4.4	2.1	5.1	2.1	5.7	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	3.0	4.3	2.0	5.0	2.0	5.7	ns
		V _{CC} = 2.3 V to 2.7 V	1.4	2.2	2.9	1.4	3.3	1.4	4.1	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	2.5	3.2	1.7	3.4	1.7	3.9	ns

Symbol	Parameter	Conditions		25 °C		T _{an}	_{nb} = o +85 °C	T _{amb} = -40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 10	pF									
t _{pd}	propagation	nA to nY; see Fig. 7. [2]								
	delay	V _{CC} = 0.8 V	-	24.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.2	6.4	12.3	3.0	13.8	3.0	15.2	ns
		V _{CC} = 1.4 V to 1.6 V	2.1	4.5	7.3	1.9	8.5	1.9	9.4	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	3.8	5.5	1.7	6.8	1.7	7.6	ns
		V _{CC} = 2.3 V to 2.7 V	2.1	3.2	4.2	1.6	5.3	1.6	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	3.0	3.8	1.6	4.6	1.6	5.2	ns
t _{en}	enable time	nOE to nY; see Fig. 8. [3]								
		V _{CC} = 0.8 V	-	73.7	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.6	6.9	13.5	3.4	15.8	3.4	17.5	ns
		V _{CC} = 1.4 V to 1.6 V	2.3	4.8	7.7	2.2	8.6	2.2	9.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	3.9	5.8	1.9	6.8	1.9	7.4	ns
		V _{CC} = 2.3 V to 2.7 V	1.8	3.2	4.3	1.7	5.3	1.7	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	3.0	3.9	1.7	4.3	1.7	4.8	ns
t _{dis}	disable time	nOE to nY; see Fig. 8. [4]								
		V _{CC} = 0.8 V	-	32.7	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.4	5.4	7.9	3.4	8.8	3.4	9.9	ns
		V _{CC} = 1.4 V to 1.6 V	2.2	4.1	5.5	2.2	6.2	2.2	7.1	ns
		V _{CC} = 1.65 V to 1.95 V	2.2	4.2	5.6	1.9	6.3	1.9	7.1	ns
		V _{CC} = 2.3 V to 2.7 V	1.7	3.0	3.8	1.7	4.5	1.7	5.1	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	3.8	4.8	1.7	5.0	1.7	5.6	ns

Symbol	Parameter	er Conditions		25 °C		T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 15	pF									
t _{pd}	propagation	nA to nY; see Fig. 7. [2]								
	delay	V _{CC} = 0.8 V	-	27.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.6	7.2	14.1	3.3	15.8	3.3	17.5	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	5.1	8.1	2.5	9.8	2.5	10.9	ns
		V _{CC} = 1.65 V to 1.95 V	2.2	4.3	6.3	2.0	7.9	2.0	8.8	ns
		V _{CC} = 2.3 V to 2.7 V	2.0	3.7	4.9	1.8	6.0	1.8	6.7	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	3.5	4.4	1.8	5.4	1.8	6.1	ns
t _{en}	enable time	nOE to nY; see Fig. 8. [3]								
		V _{CC} = 0.8 V	-	77.5	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.0	7.7	15.2	3.7	17.6	3.7	19.6	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	5.3	8.4	2.5	9.8	2.5	10.7	ns
		V _{CC} = 1.65 V to 1.95 V	2.3	4.4	6.5	2.1	7.7	2.1	8.5	ns
		V _{CC} = 2.3 V to 2.7 V	2.1	3.6	5.0	2.0	6.1	2.0	6.8	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	3.5	4.4	1.9	4.9	1.9	5.5	ns
t _{dis}	disable time	nOE to nY; see Fig. 8. [4]								
		V _{CC} = 0.8 V	-	60.8	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.3	6.5	9.2	3.7	10.3	3.7	11.6	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	5.0	6.5	2.5	7.4	2.5	8.4	ns
		V _{CC} = 1.65 V to 1.95 V	3.0	5.3	7.0	2.1	7.4	2.1	8.9	ns
		V _{CC} = 2.3 V to 2.7 V	2.1	3.8	4.9	2.0	5.1	2.0	6.4	ns
		V _{CC} = 3.0 V to 3.6 V	2.9	5.0	6.2	1.9	6.6	1.9	7.4	ns

Low-power dual buffer/line driver; 3-state

Symbol	Parameter	Conditions	25 °C		T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit	
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 30	pF									
t _{pd}	propagation	nA to nY; see Fig. 7. [2]								
	delay	V _{CC} = 0.8 V	-	37.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.8	9.5	19.0	4.4	21.6	4.4	24.0	ns
		V _{CC} = 1.4 V to 1.6 V	4.0	6.7	10.8	3.0	13.0	3.0	14.5	ns
		V _{CC} = 1.65 V to 1.95 V	2.9	5.6	8.4	2.6	10.3	2.6	11.5	ns
		V _{CC} = 2.3 V to 2.7 V	2.7	4.8	6.3	2.5	7.8	2.5	8.7	ns
		V _{CC} = 3.0 V to 3.6 V	2.7	4.6	5.8	2.5	7.5	2.5	8.3	ns
t _{en}	enable time	nOE to nY; see Fig. 8. [3]								
		V _{CC} = 0.8 V	-	88.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	5.2	9.9	19.8	4.8	22.8	4.8	25.3	ns
		V _{CC} = 1.4 V to 1.6 V	4.0	6.8	10.8	3.1	12.6	3.1	14.1	ns
		V _{CC} = 1.65 V to 1.95 V	3.0	5.6	8.5	2.8	10.2	2.8	11.3	ns
		V _{CC} = 2.3 V to 2.7 V	2.7	4.8	6.5	2.6	7.8	2.6	8.8	ns
		V _{CC} = 3.0 V to 3.6 V	2.7	4.6	6.0	2.6	6.9	2.6	7.7	ns
t _{dis}	disable time	nOE to nY; see Fig. 8. [4]								
		V _{CC} = 0.8 V	-	49.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	6.0	9.9	13.3	4.8	14.8	4.8	16.5	ns
		V _{CC} = 1.4 V to 1.6 V	4.4	7.7	9.6	3.1	10.8	3.1	12.1	ns
		V _{CC} = 1.65 V to 1.95 V	5.1	8.7	11.1	2.8	12.4	2.8	13.8	ns
		V _{CC} = 2.3 V to 2.7 V	3.6	6.2	7.6	2.6	8.6	2.6	9.6	ns
		V _{CC} = 3.0 V to 3.6 V	5.2	8.7	10.5	2.6	10.8	2.6	13.1	ns
C _L = 5 p	F, 10 pF, 15 p	F and 30 pF						,		•
C _{PD}	power dissipation	output enabled; f _i = 1 MHz; [5] V _I = GND to V _{CC}								
	capacitance	V _{CC} = 0.8 V	-	2.7	-	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	2.8	-	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	2.9	-	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	3.0	-	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V	-	3.6	-	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	4.2	-	-	-	-	-	pF
	*								*	

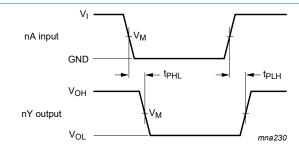
- [1] All typical values are measured at nominal V_{CC} .
- t_{pd} is the same as t_{PLH} and t_{PHL} . [2]
- t_{en} is the same as t_{PZH} and t_{PZL}.
- ten is the same as t_{PZD} and t_{PZD}.
 t_{dis} is the same as t_{PHZ} and t_{PLZ}.
 C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

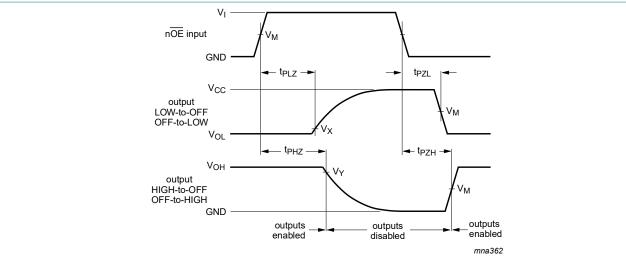

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

Low-power dual buffer/line driver; 3-state

11.1. Waveforms and test circuit


Measurement points are given in Table 9.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 7. The data input (nA) to output (nY) propagation delays

Table 9. Measurement points

Supply voltage	Input			Output
V _{CC}	V _M	VI	$t_r = t_f$	V _M
0.8 V to 3.6 V	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns	0.5 × V _{CC}

Measurement points are given in <u>Table 10</u>.

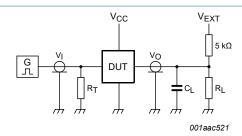

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 8. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output	Output				
V _{CC}	V _M	V _M	V _X	V _Y			
0.8 V to 1.6 V	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.1 V	V _{OH} - 0.1 V			
1.65 V to 2.7 V	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V			
3.0 V to 3.6 V	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.3 V	V _{OH} - 0.3 V			

Low-power dual buffer/line driver; 3-state

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance;

C_L = Load capacitance including jig and probe capacitance;

 R_T = Termination resistance should be equal to the output impedance Z_O of the pulse generator;

 V_{EXT} = External voltage for measuring switching times.

Fig. 9. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Load		V _{EXT}		
V _{CC}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	2 × V _{CC}

[1] For measuring enable and disable times R_L = 5 k Ω . For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

Low-power dual buffer/line driver; 3-state

12. Package outline

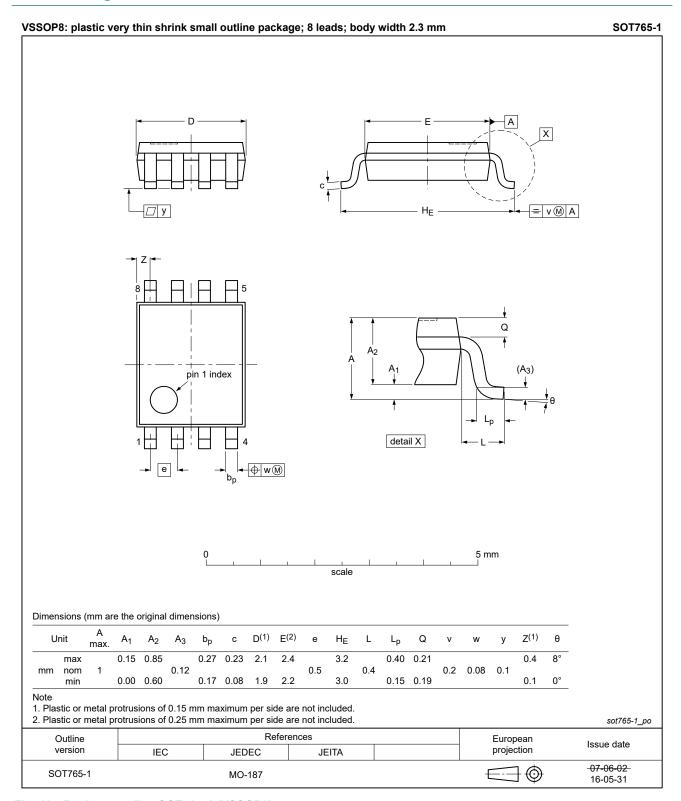


Fig. 10. Package outline SOT765-1 (VSSOP8)

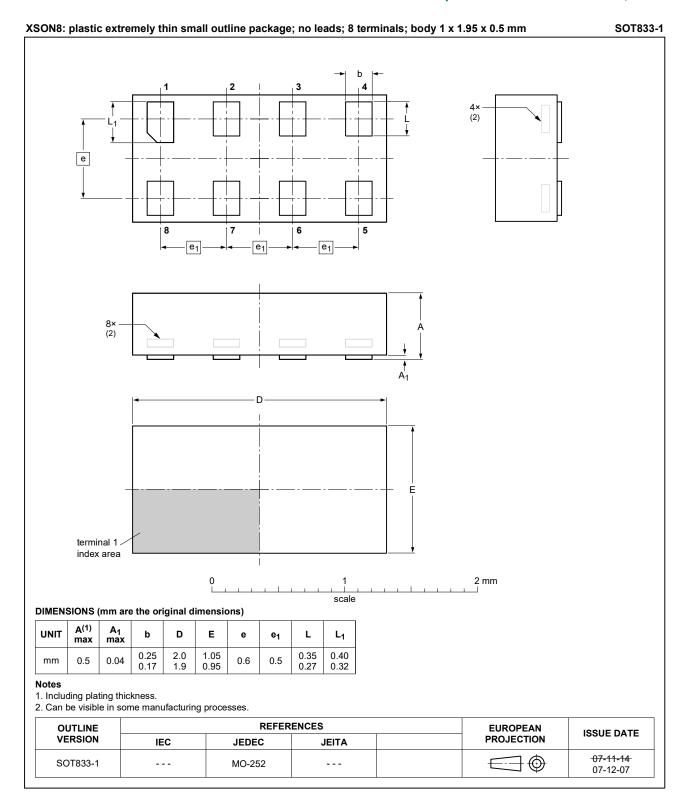


Fig. 11. Package outline SOT833-1 (XSON8)

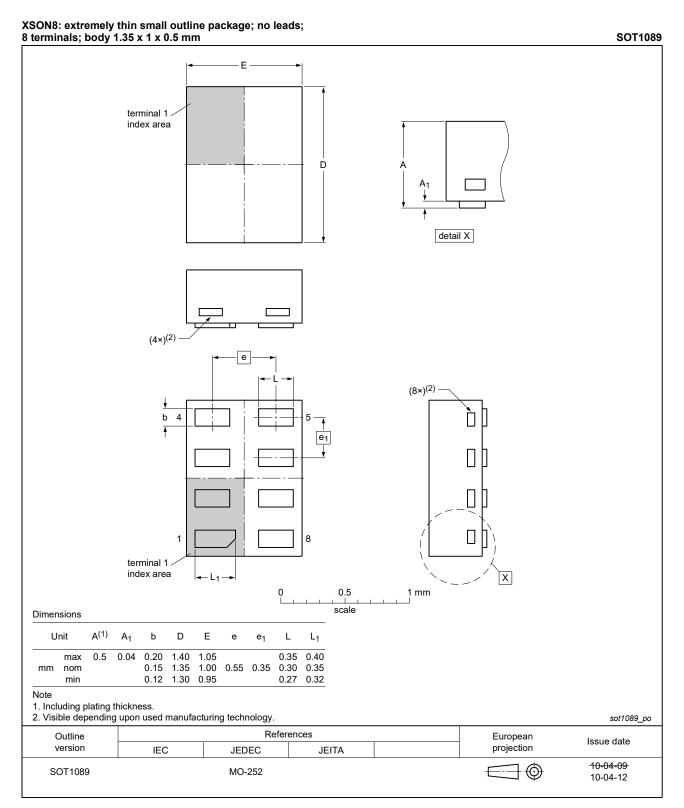


Fig. 12. Package outline SOT1089 (XSON8)



Fig. 13. Package outline SOT1116 (XSON8)

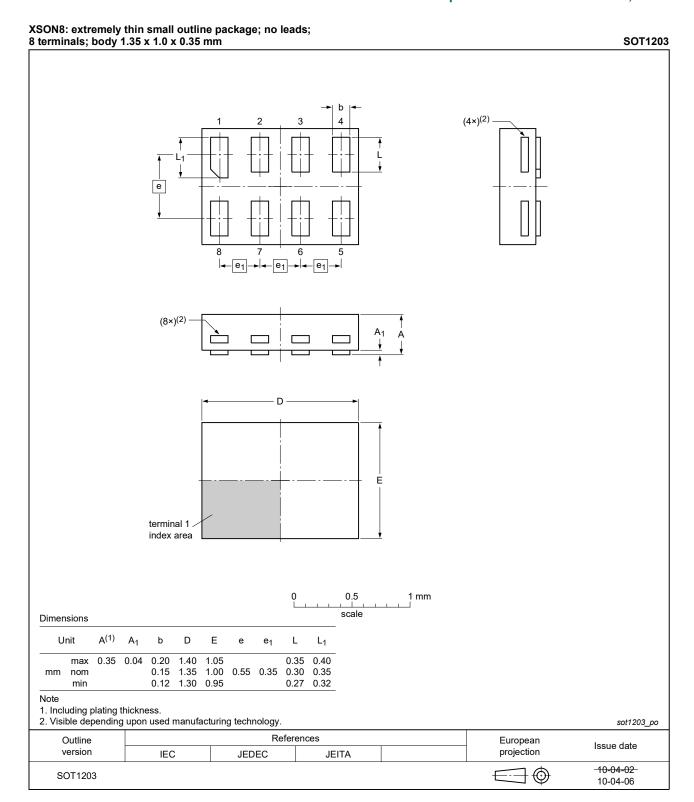


Fig. 14. Package outline SOT1203 (XSON8)

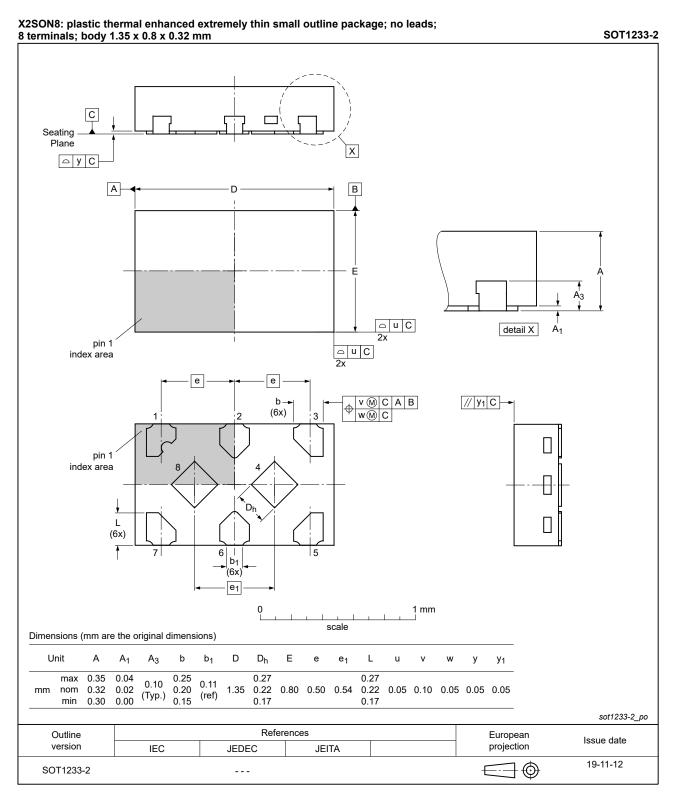


Fig. 15. Package outline SOT1233-2 (X2SON8)

Low-power dual buffer/line driver; 3-state

13. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP2G125 v.14	20220621	Product data sheet	-	74AUP2G125 v.13
Modifications:	Package SO	T1233 (X2SON8) chanç	ged to SOT1233-2 (2	X2SON8).
74AUP2G125 v.13	20220310	Product data sheet	-	74AUP2G125 v.12
Modifications:	• <u>Section 1</u> and	74AUP2G125GM (SOd Section 2 updated.	,	
74AUP2G125 v.12	20170703	Product data sheet	-	74AUP2G125 v.11
Modifications:	of Nexperia. • Legal texts h • <u>Fig. 6</u> and <u>Fig. 6</u>	f this data sheet has be ave been adapted to the g. 15 (drawings SOT12: 74AUP2G125GD remo	e new company nan 33/X2SON8) update	
74AUP2G125 v.11	20161028	Product data sheet	-	74AUP2G125 v.10
Modifications:	Added type r	number 74AUP2G125G	X (SOT1233/X2SON	N8)
74AUP2G125 v.10	20130208	Product data sheet	-	74AUP2G125 v.9
Modifications:	For type num	ber 74AUP2G125GD X	(SON8U has change	ed to XSON8.
74AUP2G125 v.9	20120607	Product data sheet	-	74AUP2G125 v.8
74AUP2G125 v.8	20111202	Product data sheet	-	74AUP2G125 v.7
74AUP2G125 v.7	20100921	Product data sheet	-	74AUP2G125 v.6
74AUP2G125 v.6	20091127	Product data sheet	-	74AUP2G125 v.5
74AUP2G125 v.5	20090202	Product data sheet	-	74AUP2G125 v.4
74AUP2G125 v.4	20090122	Product data sheet	-	74AUP2G125 v.3
74AUP2G125 v.3	20080409	Product data sheet	-	74AUP2G125 v.2
74AUP2G125 v.2	20070419	Product data sheet	-	74AUP2G125 v.1
74AUP2G125 v.1	20061017	Product data sheet	-	-

21 / 23

Low-power dual buffer/line driver; 3-state

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74AUP2G125

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2022. All rights reserved

Low-power dual buffer/line driver; 3-state

Contents

1. General description	<i>'</i>
2. Features and benefits	<i>'</i>
3. Ordering information	2
4. Marking	
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	
6.2. Pin description	
7. Functional description	
8. Limiting values	4
9. Recommended operating conditions	
10. Static characteristics	
11. Dynamic characteristics	
11.1. Waveforms and test circuit	13
12. Package outline	1
13. Abbreviations	2
14. Revision history	2
15. Legal information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 21 June 2022

[©] Nexperia B.V. 2022. All rights reserved