

ARM[®] Cortex[®]-M0 32-bit Microcontroller

NuMicro[®] Family M0519 Series Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Table	e of	Con	tents
-------	------	-----	-------

1		GE	NERAL DESCRIPTION	10
2	2	FE.	ATURES	11
3	5	AB	BREVIATIONS	14
4	Ļ	PA	RTS INFORMATION LIST AND PIN CONFIGURATION	16
	4.1		NuMicro [®] M0519 Selection Guide	16
	4.2		Pin Configuration	17
	4.3		Pin Description	20
5	;	BL	OCK DIAGRAM	
6	5	FU	NCTIONAL DESCRIPTION	41
	6.1		ARM [®] Cortex [®] -M0 Core	41
	6.2		System Manager	43
	6.3		Clock Controller	146
	6.4		Flash Memory Controller (FMC)	
	6.5		General Purpose I/O (GPIO)	
	6.6		Timer Controller (TIMER)	215
	6.7		Basic PWM Generator and Capture Timer (BPWM)	232
	6.8		Enhanced PWM Generator (EPWM)	261
	6.9		Enhanced Input Capture Timer (ECAP)	295
	6.10	0	Watchdog Timer (WDT)	312
	6.1 ⁻	1	Window Watchdog Timer (WWDT)	
	6.12	2	Universal Asynchronous Receiver Transmitter (UART)	330
	6.13	3	I ² C Serial Interface Controller (I ² C)	
	6.14	4	Serial Peripheral Interface (SPI)	411
	6.1	5	Hardware Divider (HDIV)	445
	6.1	6	Enhanced Analog-to-Digital Converter (EADC)	452
	6.1	7	Analog Comparator (ACMP)	501
	6.18	8	OP Amplifier (OPA)	511
7	,	EL	ECTRICAL CHARACTERISTICS	518
8	5	PA	CKAGE DIMENSIONS	519
	8.1		LQFP 100L (14x14x1.4 mm footprint 2.0mm)	519
	8.2		LQFP 64L (7x7x1.4 mm footprint 2.0 mm)	520
	8.3		LQFP 48L (7x7x1.4mm footprint 2.0mm)	521

Nov. 02, 2016

9	REVISION HISTORY	2
3		. Z

M0519

List of Figures	
Figure 4-1 NuMicro [®] M0519 Selection Code	16
Figure 4-2 NuMicro [®] M0519VxxAE Series LQFP-100 Pin Diagram	17
Figure 4-3 NuMicro [®] M0519SxxAE Series LQFP-64 Pin Diagram	18
Figure 4-4 NuMicro [®] M0519LxxAE Series LQFP-48 Pin Diagram	19
Figure 5-1 NuMicro [®] M0519 Series Block Diagram	40
Figure 6-1 Functional Controller Diagram	41
Figure 6-2 NuMicro [®] M0519 Series Power Distribution Diagram	44
Figure 6-3 Clock Generator Block Diagram	147
Figure 6-4 Clock Generator Global View Diagram	148
Figure 6-5 System Clock Block Diagram	149
Figure 6-6 SysTick Clock Control Block Diagram	149
Figure 6-7 Clock Source of Frequency Divider	150
Figure 6-8 Block Diagram of Frequency Divider	150
Figure 6-9 Flash Memory Control Block Diagram	167
Figure 6-10 Flash Memory Organization	
Figure 6-11 Example Flow of Boot Selection by BS Bit	170
Figure 6-12 Executable Range of Code with IAP Function Enabled	171
Figure 6-13 Executing Range for boot from APROM and boot from LDROM	172
Figure 6-14 ISP Procedure Example	174
Figure 6-15 Flash Memory Structure (DFVSEN = 1)	175
Figure 6-16 GPIO Controller Block Diagram	192
Figure 6-17 Push-Pull Output	193
Figure 6-18 Open-Drain Output	193
Figure 6-19 Quasi bi-directional I/O Mode	194
Figure 6-20 Enhanced PWM Output Driving Control	195
Figure 6-21 Timer Controller Block Diagram	216
Figure 6-22 Clock Source of Timer Controller	216
Figure 6-23 Continuous Counting Mode	218
Figure 6-24 External Capture Mode	219
Figure 6-25 External Reset Counter Mode	220
Figure 6-26 BPWM Clock Source Control	233
Figure 6-27 BPWM Architecture Diagram	233

Figure 6-28 Legen	d of Internal Comparator Output of BPWM-Timer	234
Figure 6-29 BPWN	<i>I</i> -Timer Operation Timing	235
Figure 6-30 BPWN	A Edge-aligned Interrupt Generate Timing Waveform	235
Figure 6-31 Cente	r-aligned Type Output Waveform	236
Figure 6-32 BPWN	A Center-aligned Interrupt Generate Timing Waveform	237
Figure 6-33 BPWN	I Double Buffering Illustration	238
Figure 6-34 BPWN	I Controller Output Duty Ratio	238
Figure 6-35 Paired	I-BPWM Output with Dead-zone Generation Operation	239
Figure 6-36 Initial	State and Polarity Control with Rising Edge Dead-zone	e Insertion
-	I Trigger EADC Timing Diagram	
	re Operation Timing	
Figure 6-39 BPWN	/ Interrupt Architecture Diagram	243
Figure 6-40 EPWN	/I Block Diagram	
	I Clock Source Control	
-	Time-base Generator	
Figure 6-43 Edge-	aligned PWM	
Figure 6-44 PWM0) Edge aligned Waveform Output	
Figure 6-45 Edge-	aligned Flow Diagram	
Figure 6-46 Cente	r-aligned Mode	
Figure 6-47 Example	ole PWM0 Center-aligned Waveform Output	
Figure 6-48 Cente	r-aligned Flow Diagram (INT_TYPE = 0)	
Figure 6-49 PWM	Brake Function	270
Figure 6-50 PWM	Brake Condition (Edge-aligned Mode)	271
Figure 6-51 PWM	Brake Condition (Center-aligned Mode)	272
Figure 6-52 PWM	Output Driving Control	272
Figure 6-53 Dead-	Time Insertion	274
Figure 6-54 Initial	State and Polarity Control with Rising Edge Dead Time	
-	ation of Mask Control	
-	I Trigger EADC Timing Diagram	
U U	ecture of Enhanced PWM Interrupts	
. .	Capture Timer/Counter Clock Source Control	
•	Capture Timer/Counter Architecture	
Nov. 02 <i>,</i> 2016	Page 5 of 524	Rev 1.02

Figure 6-60 Noise Filter Structure	
Figure 6-61 Noise Filter Sampling Clock	Selection
Figure 6-62 Input Capture Timer/Counte	r Functions Block298
Figure 6-63 Input Capture Units	
Figure 6-64 Input Capture Timer/Counte	r Interrupt Architecture Diagram
Figure 6-65 Watchdog Timer Block Diag	ram
Figure 6-66 Watchdog Timer Clock Cont	rol
Figure 6-67 Watchdog Timer Time-out Ir	nterval and Reset Period Timing
Figure 6-68 Window Watchdog Timer Bl	ock Diagram320
Figure 6-69 Window Watchdog Timer Cl	ock Control321
Figure 6-70 WWDT Reset and Reload B	ehavior322
Figure 6-71 UART Clock Control Diagram	m
Figure 6-72 UART Block Diagram	
Figure 6-73 Transmit Delay Time Operat	tion
Figure 6-74 UART nCTS Wake-up Case	1
Figure 6-75 UART nCTS Wake-up Case	2
Figure 6-76 Auto-Flow Control Block Dia	gram
Figure 6-77 UART nCTS Auto-Flow Con	trol Enabled339
Figure 6-78 UART nRTS Auto-Flow Con	trol Enabled339
Figure 6-79 UART nRTS Auto-Flow with	Software Control340
Figure 6-80 IrDA Block Diagram	
Figure 6-81 IrDA Timing Diagram	
Figure 6-82 RS-485 nRTS Driving Level	in Auto Direction Mode344
Figure 6-83 RS-485 nRTS Driving Level	with Software Control
Figure 6-84 Structure of RS-485 Frame.	
Figure 6-85 Structure of LIN Frame	
Figure 6-86 Structure of LIN Byte	
Figure 6-87 Break detection in LIN mode	
Figure 6-88 LIN sync field measurement	
	e in automatic resynchronization mode when = 1
•	e in automatic resynchronization mode when = 0
Figure 6-91 I ² C Controller Block Diagram	า
Nov. 02. 2016 Page	e 6 of 524 Rev 1.02

Figure 6-92 I ² C Bus Timing	4
Figure 6-93 I ² C Protocol	5
Figure 6-94 START and STOP Condition	6
Figure 6-95 Bit Transfer on the I ² C Bus	7
Figure 6-96 Acknowledge on the I ² C Bus	7
Figure 6-97 Master Transmits Data to Slave	7
Figure 6-98 Master Reads Data from Slave	8
Figure 6-99 Control I ² C Bus According to Current I ² C Status	8
Figure 6-100 Master Transmitter Mode Control Flow	9
Figure 6-101 Master Receiver Mode Control Flow	0
Figure 6-102 Slave Mode Control Flow	2
Figure 6-103 GC Mode	3
Figure 6-104 Arbitration Lost	4
Figure 6-105 I ² C Data Shifting Direction	6
Figure 6-106 I ² C Time out Count Block Diagram	7
Figure 6-107 EEPROM Random Read	8
Figure 6-108 Protocol of EEPROM Random Read	9
Figure 6-109 SPI Block Diagram41	1
Figure 6-110 SPI Clock Diagram413	3
Figure 6-111 SPI Master Mode Application Block Diagram413	3
Figure 6-112 SPI Slave Mode Application Block Diagram414	4
Figure 6-11332-Bit in One Transaction418	5
Figure 6-114 Automatic Slave Selection (SS_LVL = 0, SP_CYCLE > 0x2)	6
Figure 6-115 Byte Reorder Function	7
Figure 6-116 Timing Waveform for Byte Suspend418	8
Figure 6-117 FIFO Threshold Comparator	9
Figure 6-118 FIFO Mode Block Diagram420	0
Figure 6-119 Transmit FIFO Buffer Example	1
Figure 6-120 Receive FIFO Buffer Example	2
Figure 6-121 SPI Timing in Master Mode424	4
Figure 6-122 SPI Timing in Master Mode (Alternate Phase of SPI_CLK)	5
Figure 6-123 SPI Timing in Slave Mode420	6
Figure 6-124 SPI Timing in Slave Mode (Alternate Phase of SPI bus clock)	7

Figure 6-125 HDIV Clock Source Control
Figure 6-126 Hardware Divider Operation Flow446
Figure 6-127 ADCA Converter Block Diagram
Figure 6-128 ADCB Converter Block Diagram
Figure 6-129 ADC Clock Control454
Figure 6-130 Single Sampling Mode Conversion Timing Diagram456
Figure 6-131 SAMPLEA0~3 and SAMPLEB0~3 Control Block Diagram
Figure 6-132 SAMPLEA4~7 and SAMPLEB4~7 Control Block Diagram
Figure 6-133 SAMPLE Conversion Priority Arbitrator Diagram
Figure 6-134 V_{BG} for Measuring AV_{DD} Application Block Diagram
Figure 6-135 PWM-triggered ADC Start461
Figure 6-136 Specific SAMPLE A/D EOC Signal for ADINT0 Interrupt
Figure 6-137 Specific SAMPLE A/D EOC Signal for ADINT1 Interrupt
Figure 6-138 Specific SAMPLE A/D EOC Signal for ADINT2 Interrupt
Figure 6-139 Specific SAMPLE A/D EOC Signal for ADINT3 Interrupt
Figure 6-140 Conversion Start Delay Timing Diagram
Figure 6-141 A/D Extend Sampling Timing Diagram466
Figure 6-142 A/D Conversion Result Monitor Logics Diagram
Figure 6-143 A/D Controller Interrupts467
Figure 6-144 Analog Comparator Block Diagram502
Figure 6-145 Analog Comparator Controller Interrupt503
Figure 6-146 Comparator Hysteresis function504
Figure 6-147 OP Amplifier Block Diagram512
Figure 6-148 OP Amplifier Interrupt Flags for Analog Comparator Interrupt513

List of Tables	
Table 6-1 Address Space Assignments for On-Chip Controllers40	6
Table 6-2 The protected register table. 80	0
Table 6-3 Exception Model 89	9
Table 6-4 System Interrupt Map Vector Table90	0
Table 6-5 Vector Table97	1
Table 6-6 Clock Stable Count Value Table 146	6
Table 6-7 Power-down mode Control Table153	3
Table 6-8 Address Mapping Information	8
Table 6-9 ISP Mode Command172	2
Table 6-10 Brake Source, Condition and Action 27	
Table 6-11 Even/Odd Outputs Drive Mode273	3
Table 6-12 Watchdog Timer Time-out Interval Period Selection 314	4
Table 6-13 WWDT Prescale Value Selection	2
Table 6-14 WWDT WINCMP Setting Limitation 323	3
Table 6-15 Baud Rate Equation Table	3
Table 6-16 UART Controller Baud Rate Parameter Setting Example Table	4
Table 6-17 UART Controller Baud Rate Register Setting Example Table	5
Table 6-18 UART Interrupt Sources and Flags Table in Software Mode	7
Table 6-19 UART Line Control of Word and Stop Length Setting	7
Table 6-20 UART Line Control of Parity Bit Setting	8
Table 6-21 LIN Header selection in master mode	7
Table 6-22 I ² C Status Code Description Table	7

1 GENERAL DESCRIPTION

The NuMicro[®] M0519 Series 32-bit microcontroller is embedded with the newest ARM[®] Cortex[®]-M0 core at a cost equivalent to traditional 8-bit microcontroller for industrial control and applications which need high performance.

The NuMicro[®] M0519 Series embedded with the Cortex[®]-M0 core runs up to 72 MHz and supports a variety of industrial control and applications which need high CPU performance. The NuMicro[®] M0519 Series provides 128K/64K bytes embedded flash, 4 Kbytes data flash, 8 Kbytes flash for the ISP, and 16K bytes embedded SRAM. This MCU includes advanced PWM function and input capture timer which are specially designed for motor driving application. It is also equipped with plenty of peripheral devices, such as Timers, Watchdog Timer, UART, SPI, I²C, PWM Timer, GPIO, 12-bit ADC, Low Voltage Detector and Brown-out detector. These useful functions make the NuMicro[®] M0519 Series powerful for a wide range of applications.

In addition, the NuMicro[®] M0519 Series is equipped with ISP (In-System Programming), ICP (In-Circuit Programming) functions and IAP (In-Application Programming) which allow user to update the program memory without removing the chip from the actual end product.

2 FEATURES

- Core
 - ARM[®] Cortex[®]-M0 core running up to 72 MHz
 - One 24-bit system timer
 - Supports Low Power Sleep mode by WFI instructions
 - Single-cycle 32-bit hardware multiplier
 - Supports programmable 4 level priorities of Nested Vectored Interrupt Controller (NVIC)
 - Supports Serial Wire Debug (SWD) support with two watchpoints and four breakpoints
- Built-in LDO for wide operating voltage ranged from 2.5V to 5.5V
- Memory
 - 128K/64K bytes Flash for program memory (APROM)
 - 4KB Flash for data memory (Data Flash)
 - 8KB Flash for loader (LDROM)
 - Supports In-system program (ISP) and In-application program (IAP) application code update
 - Supports 2-wired ICP update through SWD/ICE interface
 - Supports fast parallel programming mode by external programmer
 - 16K bytes embedded SRAM
- Clock Control
 - Built-in 22.1184 MHz internal high speed RC oscillator (HIRC) for system operation (variation < 2% at -40°C ~ +105°C)
 - Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and wakeup operation
 - Built-in 4~24 MHz external high speed crystal oscillator (HXT) for precise timing operation
 - Supports one PLL up to 72 MHz for high performance system operation, sourced from HIRC and HXT
 - Supports clock output
- Hardware divider
 - Supports signed 32-bit dividend, 16-bit divisor operation
- GPIO port
 - Four I/O modes:
 - TTL/Schmitt trigger input selectable
 - Bit control available
 - I/O pin configured as interrupt source with edge/level trigger setting
 - Supports high driver and high sink current I/O (up to 16 mA at 5V)
 - INT0 and INT1 pins with individual interrupt vectors
 - Supports up to 82/51/38 GPIOs for LQFP100/64/48 respectively
- Timers
 - Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter
 - Provides One-shot, Periodic, Toggle and Continuous Counting operation modes
 - Supports event counting function to count the event from external pin
- Watchdog Timer
 - Supports multiple clock sources from LIRC(default selection) and HCLK/2048
 - 8 selectable time-out period from 1.6ms ~ 26.0sec (depending on clock source)
 - Able to wake up from Power-down or Idle mode
 - Interrupt or reset selectable on watchdog time-out
 - Time-out reset delay period time can be selected
- Window Watchdog Timer

- Supports multiple clock sources from HCLK/2048 (default selection) and LIRC
- Window set by 6-bit counter with 11-bit prescale
- Able to wake up from Power-down or Idle mode
- Basic PWM
 - 1 unit of 16-bit basic PWM, up to 2ch output
 - Alternative function as input capture timer
- Enhanced PWM
 - 2 units of 16-bit enhanced PWM, up to 6ch output with dead-zone control, brake and polarity control for motor drive
 - Default tri-state during any reset
- Enhanced Input Capture
 - Up to 2 units of 24-bit input capture
 - Each unit has 3 inputs: ECAPx_IC0, ECAPx_IC1 and ECAPx_IC2
- UART
 - Up to two 16550 compatible UART devices
 - Programmable baud-rate generator
 - Buffered receiving and transmitting, each with 16 bytes FIFO
 - Supports flow control (TX, RX, CTS and RTS)
 - Supports IrDA(SIR) function
 - Supports RS-485
- SPI
 - Up to three sets of SPI device
 - Supports SPI master/slave mode
 - Full duplex synchronous serial data transfer
 - Variable length of transfer data from 8 to 32 bits
 - MSB or LSB first data transfer
 - Rx and Tx on both rising or falling edge of serial clock independently
 - Supports Byte Suspend mode in 32-bit transmission
- I²C
 - Master/Slave up to 1 Mbit/s
 - Bi-directional data transfer between masters and slaves
 - Multi-master bus (no central master)
 - Arbitration between simultaneously transmitting masters
 - Programmable clocks allow versatile rate control
 - Multiple address recognition (four slave address with mask option)
- ADC
 - Two A/D converters
 - Each ADC with up to 8 channel, 12-bit resolution with 10-bit accuracy
 - 16 result registers
 - Sampling rate up to 800ksps
 - Two operating modes:
 - Single Sampling mode: Only one specified channel can be sampled at one time
 - Simultaneous Sampling mode: Allowing two ADC channels to be sampled simultaneously
 - Two converting result digital comparators.
 - Conversion start by software, external pins, or linked with Timer 0~3 or PWM module.
 - Channel 7 supports 3 input sources: external analog voltage, internal band-gap voltage and Internal temperature sensor output
- Up to three Analog Comparators

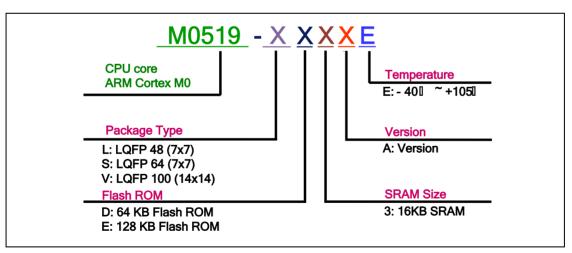
- Eternal input or internal band-gap voltage selectable at negative node
- Interrupt when compared results change
- Up to two OPA (operational amplifier)
- Brown-out detector
 - 4 levels: 4.4V/3.7V/2.7V/2.2V
 - Optional brown-out interrupt or reset
- Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V
- Low Voltage Reset
- 96-bit unique ID
- Operating Temperature: -40°C ~105°C
- Develop tools: parallel writer or In-Circuit Programming (ICP) writer
- Packages:
 - All Green package (RoHS)
 - LQFP 100/64/48-pin

3 ABBREVIATIONS

Acronym	Description				
ACMP	Analog Comparator Controller				
ADC	Analog-to-Digital Converter				
AES	Advanced Encryption Standard				
APB	Advanced Peripheral Bus				
АНВ	Advanced High-Performance Bus				
BOD	Brown-out Detection				
CAN	Controller Area Network				
DAP	Debug Access Port				
DES	Data Encryption Standard				
EBI	External Bus Interface				
EPWM	Enhanced Pulse Width Modulation				
FIFO	First In, First Out				
FMC	Flash Memory Controller				
FPU	Floating-point Unit				
GPIO	General-Purpose Input/Output				
HCLK	The Clock of Advanced High-Performance Bus				
HIRC	22.1184 MHz Internal High Speed RC Oscillator				
НХТ	4~24 MHz External High Speed Crystal Oscillator				
IAP	In Application Programming				
ICP	In Circuit Programming				
ISP	In System Programming				
LDO	Low Dropout Regulator				
LIN	Local Interconnect Network				
LIRC	10 kHz internal low speed RC oscillator (LIRC)				
MPU	Memory Protection Unit				
NVIC	Nested Vectored Interrupt Controller				
PCLK	The Clock of Advanced Peripheral Bus				
PDMA	Peripheral Direct Memory Access				
PLL	Phase-Locked Loop				
PWM	Pulse Width Modulation				
QEI	Quadrature Encoder Interface				
SDIO	Secure Digital Input/Output				
SPI	Serial Peripheral Interface				

SPS	Samples per Second
TDES	Triple Data Encryption Standard
TMR	Timer Controller
UART	Universal Asynchronous Receiver/Transmitter
UCID	Unique Customer ID
USB	Universal Serial Bus
WDT	Watchdog Timer
WWDT	Window Watchdog Timer

nuvoton


4 PARTS INFORMATION LIST AND PIN CONFIGURATION

4.1 NuMicro[®] M0519 Selection Guide

4.1.1 NuMicro[®] M0519 Selection Guide

	•		B)		Connectivity		_										
Part Number	APROM (KB)	RAM (KB)	Data Flash (KB)	LDROM (KB)	0/1	Timer (32-Bit)	UART	SPI	l²C	LIN	Capture	ΡWΜ	ADC (12-Bit)	OPA	Comp.	ISP/ICP/IAP	Package
M0519LD3AE	64	16	4	8	38	4	2	1	1	2	-	6	x2, 16-ch	2	2	v	LQFP48
M0519LE3AE	128	16	Config.	8	38	4	2	1	1	2	-	6	x2, 16-ch	2	2	v	LQFP48
M0519SD3AE	64	16	4	8	51	4	2	2	1	2	-	10	x2, 16-ch	2	2	v	LQFP64
M0519SE3AE	128	16	Config.	8	51	4	2	2	1	2	-	10	x2, 16-ch	2	2	v	LQFP64
M0519VE3AE	128	16	Config.	8	82	4	2	3	1	2	6	14	x2, 16-ch	2	3	v	LQFP100

4.1.2 NuMicro[®] M0519 Naming Rule

Figure 4-1 NuMicro® M0519 Selection Code

4.2 Pin Configuration

4.2.1 LQFP 100-pin

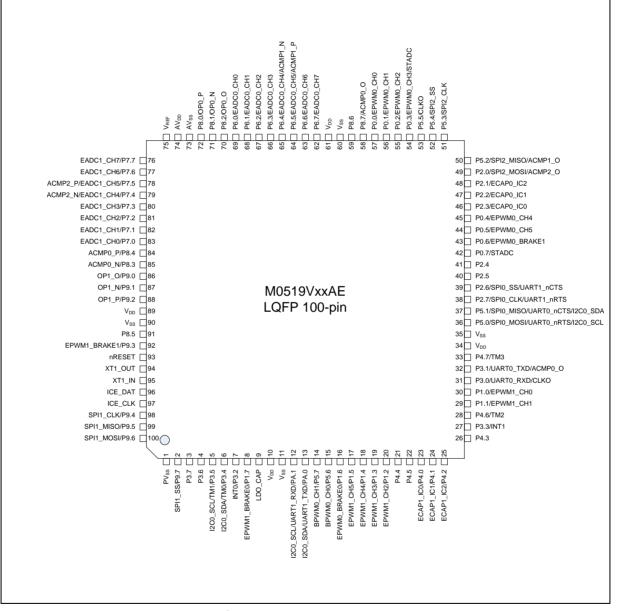


Figure 4-2 NuMicro[®] M0519VxxAE Series LQFP-100 Pin Diagram

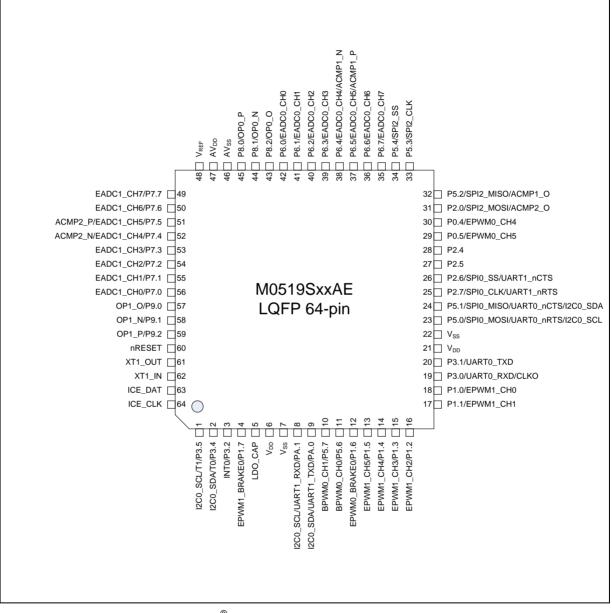


Figure 4-3 NuMicro[®] M0519SxxAE Series LQFP-64 Pin Diagram

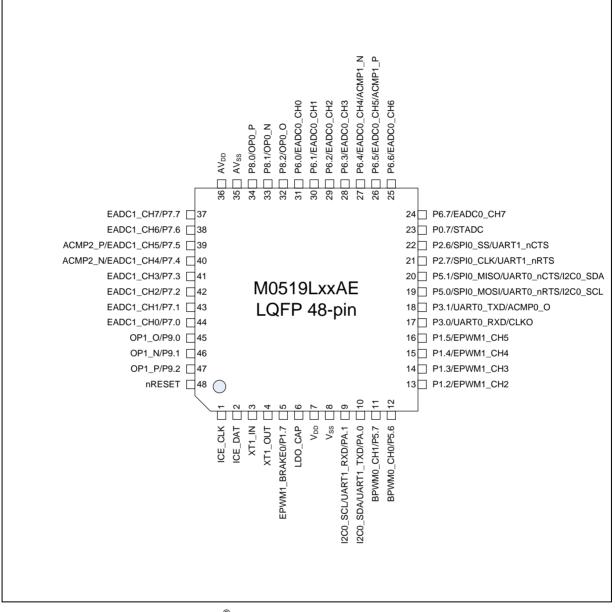


Figure 4-4 NuMicro[®] M0519LxxAE Series LQFP-48 Pin Diagram

4.3 Pin Description

4.3.1 M0519 LQFP100 Pin Description

MFP* = Multi-function pin. (Refer to section Px_MFP)

P1.7 MFP0 means P1_MFP[7] = 0.

PA.1 MFP3 means (PA_MFP[9], PA_MFP[1]) = (1,1).

Pin No.	Pin Name	Туре	MFP*	Description
1	V _{SS}	Р	MFP0	Ground pin for digital circuit.
2	P9.7	I/O	MFP0	General purpose digital I/O pin.
	SPI1_SS	I/O	MFP1	1st SPI1 slave select pin.
3	P3.7	I/O	MFP0	General purpose digital I/O pin.
4	P3.6	I/O	MFP0	General purpose digital I/O pin.
5	P3.5	I/O	MFP0	General purpose digital I/O pin.
	TM1	I/O	MFP1	Timer1 event counter input/external capture input/toggle output.
	I2C0_SCL	I/O	MFP2	l ² C0 clock pin.
6	P3.4	I/O	MFP0	General purpose digital I/O pin.
	ТМО	I/O	MFP1	Timer0 event counter input/external capture input/toggle output.
	I2C0_SDA	I/O	MFP2	I ² C0 data input/output pin.
7	P3.2	I/O	MFP0	General purpose digital I/O pin.
	INT0	I	MFP1	External interrupt0 input pin.
8	P1.7	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_BRAKE0	I	MFP1	Brake input pin 0 of EPWM1.
9	LDO_CAP	А	MFP0	LDO output pin.
10	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
11	V _{SS}	Р	MFP0	Ground pin for digital circuit.
12	PA.1	I/O	MFP0	General purpose digital I/O pin.
	UART1_RXD	0	MFP1	Data receiver input pin for UART1.
	I2C0_SCL	I/O	MFP3	l ² C0 clock pin.
13	PA.0	I/O	MFP0	General purpose digital I/O pin.
	UART1_TXD	I	MFP1	Data transmitter output pin for UART1.
	I2C0_SDA	I/O	MFP3	I ² C0 data input/output pin.
14	P5.7	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
	BPWM0_CH1	I/O	MFP1	BPWM0 channel1 output/capture input.
15	P5.6	I/O	MFP0	General purpose digital I/O pin.
	BPWM0_CH0	I/O	MFP1	BPWM0 channel0 output/capture input.
16	P1.6	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_BRAKE0	I	MFP1	Brake input pin 0 of EPWM0.
17	P1.5	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH5	0	MFP1	EPWM1 channel5 output.
18	P1.4	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH4	0	MFP1	EPWM1 channel4 output.
19	P1.3	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH3	0	MFP1	EPWM1 channel3 output.
20	P1.2	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH2	0	MFP1	EPWM1 channel2 output.
21	P4.4	I/O	MFP0	General purpose digital I/O pin.
22	P4.5	I/O	MFP0	General purpose digital I/O pin.
23	P4.0	I/O	MFP0	General purpose digital I/O pin.
	ECAP1_IC0	I	MFP1	Input 0 of enhanced capture unit 1.
24	P4.1	I/O	MFP0	General purpose digital I/O pin.
	ECAP1_IC1	I	MFP1	Input 1 of enhanced capture unit 1.
25	P4.2	I/O	MFP0	General purpose digital I/O pin.
	ECAP1_IC2	I	MFP1	Input 2 of enhanced capture unit 1.
26	P4.3	I/O	MFP0	General purpose digital I/O pin.
27	P3.3	I/O	MFP0	General purpose digital I/O pin.
	INT1	I	MFP1	External interrupt1 input pin.
28	P4.6	I/O	MFP0	General purpose digital I/O pin.
	TM2	I/O	MFP1	Timer2 event counter input/external capture input/toggle output.
29	P1.1	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH1	0	MFP1	EPWM1 channel1 output.
30	P1.0	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH0	0	MFP1	EPWM1 channel0 output.
31	P3.0	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
	UART0_RXD	0	MFP1	Data receiver input pin for UART0.
	CLKO	0	MFP2	Clock Output.
32	P3.1	I/O	MFP0	General purpose digital I/O pin.
	UART0_TXD	I	MFP1	Data transmitter output pin for UART0.
	ACMP0_O	0	MFP2	Analog comparator0 output.
33	P4.7	I/O	MFP0	General purpose digital I/O pin.
	ТМЗ	I/O	MFP1	Timer3 event counter input/external capture input/toggle output.
34	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
35	V _{SS}	Р	MFP0	Ground pin for digital circuit.
36	P5.0	I/O	MFP0	General purpose digital I/O pin.
	SPI0_MOSI	I/O	MFP1	1st SPI0 MOSI (Master Out, Slave In) pin.
	UART0_nRTS	0	MFP2	Request to Send output pin for UART0.
	I2C0_SCL	I/O	MFP3	I ² C0 clock pin.
37	P5.1	I/O	MFP0	General purpose digital I/O pin.
	SPI0_MISO	I/O	MFP1	1st SPI0 MISO (Master In, Slave Out) pin.
	UART0_nCTS	I	MFP2	Clear to Send input pin for UART0.
	I2C0_SDA	I/O	MFP3	I ² C0 data input/output pin.
38	P2.7	I/O	MFP0	General purpose digital I/O pin.
	SPI0_CLK	0	MFP2	SPI0 serial clock pin.
	UART1_nRTS	0	MFP3	Request to Send output pin for UART1.
39	P2.6	I/O	MFP0	General purpose digital I/O pin.
	SPI0_SS	I/O	MFP2	1st SPI0 slave select pin.
	UART1_nCTS	I	MFP3	Clear to Send input pin for UART1.
40	P2.5	I/O	MFP0	General purpose digital I/O pin.
41	P2.4	I/O	MFP0	General purpose digital I/O pin.
42	P0.7	I/O	MFP0	General purpose digital I/O pin.
	STADC	I	MFP1	ADC external trigger input.
43	P0.6	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_BRAKE1	I	MFP1	Brake input pin 1 of EPWM0.
44	P0.5	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH5	0	MFP1	EPWM0 channel5 output.

Pin No.	Pin Name	Туре	MFP*	Description
45	P0.4	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH4	0	MFP1	EPWM0 channel4 output.
46	P2.3	I/O	MFP0	General purpose digital I/O pin.
	ECAP0_IC0	I	MFP1	Input 0 of enhanced capture unit 0.
47	P2.2	I/O	MFP0	General purpose digital I/O pin.
	ECAP0_IC1	I	MFP1	Input 1 of enhanced capture unit 0.
48	P2.1	I/O	MFP0	General purpose digital I/O pin.
	ECAP0_IC2	I	MFP1	Input 2 of enhanced capture unit 0.
49	P2.0	I/O	MFP0	General purpose digital I/O pin.
	SPI2_MOSI	I/O	MFP1	1st SPI2 MOSI (Master Out, Slave In) pin.
	ACMP2_O	0	MFP2	Analog comparator2 output.
50	P5.2	I/O	MFP0	General purpose digital I/O pin.
	SPI2_MISO	I/O	MFP1	1st SPI2 MISO (Master In, Slave Out) pin.
	ACMP1_O	0	MFP2	Analog comparator1 output.
51	P5.3	I/O	MFP0	General purpose digital I/O pin.
	SPI2_CLK	0	MFP1	SPI2 serial clock pin.
52	P5.4	I/O	MFP0	General purpose digital I/O pin.
	SPI2_SS	I/O	MFP1	1st SPI2 slave select pin.
53	P5.5	I/O	MFP0	General purpose digital I/O pin.
	CLKO	0	MFP1	Clock Output.
54	P0.3	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH3	0	MFP1	EPWM0 channel3 output.
	STADC	I	MFP3	ADC external trigger input.
55	P0.2	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH2	0	MFP1	EPWM0 channel2 output.
56	P0.1	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH1	0	MFP1	EPWM0 channel1 output.
57	P0.0	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH0	0	MFP1	EPWM0 channel0 output.
58	P8.7	I/O	MFP0	General purpose digital I/O pin.
	ACMP0_O	0	MFP1	Analog comparator0 output.
59	P8.6	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
60	V _{SS}	Р	MFP0	Ground pin for digital circuit.
61	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
62	P6.7	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH7	A	MFP1	EADC0 channel7 analog input.
63	P6.6	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH6	A	MFP1	EADC0 channel6 analog input.
64	P6.5	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH5 or	А	MFP1	EADC0 channel5 analog input or
	ACMP1_P			Analog comparator1 positive input pin.
65	P6.4	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH4 or	А	MFP1	EADC0 channel4 analog input or
	ACMP1_N			Analog comparator1 negative input pin.
66	P6.3	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH3	А	MFP1	EADC0 channel3 analog input.
67	P6.2	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH2	А	MFP1	EADC0 channel2 analog input.
68	P6.1	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH1	А	MFP1	EADC0 channel1 analog input.
69	P6.0	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH0	А	MFP1	EADC0 channel0 analog input.
70	P8.2	I/O	MFP0	General purpose digital I/O pin.
	OP0_O	0	MFP1	Operational amplifier output pin.
71	P8.1	I/O	MFP0	General purpose digital I/O pin.
	OP0_N	А	MFP1	Operational amplifier negative input pin.
72	P8.0	I/O	MFP0	General purpose digital I/O pin.
	OP0_P	А	MFP1	Operational amplifier positive input pin.
73	AV _{SS}	Р	MFP0	Ground pin for analog circuit.
74	AV _{DD}	Р	MFP0	Power supply for internal analog circuit.
75	V _{REF}	I	MFP0	Voltage reference input for ADC.
76	P7.7	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH7	А	MFP1	EADC1 channel7 analog input.

77 P7.6 EADC1_CH6 78 P7.5 EADC1_CH5 of ACMP2_P 79 P7.4 EADC1_CH4 of ACMP2_N 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH1 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O	MFP1 MFP0 MFP1 MFP1 MFP0 MFP1 MFP0 MFP1 MFP1 MFP1	General purpose digital I/O pin.EADC1 channel6 analog input.General purpose digital I/O pin.EADC1 channel5 analog input or Analog comparator2 positive input pin.General purpose digital I/O pin.EADC1 channel4 analog input or Analog comparator2 negative input pin.General purpose digital I/O pin.EADC1 channel4 analog input or Analog comparator2 negative input pin.General purpose digital I/O pin.EADC1 channel3 analog input.General purpose digital I/O pin.EADC1 channel3 analog input.General purpose digital I/O pin.EADC1 channel3 analog input.General purpose digital I/O pin.EADC1 channel3 analog input.
78 P7.5 EADC1_CH5 (ACMP2_P) 79 P7.4 EADC1_CH4 (ACMP2_N) 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O or A I/O or A I/O A I/O A I/O	MFP0 MFP1 MFP0 MFP0 MFP1 MFP0 MFP1 MFP0 MFP1	General purpose digital I/O pin. EADC1 channel5 analog input or Analog comparator2 positive input pin. General purpose digital I/O pin. EADC1 channel4 analog input or Analog comparator2 negative input pin. General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
EADC1_CH5 of ACMP2_P 79 P7.4 EADC1_CH4 of ACMP2_N 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	or A I/O or A I/O A I/O A I/O A I/O	MFP1 MFP0 MFP1 MFP1 MFP0 MFP1 MFP0 MFP1	 EADC1 channel5 analog input or Analog comparator2 positive input pin. General purpose digital I/O pin. EADC1 channel4 analog input or Analog comparator2 negative input pin. General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
ACMP2_P 79 P7.4 EADC1_CH4 (ACMP2_N) 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O or A I/O A I/O A I/O	MFP0 MFP1 MFP0 MFP1 MFP0 MFP1 MFP1	Analog comparator2 positive input pin. General purpose digital I/O pin. EADC1 channel4 analog input or Analog comparator2 negative input pin. General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
79 P7.4 EADC1_CH4 (ACMP2_N) 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	or A I/O A I/O A I/O	MFP1 MFP0 MFP1 MFP0 MFP1 MFP1	General purpose digital I/O pin. EADC1 channel4 analog input or Analog comparator2 negative input pin. General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
EADC1_CH4 of ACMP2_N 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	or A I/O A I/O A I/O	MFP1 MFP0 MFP1 MFP0 MFP1 MFP1	EADC1 channel4 analog input or Analog comparator2 negative input pin. General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
ACMP2_N 80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH2 83 P7.0 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O A I/O A I/O	MFP0 MFP1 MFP0 MFP1	Analog comparator2 negative input pin. General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
80 P7.3 EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	A 1/O A 1/O	MFP1 MFP0 MFP1	General purpose digital I/O pin. EADC1 channel3 analog input. General purpose digital I/O pin.
EADC1_CH3 81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	A 1/O A 1/O	MFP1 MFP0 MFP1	EADC1 channel3 analog input. General purpose digital I/O pin.
81 P7.2 EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O A I/O	MFP0 MFP1	General purpose digital I/O pin.
EADC1_CH2 82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	A I/O	MFP1	
82 P7.1 EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O		EADC1 channel2 analog input.
EADC1_CH1 83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O		MEDO	
83 P7.0 EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	A	IVIEEU	General purpose digital I/O pin.
EADC1_CH0 84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O		MFP1	EADC1 channel1 analog input.
84 P8.4 ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O	MFP0	General purpose digital I/O pin.
ACMP0_P 85 P8.3 ACMP0_N 86 P9.0 OP1_O	А	MFP1	EADC1 channel0 analog input.
85 P8.3 ACMP0_N 86 P9.0 OP1_O	I/O	MFP0	General purpose digital I/O pin.
ACMP0_N 86 P9.0 OP1_O	А	MFP1	Analog comparator0 positive input pin.
86 P9.0 OP1_O	I/O	MFP0	General purpose digital I/O pin.
OP1_O	А	MFP1	Analog comparator0 negative input pin.
	I/O	MFP0	General purpose digital I/O pin.
	0	MFP1	Operational amplifier output pin.
87 P9.1	I/O	MFP0	General purpose digital I/O pin.
OP1_N	А	MFP1	Operational amplifier negative input pin.
88 P9.2	I/O	MFP0	General purpose digital I/O pin.
OP1_P	A	MFP1	Operational amplifier positive input pin.
89 V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
90 V _{SS}	Р	MFP0	Ground pin for digital circuit.
91 P8.5	I/O	MFP0	General purpose digital I/O pin.
92 P9.3		MFP0	General purpose digital I/O pin.
EPWM1_BRA	I/O	MFP1	Brake input pin 1 of EPWM1.

Pin No.	Pin Name	Туре	MFP*	Description
93	nRESET	I	MFP0	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.
94	XT1_OUT	0	MFP0	External 4~24 MHz (high speed) crystal output pin.
95	XT1_IN	Ι	MFP0	External 4~24 MHz (high speed) crystal input pin.
96	ICE_DAT	I/O	MFP0	Serial wired debugger data pin.
97	ICE_CLK	I	MFP0	Serial wired debugger clock pin.
98	P9.4	I/O	MFP0	General purpose digital I/O pin.
	SPI1_CLK	0	MFP1	SPI1 serial clock pin.
99	P9.5	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MISO	I/O	MFP1	1st SPI1 MISO (Master In, Slave Out) pin.
100	P9.6	I/O	MFP0	General purpose digital I/O pin.
	SPI1_MOSI	I/O	MFP1	1st SPI1 MOSI (Master Out, Slave In) pin.

4.3.2 M0519 LQFP64 Pin Description

MFP* = Multi-function pin. (Refer to section Px_MFP)

P1.7 MFP0 means $P1_MFP[7] = 0$.

PA.1 MFP3 means (PA_MFP[9], PA_MFP[1]) = (1,1).

Pin No.	Pin Name	Туре	MFP*	Description
1	P3.5	I/O	MFP0	General purpose digital I/O pin.
	TM1	I/O	MFP1	Timer1 event counter input/external capture input/toggle output.
	I2C0_SCL	I/O	MFP2	l ² C0 clock pin.
2	P3.4	I/O	MFP0	General purpose digital I/O pin.
	ТМО	I/O	MFP1	Timer0 event counter input/external capture input/toggle output.
	I2C0_SDA	I/O	MFP2	I ² C0 data input/output pin.
3	P3.2	I/O	MFP0	General purpose digital I/O pin.
	INT0	I	MFP1	External interrupt0 input pin.
4	P1.7	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_BRAKE0	I	MFP1	Brake input pin 0 of EPWM1.
5	LDO_CAP	А	MFP0	LDO output pin.
6	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
7	V _{SS}	Р	MFP0	Ground pin for digital circuit.
8	PA.1	I/O	MFP0	General purpose digital I/O pin.
	UART1_RXD	0	MFP1	Data receiver input pin for UART1.
	I2C0_SCL	I/O	MFP3	l ² C0 clock pin.
9	PA.0	I/O	MFP0	General purpose digital I/O pin.
	UART1_TXD	I	MFP1	Data transmitter output pin for UART1.
	I2C0_SDA	I/O	MFP3	I ² C0 data input/output pin.
10	P5.7	I/O	MFP0	General purpose digital I/O pin.
	BPWM0_CH1	I/O	MFP1	BPWM0 channel1 output/capture input.
11	P5.6	I/O	MFP0	General purpose digital I/O pin.
	BPWM0_CH0	I/O	MFP1	BPWM0 channel0 output/capture input.
12	P1.6	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_BRAKE0	I	MFP1	Brake input pin 0 of EPWM0.
13	P1.5	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
	EPWM1_CH5	0	MFP1	EPWM1 channel5 output.
14	P1.4	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH4	0	MFP1	EPWM1 channel4 output.
15	P1.3	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH3	0	MFP1	EPWM1 channel3 output.
16	P1.2	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH2	0	MFP1	EPWM1 channel2 output.
17	P1.1	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH1	0	MFP1	EPWM1 channel1 output.
18	P1.0	I/O	MFP0	General purpose digital I/O pin.
	EPWM1_CH0	0	MFP1	EPWM1 channel0 output.
19	P3.0	I/O	MFP0	General purpose digital I/O pin.
	UART0_RXD	0	MFP1	Data receiver input pin for UART0.
	CLKO	0	MFP2	Clock Output.
20	P3.1	I/O	MFP0	General purpose digital I/O pin.
	UART0_TXD	I	MFP1	Data transmitter output pin for UART0.
	ACMP0_O	0	MFP2	Analog comparator0 output.
21	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
22	V _{SS}	Р	MFP0	Ground pin for digital circuit.
23	P5.0	I/O	MFP0	General purpose digital I/O pin.
	SPI0_MOSI	I/O	MFP1	1st SPI0 MOSI (Master Out, Slave In) pin.
	UART0_nRTS	0	MFP2	Request to Send output pin for UART0.
	I2C0_SCL	I/O	MFP3	I ² C0 clock pin.
24	P5.1	I/O	MFP0	General purpose digital I/O pin.
	SPI0_MISO	I/O	MFP1	1st SPI0 MISO (Master In, Slave Out) pin.
	UART0_nCTS	I	MFP2	Clear to Send input pin for UART0.
	I2C0_SDA	I/O	MFP3	I ² C0 data input/output pin.
25	P2.7	I/O	MFP0	General purpose digital I/O pin.
	SPI0_CLK	0	MFP2	SPI0 serial clock pin.
	UART1_nRTS	0	MFP3	Request to Send output pin for UART1.
26	P2.6	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
	SPI0_SS	I/O	MFP2	1st SPI0 slave select pin.
	UART1_nCTS	I	MFP3	Clear to Send input pin for UART1.
27	P2.5	I/O	MFP0	General purpose digital I/O pin.
28	P2.4	I/O	MFP0	General purpose digital I/O pin.
29	P0.5	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH5	0	MFP1	EPWM0 channel5 output.
30	P0.4	I/O	MFP0	General purpose digital I/O pin.
	EPWM0_CH4	0	MFP1	EPWM0 channel4 output.
31	P2.0	I/O	MFP0	General purpose digital I/O pin.
	SPI2_MOSI	I/O	MFP1	1st SPI2 MOSI (Master Out, Slave In) pin.
	ACMP2_O	0	MFP2	Analog comparator2 output.
32	P5.2	I/O	MFP0	General purpose digital I/O pin.
	SPI2_MISO	I/O	MFP1	1st SPI2 MISO (Master In, Slave Out) pin.
	ACMP1_O	0	MFP2	Analog comparator1 output.
33	P5.3	I/O	MFP0	General purpose digital I/O pin.
	SPI2_CLK	0	MFP1	SPI2 serial clock pin.
34	P5.4	I/O	MFP0	General purpose digital I/O pin.
	SPI2_SS	I/O	MFP1	1st SPI2 slave select pin.
35	P6.7	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH7	А	MFP1	EADC0 channel7 analog input.
36	P6.6	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH6	А	MFP1	EADC0 channel6 analog input.
37	P6.5	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH5 or	А	MFP1	EADC0 channel5 analog input or
	ACMP1_P			Analog comparator1 positive input pin.
38	P6.4	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH4 or ACMP1_N	А	MFP1	EADC0 channel4 analog input or
				Analog comparator1 negative input pin.
39	P6.3	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH3	A	MFP1	EADC0 channel3 analog input.
40	P6.2	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH2	А	MFP1	EADC0 channel2 analog input.

Pin No.	Pin Name	Туре	MFP*	Description
41	P6.1	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH1	А	MFP1	EADC0 channel1 analog input.
42	P6.0	I/O	MFP0	General purpose digital I/O pin.
	EADC0_CH0	А	MFP1	EADC0 channel0 analog input.
43	P8.2	I/O	MFP0	General purpose digital I/O pin.
	OP0_O	0	MFP1	Operational amplifier output pin.
44	P8.1	I/O	MFP0	General purpose digital I/O pin.
	OP0_N	А	MFP1	Operational amplifier negative input pin.
45	P8.0	I/O	MFP0	General purpose digital I/O pin.
	OP0_P	А	MFP1	Operational amplifier positive input pin.
46	AV _{SS}	Р	MFP0	Ground pin for analog circuit.
47	AV _{DD}	Р	MFP0	Power supply for internal analog circuit.
48	V _{REF}	I	MFP0	Voltage reference input for ADC.
49	P7.7	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH7	А	MFP1	EADC1 channel7 analog input.
50	P7.6	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH6	А	MFP1	EADC1 channel6 analog input.
51	P7.5	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH5 or	А	MFP1	EADC1 channel5 analog input or
	ACMP2_P			Analog comparator2 positive input pin.
52	P7.4	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH4 or ACMP2_N	А	MFP1	EADC1 channel4 analog input or
				Analog comparator2 negative input pin.
53	P7.3	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH3	A	MFP1	EADC1 channel3 analog input.
54	P7.2	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH2	A	MFP1	EADC1 channel2 analog input.
55	P7.1	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH1	А	MFP1	EADC1 channel1 analog input.
56	P7.0	I/O	MFP0	General purpose digital I/O pin.
	EADC1_CH0	Α	MFP1	EADC1 channel0 analog input.
57	P9.0	I/O	MFP0	General purpose digital I/O pin.

Pin No.	Pin Name	Туре	MFP*	Description
	OP1_O	0	MFP1	Operational amplifier output pin.
58	P9.1	I/O	MFP0	General purpose digital I/O pin.
	OP1_N	А	MFP1	Operational amplifier negative input pin.
59	P9.2	I/O	MFP0	General purpose digital I/O pin.
	OP1_P	А	MFP1	Operational amplifier positive input pin.
60	nRESET	I	MFP0	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.
61	XT1_OUT	0	MFP0	External 4~24 MHz (high speed) crystal output pin.
62	XT1_IN	I	MFP0	External 4~24 MHz (high speed) crystal input pin.
63	ICE_DAT	I/O	MFP0	Serial wired debugger data pin.
64	ICE_CLK	I	MFP0	Serial wired debugger clock pin.

4.3.3 M0519 LQFP48 Pin Description

MFP* = Multi-function pin. (Refer to section Px_MFP)

P1.7 MFP0 means $P1_MFP[7] = 0$.

PA.1 MFP3 means (PA_MFP[9], PA_MFP[1]) = (1,1).

Pin No.	Pin Name	Туре	MFP*	Description	
1	ICE_CLK	I	MFP0	Serial wired debugger clock pin.	
2	ICE_DAT	I/O	MFP0	Serial wired debugger data pin.	
3	XT1_IN	I	MFP0	External 4~24 MHz (high speed) crystal input pin.	
4	XT1_OUT	0	MFP0	External 4~24 MHz (high speed) crystal output pin.	
5	P1.7	I/O	MFP0	General purpose digital I/O pin.	
	EPWM1_BRAKE0	I	MFP1	Brake input pin 0 of EPWM1.	
6	LDO_CAP	А	MFP0	LDO output pin.	
7	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.	
8	V _{SS}	Р	MFP0	Ground pin for digital circuit.	
9	PA.1	I/O	MFP0	General purpose digital I/O pin.	
	UART1_RXD	0	MFP1	Data receiver input pin for UART1.	
	I2C0_SCL	I/O	MFP3	l ² C0 clock pin.	
10	PA.0	I/O	MFP0	General purpose digital I/O pin.	
	UART1_TXD	I	MFP1	Data transmitter output pin for UART1.	
	I2C0_SDA	I/O	MFP3	l ² C0 data input/output pin.	
11	P5.7	I/O	MFP0	General purpose digital I/O pin.	
	BPWM0_CH1	I/O	MFP1	BPWM0 channel1 output/capture input.	
12	P5.6	I/O	MFP0	General purpose digital I/O pin.	
	BPWM0_CH0	I/O	MFP1	BPWM0 channel0 output/capture input.	
13	P1.2	I/O	MFP0	General purpose digital I/O pin.	
	EPWM1_CH2	0	MFP1	EPWM1 channel2 output.	
14	P1.3	I/O	MFP0	General purpose digital I/O pin.	
	EPWM1_CH3	0	MFP1	EPWM1 channel3 output.	
15	P1.4	I/O	MFP0	General purpose digital I/O pin.	
	EPWM1_CH4	0	MFP1	EPWM1 channel4 output.	
16	P1.5	I/O	MFP0	General purpose digital I/O pin.	
	EPWM1_CH5	0	MFP1	EPWM1 channel5 output.	

Pin No.	Pin Name	Туре	MFP*	Description	
17	P3.0	I/O	MFP0	General purpose digital I/O pin.	
	UART0_RXD	0	MFP1	Data receiver input pin for UART0.	
	CLKO	0	MFP2	Clock Output.	
18	P3.1	I/O	MFP0	General purpose digital I/O pin.	
	UART0_TXD	I	MFP1	Data transmitter output pin for UART0.	
	ACMP0_O	0	MFP2	Analog comparator0 output.	
19	P5.0	I/O	MFP0	General purpose digital I/O pin.	
	SPI0_MOSI	I/O	MFP1	1st SPI0 MOSI (Master Out, Slave In) pin.	
	UART0_nRTS	0	MFP2	Request to Send output pin for UART0.	
	I2C0_SCL	I/O	MFP3	l ² C0 clock pin.	
20	P5.1	I/O	MFP0	General purpose digital I/O pin.	
	SPI0_MISO	I/O	MFP1	1st SPI0 MISO (Master In, Slave Out) pin.	
	UART0_nCTS	I	MFP2	Clear to Send input pin for UART0.	
	I2C0_SDA	I/O	MFP3	I ² C0 data input/output pin.	
21	P2.7	I/O	MFP0	General purpose digital I/O pin.	
	SPI0_CLK	0	MFP2	SPI0 serial clock pin.	
	UART1_nRTS	0	MFP3	Request to Send output pin for UART1.	
22	P2.6	I/O	MFP0	General purpose digital I/O pin.	
	SPI0_SS	I/O	MFP2	1st SPI0 slave select pin.	
	UART1_nCTS	I	MFP3	Clear to Send input pin for UART1.	
23	P0.7	I/O	MFP0	General purpose digital I/O pin.	
	STADC	I	MFP1	ADC external trigger input.	
24	P6.7	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH7	Α	MFP1	EADC0 channel7 analog input.	
25	P6.6			General purpose digital I/O pin.	
	EADC0_CH6	А	MFP1	EADC0 channel6 analog input.	
26	P6.5	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH5 or	А	MFP1	EADC0 channel5 analog input or	
	ACMP1_P			Analog comparator1 positive input pin.	
27	P6.4	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH4 or ACMP1_N	А	MFP1	EADC0 channel4 analog input or	
				Analog comparator1 negative input pin.	

Pin No.	Pin Name	Туре	MFP*	Description	
28	P6.3	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH3	А	MFP1	EADC0 channel3 analog input.	
29	P6.2	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH2	Α	MFP1	EADC0 channel2 analog input.	
30	P6.1	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH1	А	MFP1	EADC0 channel1 analog input.	
31	P6.0	I/O	MFP0	General purpose digital I/O pin.	
	EADC0_CH0	Α	MFP1	EADC0 channel0 analog input.	
32	P8.2	I/O	MFP0	General purpose digital I/O pin.	
	OP0_O	0	MFP1	Operational amplifier output pin.	
33	P8.1	I/O	MFP0	General purpose digital I/O pin.	
	OP0_N	Α	MFP1	Operational amplifier negative input pin.	
34	P8.0	I/O	MFP0	General purpose digital I/O pin.	
	OP0_P	Α	MFP1	Operational amplifier positive input pin.	
35	AV _{SS}	Р	MFP0	Ground pin for analog circuit.	
36	AV _{DD}	Р	MFP0	Power supply for internal analog circuit.	
37	P7.7	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH7	Α	MFP1	EADC1 channel7 analog input.	
38	P7.6	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH6	Α	MFP1	EADC1 channel6 analog input.	
39	39 P7.5		MFP0	General purpose digital I/O pin.	
	EADC1_CH5 or	Α	MFP1	EADC1 channel5 analog input or	
	ACMP2_P			Analog comparator2 positive input pin.	
40	P7.4	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH4 or ACMP2_N	А	MFP1	EADC1 channel4 analog input or	
				Analog comparator2 negative input pin.	
41	P7.3	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH3	А	MFP1	EADC1 channel3 analog input.	
42	P7.2	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH2	А	MFP1	EADC1 channel2 analog input.	
43	P7.1	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH1	А	MFP1	EADC1 channel1 analog input.	

Pin No.	Pin Name	Туре	MFP*	Description	
44	P7.0	I/O	MFP0	General purpose digital I/O pin.	
	EADC1_CH0	А	MFP1	EADC1 channel0 analog input.	
45	P9.0	I/O	MFP0	General purpose digital I/O pin.	
	OP1_O	0	MFP1	Operational amplifier output pin.	
46	P9.1	I/O	MFP0	General purpose digital I/O pin.	
	OP1_N	А	MFP1	Operational amplifier negative input pin.	
47	P9.2	I/O	MFP0	General purpose digital I/O pin.	
	OP1_P	А	MFP1	Operational amplifier positive input pin.	
48	nRESET	I	MFP0	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.	

4.3.4 GPIO Multi-function Pin Summary

Group	Pin Name	GPIO	MFP*	Туре	Description
ACMP0	ACMP0_N	P8.3	MFP1	А	Analog comparator0 negative input pin.
	ACMP0_O	P3.1	MFP2	0	Analog comparator0 output.
	ACMP0_O	P8.7	MFP1	0	Analog comparator0 output.
	ACMP0_P	P8.4	MFP1	А	Analog comparator0 positive input pin.
ACMP1	ACMP1_O	P5.2	MFP2	0	Analog comparator1 output.
	ACMP1_P	P6.5	MFP1	А	Analog comparator1 positive input pin.
	ACMP1_N	P6.4	MFP1	А	Analog comparator1 negative input pin.
	ACMP2_O	P2.0	MFP2	0	Analog comparator2 output.
ACMP2	ACMP2_P	P7.5	MFP1	А	Analog comparator2 positive input pin.
	ACMP2_N	P7.4	MFP1	А	Analog comparator2 negative input pin.
	BPWM0_CH0	P5.6	MFP1	I/O	BPWM0 channel0 output/capture input.
BPWM0	BPWM0_CH1	P5.7	MFP1	I/O	BPWM0 channel1 output/capture input.
CLKO	CLKO	P3.0	MFP2	0	Clock Output.
CLKO	CLKO	P5.5	MFP1	0	Clock Output.
	EADC0_CH0	P6.0	MFP1	А	EADC0 channel0 analog input.
	EADC0_CH1	P6.1	MFP1	А	EADC0 channel1 analog input.
	EADC0_CH2	P6.2	MFP1	А	EADC0 channel2 analog input.
EADC0	EADC0_CH3	P6.3	MFP1	А	EADC0 channel3 analog input.
EADCO	EADC0_CH6	P6.6	MFP1	А	EADC0 channel6 analog input.
	EADC0_CH7	P6.7	MFP1	A	EADC0 channel7 analog input.
	EADC0_CH4	P6.4	MFP1	A	EADC0 channel4 analog input.
	EADC0_CH5	P6.5	MFP1	А	EADC0 channel5 analog input.
	EADC1_CH0	P7.0	MFP1	А	EADC1 channel0 analog input.
EADC1	EADC1_CH1	P7.1	MFP1	А	EADC1 channel1 analog input.
	EADC1_CH2	P7.2	MFP1	А	EADC1 channel2 analog input.
	EADC1_CH3	P7.3	MFP1	А	EADC1 channel3 analog input.
	EADC1_CH6	P7.6	MFP1	А	EADC1 channel6 analog input.
	EADC1_CH7	P7.7	MFP1	А	EADC1 channel7 analog input.
	EADC1_CH4	P7.4	MFP1	A	EADC1 channel4 analog input.

Group	Pin Name	GPIO	MFP*	Туре	Description
	EADC1_CH5	P7.5	MFP1	A	EADC1 channel5 analog input.
	ECAP0_IC0	P2.3	MFP1	I	Input 0 of enhanced capture unit 0.
ECAP0	ECAP0_IC1	P2.2	MFP1	I	Input 1 of enhanced capture unit 0.
	ECAP0_IC2	P2.1	MFP1	I	Input 2 of enhanced capture unit 0.
	ECAP1_IC0	P4.0	MFP1	I	Input 0 of enhanced capture unit 1.
	ECAP1_IC0	P0.0	MFP3	I	Input 0 of enhanced capture unit 1.
ECAP1	ECAP1_IC1	P4.1	MFP1	I	Input 1 of enhanced capture unit 1.
ECAPT	ECAP1_IC1	P0.1	MFP3	I	Input 1 of enhanced capture unit 1.
	ECAP1_IC2	P4_2	MFP1	I	Input 2 of enhanced capture unit 1.
	ECAP1_IC2	P0.2	MFP3	I	Input 2 of enhanced capture unit 1.
	EPWM0_BRAKE0	P1.6	MFP1	I	Brake input pin 0 of EPWM0.
	EPWM0_BRAKE1	P0.6	MFP1	I	Brake input pin 1 of EPWM0.
	EPWM0_CH0	P0.0	MFP1	0	EPWM0 channel0 output.
EPWM0	EPWM0_CH1	P0.1	MFP1	0	EPWM0 channel1 output.
	EPWM0_CH2	P0.2	MFP1	0	EPWM0 channel2 output.
	EPWM0_CH3	P0.3	MFP1	0	EPWM0 channel3 output.
	EPWM0_CH4	P0.4	MFP1	0	EPWM0 channel4 output.
	EPWM0_CH5	P0.5	MFP1	0	EPWM0 channel5 output.
	EPWM1_BRAKE0	P1.7	MFP1	I	Brake input pin 0 of EPWM1.
	EPWM1_BRAKE1	P9.3	MFP1	I	Brake input pin 1 of EPWM1.
	EPWM1_CH0	P1.0	MFP1	0	EPWM1 channel0 output.
EPWM1	EPWM1_CH1	P1.1	MFP1	0	EPWM1 channel1 output.
	EPWM1_CH2	P1.2	MFP1	0	EPWM1 channel2 output.
	EPWM1_CH3	P1.3	MFP1	0	EPWM1 channel3 output.
	EPWM1_CH4	P1.4	MFP1	0	EPWM1 channel4 output.
	EPWM1_CH5	P1.5	MFP1	0	EPWM1 channel5 output.
	I2C0_SCL	P3.5	MFP2	I/O	I2C0 clock pin.
	I2C0_SCL	PA.1	MFP3	I/O	I2C0 clock pin.
I2C0	I2C0_SCL	P5.0	MFP3	I/O	I2C0 clock pin.
1200	I2C0_SDA	P3.4	MFP2	I/O	I2C0 data input/output pin.
	I2C0_SDA	PA.0	MFP3	I/O	I2C0 data input/output pin.
	I2C0_SDA	P5.1	MFP3	I/O	I2C0 data input/output pin.

nu	ουνοτοη							
	Group	Pin Name	GPIO	MFP*	Туре			
	INT0	INTO	P3.2	MFP1	I			
	INT1	INT1	P3.3	MFP1	I			
		OP0_N	P8.1	MFP1	А			
	OP0	OP0_O	P8.2	MFP1	0			
		OP0_P	P8.0	MFP1	А			
		OP1_N	P9.1	MFP1	А			
	OP1	OP1_O	P9.0	MFP1	0			
		OP1_P	P9.2	MFP1	А			

jie output.	
ut pin for UART0.	
output pin for UART0.	
ut pin for UART0.	
output pin for UART0.	
Rev 1.02	

	OP0_N	P8.1	MFP1	А	Operational amplifier negative input pin.		
OP0	OP0_O	P8.2	MFP1	0	Operational amplifier output pin.		
	OP0_P	P8.0	MFP1	А	Operational amplifier positive input pin.		
	OP1_N	P9.1	MFP1	А	Operational amplifier negative input pin.		
OP1	OP1_O	P9.0	MFP1	0	Operational amplifier output pin.		
	OP1_P	P9.2	MFP1	A	Operational amplifier positive input pin.		
	SPI0_CLK	P2.7	MFP2	0	SPI0 serial clock pin.		
SPI0	SPI0_MISO	P5.1	MFP1	I/O	1st SPI0 MISO (Master In, Slave Out) pin.		
0110	SPI0_MOSI	P5.0	MFP1	I/O	1st SPI0 MOSI (Master Out, Slave In) pin.		
	SPI0_SS	P2.6	MFP2	I/O	1st SPI0 slave select pin.		
	SPI1_CLK	P9.4	MFP1	0	SPI1 serial clock pin.		
SPI1	SPI1_MISO	P9.5	MFP1	I/O	1st SPI1 MISO (Master In, Slave Out) pin.		
5611	SPI1_MOSI	P9.6	MFP1	I/O	1st SPI1 MOSI (Master Out, Slave In) pin.		
	SPI1_SS	P9.7	MFP1	I/O	1st SPI1 slave select pin.		
	SPI2_CLK	P5.3	MFP1	0	SPI2 serial clock pin.		
SPI2	SPI2_MISO	P5.2	MFP1	I/O	1st SPI2 MISO (Master In, Slave Out) pin.		
5812	SPI2_MOSI	P2.0	MFP1	I/O	1st SPI2 MOSI (Master Out, Slave In) pin.		
	SPI2_SS	P5.4	MFP1	I/O	1st SPI2 slave select pin.		
	STADC	P0.7	MFP1	I	ADC external trigger input.		
STADC	STADC	P0.3	MFP3	I	ADC external trigger input.		
TM0	тмо	P3.4	MFP1	I/O	Timer0 event counter input/external capture input/toggle output.		
TM1	TM1	P3.5	MFP1	I/O	Timer1 event counter input/external capture input/toggle output.		
TM2	TM2	P4.6	MFP1	I/O	Timer2 event counter input/external capture input/toggle output.		
TM3	ТМЗ	P4.7	MFP1	I/O	Timer3 event counter input/external capture input/toggle output.		
	UART0_RXD	P3.0	MFP1	0	Data receiver input pin for UART0.		
UART0	UART0_TXD	P3.1	MFP1	I	Data transmitter output pin for UART0.		
UARIU	UART0_nCTS	P5.1	MFP2	I	Clear to Send input pin for UART0.		
	UART0_nRTS	P5.0	MFP2	0	Request to Send output pin for UART0.		

Description

External interrupt0 input pin.

External interrupt1 input pin.

Group	Pin Name	GPIO	MFP*	Туре	Description
UART1	UART1_RXD	PA.1	MFP1	0	Data receiver input pin for UART1.
	UART1_TXD	PA.0	MFP1	I	Data transmitter output pin for UART1.
	UART1_nCTS	P2.6	MFP3	I	Clear to Send input pin for UART1.
	UART1_nRTS	P2.7	MFP3	0	Request to Send output pin for UART1.

5 BLOCK DIAGRAM

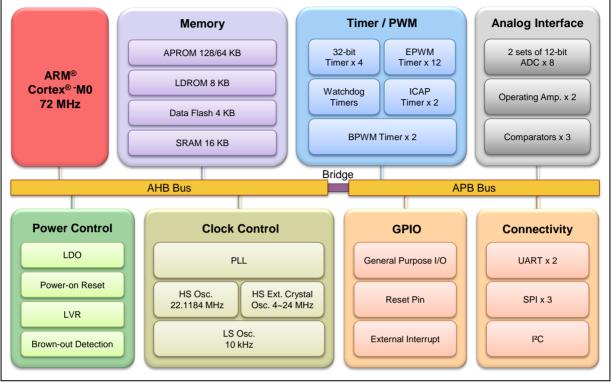


Figure 5-1 NuMicro[®] M0519 Series Block Diagram

6 FUNCTIONAL DESCRIPTION

6.1 ARM[®] Cortex[®]-M0 Core

The Cortex[®]-M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex[®]-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return.

Figure 6-1 shows the functional controller of processor.

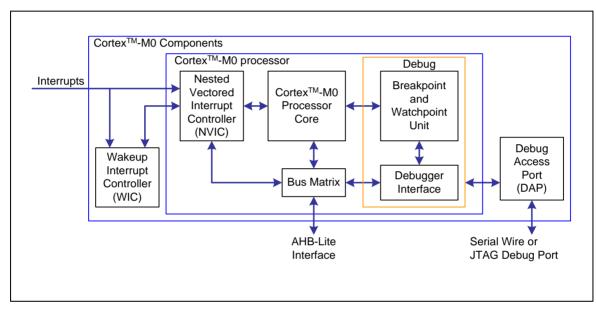


Figure 6-1 Functional Controller Diagram

The implemented device provides the following components and features:

- A low gate count processor:
 - ARMv6-M Thumb[®] instruction set
 - Thumb-2 technology
 - ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature

- NVIC:
 - 32 external interrupt inputs, each with four levels of priority
 - Dedicated Non-maskable Interrupt (NMI) input
 - Supports for both level-sensitive and pulse-sensitive interrupt lines
 - Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode
- Debug support
 - Four hardware breakpoints
 - Two watchpoints
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling
 - Single step and vector catch capabilities
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
 - Single 32-bit slave port that supports the DAP (Debug Access Port)

6.2 System Manager

6.2.1 Overview

System management includes the following sections:

- System Resets
- System Power Distribution
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip controllers reset , multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

6.2.2 System Reset

The system reset can be issued by one of the following listed events. For these reset event flags can be read by RSTSRC register.

- Hardware Reset
 - Power-on Reset (POR)
 - Low level on the Reset pin (nRESET)
 - Watchdog Time-out Reset (WDT)
 - Low Voltage Reset (LVR)
 - Brown-out Detector Reset (BOD)
- Software Reset
 - SYS Reset SYSRESETREQ (AIRCR[2])
 - Cortex[®]-M0 Core One-shot Reset CPU_RST (IPRSTC1[1])
 - Chip One-shot Reset CHIP_RST (IPRSTC1[0])

Power-on Reset or CHIP_RST (IPRST1[0]) reset the whole chip including all peripherals, external crystal circuit and BS (ISPCON[1]) bit.

SYSRESETREQ (AIRCR[2]) reset the whole chip including all peripherals, but does not reset external crystal circuit and BS (ISPCON[1]) bit.

6.2.3 System Power Distribution

In this chip, the power distribution is divided into two segments.

- Analog power from AV_{DD} and AV_{SS} provides the power for analog components operation.
- Digital power from V_{DD} and V_{SS} supplies the power to the I/O pins and internal regulator which provides a fixed 1.8V power for digital operation.

The output of internal voltage regulators, LDO_CAP, requires an external capacitor which should be located close to the corresponding pin. Analog power (AV_{DD}) should be the same voltage level of the digital power (V_{DD}).

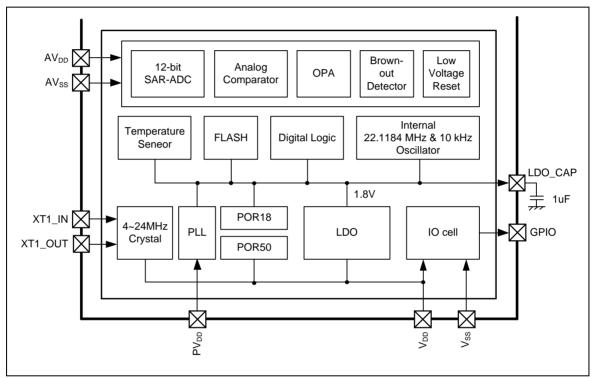


Figure 6-2 NuMicro[®] M0519 Series Power Distribution Diagram

6.2.4 System Memory Map

The NuMicro[®] M0519 Series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in Table 6-1. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip peripheral. The NuMicro[®] M0519 Series only supports little-endian data format.

Address Space	Token	Controllers
Flash and SRAM Memory Space		
0x0000_0000 – 0x0001_FFFF	FLASH_BA	FLASH Memory Space (128 KB)
0x2000_0000 – 0x2000_3FFF	SRAM_BA	SRAM Memory Space (16 KB)
AHB Controllers Space (0x5000_00	00 – 0x501F_FFF	5)
0x5000_0000 – 0x5000_01FF	GCR_BA	System Global Control Registers
0x5000_0200 – 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 – 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO Control Registers
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
0x5001_4000 – 0x5001_7FFF	HDIV_BA	Hardware Divider Register
APB1 Controllers Space (0x4000_0	000 ~ 0x400F_FFF	F)
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers
0x4000_4100 – 0x4000_7FFF	WWDT_BA	Window Watchdog Timer Control Registers
0x4001_0000 – 0x4001_3FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF	I2C0_BA	I ² C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF	SPI0_BA	SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF	SPI1_BA	SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF	BPWM0_BA	Basic PWM0 Control Registers
0x4005_0000 – 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x400D_0000 – 0x400D_3FFF	ACMP_BA	Analog Comparator Control Registers
0x400E_0000 - 0x400E_3FFF	EADC_BA	Enhanced Analog-Digital-Converter (EADC) Control Registers
0x400F_0000 – 0x400F_3FFF	OPA_BA	Operation Amplifier Control Registers
APB2 Controllers Space (0x4010_0	000 ~ 0x401F_FFF	F)
0x4011_0000 – 0x4011_3FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4013_0000 – 0x4013_3FFF	SPI2_BA	SPI2 with master/slave function Control Registers
0x4015_0000 – 0x4015_3FFF	UART1_BA	UART1 Control Registers
Reserved	Reserved	Reserved
0x4019_0000 – 0x4019_3FFF	EPWM0_BA	Enhanced PWM0 Control Registers
0x4019_4000 – 0x4019_7FFF	EPWM1_BA	Enhanced PWM1 Control Registers

Address Space	Token	Controllers
0x401B_0000 – 0x401B_3FFF	ECAP0_BA	Enhanced Input Capture 0 Control Registers
0x401B_4000 – 0x401B_7FFF ECAP1_BA		Enhanced Input Capture 1 Control Registers
Reserved Reserved		Reserved
Reserved	Reserved	Reserved
Reserved	Reserved	Reserved
System Controllers Space (0xE000	_E000 ~ 0xE000_E	FFF)
0xE000_E010 - 0xE000_E01F	SYST_BA	System Timer Control Registers
0xE000_E100 – 0xE000_E4EF NVIC_BA		External Interrupt Controller Control Registers
0xE000_ED00 – 0xE000_ED3F	SCS_BA	System Control Registers

Table 6-1 Address Space Assignments for On-Chip Controllers

6.2.5 System Manager Controller Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GCR Base Addre GCR_BA = 0x500				
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0x0035_X0XX
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX
IPRSTC1	GCR_BA+0x08	R/W	Peripheral Reset Control Register1	0x0000_0000
IPRSTC2	GCR_BA+0x0C	R/W	Peripheral Reset Control Register2	0x0000_0000
BODCR	GCR_BA+0x18	R/W	Brown-out Detector Control Register	0x0000_008X
TEMPCR	GCR_BA+0x1C	R/W	Temperature Sensor Control Register	0x0000_0000
PORCR	GCR_BA+0x24	R/W	Power-on Reset Controller Register	0x0000_00XX
P0_MFP	GCR_BA+0x30	R/W	P0 Multiple Function and Input Type Control Register	0x0000_0000
P1_MFP	GCR_BA+0x34	R/W	P1 Multiple Function and Input Type Control Register	0x0000_0000
P2_MFP	GCR_BA+0x38	R/W	P2 Multiple Function and Input Type Control Register	0x0000_0000
P3_MFP	GCR_BA+0x3C	R/W	P3 Multiple Function and Input Type Control Register	0x0000_0000
P4_MFP	GCR_BA+0x40	R/W	P4 Multiple Function and Input Type Control Register	0x0000_0000
P5_MFP	GCR_BA+0x44	R/W	P5 Multiple Function and Input Type Control Register	0x0000_0000
P6_MFP	GCR_BA+0x48	R/W	P6 Multiple Function and Input Type Control Register	0x0000_0000
P7_MFP	GCR_BA+0x4C	R/W	P7 Multiple Function and Input Type Control Register	0x0000_0000
P8_MFP	GCR_BA+0x50	R/W	P8 Multiple Function and Input Type Control Register	0x0000_0000
P9_MFP	GCR_BA+0x54	R/W	P9 Multiple Function and Input Type Control Register	0x0000_0000
PA_MFP	GCR_BA+0x58	R/W	PA Multiple Function and Input Type Control Register	0x0000_0000
REGWRPROT	GCR_BA+0x100	R/W	Register Write-Protection Control Register	0x0000_0000

6.2.6 Register Description

Part Device Identification Number Register (PDID)

Register Offset R/W			Description	Description					
PDID	GCR_BA+0	x00 R	Part Device Iden	tification Numbe	er Register		0x0035_X0XX ^[1]		
[1] Every part n	[1] Every part number has a unique default reset value.								
31	30	29	28	27	26	25	24		
			PI	DID					
23	22	21	20	19	18	17	16		
			PI	DID					
15	14	13	12	11	10	9	8		
PDID									
7	6	5	4	3	2	1	0		
			PI	DID					

Bits		Description	
[31:0]]	PDID	Part Device Identification Number This register reflects device part number code. Software can read this register to identify which device is used.

System Reset Source Register (RSTSRC)

This register provides specific information for software to identify this chip's reset source from last operation.

Register	Offset	R/W	Description	Reset Value
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	7 6 5 4 3 2 1 0									
RSTS_CPU	Reserved	RSTS_SYS	RSTS_BOD	RSTS_LVR	RSTS_WDT	RSTS_RESET	RSTS_POR			

Bits	Description	
[31:8]	Reserved	Reserved.
		CPU Reset Flag
		The RSTS_CPU flag is set by hardware if software writes CPU_RST (IPRSTC1[1]) 1 to reset Cortex [®] -M0 core and Flash memory controller (FMC).
[7]	RSTS_CPU	0 = No reset from CPU.
		1 = Cortex [®] -M0 CPU kernel and FMC are reset by software setting CPU_RST(IPRSTC1[1]) to 1.
		Note: Write 1 to clear this bit to 0.
[6]	Reserved	Reserved.
		SYS Reset Flag
		The RSTS_SYS flag is set by the "Reset Signal" from the Cortex [®] -M0 kernel to indicate the previous reset source.
[5]	RSTS SYS	0 = No reset from Cortex [®] -M0.
[0]		1 = The Cortex [®] -M0 had issued the reset signal to reset the system by writing 1 to bit SYSRESETREQ (AIRCR[2], Application Interrupt and Reset Control Register, address = 0xE000ED0C) in system control registers of Cortex [®] -M0 core.
		Note: Write 1 to clear this bit to 0.
		Brown-out Detector Reset Flag
		The RSTS_BOD flag is set by the "Reset Signal" from the Brown-out Detector to indicate the previous reset source.
[4]	RSTS_BOD	0 = No reset from BOD.
		1 = The BOD had issued the reset signal to reset the system.
		Note: Write 1 to clear this bit to 0.

Bits	Description	
[3]	RSTS_LVR	 Low Voltage Reset Flag The RSTS_LVR flag is set by the "Reset Signal" from the Low-Voltage-Reset controller to indicate the previous reset source. 0 = No reset from LVR. 1 = The LVR controller had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.
[2]	RSTS_WDT	Watchdog Timer Reset Flag The RSTS_WDT flag is set by the "Reset Signal" from the watchdog timer or window watchdog timer to indicate the previous reset source. 0 = No reset from watchdog timer or window watchdog timer. 1 = The watchdog timer or window watchdog timer had issued the reset signal to reset the system. Note1: Write 1 to clear this bit to 0. Note2: Watchdog Timer register WTRF(WTCR[2]) bit is set if the system has been reset by WDT time-out reset. Window Watchdog Timer register WWDTRF(WWDTSR) bit is set if the system has been reset by WWDT time-out reset.
[1]	RSTS_RESET	 Reset Pin Reset Flag The RSTS_RESET flag is set by the "Reset Signal" from the nRESET pin to indicate the previous reset source. 0 = No reset from the nRESET pin. 1 = The nRESET pin had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.
[0]	RSTS_POR	Power-on Reset Flag The RSTS_POR flag is set by the "Reset Signal" from the Power-on Reset (POR) controller or bit CHIP_RST (IPRSTC1[0]) to indicate the previous reset source. 0 = No reset from POR or CHIP_RST (IPRSTC1[0]). 1 = Power-on Reset (POR) or CHIP_RST (IPRSTC1[0]) had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.

Peripheral Reset Control Register1 (IPRSTC1)

Register	Offset	R/W	Description	Reset Value
IPRSTC1	GCR_BA+0x08	R/W	Peripheral Reset Control Register1	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved		HDIV_RST	Rese	erved	CPU_RST	CHIP_RST		

Bits	Description					
[31:5]	Reserved	Reserved.				
		HDIV Controller Reset (Write Protect)				
[4]		Setting this bit to 1 will generate a reset signal to the hardware divider. User need to set this bit to 0 to release from the reset state.				
	HDIV_RST	0 = Hardware divider controller normal operation.				
		1 = Hardware divider controller reset.				
		Note: This bit is write protected. Refer to the REGWRPROT register.				
[3:2]	Reserved	Reserved.				
		Cortex [®] -M0 Core One-shot Reset (Write Protect)				
		Setting this bit will only reset the CPU kernel and Flash Memory Controller (FMC), and this bit will automatically return 0 after the two clock cycles.				
[1]	CPU_RST	0 = CPU normal operation.				
		1 = CPU one-shot reset.				
		Note: This bit is write protected. Refer to the REGWRPROT register.				
		Chip One-shot Reset (Write Protect)				
		Setting this bit will reset the whole chip, including CPU kernel and all peripherals, and this bit will automatically return to 0 after the 2 clock cycles.				
[0]	CHIP_RST	The CHIP_RST is the same as the POR reset. All the chip controllers are reset and the chip setting from flash are also reload.				
		0 = Chip normal operation.				
		1 = Chip one-shot reset.				
		Note: This bit is write protected. Refer to the REGWRPROT register.				

Peripheral Reset Control Register2 (IPRSTC2)

Setting these bits 1 will generate asynchronous reset signals to the corresponding module. Users need to set these bits to 0 to release corresponding module from reset state.

Register	Offset	R/W	Description	Reset Value
IPRSTC2	GCR_BA+0x0C	R/W	Peripheral Reset Control Register2	0x0000_0000

31	30	29	28	27	26	25	24
Rese	Reserved		EADC_RST	ECAP1_RST	ECAP0_RST	Rese	erved
23	22	21	20	19	18	17	16
Reserved	ACMP_RST	EPWM1_RST	EPWM0_RST	BPWM0_RST	Reserved	UART1_RST	UART0_RST
15	14	13	12	11	10	9	8
Reserved	SPI2_RST	SPI1_RST	SPI0_RST		Reserved		
7	6	5	4	3	2	1	0
Rese	erved	TMR3_RST	TMR2_RST	TMR1_RST	TMR0_RST	GPIO_RST	Reserved

Bits	Description	
[31:26]	Reserved	Reserved.
[29]	OPA_RST	OPA0 and OPA1 Controller Reset 0 = OPA0 and OPA1 controller normal operation. 1 = OPA0 and OPA1 controller reset.
[28]	EADC_RST	EADC Controller Reset 0 = EADC controller normal operation. 1 = EADC controller reset.
[27]	ECAP1_RST	Enhanced Input Capture 1 Controller Reset 0 = Enhanced input capture 1 controller normal operation. 1 = Enhanced input capture 1 controller reset.
[26]	ECAP0_RST	Enhanced Input Capture 0 Controller Reset 0 = Enhanced input capture 0 controller normal operation. 1 = Enhanced input capture 0 controller reset.
[25:23]	Reserved	Reserved.
[23]	Reserved	Reserved.
[22]	ACMP_RST	 Analog Comparator Controller Reset 0 = Analog Comparator controller normal operation. 1 = Analog Comparator controller reset.
[21]	EPWM1_RST	Enhanced PWM1 Controller Reset 0 = EPWM1 controller normal operation. 1 = EPWM1 controller reset.

Bits	Description	
[20]	EPWM0_RST	Enhanced PWM0 Controller Reset 0 = EPWM0 controller normal operation. 1 = EPWM0 controller reset.
[19]	BPWM0_RST	Basic PWM0 Controller Reset0 = Basic PWM0 controller normal operation.1 = Basic PWM0 controller reset.
[18]	Reserved	Reserved.
[17]	UART1_RST	UART1 Controller Reset 0 = UART1 controller normal operation. 1 = UART1 controller reset.
[16]	UART0_RST	UART0 Controller Reset 0 = UART0 controller normal operation. 1 = UART0 controller reset.
[15]	Reserved	Reserved.
[14]	SPI2_RST	 SPI2 Controller Reset 0 = SPI2 controller normal operation. 1 = SPI2 controller reset.
[13]	SPI1_RST	 SPI1 Controller Reset 0 = SPI1 controller normal operation. 1 = SPI1 controller reset.
[12]	SPI0_RST	 SPI0 Controller Reset 0 = SPI0 controller normal operation. 1 = SPI0 controller reset.
[11:9]	Reserved	Reserved.
[8]	I2C0_RST	I2C0 Controller Reset $0 = I^2C0$ controller normal operation. $1 = I^2C0$ controller reset.
[7:6]	Reserved	Reserved.
[5]	TMR3_RST	Timer3 Controller Reset 0 = Timer3 controller normal operation. 1 = Timer3 controller reset.
[4]	TMR2_RST	Timer2 Controller Reset0 = Timer2 controller normal operation.1 = Timer2 controller reset.
[3]	TMR1_RST	Timer1 Controller Reset 0 = Timer1 controller normal operation. 1 = Timer1 controller reset.
[2]	TMR0_RST	Timer0 Controller Reset 0 = Timer0 controller normal operation. 1 = Timer0 controller reset.

Bits	Description	escription		
[1]		GPIO Controller Reset 0 = GPIO controller normal operation. 1 = GPIO controller reset.		
[0]	Reserved	Reserved.		

Brown-out Detector Control Register (BODCR)

Partial of the BODCR control registers values are initiated by the flash configuration and partial bits are write-protected bit. Programming write-protected bits needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer the register REGWRPROT at address GCR_BA+0x100.

Register	Offset	R/W	Description	Reset Value
BODCR	GCR_BA+0x18	R/W	Brown-out Detector Control Register	0x0000_008X

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1 0								
LVR_EN	LVR_EN BOD_OUT BOD_LPM BOD_INTF BOD_RSTEN BOD_VL								

Bits	Description	
[31:8]	Reserved	Reserved.
		Low Voltage Reset Enable Bit (Write Protect)
		The LVR function reset the chip when the input power voltage is lower than LVR circuit setting. LVR function is enabled by default.
[7]	LVR_EN	0 = Low Voltage Reset function Disabled.
		1 = Low Voltage Reset function Enabled – After enabling the bit, the LVR function will be active with 100us delay for LVR output stable (default).
		Note: This bit is write protected. Refer to the REGWRPROT register.
		Brown-out Detector Output Status
[6]	BOD_OUT	0 = Brown-out Detector output status is 0. It means the detected voltage is higher than BOD_VL setting or BOD_EN is 0.
		1 = Brown-out Detector output status is 1. It means the detected voltage is lower than BOD_VL setting. If the BOD_EN is 0, BOD function disabled, this bit always responds to 0.
		Brown-out Detector Low Power Mode (Write Protect)
		0 = BOD operated in Normal mode (default).
[5]	BOD LPM	1 = BOD Low Power mode Enabled.
[~]	505 ⁻	Note1: The BOD consumes about 100 uA in Normal mode, and the low power mode can reduce the current to about 1/10 but slow the BOD response.
		Note2: This bit is write protected. Refer to the REGWRPROT register.

01	13/	OT	ON

Bits	Description	escription					
		Brown-out Detector Interrupt Flag					
		0 = Brown-out Detector does not detect any voltage draft at V_{DD} down through or up through the voltage of BOD_VL setting.					
[4]	BOD_INTF	1 = When Brown-out Detector detects the V_{DD} is dropped down through the voltage of BOD_VL setting or the V_{DD} is raised up through the voltage of BOD_VL setting, this bit is set to 1 and the Brown-out interrupt is requested if Brown-out interrupt is enabled.					
		Note: Write 1 to clear this bit to 0.					
		Brown-out Reset Enable Bit (Write Protect)					
		0 = Brown-out "INTERRUPT" function Enabled.					
		While the BOD function is enabled (BOD_EN high) and BOD interrupt function is enabled (BOD_RSTEN low), BOD will assert an interrupt if BOD_OUT is high. BOD interrupt will keep till to the BOD_EN set to 0. BOD interrupt can be blocked by disabling the NVIC BOD interrupt or disabling BOD function (set BOD_EN low).					
[3]	BOD_RSTEN	1 = Brown-out "RESET" function Enabled.					
		Note1: While the Brown-out Detector function is enabled (BOD_EN high) and BOD reset function is enabled (BOD_RSTEN high), BOD will assert a signal to reset chip when the detected voltage is lower than the threshold (BOD_OUT high).					
		Note2: The default value is set by flash controller user configuration register CBRST (Config0[20]).					
		Note3: This bit is write protected. Refer to the REGWRPROT register.					
		Brown-out Detector Threshold Voltage Select (Write Protect)					
		The default value is set by flash controller user configuration register CBOV (Config0[22:21]) bits.					
		00 = Brown-out voltage is 2.2V.					
[2:1]	BOD_VL	01 = Brown-out voltage is 2.7V.					
		10 = Brown-out voltage is 3.7V.					
		11 = Brown-out voltage is 4.4V.					
		Note: This bit is write protected. Refer to the REGWRPROT register.					
		Brown-out Detector Enable Bit (Write Protect)					
		The default value is set by flash controller user configuration register CBODEN (Config0[23]) bit.					
[0]	BOD_EN	0 = Brown-out Detector function Disabled.					
		1 = Brown-out Detector function Enabled.					
		Note: This bit is write protected. Refer to the REGWRPROT register.					

Temperature Sensor Control Register (TEMPCR)

Register	Offset	R/W	Description	Reset Value
TEMPCR	GCR_BA+0x1C	R/W	Temperature Sensor Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
			Reserved				VTEMP_EN

Bits	Description	Description			
[31:1]	Reserved	Reserved.			
		Temperature Sensor Enable Bit			
		This bit is used to enable/disable temperature sensor function.			
		0 = Temperature sensor function Disabled (default).			
[0]	VTEMP_EN	1 = Temperature sensor function Enabled.			
		Note: After this bit is set to 1, the value of temperature sensor output can be obtained from the ADC conversion result. Please refer to the EADC chapter for detailed ADC conversion functional description.			

Power-on Reset Control Register (PORCR)

Register	Offset	R/W	Description	Reset Value
PORCR	GCR_BA+0x24	R/W	Power-on Reset Controller Register	0x0000_00XX

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	<u> </u>		POR_DI	S_CODE			
7	6	5	4	3	2	1	0
	POR_DIS_CODE						

Bits	Description	
[31:16]	Reserved	Reserved.
		Power-on Reset Enable Bits (Write Protect)
[15:0] F		When powered on, the POR circuit generates a reset signal to reset the whole chip function, but noise on the power may cause the POR active again. User can disable internal POR circuit to avoid unpredictable noise to cause chip reset by writing 0x5AA5 to this field.
	POR_DIS_CODE	The POR function will be active again when this field is set to another value or chip is reset by other reset source, including:
		nRESET, Watchdog Timer reset, Window Watchdog Timer reset, LVR reset, BOD reset, ICE reset command and the software-chip reset function.
		Note: This bit is write protected. Refer to the REGWRPROT register.

P0 Multiple Function and Input Type Control Register (P0_MFP)

Register	Offset	R/W	Description	Reset Value
P0_MFP	GCR_BA+0x30	R/W	P0 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			P0_1	ГҮРЕ			
15	14	13	12	11	10	9	8
	Rese	erved			P0_	ALT	
7	6	5	4	3	2	1	0
	P0_MFP						

Bits	Description	
[31:24]	Reserved	Reserved.
[m+16] m=0,17	P0_TYPE[m]	 Port 0 Schmitt Trigger Input Enable Bits 0 = Port 0 bit m Schmitt trigger input function Disabled. 1 = Port 0 bit m Schmitt trigger input function Enabled.
[15:12]	Reserved	Reserved.
[11]	P0_ALT[3]	P0.3 Alternative Function See P0_MFP[3].
[10]	P0_ALT[2]	P0.2 Alternative Function See P0_MFP[2].
[9]	P0_ALT[1]	P0.1 Alternative Function See P0_MFP[1].
[8]	P0_ALT[0]	P0.0 Alternative Function See P0_MFP[0].
[7]	P0_MFP[7]	 P0.7 Multi-function Selection 0 = The GPIO P0.7 is selected. 1 = The STADC function is selected.
[6]	P0_MFP[6]	 P0.6 Multi-function Selection 0 = The GPIO P0.6 is selected. 1 = The EPWM0_BRAKE1 function is selected.
[5]	P0_MFP[5]	 P0.5 Multi-function Selection 0 = The GPIO P0.5 is selected. 1 = The EPWM0_CH5 function is selected.

Description

Bits

[4]	P0_MFP[4]	P0.4 Multi-function Selection 0 = The GPIO P0.4 is selected. 1 = The EPWM0_CH4 function is selected.
[3]	P0_MFP[3]	 P0.3 Multi-function Selection Bits P0_ALT[3] and P0_MFP[3] determine the P0.3 function. (P0_ALT[3], P0_MFP[3]) value and function mapping is as following list. (0, 0) = The GPIO P0.3 function is selected. (0, 1) = The EPWM0_CH3 function is selected. (1, 1) = The STADC function selected.
[2]	P0_MFP[2]	 P0.2 Multi-function Selection Bits P0_ALT[2] and P0_MFP[2] determine the P0.2 function. (P0_ALT[2], P0_MFP[2]) value and function mapping is as following list. (0, 0) = The GPIO P0.2 function is selected. (0, 1) = The EPWM0_CH2 function is selected. (1, 1) = The ECAP1_IC2 function selected.
[1]	P0_MFP[1]	 P0.1 Multi-function Selection Bits P0_ALT[1] and P0_MFP[1] determine the P0.1 function. (P0_ALT[2], P0_MFP[2]) value and function mapping is as following list. (0, 0) = The GPIO P0.1 function is selected. (0, 1) = The EPWM0_CH1 function is selected. (1, 1) = The ECAP1_IC1 function selected.
[0]	P0_MFP[0]	 P0.0 Multi-function Selection Bits P0_ALT[0] and P0_MFP[0] determine the P0.0 function. (P0_ALT[0], P0_MFP[0]) value and function mapping is as following list. (0, 0) = The GPIO P0.0 function is selected. (0, 1) = The EPWM0_CH0 function is selected. (1, 1) = The ECAP1_IC0 function selected.

P1 Multiple Function and Input Type Control Register (P1_MFP)

Register	Offset	R/W	Description	Reset Value
P1_MFP	GCR_BA+0x34	R/W	P1 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			P1_1	YPE			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	P1_MFP						

Bits	Description						
[31:24]	Reserved	Reserved.					
[m+16] m=0,17	P1_TYPE[m]	 Port 1 Schmitt Trigger Input Enable Bits 0 = Port 1 bit m Schmitt trigger input function Disabled. 1 = Port 1 bit m Schmitt trigger input function Enabled. 					
[15:8]	Reserved	Reserved.					
[7]	P1_MFP[7]	 P1.7 Multi-function Selection 0 = The GPIO P1.7 is selected. 1 = The EPWM1_BRAKE0 function is selected. 					
[6]	P1_MFP[6]	 P1.6 Multi-function Selection 0 = The GPIO P1.6 is selected. 1 = The EPWM0_BRAKE0 function is selected. 					
[5]	P1_MFP[5]	 P1.5 Multi-function Selection 0 = The GPIO P1.5 is selected. 1 = The EPWM1_CH5 function is selected. 					
[4]	P1_MFP[4]	 P1.4 Multi-function Selection 0 = The GPIO P1.4 is selected. 1 = The EPWM1_CH4 function is selected. 					
[3]	P1_MFP[3]	P1.3 Multi-function Selection0 = The GPIO P1.3 is selected.1 = The EPWM1_CH3 function is selected.					
[2]	P1_MFP[2]	 P1.2 Multi-function Selection 0 = The GPIO P1.2 is selected. 1 = The EPWM1_CH2 function is selected. 					

Bits	Description		
[1]		 P1.1 Multi-function Selection 0 = The GPIO P1.1 is selected. 1 = The EPWM1_CH1 function is selected. 	
[0]		P1.0 Multi-function Selection 0 = The GPIO P1.0 is selected. 1 = The EPWM1_CH0 function is selected.	

P2 Multiple Function and Input Type Control Register (P2_MFP)

Register	Offset	R/W	Description	Reset Value
P2_MFP	GCR_BA+0x38	R/W	P2 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			P2_1	ГҮРЕ			
15	14	13	12	11	10	9	8
P2_ALT[7]	P2_ALT[6]	P2_ALT[5]	P2_ALT[4]		Reserved		P2_ALT[0]
7	6	5	4	3	2	1	0
P2_MFP[7]	P2_MFP[6]	P2_MFP[5]	P2_MFP[4]	P2_MFP[3]	P2_MFP[2]	P2_MFP[1]	P2_MFP[0]

Bits	Description	
[31:24]	Reserved	Reserved.
[23:16]	P2_TYPE	 Port 2 Schmitt Trigger Input Enable Bits 0 = Port 2 bit m Schmitt trigger input function Disabled. 1 = Port 2 bit m Schmitt trigger input function Enabled. m=0,17.
[15]	P2_ALT[7]	P2.7 Alternative Function See P2_MFP[7].
[14]	P2_ALT[6]	P2.6 Alternative Function See P2_MFP[6].
[13]	P2_ALT[5]	P2.5 Alternative Function See P2_MFP[5].
[12]	P2_ALT[4]	P2.4 Alternative Function See P2_MFP[4].
[11:9]	Reserved	Reserved.
[8]	P2_ALT[0]	P2.0 Alternative Function See P2_MFP[0].
[7]	P2_MFP[7]	 P2.7 Multi-function Selection Bits P2_ALT[7] and P2_MFP[7] determine the P2.7 function. (P2_ALT[7], P2_MFP[7]) value and function mapping is as following list. (0, 0) = The GPIO P2.7 function is selected. (1, 0) = The SPI0_CLK function is selected. (1, 1) = The UAT1_nRTS function selected.

Bits	Description	Description					
[6]	P2_MFP[6]	 P2.6 Multi-function Selection Bits P2_ALT[6] and P2_MFP[6] determine the P2.6 function. (P2_ALT[6], P2_MFP[6]) value and function mapping is as following list. (0, 0) = The GPIO P2.6 function is selected. (0, 1) = Reserved. (1, 0) = The SPI0_SS function selected. (1, 1) = The UART1_nCTS function selected. 					
[5]	P2_MFP[5]	 P2.5 Multi-function Selection Bits P2_ALT[5] and P2_MFP[5] determine the P2.5 function. (P2_ALT[5], P2_MFP[5]) value and function mapping is as following list. (0, 0) = The GPIO P2.5 function is selected. (0, 1) = Reserved. (1, 1) = Reserved. 					
[4]	P2_MFP[4]	 P2.4 Multi-function Selection Bits P2_ALT[4] and P2_MFP[4] determine the P2.4 function. (P2_ALT[4], P2_MFP[4]) value and function mapping is as following list. (0, 0) = The GPIO P2.4 function is selected. (0, 1) = Reserved. (1, 1) = Reserved. 					
[3]	P2_MFP[3]	 P2.3 Multi-function Selection 0 = The GPIO P2.3 is selected. 1 = The ECAP0_IC0 function is selected. 					
[2]	P2_MFP[2]	 P2.2 Multi-function Selection 0 = The GPIO P2.2 is selected. 1 = The ECAP0_IC1 function is selected. 					
[1]	P2_MFP[1]	 P2.1 Multi-function Selection 0 = The GPIO P2.1 is selected. 1 = The ECAP0_IC2 function is selected. 					
[0]	P2_MFP[0]	 P2.0 Multi-function Selection Bits P2_ALT[0] and P2_MFP[0] determine the P2.0 function. (P2_ALT[0], P2_MFP[0]) value and function mapping is as following list. (0, 0) = The GPIO P2.0 function is selected. (0, 1) = The SPI2_MOSI function is selected. (1, 0) = The ACMP2_O function is selected. 					

P3 Multiple Function and Input Type Control Register (P3_MFP)

Register	Offset	R/W	Description	Reset Value
P3_MFP	GCR_BA+0x3C	R/W	P3 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			P3_1	YPE			
15	14	13	12	11	10	9	8
Rese	erved	P3_ALT[5]	P3_ALT[4]	Rese	erved	P3_ALT[1]	P3_ALT[0]
7	6	5	4	3	2	1	0
P3_MFP[7]	P3_MFP[6]	P3_MFP[5]	P3_MFP[4]	P3_MFP[3]	P3_MFP[2]	P3_MFP[1]	P3_MFP[0]

Bits	Description	
[31:24]	Reserved	Reserved.
[23:16]	P3_TYPE	Port 3 Schmitt Trigger Input Enable Bit 0 = Port 3 bit m Schmitt trigger input function Disabled. 1 = Port 3 bit m Schmitt trigger input function Enabled. m=0,17.
[15:14]	Reserved	Reserved.
[13]	P3_ALT[5]	P3.5 Alternative Function See P3_MFP[5].
[12]	P3_ALT[4]	P3.4 Alternative Function See P3_MFP[4].
[11:10]	Reserved	Reserved.
[9]	P3_ALT[1]	P3.1 Alternative Function See P3_MFP[1].
[8]	P3_ALT[0]	P3.0 Alternative Function See P3_MFP[0].
[7]	P3_MFP[7]	P3.7 Multi-function Selection Should be 0 for GPIO P3.7.
[6]	P3_MFP[6]	P3.6 Multi-function Selection Should be 0 for GPIO P3.6.

NUVO	Ton
------	-----

Bits	Description	Description				
[5]	P3_MFP[5]	 P3.5 Multi-function Selection Bits P3_ALT[5] and P3_MFP[5] determine the P3.5 function. (P3_ALT[5], P3_MFP[5]) value and function mapping is as following list. (0, 0) = The GPIO P3.5 function is selected. (0, 1) = The TM1 function is selected. (1, 0) = The I2C0_SCL function is selected. 				
[4]	P3_MFP[4]	 P3.4 Multi-function Selection Bits P3_ALT[4] and P3_MFP[4] determine the P3.4 function. (P3_ALT[4], P3_MFP[4]) value and function mapping is as following list. (0, 0) = The GPIO P3.4 function is selected. (0, 1) = The TM0 function is selected. (1, 0) = The I2C0_SDA function is selected. 				
[3]	P3_MFP[3]	 P3.3 Multi-function Selection 0 = The GPIO P3.3 is selected. 1 = The INT1 function is selected. 				
[2]	P3_MFP[2]	 P3.2 Multi-function Selection 0 = The GPIO P3.2 is selected. 1 = The INT0 function is selected. 				
[1]	P3_MFP[1]	 P3.1 Multi-function Selection Bits P3_ALT[1] and P3_MFP[1] determine the P3.1 function. (P3_ALT[1], P3_MFP[1]) value and function mapping is as following list. (0, 0) = The GPIO P3.1 function is selected. (0, 1) = The UART0_TXD function is selected. (1, 0) = The ACMP0_O function is selected. 				
[0]	P3_MFP[0]	 P3.0 Multi-function Selection Bits P3_ALT[0] and P3_MFP[0] determine the P3.0 function. (P3_ALT[0], P3_MFP[0]) value and function mapping is as following list. (0, 0) = The GPIO P3.0 function is selected. (0, 1) = The UART0_RXD function is selected. (1, 0) = The CLKO function is selected. 				

Page **66** of **524**

P4 Multiple Function and Input Type Control Register (P4_MFP)

Register	Offset	R/W	Description	Reset Value
P4_MFP	GCR_BA+0x40	R/W	P4 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	P4_TYPE							
15	14	13	12	11	10	9	8	
Reserved	P4_ALT[6]			Rese	erved			
7	6	5	4	3	2	1	0	
P4_MFP[7]	P4_MFP[6]	P4_MFP[5]	P4_MFP[4]	Reserved	P4_MFP[2]	P4_MFP[1]	P4_MFP[0]	

Bits	Description					
[31:24]	Reserved	Reserved.				
[23:16]	P4_TYPE	 Port 4 Schmitt Trigger Input Enable Bit 0 = Port 4 bit m Schmitt trigger input function Disabled. 1 = Port 4 bit m Schmitt trigger input function Enabled. m=0,17. 				
[15]	Reserved	Reserved.				
[14]	P4_ALT[6]	P4.6 Alternative Function See P4_MFP[6].				
[13:8]	Reserved	Reserved.				
[7]	P4_MFP[7]	 P4.7 Multi-function Selection 0 = The GPIO P4.7 is selected. 1 = The TM3 function is selected. 				
[6]	P4_MFP[6]	 P4.6 Multi-function Selection Bits P4_ALT[6] and P4_MFP[6] determine the P4.6 function. (P4_ALT[6], P4_MFP[6]) value and function mapping is as following list. (0, 0) = The GPIO P4.6 function is selected. (0, 1) = The TM2 function is selected. (1, 0) = Reserved. 				
[5]	P4_MFP[5]	 P4.5 Multi-function Selection 0 = The GPIO P4.5 is selected. 1 = Reserved. 				
[4]	P4_MFP[4]	 P4.4 Multi-function Selection 0 = The GPIO P4.4 is selected. 1 = Reserved. 				
[3]	Reserved	Reserved.				

Bits	Description	escription			
[2]		P4.2 Multi-function Selection 0 = The GPIO P4.2 is selected. 1 = The ECAP1_IC2 function is selected.			
[1]		P4.1 Multi-function Selection 0 = The GPIO P4.1 is selected. 1 = The ECAP1_IC1 function is selected.			
[0]	P4_MFP[0]	P4.0 Multi-function Selection 0 = The GPIO P4.0 is selected. 1 = The ECAP1_IC0 function is selected.			

P5 Multiple Function and Input Type Control Register (P5_MFP)

Register	Offset	R/W	Description	Reset Value
P5_MFP	GCR_BA+0x44	R/W	P5 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	P5_TYPE							
15	14	13	12	11	10	9	8	
	Reserved P5_ALT							
7	6	5	4	3	2	1	0	
	P5_MFP							

Bits	Description			
[31:24]	Reserved	Reserved.		
[23:16]	P5_TYPE[m]	 Port 5 Schmitt Trigger Input Enable Bit 0 = Port 5 bit m Schmitt trigger input function Disabled. 1 = Port 5 bit m Schmitt trigger input function Enabled. m=0,17. 		
[15:11]	Reserved	Reserved.		
[10]	P5_ALT[2]	P5.2 Alternative Function See P5_MFP[2].		
[9]	P5_ALT[1]	P5.1 Alternative Function See P5_MFP[1].		
[8]	P5_ALT[0]	P5.0 Alternative Function See P5_MFP[0].		
[7]	P5_MFP[7]	 P5.7 Multi-function Selection 0 = The GPIO P5.7 is selected. 1 = The BPWM0_CH1 function is selected. 		
[6]	P5_MFP[6]	 P5.6 Multi-function Selection 0 = The GPIO P5.6 is selected. 1 = The BPWM0_CH0 function is selected. 		
[5]	P5_MFP[5]	 P5.5 Multi-function Selection 0 = The GPIO P5.5 is selected. 1 = The CLKO function is selected. 		
[4]	P5_MFP[4]	 P5.4 Multi-function Selection 0 = The GPIO P5.4 is selected. 1 = The SPI2_SS function is selected. 		

M0519

Bits	Description				
[3]	P5_MFP[3]	 P5.3 Multi-function Selection 0 = The GPIO P5.3 is selected. 1 = The SPI2_CLK function is selected. 			
[2]	P5_MFP[2]	 P5.2 Multi-function Selection Bits P5_ALT[2] and P5_MFP[2] determine the P5.2 function. (P5_ALT[2], P5_MFP[2]) value and function mapping is as following list. (0, 0) = The GPIO P5.2 function is selected. (0, 1) = The SPI2_MISO function is selected. (1, 0) = The ACMP1_O function is selected. 			
[1]	P5_MFP[1]	 P5.1 Multi-function Selection Bits P5_ALT[1] and P5_MFP[1] determine the P5.1 function. (P5_ALT[1], P5_MFP[1]) value and function mapping is as following list. (0, 0) = The GPIO P5.1 function is selected. (0, 1) = The SPI0_MISO function is selected. (1, 0) = The UART0_nCTS function is selected. (1, 1) = The I2C0_SDA function is selected. 			
[0]	P5_MFP[0]	 P5.0 Multi-function Selection This bit combined with P5_ALT[0] selects P5.0 multi-function. Bits P5_ALT[0] and P5_MFP[0] determine the P5.0 function. (P5_ALT[0], P5_MFP[0]) value and function mapping is as following list. (0, 0) = The GPIO P5.0 function is selected. (0, 1) = The SPI0_MOSI function is selected. (1, 0) = The UART0_nRTS function is selected. (1, 1) = The I2C0_SCL function is selected. 			

P6 Multiple Function and Input Type Control Register (P6_MFP)

Register	Offset	R/W	Description	Reset Value
P6_MFP	GCR_BA+0x48	R/W	P6 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
P6_TYPE									
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
P6_MFP[7]	P6_MFP[6]	P6_MFP[5]	P6_MFP[4]	P6_MFP[3]	P6_MFP[2]	P6_MFP[1]	P6_MFP[0]		

Bits	Description			
[31:24]	Reserved	Reserved.		
[23:16]	P6_TYPE	Port 6 Schmitt Trigger Input Enable Bit 0 = Port 6 bit m Schmitt trigger input function Disabled. 1 = Port 6 bit m Schmitt trigger input function Enabled. m=0,17.		
[15:8]	Reserved	Reserved.		
[7]	P6_MFP[7]	 P6.7 Multi-function Selection 0 = The GPIO P6.7 is selected. 1 = The EADC0_CH7 function is selected. 		
[6]	P6_MFP[6]	 P6.6 Multi-function Selection 0 = The GPIO P6.6 is selected. 1 = The EADC0_CH6 function is selected. 		
[5]	P6_MFP[5]	 P6.5 Multi-function Selection 0 = The GPIO P6.5 is selected. 1 = The EADC0_CH5 or ACMP1_P function is selected. 		
[4]	P6_MFP[4]	 P6.4 Multi-function Selection 0 = The GPIO P6.4 is selected. 1 = The EADC0_CH4 or ACMP1_N function is selected. 		
[3]	P6_MFP[3]	 P6.3 Multi-function Selection 0 = The GPIO P6.3 is selected. 1 = The EADC0_CH3 function is selected. 		
[2]	P6_MFP[2]	 P6.2 Multi-function Selection 0 = The GPIO P6.2 is selected. 1 = The EADC0_CH2 function is selected. 		

Bits	Description		
[1]		MFP[1] 0 = The GPIO P6.1 is selected. 1 = The EADC0_CH1 function is selected.	
[0]		P6.0 Multi-function Selection 0 = The GPIO P6.0 is selected. 1 = The EADC0_CH0 function is selected.	

P7 Multiple Function and Input Type Control Register (P7_MFP)

Register	Offset	R/W	Description	Reset Value
P7_MFP	GCR_BA+0x4C	R/W	P7 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	P7_TYPE								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
P7_MFP[7]	P7_MFP[6]	P7_MFP[5]	P7_MFP[4]	P7_MFP[3]	P7_MFP[2]	P7_MFP[1]	P7_MFP[0]		

Bits	Description				
[31:24]	Reserved	Reserved.			
[23:16]	P7_TYPE	Port 7 Schmitt Trigger Input Enable Bit 0 = Port 7 bit m Schmitt trigger input function Disabled. 1 = Port 7 bit m Schmitt trigger input function Enabled. m=0,17.			
[15:8]	Reserved	Reserved.			
[7]	P7_MFP[7]	 P7.7 Multi-function Selection 0 = The GPIO P7.7 is selected. 1 = The EADC1_CH7 function is selected. 			
[6]	P7_MFP[6]	 P7.6 Multi-function Selection 0 = The GPIO P7.6 is selected. 1 = The EADC1_CH6 function is selected. 			
[5]	P7_MFP[5]	 P7.5 Multi-function Selection 0 = The GPIO P7.5 is selected. 1 = The EADC1_CH5 or ACMP2_P function is selected. 			
[4]	P7_MFP[4]	 P7.4 Multi-function Selection 0 = The GPIO P7.4 is selected. 1 = The EADC1_CH4 or ACMP2_N function is selected. 			
[3]	P7_MFP[3]	 P7.3 Multi-function Selection 0 = The GPIO P7.3 is selected. 1 = The EADC1_CH3 function is selected. 			
[2]	P7_MFP[2]	 P7.2 Multi-function Selection 0 = The GPIO P7.2 is selected. 1 = The EADC1_CH2 function is selected. 			

Bits	Description			
[1]	P7.1 Multi-function Selection 0 = The GPIO P7.1 is selected. 1 = The EADC1_CH1 function is selected.			
[0]		 P7.0 Multi-function Selection 0 = The GPIO P7.0 is selected. 1 = The EADC1_CH0 function is selected. 		

P8 Multiple Function and Input Type Control Register (P8_MFP)

Register	Offset	R/W	Description	Reset Value
P8_MFP	GCR_BA+0x50	R/W	P8 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	P8_TYPE								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
P8_MFP[7]	Reserved		P8_MFP[4]	P8_MFP[3]	P8_MFP[2]	P8_MFP[1]	P8_MFP[0]		

Bits	Description				
[31:24]	Reserved	Reserved.			
[23:16]	P8_TYPE[m]	Port 8 Schmitt Trigger Input Enable Bits 0 = Port 8 bit m Schmitt trigger input function Disabled. 1 = Port 8 bit m Schmitt trigger input function Enabled. m=0,17.			
[15:8]	Reserved	Reserved.			
[7]	P8_MFP[7]	 P8.7 Multi-function Selection 0 = The GPIO P8.7 is selected. 1 = The ACMP0_O function is selected. 			
[6:5]	Reserved	Reserved.			
[4]	P8_MFP[4]	 P8.4 Multi-function Selection 0 = The GPIO P8.4 is selected. 1 = The ACMP0_P function is selected. 			
[3]	P8_MFP[3]	 P8.3 Multi-function Selection 0 = The GPIO P8.3 is selected. 1 = The ACMP0_N function is selected. 			
[2]	P8_MFP[2]	 P8.2 Multi-function Selection 0 = The GPIO P8.2 is selected. 1 = The OP0_O function is selected. 			
[1]	P8_MFP[1]	 P8.1 Multi-function Selection 0 = The GPIO P8.1 is selected. 1 = The OP0_N function is selected. 			
[0]	P8_MFP[0]	 P8.0 Multi-function Selection 0 = The GPIO P8.0 is selected. 1 = The OP0_P function is selected. 			

P9 Multiple Function and Input Type Control Register (P9_MFP)

Register	Offset	R/W	Description	Reset Value
P9_MFP	GCR_BA+0x54	R/W	P9 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	P9_TYPE								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
P9_MFP[7]	P9_MFP[6]	P9_MFP[5]	P9_MFP[4]	P9_MFP[3]	P9_MFP[2]	P9_MFP[1]	P9_MFP[0]		

Bits	Description				
[31:24]	Reserved	Reserved.			
[23:16]	P9_TYPE	Port 9 Schmitt Trigger Input Enable Bits 0 = Port 9 bit m Schmitt trigger input function Disabled. 1 = Port 9 bit m Schmitt trigger input function Enabled. m=0,17.			
[15:8]	Reserved	Reserved.			
[7]	P9_MFP[7]	 P9.7 Multi-function Selection 0 = The GPIO P9.7 is selected. 1 = The SPI1_SS function is selected. 			
[6]	P9_MFP[6]	 P9.6 Multi-function Selection 0 = The GPIO P9.6 is selected. 1 = The SPI1_MOSI function is selected. 			
[5]	P9_MFP[5]	 P9.5 Multi-function Selection 0 = The GPIO P9.5 is selected. 1 = The SPI1_MISO function is selected. 			
[4]	P9_MFP[4]	 P9.4 Multi-function Selection 0 = The GPIO P9.4 is selected. 1 = The SPI1_CLK function is selected. 			
[3]	P9_MFP[3]	 P9.3 Multi-function Selection 0 = The GPIO P9.3 is selected. 1 = The EPWM1_BRAKE1 function is selected. 			
[2]	P9_MFP[2]	 P9.2 Multi-function Selection 0 = The GPIO P9.2 is selected. 1 = The OP1_P function is selected. 			

)

Bits	Description		
[1]		P9_MFP[1] 0 = The GPIO P9.1 is selected. 1 = The OP1_N function is selected.	
[0]		P9.0 Multi-function Selection 0 = The GPIO P9.0 is selected. 1 = The OP1_O function is selected.	

PA Multiple Function and Input Type Control Register (PA_MFP)

Register	Offset	R/W	Description	Reset Value
PA_MFP	GCR_BA+0x58	R/W	PA Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved					PA_TYPE	
15	14	13	12	11	10	9	8
		Rese	erved			PA_ALT[1]	PA_ALT[0]
7	7 6 5 4 3 2					1	0
	Reserved					PA_MFP[1]	PA_MFP[0]

Bits	Description				
[31:18]	Reserved	Reserved.			
[23:16]	PA_TYPE	 Port a Schmitt Trigger Input Enable Bits 0 = Port A bit m Schmitt trigger input function Disabled. 1 = Port A bit m Schmitt trigger input function Enabled. m=0,1. 			
[15:10]	Reserved	Reserved.			
[9]	PA_ALT[1]	PA.1 Alternative Function See PA_MFP[1].			
[8]	PA_ALT[0]	PA.0 Alternative Function See PA_MFP[0].			
[7:2]	Reserved	Reserved.			
[1]	PA_MFP[1]	 PA.1 Multi-function Selection Bits PA_ALT[1] and PA_MFP[1] determine the PA.1 function. (PA_ALT[1], PA_MFP[1]) value and function mapping is as following list. (0, 0) = The GPIO PA.1 function is selected. (0, 1) = The UART1_RXD function is selected. (1, 1) = The I2C0_SCL function is selected. 			
[0] PA_MFP[0]		 PA.0 Multi-function Selection Bits PA_ALT[0] and PA_MFP[0] determine the PA.0 function. (PA_ALT[0], PA_MFP[0]) value and function mapping is as following list. (0, 0) = The GPIO PA.0 function is selected. (0, 1) = The UART1_TXD function is selected. (1, 1) = The I2C0_SDA function is selected. 			

Register Write-Protection Control Register (REGWRPROT)

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register REGWRPROT address at 0x5000_0100 continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence.

After the protection is disabled, user can check the protection disable bit at address 0x5000_0100 bit0, "1" is protection disable, "0" is protection enable. Then user can update the target protected register value and then write any data to the address "0x5000_0100" to enable register protection.

Register	Bit	Description
IPRSTC1	[4] HDIV_RST	HDIV Controller Reset (Write Protect)
IPRSTC1	[1] CPU_RST	Cortex®-M0 Core One-shot Reset (Write Protect)
IPRSTC1	[0] CHIP_RST	Chip One-shot Reset (Write Protect)
BODCR	[7] LVR_EN	Low Voltage Reset Enable Bit (Write Protect)
BODCR	[5] BOD_LPM	Brown-out Detector Low Power Mode (Write Protect)
BODCR	[3] BOD_RSTEN	Brown-out Reset Enable Bit (Write Protect)
BODCR	[2:1] BOD_VL	Brown-out Detector Threshold Voltage Select (Write Protect)
BODCR	[0] BOD_EN	Brown-out Detector Enable Bit (Write Protect)
PORCR	[15:0] POR_DIS_CODE	Power-on Reset Enable Bits (Write Protect)
NMI_SEL	[8] NMI_EN	NMI Interrupt Enable Bit (Write Protect)
PWRCON	[5] PD_WU_INT_EN	Power-down Mode Wake-up Interrupt Enable Bit (Write Protect)
PWRCON	[3] OSC10K_EN	Internal 10 kHz Oscillator Enable Bit (Write Protect)
PWRCON	[2] OSC22M_EN	Internal 22.1184 MHz Oscillator Enable Bit (Write Protect)
PWRCON	[0] XTL12M_EN	External 4~24 MHz Crystal Enable Bit (Write Protect)
APBCLK	[0] WDT_EN	Watchdog Timer Clock Enable Bit (Write Protect)
CLKSEL0	[5:3] STCLK_S	Cortex®-M0 SysTick Clock Source Selection (Write Protect)
CLKSEL0	[2:0] HCLK_S	HCLK Clock Source Selection (Write Protect)
CLKSEL1	[1:0] WDT_S	Watchdog Timer Clock Source Selection (Write Protect)
ISPCON	[6] ISPFF	ISP Fail Flag (Write Protect)
ISPCON	[5] LDUEN	LDROM Update Enable Bit (Write Protect)
ISPCON	[4] CFGUEN	Config-bits Update Enable Bit (Write Protect)
ISPCON	[3] APUEN	APROM Update Enable Bit (Write Protect)
ISPCON	[1] BS	Boot Select (Write Protect)

The protected registers are listed as following table:

ISPCON	[0] ISPEN	ISP Enable Bit (Write Protect)
ISPTRG	[0] ISPGO	ISP Start Trigger (Write Protect)
FATCON	[6] FOM_SEL[1]	Chip Frequency Optimization Mode Select (Write Protect)
FATCON	[4] FOM_SEL[0]	Chip Frequency Optimization Mode Select (Write Protect)
ISPSTA	[6] ISPFF	ISP Fail Flag (Write Protect)
TCSR0	[31] DBGACK_TMR	ICE Debug Mode Acknowledge Disable (Write Protect)
TCSR1	[31] DBGACK_TMR	ICE Debug Mode Acknowledge Disable (Write Protect)
TCSR2	[31] DBGACK_TMR	ICE Debug Mode Acknowledge Disable (Write Protect)
TCSR3	[31] DBGACK_TMR	ICE Debug Mode Acknowledge Disable (Write Protect)
WTCR	[31] DBGACK_WDT	ICE Debug Mode Acknowledge Disable (Write Protect)
WTCR	[10:8] WTIS	WDT Time-out Interval Selection (Write Protect)
WTCR	[7] WTE	WDT Enable Bit (Write Protect)
WTCR	[6] WTIE	WDT Time-out Interrupt Enable Bit (Write Protect)
WTCR	[5] WTWKF	WDT Time-out Wake-up Flag (Write Protect)
WTCR	[4] WTWKE	WDT Time-out Wake-up Function Control (Write Protect)
WTCR	[1] WTRE	WDT Time-out Reset Enable Bit (Write Protect)
WTCRALT	[1:0] WTRDSEL	WDT Reset Delay Selection (Write Protect)

Table 6-2 The protected register table.

Writing this register to disable/enable register protection, and reading it to get the REGPROTDIS status.

Register	Offset	R/W	Description	Reset Value
REGWRPROT	GCR_BA+0x100	R/W	Register Write-Protection Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	REGWRPROT						REGPROTDIS

Bits

Description

Bits	Description				
[31:16]	Reserved	Reserved.			
[7:1]	REGWRPROT	Register Write-protection Code (Write Only) Some registers have write-protection function. Writing these registers have to disable the protected function by writing the sequence value "59h", "16h", "88h" to this field. After this			
		sequence is completed, the REGPROTDIS bit will be set to 1 and write-protection registers can be normal write.			
	REGPROTDIS	Register Write-protection Disable Index (Read Only)			
		0 = Write-protection Enabled for writing protected registers. Any write to the protected register is ignored.			
[0]		1 = Write-protection Disabled for writing protected registers.			
		Note: This bit is write protected bit. Refer to the REGWRPROT register.			
		Please refer to Table 6-3 The protected register table.			

6.2.7 System Timer (SysTick)

The Cortex[®]-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0 before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM[®] Cortex[®]-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

6.2.7.1 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
SYST Base Ad SYST_BA = 0x				
SYST_CSR	SYST_BA+0x00	R/W	SysTick Control and Status Register	0x0000_0000
SYST_RVR	SYST_BA+0x04	R/W	SysTick Reload Value Register	0xXXXX_XXXX
SYST_CVR	SYST_BA+0x08	R/W	SysTick Current Value Register	0xXXXX_XXXX

6.2.7.2 System Timer Control Register Description

SysTick Control and Status (SYST_CSR)

Register	Offset	R/W	Description	Reset Value
SYST_CSR	SYST_BA+0x00	R/W	SysTick Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved						COUNTFLAG	
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
		Reserved	CLKSRC	TICKINT	ENABLE			

Bits	Description				
[31:17]	Reserved	Reserved.			
[16]	COUNTFLAG	System Tick Counter Flag Returns 1 if timer counted to 0 since last time this register was read. COUNTFLAG is set by a count transition from 1 to 0. COUNTFLAG is cleared on read or by a write to the Current Value register (SYST_CVR).			
[15:3]	Reserved	Reserved.			
[2]	CLKSRC	System Tick Clock Source Selection 0 = Clock source is optional, refer to STCLK_S (CLKSEL0[5:3]). 1 = Core clock used for SysTick timer.			
[1]	ΤΙϹΚΙΝΤ	 System Tick Interrupt Enabled 0 = Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to 0 has occurred. 1 = Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick Current Value register by a write in software will not cause SysTick to be pended. 			
[0]	ENABLE	System Tick Counter Enable Bit 0 = SysTick counter Disabled. 1 = SysTick counter Enabled.			

SysTick Reload Value Register (SYST_RVR)

Register	Offset	R/W	Description	Reset Value
SYST_RVR	SYST_BA+0x04	R/W	SysTick Reload Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	RELOAD								
15	14	13	12	11	10	9	8		
	RELOAD								
7	6	5	4	3	2	1	0		
	RELOAD								

Bits	Description	escription				
[31:24]	Reserved	Reserved.				
[23:0]	RELOAD	System Tick Reload Value Value to load into the Current Value register when the counter reaches 0.				

SysTick Current Value Register (SYST_CVR)

Register	Offset	R/W	Description	Reset Value
SYST_CVR	SYST_BA+0x08	R/W	SysTick Current Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	CURRENT								
15	14	13	12	11	10	9	8		
	CURRENT								
7	6	5	4	3	2	1	0		
	CURRENT								

Bits	Description	Description			
[31:24]	Reserved	Reserved.			
		System Tick Current Value			
[23:0]	CURRENT	Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0.			

6.2.8 Nested Vectored Interrupt Controller (NVIC)

The Cortex[®]-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)", which is closely coupled to the processor core and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the "ARM[®] Cortex[®]-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

6.2.8.1 Exception Model and System Interrupt Map

Table 6-3 lists the exception model supported by the NuMicro[®] M0519 Series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	-1
Reserved	4 ~ 10	Reserved
SVCall	11	Configurable
Reserved	12 ~ 13	Reserved
PendSV	14	Configurable
SysTick	15	Configurable
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable

Table 6-3 Exception Model

Exception Number	Vector Address	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source Module	Exception Description	Power Down Wake-Up
1 ~ 15		-	-	-	System exceptions	-
16	0x40	0	BOD_INT	Brown-out	Brown-out low voltage detected interrupt	Yes
17	0x44	1	WDT_INT	WDT	Watchdog Timer interrupt	Yes
18	0x48	2	EINT0_INT	P3.2	External signal interrupt from P3.2 pin	Yes
19	0x4C	3	EINT1_INT	P3.3	External signal interrupt from P3.3 pin	Yes
20	0x50	4	GPG0_INT		External interrupt from GPIO group 0 (P0~P4) except P3.2 and P3.3	Yes
21	0x54	5	GPG1_INT	P5~PA	External interrupt from GPIO group 1 (P5~PA)	Yes
22	0x58	6	BPWM0_INT	BPWM0	Basic PWM0 interrupt	No
23	0x5C	7	EADC0_INT	EADC0	EADC0 interrupt	No
24	0x60	8	TMR0_INT	TMR0	Timer 0 interrupt	No
25	0x64	9	TMR1_INT	TMR1	Timer 1 interrupt	No
26	0x68	10	TMR2_INT	TMR2	Timer 2 interrupt	No
27	0x6C	11	TMR3_INT	TMR3	Timer 3 interrupt	No
28	0x70	12	UART0_INT	UART0	UART0 interrupt	Yes

Exception Number	Vector Address	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source Module	Exception Description	Power Down Wake-Up
29	0x74	13	UART1_INT	UART1	UART1 interrupt	Yes
30	0x78	14	SPI0_INT	SPI0	SPI0 interrupt	No
31	0x7C	15	SPI1_INT	SPI1	SPI1 interrupt	No
32	0x80	16	SPI2_INT	SPI2	SPI2 interrupt	No
33	0x84	17	Reserved	Reserved	Reserved	-
33	0x84	17	Reserved	Reserved	Reserved	No
34	0x88	18	I2C0_INT	l ² C0	I ² C0 interrupt	Yes
35	0x8C	19	CKD_INT	CKD	CKD interrupt	No
36	0x90	20	Reserved	Reserved	Reserved	-
36	0x90	20	Reserved	Reserved	Reserved	-
37	0x94	21	EPWM0_INT	EPWM0	Enhanced PWM0 interrupt	No
38	0x98	22	EPWM1_INT	EPWM1	Enhanced PWM1 interrupt	No
39	0x9C	23	ECAP0_INT	ECAP0	Enhanced input capture 0 interrupt	No
40	0xA0	24	ECAP1_INT	ECAP1	Enhanced input capture 1 interrupt	No
41	0xA4	25	ACMP_INT	ACMP	Analog Comparator 0 or 1, or OP Amplifier digital output interrupt	Yes (only by analog comparator)
42	0xA8	26	Reserved	Reserved	Reserved	-
43	0xAC	27	Reserved	Reserved	Reserved	-
42	0xA8	26	Reserved	Reserved	Reserved	-
43	0xAC	27	Reserved	Reserved	Reserved	-
44	0xB0	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake up from power-down state	-
45	0xB4	29	EADC1_INT	EADC1	EADC1 interrupt	No
46	0xB8	30	EADC2_INT	EADC2	EADC2 interrupt	No
47	0xBC	31	EADC3_INT	EADC3	EADC3 interrupt	No

Table 6-4 System Interrupt Map Vector Table

6.2.8.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset (Bytes)	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 6-5 Vector Table

6.2.8.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

6.2.8.4 NVIC Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
NVIC Base Ac NVIC_BA = 0>				
NVIC_ISER	NVIC_BA+0x000	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000
NVIC_ICER	NVIC_BA+0x080	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000
NVIC_ISPR	NVIC_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000
NVIC_ICPR	NVIC_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000
NVIC_IPR0	NVIC_BA+0x300	R/W	IRQ0 ~ IRQ3 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR1	NVIC_BA+0x304	R/W	IRQ4 ~ IRQ7 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR2	NVIC_BA+0x308	R/W	IRQ8 ~ IRQ11 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR3	NVIC_BA+0x30C	R/W	IRQ12 ~ IRQ15 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR4	NVIC_BA+0x310	R/W	IRQ16 ~ IRQ19 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR5	NVIC_BA+0x314	R/W	IRQ20 ~ IRQ23 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR6	NVIC_BA+0x318	R/W	IRQ24 ~ IRQ27 Interrupt Priority Control Register	0x0000_0000
NVIC_IPR7	NVIC_BA+0x31C	R/W	IRQ28 ~ IRQ31 Interrupt Priority Control Register	0x0000_0000

IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC_ISER)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER	NVIC_BA+0x000	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
SETENA									
23	22	21	20	19	18	17	16		
	SETENA								
15	14	13	12	11	10	9	8		
	SETENA								
7	6	5	4	3	2	1	0		
	SETENA								

Bits	Description	on					
[31:0]	SETENA	Interrupt Enable Register Enable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write Operation: 0 = No effect. 1 = Write 1 to enable associated interrupt. Read Operation: 0 = Associated interrupt status Disabled. 1 = Associated interrupt status Enabled.					
		Note: Read value indicates the current enable status.					

IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC_ICER)

Register	Offset	R/W	Description	Reset Value
NVIC_ICER	NVIC_BA+0x080	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	CLRENA									
23	22	21	20	19	18	17	16			
	CLRENA									
15	14	13	12	11	10	9	8			
	CLRENA									
7	6	5	4	3	2	1	0			
	CLRENA									

Bits	Description					
		Interrupt Clear Enable Bits				
		Disable one or more interrupts. Each bit represents an interrupt number from IRQ0 \sim IRQ31 (Vector number from 16 \sim 47).				
		Write Operation:				
		0 = No effect.				
[31:0]	CLRENA	1 = Write 1 to disable associated interrupt.				
		Read Operation:				
		0 = Associated interrupt status Disabled.				
		1 = Associated interrupt status Enabled.				
		Note: Read value indicates the current enable status.				

IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC_ISPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR	NVIC_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
SETPEND									
23	22	21	20	19	18	17	16		
	SETPEND								
15	14	13	12	11	10	9	8		
SETPEND									
7	6	5	4	3	2	1	0		
	SETPEND								

Bits	Description					
[31:0]	SETPEND	Interrupt Set-pending The ISPR forces interrupts into the pending state, and shows the interrupts that are pending. Each bit represents an IRQ number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write Operation: 0 = No effect.				
		 1 = Write 1 to set pending state. Read Operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Read value indicates the current pending status. 				

IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC_ICPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR	NVIC_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
CLRPEND									
23	22	21	20	19	18	17	16		
	CLRPEND								
15	14	13	12	11	10	9	8		
	CLRPEND								
7	6	5	4	3	2	1	0		
	CLRPEND								

Bits	Description	
[31:0]	CLRPEND	Interrupt Clear-pending The ICPR removes the pending state from interrupts, and shows the interrupts that are pending. Each bit represents an IRQ number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write Operation: 0 = No effect. 1 = Write 1 to clear pending state. Read Operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Read value indicates the current pending status.

IRQ0 ~ IRQ3 Interrupt Priority Register (NVIC_IPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR0	NVIC_BA+0x300	R/W	IRQ0 ~ IRQ3 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PR	PRI_3		Reserved						
23	22	21	20	19	18	17	16		
PR	I_2	Reserved							
15	14	13	12	11	10	9	8		
PRI_1				Reserved					
7	6	5	4	3	2	1	0		
PR	I_0	Reserved							

Bits	Description	Description						
[31:30]	PRI_3	Priority of IRQ3 "0" denotes the highest priority and "3" denotes lowest priority.						
[29:24]	Reserved	Reserved.						
[23:22]	PRI_2	Priority of IRQ2 "0" denotes the highest priority and "3" denotes lowest priority.						
[21:16]	Reserved	Reserved.						
[15:14]	PRI_1	Priority of IRQ1 "0" denotes the highest priority and "3" denotes lowest priority.						
[13:8]	Reserved	Reserved.						
[7:6]	PRI_0	Priority of IRQ0 "0" denotes the highest priority and "3" denotes lowest priority.						
[5:0]	Reserved	Reserved.						

IRQ4 ~ IRQ7 Interrupt Priority Register (NVIC_IPR1)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR1	NVIC_BA+0x304	R/W	IRQ4 ~ IRQ7 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PR	PRI_7		Reserved						
23	22	21	20	19	18	17	16		
PR	I_6	Reserved							
15	14	13	12	11	10	9	8		
PR	PRI_5			Reserved					
7	6	5	4	3	2	1	0		
PR	I_4	Reserved							

Bits	Description	Description						
[31:30]	PRI_7	Priority of IRQ7 "0" denotes the highest priority and "3" denotes lowest priority.						
[29:24]	Reserved	Reserved.						
[23:22]	PRI_6	Priority of IRQ6 "0" denotes the highest priority and "3" denotes lowest priority.						
[21:16]	Reserved	Reserved.						
[15:14]	PRI_5	Priority of IRQ5 "0" denotes the highest priority and "3" denotes lowest priority.						
[13:8]	Reserved	Reserved.						
[7:6]	PRI_4	Priority of IRQ4 "0" denotes the highest priority and "3" denotes lowest priority.						
[5:0]	Reserved	Reserved.						

IRQ8 ~ IRQ11 Interrupt Priority Register (NVIC_IPR2)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR2	NVIC_BA+0x308	R/W	IRQ8 ~ IRQ11 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI_11			Reserved						
23	22	21	20	19	18	17	16		
PRI	_10	Reserved							
15	14	13	12	11	10	9	8		
PRI_9			Reserved						
7	6	5	4	3	2	1	0		
PR	I_8	Reserved							

Bits	Description	
[31:30]	PRI_11	Priority of IRQ11 "0" denotes the highest priority and "3" denotes lowest priority.
[29:24]	Reserved	Reserved.
[23:22]	PRI_10	Priority of IRQ10 "0" denotes the highest priority and "3" denotes lowest priority.
[21:16]	Reserved	Reserved.
[15:14]	PRI_9	Priority of IRQ9 "0" denotes the highest priority and "3" denotes lowest priority.
[13:8]	Reserved	Reserved.
[7:6]	PRI_8	Priority of IRQ8 "0" denotes the highest priority and "3" denotes lowest priority.
[5:0]	Reserved	Reserved.

IRQ12 ~ IRQ15 Interrupt Priority Register (NVIC_IPR3)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR3	NVIC_BA+0x30C	R/W	IRQ12 ~ IRQ15 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI	PRI_15		Reserved						
23	22	21	20	19	18	17	16		
PRI	_14	Reserved							
15	14	13	12	11	10	9	8		
PRI	PRI_13			Reserved					
7	6	5	4	3	2	1	0		
PRI	_12	Reserved							

Bits	Description						
[31:30]	PRI_15	Priority of IRQ15 "0" denotes the highest priority and "3" denotes lowest priority.					
[29:24]	Reserved	Reserved.					
[23:22]	PRI_14	Priority of IRQ14 "0" denotes the highest priority and "3" denotes lowest priority.					
[21:16]	Reserved	Reserved.					
[15:14]	PRI_13	Priority of IRQ13 "0" denotes the highest priority and "3" denotes lowest priority.					
[13:8]	Reserved	Reserved.					
[7:6]	PRI_12	Priority of IRQ12 "0" denotes the highest priority and "3" denotes lowest priority.					
[5:0]	Reserved	Reserved.					

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR4	NVIC_BA+0x310	R/W	IRQ16 ~ IRQ19 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI_19			Reserved						
23	22	21	20	19	18	17	16		
PRI	_18	Reserved							
15	14	13	12	11	10	9	8		
PRI	_17	Reserved							
7	6	5	4	3	2	1	0		
PRI_16 Reserved									

Bits	Description	Description						
[31:30]	PRI_19	Priority of IRQ19 "0" denotes the highest priority and "3" denotes lowest priority.						
[29:24]	Reserved	Reserved.						
[23:22]	PRI_18	Priority of IRQ18 "0" denotes the highest priority and "3" denotes lowest priority.						
[21:16]	Reserved	Reserved.						
[15:14]	PRI_17	Priority of IRQ17 "0" denotes the highest priority and "3" denotes lowest priority.						
[13:8]	Reserved	Reserved.						
[7:6]	PRI_16	Priority of IRQ16 "0" denotes the highest priority and "3" denotes lowest priority.						
[5:0]	Reserved	Reserved.						

IRQ20 ~ IRQ23 Interrupt Priority Register (NVIC_IPR5)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR5	NVIC_BA+0x314	R/W	IRQ20 ~ IRQ23 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI_23			Reserved						
23	22	21	20	19	18	17	16		
PRI	_22	Reserved							
15	14	13	12	11	10	9	8		
PRI	_21	Reserved							
7	6	5	4	3	2	1	0		
PRI_20 Reserved									

Bits	Description	
[31:30]	PRI_23	Priority of IRQ23 "0" denotes the highest priority and "3" denotes lowest priority.
[29:24]	Reserved	Reserved.
[23:22]	PRI_22	Priority of IRQ22 "0" denotes the highest priority and "3" denotes lowest priority.
[21:16]	Reserved	Reserved.
[15:14]	PRI_21	Priority of IRQ21 "0" denotes the highest priority and "3" denotes lowest priority.
[13:8]	Reserved	Reserved.
[7:6]	PRI_20	Priority of IRQ20 "0" denotes the highest priority and "3" denotes lowest priority.
[5:0]	Reserved	Reserved.

IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR6	NVIC_BA+0x318	R/W	IRQ24 ~ IRQ27 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI_27			Reserved						
23	22	21	20	19	18	17	16		
PRI	_26	Reserved							
15	14	13	12	11	10	9	8		
PRI	_25	Reserved							
7	6	5	4	3	2	1	0		
PRI	PRI_24 Reserved								

Bits	Description	Description						
[31:30]	PRI_27	Priority of IRQ27 "0" denotes the highest priority and "3" denotes lowest priority.						
[29:24]	Reserved	Reserved.						
[23:22]	PRI_26	Priority of IRQ26 "0" denotes the highest priority and "3" denotes lowest priority.						
[21:16]	Reserved	Reserved.						
[15:14]	PRI_25	Priority of IRQ25 "0" denotes the highest priority and "3" denotes lowest priority.						
[13:8]	Reserved	Reserved.						
[7:6]	PRI_24	Priority of IRQ24 "0" denotes the highest priority and "3" denotes lowest priority.						
[5:0]	Reserved	Reserved.						

IRQ28 ~ IRQ31 Interrupt Priority Register (NVIC_IPR7)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR7	NVIC_BA+0x31C	R/W	IRQ28 ~ IRQ31 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI_31			Reserved						
23	22	21	20	19	18	17	16		
PRI	_30	Reserved							
15	14	13	12	11	10	9	8		
PRI	_29	Reserved							
7	6	5	4	3	2	1	0		
PRI_28 Reserved									

Bits	Description	Description						
[31:30]	PRI_31	Priority of IRQ31 "0" denotes the highest priority and "3" denotes lowest priority.						
[29:24]	Reserved	Reserved.						
[23:22]	PRI_30	Priority of IRQ30 "0" denotes the highest priority and "3" denotes lowest priority.						
[21:16]	Reserved	Reserved.						
[15:14]	PRI_29	Priority of IRQ29 "0" denotes the highest priority and "3" denotes lowest priority.						
[13:8]	Reserved	Reserved.						
[7:6]	PRI_28	Priority of IRQ28 "0" denotes the highest priority and "3" denotes lowest priority.						
[5:0]	Reserved	Reserved.						

6.2.8.5 Interrupt Source Control Registers

Besides the interrupt control registers associated with the NVIC, NuMicro[®] M0519 Series also implement some specific control registers to facilitate the interrupt functions, including "interrupt source identification", "NMI source selection" and "interrupt test mode", as described below.

Register	Offset	R/W	Description	Reset Value
INT Base Add INT_BA = 0x5			•	
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (P0-P4) Interrupt Source Identity	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (P5-PA) Interrupt Source Identity	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (BPWM0) Interrupt Source Identity	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (EADC0) Interrupt Source Identity	0xXXXX_XXXX
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (TMR2) Interrupt Source Identity	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (TMR3) Interrupt Source Identity	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (UART1) Interrupt Source Identity	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (SPI1) Interrupt Source Identity	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	IRQ16 (SPI2) Interrupt Source Identity	0xXXXX_XXXX
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I ² C0) Interrupt Source Identity	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (CKD) interrupt Source Identity	0xXXXX_XXXX
IRQ21_SRC	INT_BA+0x54	R	IRQ21 (EPWM0) Interrupt Source Identity	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	R	IRQ22 (EPWM1) Interrupt Source Identity	0xXXXX_XXXX
IRQ23_SRC	INT_BA+0x5C	R	IRQ23 (ECAP0) Interrupt Source Identity	0xXXXX_XXXX
IRQ24_SRC	INT_BA+0x60	R	IRQ24 (ECAP1) Interrupt Source Identity	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP) Interrupt Source Identity	0xXXXX_XXXX

R: read only, W: write only, R/W: both read and write

IRQ28_SRC	INT_BA+0x70	R	IRQ28 (PWRWU) Interrupt Source Identity	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (EADC1) Interrupt Source Identity	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	R	IRQ30 (EADC2) Interrupt Source Identity	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	R	IRQ31 (EADC3) Interrupt Source Identity	0xXXXX_XXXX
NMI_SEL	INT_BA+0x80	R/W	NMI Interrupt Source Select Control Register	0x0000_0000
MCU_IRQ	INT_BA+0x84	R/W	MCU Interrupt Request Source Register	0x0000_0000
MCU_IRQCR	INT_BA+0x88	R/W	MCU Interrupt Request Control Register	0x0000_0000

IRQ0 (BOD) Interrupt Source Identity (IRQ0_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved						BOD_INT	

Bits	Description		
[31:1]	Reserved	served Reserved.	
[0]	BOD_INT	IRQ0 Source Identity 0 = IRQ0 source is not from BOD interrupt (BOD_INT). 1 = IRQ0 source is from BOD interrupt (BOD_INT).	

IRQ1 (WDT) Interrupt Source Identity (IRQ1_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved						WDT_INT

Bits	Description	Description		
[31:2]	Reserved	Reserved.		
[1]	WWDT_INT	IRQ1 Source Identity 0 = IRQ1 source is not from window-watchdog interrupt (WWDT _INT). 1 = IRQ1 source is from window-watchdog interrupt (WWDT_INT).		
[0]	WDT_INT	IRQ1 Source Identity 0 = IRQ1 source is not from watchdog interrupt (WDT _INT). 1 = IRQ1 source is from watchdog interrupt (WDT_INT).		

IRQ2 (EINT0) Interrupt Source Identity (IRQ2_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					EINT0	

Bits	Description				
[31:1]	Reserved	eserved Reserved.			
[0]		IRQ2 Source Identity 0 = IRQ2 source is not from external signal interrupt 0 from P3.2 (EINT0). 1 = IRQ2 source is from external signal interrupt 0 from P3.2 (EINT0).			

IRQ3 (EINT1) Interrupt Source Identity (IRQ3_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					EINT1	

Bits	Description	Description		
[31:1]	Reserved	eserved Reserved.		
[0]		IRQ3 Source Identity 0 = IRQ3 source is not from external signal interrupt 1 from P3.3 (EINT1). 1 = IRQ3 source is from external signal interrupt 1 from P3.3 (EINT1).		

IRQ4 (P0-P4) Interrupt Source Identity (IRQ4_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (P0-P4) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved			P3_INT	P2_INT	P1_INT	P0_INT

Bits	Description	
[31:5]	Reserved	Reserved.
[4]	P4_INT	IRQ4 Source Identity 0 = IRQ4 source is not from P4 interrupt (P4_INT). 1 = IRQ4 source is from P4 interrupt (P4_INT).
[3]	P3_INT	IRQ4 Source Identity 0 = IRQ4 source is not from P3 interrupt (P3_INT). 1 = IRQ4 source is from P3 interrupt (P3_INT).
[2]	P2_INT	IRQ4 Source Identity 0 = IRQ4 source is not from P2 interrupt (P2_INT). 1 = IRQ4 source is from P2 interrupt (P2_INT).
[1]	P1_INT	IRQ4 Source Identity 0 = IRQ4 source is not from P1 interrupt (P1_INT). 1 = IRQ4 source is from P1 interrupt (P1_INT).
[0]	P0_INT	IRQ4 Source Identity 0 = IRQ4 source is not from P0 interrupt (P0_INT). 1 = IRQ4 source is from P0 interrupt (P0_INT).

IRQ5 (P5-PA) Interrupt Source Identity (IRQ5_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (P5-PA) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	erved	PA_INT	P9_INT	P8_INT	P7_INT	P6_INT	P5_INT

Bits	Description	
[31:6]	Reserved	Reserved.
[5]	PA_INT	IRQ5 Source Identity 0 = IRQ5 source is not from PA interrupt (PA_INT). 1 = IRQ5 source is from PA interrupt (PA_INT).
[4]	P9_INT	IRQ5 Source Identity 0 = IRQ5 source is not from P9 interrupt (P9_INT). 1 = IRQ5 source is from P9 interrupt (P9_INT).
[3]	P8_INT	IRQ5 Source Identity 0 = IRQ5 source is not from P8 interrupt (P8_INT). 1 = IRQ5 source is from P8 interrupt (P8_INT).
[2]	P7_INT	IRQ5 Source Identity 0 = IRQ5 source is not from P7 interrupt (P7_INT). 1 = IRQ5 source is from P7 interrupt (P7_INT).
[1]	P6_INT	IRQ5 Source Identity 0 = IRQ5 source is not from P6 interrupt (P6_INT). 1 = IRQ5 source is from P6 interrupt (P6_INT).
[0]	P5_INT	IRQ5 Source Identity 0 = IRQ5 source is not from P5 interrupt (P5_INT). 1 = IRQ5 source is from P5 interrupt (P5_INT).

IRQ6 (BPWM0) Interrupt Source Identity (IRQ6_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (BPWM0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					BPCH1_INT	BPCH0_INT

Bits	Description	Description		
[31:2]	Reserved	Reserved.		
[1]	BPCH1_INT	IRQ6 Source Identity 0 = IRQ6 source is not from BPWM0 channel 1 interrupt (BPCH1_INT). 1 = IRQ6 source is from BPWM0 channel 1 interrupt (BPCH1_INT).		
[0]	BPCH0_INT	IRQ6 Source Identity 0 = IRQ6 source is not from BPWM0 channel 0 interrupt (BPCH0_INT). 1 = IRQ6 source is from BPWM0 channel 0 interrupt (BPCH0_INT).		

IRQ7 (EADC0) Interrupt Source Identity (IRQ7_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (EADC0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					EADC0_INT	

Bits	Description	Description		
[31:1]	Reserved	rved Reserved.		
		IRQ7 Source Identity		
[0]	EADC0_INT	0 = IRQ7 source is not from EADC0 interrupt (EADC0_INT).		
		1 = IRQ7 source is from EADC0 interrupt (EADC0_INT).		

IRQ8 (TMR0) Interrupt Source Identity (IRQ8_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					TMR0_INT		

Bits	Description		
[31:1]	Reserved	erved Reserved.	
		IRQ8 Source Identity	
[0]	TMR0_INT	0 = IRQ8 source is not from Timer0 interrupt (TMR0_INT).	
		1 = IRQ8 source is from Timer0 interrupt (TMR0_INT).	

IRQ9 (TMR1) Interrupt Source Identity (IRQ9_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					TMR1_INT		

Bits	Description	Description		
[31:1]	Reserved	rved Reserved.		
[0]		IRQ9 Source Identity 0 = IRQ9 source is not from Timer1 interrupt (TMR1_INT). 1 = IRQ9 source is from Timer1 interrupt (TMR1_INT).		

IRQ10 (TMR2) Interrupt Source Identity (IRQ10_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (TMR2) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					TMR2_INT		

Bits	Description			
[31:1]	Reserved	served Reserved.		
		IRQ10 Source Identity		
[0]	TMR2_INT	0 = IRQ10 source is not from Timer2 interrupt (TMR2_INT).		
		1 = IRQ10 source is from Timer2 interrupt (TMR2_INT).		

IRQ11 (TMR3) Interrupt Source Identity (IRQ11_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (TMR3) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					TMR3_INT		

Bits	Description	Description			
[31:1]	Reserved	eserved Reserved.			
[0]		IRQ11 Source Identity 0 = IRQ11 source is not from Timer3 interrupt (TMR3_INT). 1 = IRQ11 source is from Timer3 interrupt (TMR3_INT).			

IRQ12 (UART0) Interrupt Source Identity (IRQ12_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					UART0_INT		

Bits	Description	escription			
[31:1]	Reserved	served Reserved.			
		IRQ12 Source Identity			
[0]	UART0_INT	0 = IRQ12 source is not from UART0 interrupt (UART0_INT).			
		1 = IRQ12 source is from UART0 interrupt (UART0_INT).			

IRQ13 (UART1) Interrupt Source Identity (IRQ13_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (UART1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					UART1_INT		

Bits	Description	Description			
[31:1]	Reserved	Reserved.			
[0]		IRQ13 Source Identity 0 = IRQ13 source is not from UART1 interrupt (UART1_INT). 1 = IRQ13 source is from UART1 interrupt (UART1_INT).			

IRQ14 (SPI0) Interrupt Source Identity (IRQ14_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					SPI0_INT	

Bits	Description		
[31:1]	Reserved	served Reserved.	
[0]		IRQ14 Source Identity 0 = IRQ14 source is not from SPI0 interrupt (SPI0_INT). 1 = IRQ14 source is from SPI0 interrupt (SPI0_INT).	

IRQ15 (SPI1) Interrupt Source Identity (IRQ15_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (SPI1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					SPI1_INT		

Bits	Description		
[31:1]	Reserved	Reserved.	
[0]		IRQ15 Source Identity 0 = IRQ15 source is not from SPI1 interrupt (SPI1_INT). 1 = IRQ15 source is from SPI1 interrupt (SPI1_INT).	

IRQ16 (SPI2) Interrupt Source Identity (IRQ16_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ16_SRC	INT_BA+0x40	R	IRQ16 (SPI2) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					SPI2_INT	

Bits	Description		
[31:1]	Reserved	served Reserved.	
[0]		IRQ16 Source Identity 0 = IRQ16 source is not from SPI2 interrupt (SPI2_INT).	
		1 = IRQ16 source is from SPI2 interrupt (SPI2_INT).	

IRQ18 (I2C) Interrupt Source Identity (IRQ18_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I2C0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					I2C0_INT	

Bits	Description		
[31:1]	Reserved	Reserved.	
[0]		IRQ18 Source Identity 0 = IRQ18 source is not from I ² C0 interrupt (I2C0_INT). 1 = IRQ18 source is from I ² C0 interrupt (I2C0_INT).	

IRQ19 (CKD) Interrupt Source Identity (IRQ19_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (CKD) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					CKD_INT		

Bits	Description	escription		
[31:1]	Reserved	Reserved Reserved.		
[0]	CKD_INT	IRQ19 Source Identity 0 = IRQ19 source is not from CKD interrupt (CKD_INT). 1 = IRQ19 source is from CKD interrupt (CKD_INT).		

IRQ21 (EPWM0) Interrupt Source Identity (IRQ21_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ21_SRC	INT_BA+0x54	R	IRQ21 (EPWM0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					EPWM0_INT		

Bits	Description	Description		
[31:1]	Reserved	served Reserved.		
[0]		IRQ21 Source Identity 0 = IRQ21 source is not from EPWM0 interrupt (EPWM0_INT). 1 = IRQ21 source is from EPWM0 interrupt (EPWM0_INT).		

IRQ22 (EPWM1) Interrupt Source Identity (IRQ22_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ22_SRC	INT_BA+0x58	R	IRQ22 (EPWM1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					EPWM1_INT	

Bits	Description	Description		
[31:1]	Reserved	served Reserved.		
[0]	EPWM1_INT	IRQ22 Source Identity 0 = IRQ22 source is not from EPWM1 interrupt (EPWM1_INT). 1 = IRQ22 source is from EPWM1 interrupt (EPWM1_INT).		

IRQ23 (ECAP0) Interrupt Source Identity (IRQ23_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ23_SRC	INT_BA+0x5C	R	IRQ23 (ECAP0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					ECAP0_INT		

Bits	Description	escription		
[31:1]	Reserved	eserved Reserved.		
[0]		IRQ23 Source Identity 0 = IRQ23 source is not from ECAP0 interrupt (ECAP0_INT). 1 = IRQ23 source is from ECAP0 interrupt (ECAP0_INT).		

IRQ24 (ECAP1) Interrupt Source Identity (IRQ24_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ24_SRC	INT_BA+0x60	R	IRQ24 (ECAP1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					ECAP1_INT		

Bits	Description	escription		
[31:1]	Reserved	eserved Reserved.		
		IRQ24 Source Identity		
[0]	ECAP1_INT	0 = IRQ24 source is not from ECAP1 interrupt (ECAP1_INT).		
		1 = IRQ24 source is from ECAP1 interrupt (ECAP1_INT).		

IRQ25 (ACMP) Interrupt Source Identity (IRQ25_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					ACMP_INT	

Bits	Description	escription			
[31:1]	Reserved	Reserved.			
[0]		IRQ25 Source Identity 0 = IRQ25 source is not from ACMP interrupt (ACMP_INT). 1 = IRQ25 source is from ACMP interrupt (ACMP_INT).			

IRQ28 (PWRWU) Interrupt Source Identity (IRQ28_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (PWRWU) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					PWRWU_INT	

Bits	Description	Description		
[31:1]	Reserved	eserved Reserved.		
[0]	PWRWU_INT	IRQ28 Source Identity 0 = IRQ28 source is not from PWRWU interrupt (PWRWU_INT). 1 = IRQ28 source is from PWREU interrupt (PWRWU_INT).		

IRQ29 (EADC1) Interrupt Source Identity (IRQ29_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (EADC1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					EADC1_INT		

Bits	Description	escription		
[31:1]	Reserved	Reserved.		
[0]		IRQ29 Source Identity 0 = IRQ29 source is not from EADC1 interrupt (EADC1_INT). 1 = IRQ29 source is from EADC1 interrupt (EADC1_INT).		

IRQ30 (EADC2) Interrupt Source Identity (IRQ30_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ30_SRC	INT_BA+0x78	R	IRQ30 (EADC2) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					EADC2_INT	

Bits	Description	escription		
[31:1]	Reserved	erved Reserved.		
[0]		IRQ30 Source Identity 0 = IRQ30 source is not from EADC2 interrupt (EADC2_INT).		
[0]		$1 = IRQ30$ source is from EADC2 interrupt (EADC2_INT).		

IRQ31 (EADC3) Interrupt Source Identity (IRQ31_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ31_SRC	INT_BA+0x7C	R	IRQ31 (EADC3) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					EADC3_INT	

Bits	Description	escription		
[31:1]	Reserved	Reserved.		
[0]		IRQ31 Source Identity 0 = IRQ31 source is not from EADC3 interrupt (EADC3_INT). 1 = IRQ31 source is from EADC3 interrupt (EADC3_INT).		

NMI Interrupt Source Select Control Register (NMI_SEL)

Register	Offset	R/W	Description	Reset Value
NMI_SEL	INT_BA+0x80	R/W	NMI Interrupt Source Select Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Reserved				NMI_EN
7	6	5	4	3	2	1	0
	Reserved			NMI_SEL			

Bits	Description					
[31:9]	Reserved Reserved.					
		NMI Interrupt Enable Bit (Write Protect)				
[8]	B] NMI EN	0 = IRQ0~31 assigned to NMI Disabled. (NMI still can be software triggered by setting its pending flag.)				
	_	1 = IRQ0~31 assigned to NMI Enabled.				
		Note: This bit is write protected bit. Refer to the REGWRPROT register.				
[7:5]	Reserved	Reserved.				
		NMI Interrupt Source Selection				
[4:0]	NMI_SEL	The NMI interrupt to Cortex [®] -M0 can be selected from one of IRQ0~IRQ31 by setting NMI_SEL with IRQ number. The default NMI interrupt is assigned as IRQ0 interrupt if NMI is enabled by setting NMI_SEL[8].				

MCU Interrupt Request Source Register (MCU_IRQ)

Register	Offset	R/W	Description	Reset Value
MCU_IRQ	INT_BA+0x84	R/W	MCU Interrupt Request Source Register	0x0000_0000

31	30	29	28	27	26	25	24
	MCU_IRQ						
23	22	21	20	19	18	17	16
	MCU_IRQ						
15	14	13	12	11	10	9	8
	MCU_IRQ						
7	6	5	4	3	2	1	0
	MCU_IRQ						

Bits	Description					
[31:0]	MCU_IRQ	MCU IRQ Source Register The MCU_IRQ collects all the interrupts from the peripherals and generates the synchronous interrupt to Cortex [®] -M0. The MCU_IRQ collects all interrupts from each peripheral and synchronizes them and then interrupts the Cortex [®] -M0. When the MCU_IRQ[n] is 0, it means no interrupt is assert. Write 1 to generate an interrupt to Cortex [®] -M0 NVIC[n]. When the MCU_IRQ[n] is 1, it means an interrupt is assert.				
		When the MCU_IRQ[n] is 1, it means an interrupt is assert. Write 1 to clear the interrupt and MCU_IRQ[n].				

MCU Interrupt Request Control Register (MCU_IRQCR)

Register	Offset	R/W	Description	Reset Value
MCU_IRQCR	INT_BA+0x88	R/W	MCU Interrupt Request Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved						FAST_IRQ

Bits	Description				
[31:1]	Reserved	Reserved.			
		Fast IRQ Latency Enable Bit			
[0]		0 = MCU IRQ latency is fixed at 13 HCLK, MCU will enter IRQ handler after this fixed latency when interrupt happened.			
		1 = MCU IRQ latency will not fixed, MCU will enter IRQ handler as soon as possible when interrupt happened.			

6.2.9 System Control Block Register

 $\label{eq:cortex} {}^{\circledast}\mbox{-}M0 \mbox{ status and operating mode control are managed by System Control Block Registers including CPUID, Cortex {}^{\circledast}\mbox{-}M0 \mbox{ interrupt priority and Cortex {}^{\circledast}\mbox{-}M0 \mbox{ power management.}$

Register	Offset	R/W	Description	Reset Value			
	SCB Base Address: SCB_BA = 0xE000_ED00						
CPUID	SCB_BA+0x00	R	CPUID Register	0x410C_C200			
ICSR	SCB_BA+0x04	R/W	Interrupt Control State Register	0x0000_0000			
AIRCR	SCB_BA+0x0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000			
SCR	SCB_BA+0x10	R/W	System Control Register	0x0000_0000			
SHPR2	SCB_BA+0x1C	R/W	System Handler Priority Register 2	0x0000_0000			
SHPR3	SCB_BA+0x20	R/W	System Handler Priority Register 3	0x0000_0000			

nuvoTon

CPUID Register (CPUID)

Register	Offset	R/W	Description	Reset Value
CPUID	SCB_BA+0x00	R	CPUID Register	0x410C_C200

31	30	29	28	27	26	25	24	
			IMPLEN	IENTER				
23	22	21	20	19	18	17	16	
	Reserved				PART			
15	14	13	12	11	10	9	8	
			PAR	TNO				
7	6	5	4	3	2	1	0	
	PARTNO				REVI	SION		

Bits	Description	Description			
[31:24]	IMPLEMENTER	Implementer Code Assigned by ARM [®] Implementer code assigned by ARM [®] . (ARM [®] = 0x41)			
[23:20]	Reserved	Reserved.			
[19:16]	PART	Architecture of the Processor Read as 0xC corresponding to ARMv6-M architecture.			
[15:4]	PARTNO	Part Number of the Processor Reads as 0xC20 corresponding to Cortex [®] -M0			
[3:0]	REVISION	Revision Number Reads as 0x0.			

Interrupt Control State Register (ICSR)

The ICSR provides (1)a set-pending bit for the NMI exception, and (2)set-pending and clear-pending bits for the PendSV and SysTick exceptions. And the ICSR also indicates (1)the exception number of the exception being processed, (2)whether there are preempted active exceptions, (3)the exception number of the highest prority pending exception, and (4)whether any interrupts are pending.

Register	Offset	R/W	Description	Reset Value
ICSR	SCB_BA+0x04	R/W	Interrupt Control State Register	0x0000_0000

31	30	29	28	27	26	25	24
NMIPENDSET	Rese	erved	PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	Reserved
23	22	21	20	19	18	17	16
Reserved	ISRPENDING		Rese	erved		VECTPENDING	
15	14	13	12	11	10	9	8
	VECTPI	ENDING			Rese	erved	
7	6	5	4	3	2	1	0
Rese	Reserved			VECTA	CTIVE		

Bits	Description	
		NMI Set-pending Bit
		Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.
[31]	NMIPENDSET	Write Operation:
[01]		0 = no effect.
		1 = changes NMI exception state to pending.
		Read Operation:
		0 = NMI exception is not pending.
		1 = NMI exception is pending.
[30:29]	Reserved	Reserved.
		PendSV Set-pending Bit
		Write Operation:
		0 = no effect.
[28]	PENDSVSET	1 = changes PendSV exception state to pending.
[20]	FENDSVSET	Read Operation:
		0 = PendSV exception is not pending.
		1 = PendSV exception is pending.
		Writing 1 to this bit is the only way to set the PendSV exception state to pending.
		PendSV Clear-pending Bit (Write Only)
[27]	PENDSVCLR	0 = no effect.
		1 = removes the pending state from the PendSV exception.

nuvoTon

Bits	Description					
[26]	PENDSTSET	SysTick Exception Set-pending Bit Write Operation: 0 = no effect. 1 = changes SysTick exception state to pending. Read Operation: 0 = SysTick exception is not pending. 1 = SysTick exception is pending.				
[25]	PENDSTCLR	SysTick Exception Clear-pending Bit (Write Only) 0 = no effect. 1 = removes the pending state from the SysTick exception.				
[24:23]	Reserved	Reserved.				
[22]	ISRPENDING	Interrupt Pending Flag (Read Only) Indicates if an external configurable (NVIC generated) interrupt is pending. 0 = interrupt not pending. 1 = interrupt pending.				
[21:18]	Reserved	Reserved.				
[17:12]	VECTPENDING	 Vector Pending Indicator (Read Only) This field indicates the exception number of the highest priority pending enabled exception: 0 = no pending exceptions. Nonzero = the exception number of the highest priority pending enabled exception. 				
[11:6]	Reserved	Reserved.				
[5:0]	VECTACTIVE	Vector Active Indicator (Read Only) This field contains the active exception number: 0 = Thread mode. Nonzero = The exception number of the currently active exception.				

Application Interrupt and Reset Control Register (AIRCR)

Register	Offset	R/W	Description	Reset Value
AIRCR	SCB_BA+0x0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000

31	30	29	28	27	26	25	24
	VECTORKEY						
23	22	21	20	19	18	17	16
	VECTKEY						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					Rese	rved

Bits	Description	
[31:16]	VECTKEY	Register Key (Write Only) When writing to this register, the VECTORKEY field need to be set to 0x05FA, otherwise the write operation would be ignored. The VECTORKEY filed is used to prevent accidental write to this register from resetting the system or clearing of the exception status.
[15:3]	Reserved	Reserved.
[2]	SYSRESETREQ	System Reset Request (Write Only) 0 = no effect. 1 = requests a system level reset.
[1:0]	Reserved	Reserved.

nuvoTon

System Control Register (SCR)

Register	Offset	R/W	Description	Reset Value
SCR	SCB_BA+0x10	R/W	System Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved			Reserved	SLEEPDEEP	SLEEPONEXI T	Reserved

Bits	Description	
[31:5]	Reserved	Reserved.
		Send Event on Pending Bit
		0 = Oonly enabled interrupts or events can wake up the processor, disabled interrupts are excluded.
[4]	SEVONPEND	1 = Enabled events and all interrupts, including disabled interrupts, can wake-up the processor.
		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects next WFE.
		The processor also wakes up on execution of an SEV instruction or an external event.
[3]	Reserved	Reserved.
		Deep Sleep Mode Enable Bit
[2]	SLEEPDEEP	This bit controls whether the processor uses sleep or deep sleep as its low power mode:
[~]		0 = Sleep mode.
		1 = Deep sleep mode.
		Sleep-on-exit Enable Bit
		This bit controls sleep-on-exit when returning from Handler mode to Thread mode:
[1]	SLEEPONEXIT	0 = Do not sleep when returning to Thread mode.
[']		1 = Enter Sleep, or Deep Sleep, on return from an ISR to Thread mode.
		Note: Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.
[0]	Reserved	Reserved.

nuvoTon

System Handler Priority Register 2 (SHPR2)

Register	Offset	R/W	Description	Reset Value
SHPR2	SCB_BA+0x1C	R/W	System Handler Priority Register 2	0x0000_0000

31	30	29	28	27	26	25	24	
PR	PRI_11		Reserved					
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Description	Description					
[31:30]	IPRI 11	Priority of System Handler 11, SVCall "0" denotes the highest priority and "3" denotes the lowest priority.					
[29:0]	Reserved	Reserved.					

System Handler Priority Register 3 (SHPR3)

Register	Offset	R/W	Description	Reset Value
SHPR3	SCB_BA+0x20	R/W	System Handler Priority Register 3	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_15	Reserved					
23	22	21	20	19	18	17	16
PRI	_14			Rese	erved		
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5 4 3 2 1 0					
	Reserved						

Bits	Description	escription					
[31:30]	PRI 15	Priority of System Handler 15, SysTick "0" denotes the highest priority and "3" denotes the lowest priority.					
[29:24]	Reserved	Reserved.					
[23:22]	IPRI 14	Priority of System Handler 14, PendSV "0" denotes the highest priority and "3" denotes the lowest priority.					
[21:0]	Reserved	Reserved.					

6.3 Clock Controller

6.3.1 Overview

The clock controller generates the clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when Cortex[®]-M0 core executes the WFI instruction only if the SLEEPDEEP (SCR[2]) bit is set to 1. After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external high speed crystal oscillator and 22.1184 MHz internal high speed RC oscillator to reduce the overall system power consumption. Figure 6-3 shows the clock generator and the overview of the clock source control.

The clock generator consists of 4 clock sources as listed below:

- 4~24 MHz external high speed crystal oscillator (HXT)
- Programmable PLL output clock frequency (PLL_FOUT), PLL source can be selected from 4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high speed RC oscillator (HIRC)
- 22.1184 MHz internal high speed RC oscillator (HIRC)
- 10 kHz internal low speed RC oscillator (LIRC)

Each of these clock sources has certain stable time to wait for clock operating at stable frequency. When clock source is enabled, a stable counter start counting and correlated clock stable index (OSC22M STB(CLKSTATUS[4]), OSC10K STB(CLKSTATUS[3]), PLL STB(CLKSTATUS[2]) and XTL12M STB(CLKSTATUS[0])) are set to 1 after stable counter value reach a define value as Table 6-6. System and peripheral can use these clock as its operating clock only when correlate clock stable index is set to 1. The clock stable index will auto clear when user disables the clock source (OSC10K EN(PWRCON[3]), OSC22M_EN(PWRCON[2]), XTL12M_EN(PWRCON[0]) and PD(PLLCON[16])). Besides, the clock stable index of HXT, HIRC and PLL will auto clear when chip enter power-down and clock stable counter will re-counting after chip wake-up if correlate clock is enabled.

Clock Source	Clock Stable Count Value
нхт	4096 HXT clock
PLL	6144 PLL source (PLL source is HXT if PLL_SRC(PLLCON[19]) = 0, or HIRC if PLL_SRC(PLLCON[19]) = 1)
HIRC	256 HIRC clock
LIRC	1 LIRC

Table 6-6 Clock Stable Count Value Table

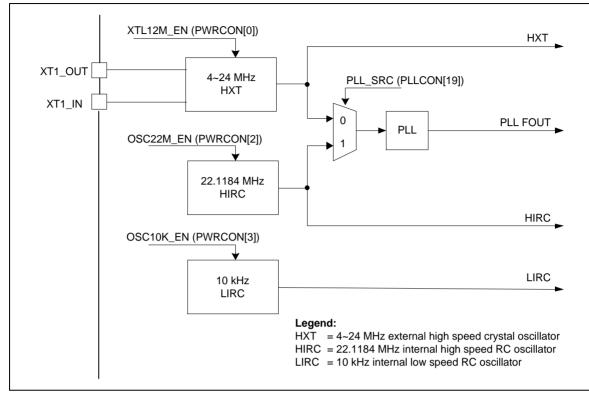


Figure 6-3 Clock Generator Block Diagram

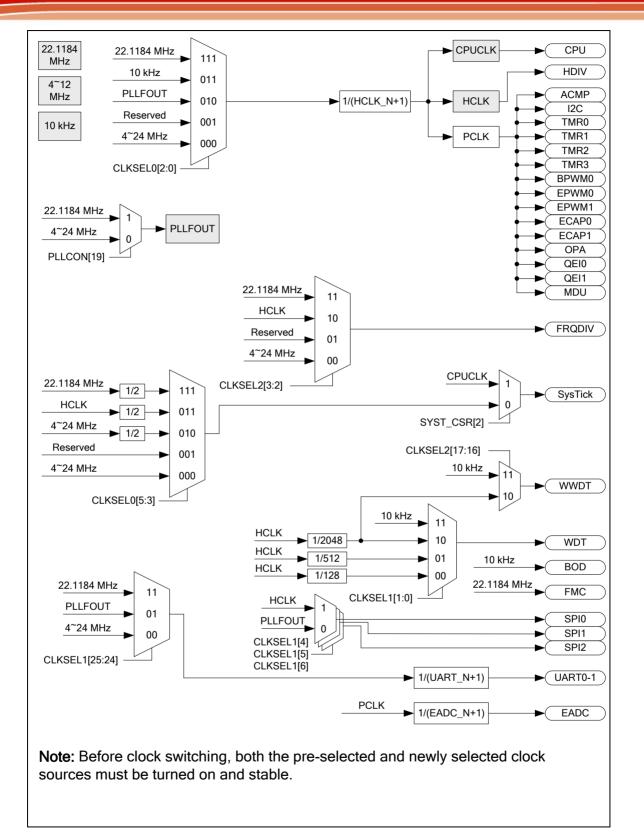


Figure 6-4 Clock Generator Global View Diagram

6.3.2 System Clock & SysTick Clock

The system clock has 4 clock sources which were generated from clock generator block. The clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is showed in Figure 6-5.

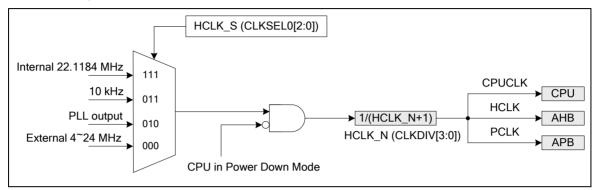


Figure 6-5 System Clock Block Diagram

The clock source of SysTick clock (STCLK) in Cortex[®]-M0 core comes from 4 clock sources. The clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]). The block diagram is showed in Figure 6-6.

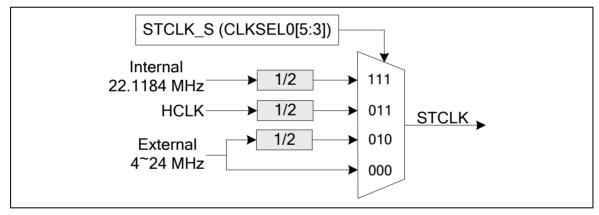


Figure 6-6 SysTick Clock Control Block Diagram

6.3.3 Peripherals Clock

The peripherals clock had different clock source switch setting which depends on the different peripheral. Please refer the CLKSEL1 and CLKSEL2 register description in 6.3.7.

6.3.4 Power-down Mode (Deep Sleep Mode) Clock

When chip enters Power-down mode, system clocks, some clock sources, and some peripheral clocks will be disabled. Some clock sources and peripherals clock are still active in Power-down mode.

Clocks and peripherals which still keep active:

- Clock Generator
 - Internal 10 kHz oscillator clock.
- Peripherals Clock (when these peripheral adopt 10 kHz as clock source)

Page **149** of **524**

Watchdog Timer.

6.3.5 Frequency Divider Output

This device is equipped a frequency divider which is composed by 16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to CLKO function pin. Therefore there are 16 options of divided clocks.

The output formula is $F_{CLKO} = F_{FRQDIV_CLK}/2^{(N+1)}$, where F_{FRQDIV_CLK} is the input clock frequency, F_{CLKO} is the clock divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).

When write 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When write 0 to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low state and stay in low state.

If DIV1(FRQDIV[5]) is set to 1, the frequency divider clock (FRQDIV_CLK) will bypass power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly.

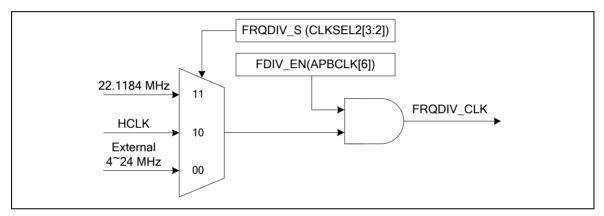


Figure 6-7 Clock Source of Frequency Divider

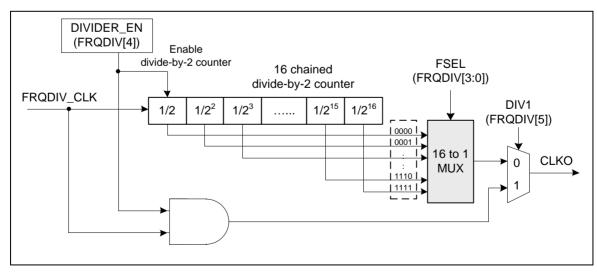


Figure 6-8 Block Diagram of Frequency Divider

6.3.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
	CLK Base Address: CLK_BA = 0x5000_0200							
PWRCON	CLK_BA+0x00	R/W	System Power-down Control Register	0x0000_000X				
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0005				
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_0001				
CLKSTATUS	CLK_BA+0x0C	R	Clock Status Monitor Register	0x0000_00XX				
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003X				
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0xFFFF_FFF				
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Number Register	0x0000_0000				
CLKSEL2	CLK_BA+0x1C	R/W	Clock Source Select Control Register 2	0xFFFF_FFF				
PLLCON	CLK_BA+0x20	R/W	PLL Control Register	0x0005_C22E				
FRQDIV	CLK_BA+0x24	R/W	Frequency Divider Control Register	0x0000_0000				

6.3.7 Register Description

System Power-down Control Register (PWRCON)

Except the BIT[6], all the other bits are protected, program these bits need to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.

Register	Offset	R/W	Description	Reset Value
PWRCON	CLK_BA+0x00	R/W	System Power-down Control Register	0x0000_000X

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Reserved	PD_WU_STS	PD_WU_INT_ EN	Reserved	OSC10K_EN	OSC22M_EN	Reserved	XTL12M_EN		

Bits	Description	
[31:7]	Reserved	Reserved.
[15:7]	Reserved	Reserved.
[6]	PD_WU_STS	Power-down Mode Wake-up Interrupt Status Set by "power down wake up event", it indicates that resume from Power-down mode. Write 1 to clear the bit to zero. Note: This bit is working only if PD_WU_INT_EN (PWRCON[5]) set to 1.
[5]	PD_WU_INT_EN	 Power-down Mode Wake-up Interrupt Enable Bit (Write Protect) 0 = Power-down mode wake-up interrupt Disabled. 1 = Power-down mode wake-up interrupt Enabled. Note1: The interrupt will occur when both PD_WU_STS and PD_WU_INT_EN are high. Note2: This bit is write protected bit. Refer to the REGWRPROT register.
[4]	Reserved	Reserved.
[3]	OSC10K_EN	Internal 10 kHz Oscillator Enable Bit (Write Protect) 0 = 10 kHz Oscillation Disabled. 1 = 10 kHz Oscillation Enabled. Note: This bit is write protected bit. Refer to the REGWRPROT register.

Bits	Description	escription				
[2]	OSC22M_EN	Internal 22.1184 MHz Oscillator Enable Bit (Write Protect) 0 = 22.1184 MHz Oscillation Disabled. 1 = 22.1184 MHz Oscillation Enabled. Note: This bit is write protected bit. Refer to the REGWRPROT register.				
[1]	Reserved	Reserved.				
[0]	XTL12M_EN	External 4~24 MHz Crystal Enable Bit (Write Protect) The bit default value is set by flash controller user configuration register CFOSC (Config0[26:24]). When the default clock source is from external 4~24 MHz crystal, this bit is set to 1 automatically. 0 = External 4~24 MHz crystal Disabled. 1 = External 4~24 MHz crystal Enabled. Note: This bit is write protected bit. Refer to the REGWRPROT register.				

Chip Operating Mode	SLEEPDEEP (SCR[2])	CPU Run WFI Instruction	Clock Disable
Normal Running Mode	0	NO	All Clock are disabled by control register.
IDLE Mode (CPU entry Sleep Mode)	0	YES	Only CPU clock is disabled.
Power-down Mode (CPU entry deep sleep mode)	1	YES	Most Clock are disabled except 10K WDT clock still enabled.

Table 6-7 Power-down mode Control Table

AHB Devices Clock Enable Control Register (AHBCLK)

These bits for this register are used to enable/disable clock for AHB devices clock.

Register	Offset	R/W	Description	Reset Value
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0005

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1 0								
	Reserved			Reserved					

Bits	Description	Description				
[31:5]	Reserved	Reserved.				
[4]	HDIV_EN	Hardware Divider Controller Clock Enable Bit 0 = Hardware Divider engine clock Disabled. 1 = Hardware Divider engine clock Enabled.				
[3:0]	Reserved Reserved.					

APB Devices Clock Enable Control Register (APBCLK)

These bits of this register are used to enable/disable clock for peripheral controller clocks.

R	egister	Offset	R/W	Description	Reset Value
A	PBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_0001

31	30	29	28	27	26	25	24
Reserved		OPA_EN	EADC_EN	ECAP1_EN	ECAP0_EN	Rese	erved
23	22	21	20	19	18	17	16
Reserved	ACMP_EN	EPWM1_EN	EPWM0_EN	BPWM0_EN	Reserved	UART1_EN	UART0_EN
15	14	13	12	11	10	9	8
Reserved	SPI2_EN	SPI1_EN	SPI0_EN		Reserved		I2C0_EN
7	6	5	4	3	2	1	0
Reserved	FDIV_EN	TMR3_EN	TMR2_EN	TMR1_EN	TMR0_EN	Reserved	WDT_EN

Bits	Description					
[31:26]	Reserved	Reserved.				
[29]	OPA_EN	OPA0 and OPA1 Clock Enable Bit 0 = OPA0 and OPA1 clock Disabled. 1 = OPA0 and OPA1 clock Enabled.				
[28]	EADC_EN	EADC Clock Enable Bit 0 = EADC clock Disabled. 1 = EADC clock Enabled.				
[27]	ECAP1_EN	Enhanced Input Capture 1 Clock Enable Bit 0 = Enhanced input capture 1 clock Disabled. 1 = Enhanced input capture 1 clock Enabled.				
[26]	ECAP0_EN	Enhanced Input Capture 0 Clock Enable Bit 0 = Enhanced input capture 0 clock Disabled. 1 = Enhanced input capture 0 clock Enabled.				
[25:23]	Reserved	Reserved.				
[23]	Reserved	Reserved.				
[22]	ACMP_EN	Analog Comparator Clock Enable Bit 0 = Analog comparator clock Disabled. 1 = Analog comparator clock Enabled.				
[21]	EPWM1_EN	EPWM1_EN 1 = Enhanced PWM1 clock Enable Bit 0 = Enhanced PWM1 clock Disabled. 1 = Enhanced PWM1 clock Enabled.				

Bits	Description							
[20]	EPWM0_EN	Enhanced PWM0 Clock Enable Bit 0 = Enhanced PWM0 clock Disabled. 1 = Enhanced PWM0 clock Enabled.						
[19]	BPWM0_EN	Basic PWM0 Clock Enable Bit 0 = Basic PWM0 clock Disabled. 1 = Basic PWM0 clock Enabled.						
[18]	Reserved	Reserved.						
[17]	UART1_EN	UART1 Clock Enable Bit 0 = UART1 clock Disabled. 1 = UART1 clock Enabled.						
[16]	UART0_EN	UART0 Clock Enable Bit 0 = UART0 clock Disabled. 1 = UART0 clock Enabled.						
[15]	Reserved	Reserved.						
[14]	SPI2_EN	SPI2 Clock Enable Bit 0 = SPI2 clock Disabled. 1 = SPI2 clock Enabled.						
[13]	SPI1_EN	SPI1 Clock Enable Bit 0 = SPI1 clock Disabled. 1 = SPI1 clock Enabled.						
[12]	SPI0_EN	SPI0 Clock Enable Bit 0 = SPI0 clock Disabled. 1 = SPI0 clock Enabled.						
[11:9]	Reserved	Reserved.						
[8]	12C0_EN	I ² C0 Clock Enable Bit 0 = I ² C0 clock Disabled. 1 = I ² C0 clock Enabled.						
[7]	Reserved	Reserved.						
[6]	FDIV_EN	Frequency Divider Output Clock Enable Bit 0 = Frequency divider output clock Disabled. 1 = Frequency divider output clock Enabled.						
[5]	TMR3_EN	Timer3 Clock Enable Bit0 = Timer3 clock Disabled.1 = Timer3 clock Enabled.						
[4]	TMR2_EN	Timer2 Clock Enable Bit0 = Timer2 clock Disabled.1 = Timer2 clock Enabled.						
[3]	TMR1_EN	Timer1 Clock Enable Bit 0 = Timer1 clock Disabled. 1 = Timer1 clock Enabled.						

M0	51	9
----	----	---

Bits	Description	escription					
[2]	TMR0_EN	Timer0 Clock Enable Bit 0 = Timer0 clock Disabled. 1 = Timer0 clock Enabled.					
[1]	Reserved	Reserved Reserved.					
[0]	WDT_EN	Watchdog Timer Clock Enable Bit (Write Protect) 0 = Watchdog Timer clock Disabled. 1 = Watchdog Timer clock Enabled. Note: This bit is write protected bit. Refer to the REGWRPROT register.					

Clock Status Monitor Register (CLKSTATUS)

These bits of this register are used to monitor if the chip clock source stable or not, and whether clock switch failed.

Register	Offset	R/W	Description	Reset Value
CLKSTATUS	CLK_BA+0x0C	R	Clock Status Monitor Register	0x0000_00XX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
CLK_SW_FAI L	Rese	rved	OSC22M_STB	OSC10K_STB	PLL_STB	Reserved	XTL12M_STB			

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	CLK_SW_FAIL	Clock Switching Fail Flag (Read Only) 0 = Clock switching success. 1 = Clock switching failure. This bit is an index that if current system clock source is match as user defined at HCLK_S (CLKSEL0[2:0]). When user switch system clock, the system clock source will keep old clock until the new clock is stable. During the period that waiting new clock stable, this bit will be an index shows system clock source is not match as user wanted.
[6:5]	Reserved	Reserved.
[4]	OSC22M_STB	Internal 22.1184M Hz Oscillator Clock Source Stable Flag (Read Only) 0 = Internal 22.1184M Hz oscillator clock is not stable or disabled. 1 = Internal 22.1184M Hz oscillator clock is stable and enabled.
[3]	OSC10K_STB	Internal 10k Hz Clock Source Stable Flag (Read Only) 0 = Internal 10k Hz oscillator clock is not stable or disabled. 1 = Internal 10k Hz oscillator clock is stable and enabled.
[2]	PLL_STB	PLL Clock Source Stable Flag (Read Only) 0 = PLL clock is not stable or disabled. 1 = PLL clock is stable in normal mode.
[1]	Reserved	Reserved.
[0]	XTL12M_STB	External 4~24 MHz Crystal Clock Source Stable Flag (Read Only) 0 = External 4~24 MHz crystal clock is not stable or disabled. 1 = External 4~24 MHz crystal clock is stable and enabled.

Clock Source Select Control Register 0 (CLKSEL0)

Register	Offset	R/W	Description	Reset Value
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003X

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Rese	erved		STCLK_S			HCLK_S				

Bits	Description					
[31:6]	Reserved	Reserved.				
		Cortex [®] -M0 SysTick Clock Source Selection (Write Protect)				
		If SYST_CSR[2]=0, SysTick uses listed clock source below.				
		000 = Clock source from external 4~24 MHz crystal clock.				
		001 = Reserved.				
		010 = Clock source from external 4~24 MHz crystal clock/2.				
[5:3]	STCLK_S	011 = Clock source from HCLK/2.				
		111 = Clock source from internal 22.1184 MHz oscillator clock/2.				
		Others = Reserved.				
		Note1: These bits are write protected bits. Refer to the REGWRPROT register.				
		Note2: if SysTick clock source is not from HCLK (i.e. SYST_CSR[2] = 0), SysTick clock source must less than or equal to HCLK/2.				
		HCLK Clock Source Selection (Write Protect)				
		1. Before clock switching, the related clock sources (both pre-select and new-select) must be turn on.				
		2. The 3-bit default value is reloaded from the value of CFOSC (Config0[26:24]) in user configuration register of Flash controller by any reset. Therefore the default value is either 000b or 111b.				
[0.0]	HCLK S	000 = Clock source from external 4~24 MHz crystal clock.				
[2:0]	HULK_S	001 = Reserved.				
		010 = Clock source from PLL clock.				
		011 = Clock source from internal 10 kHz oscillator clock.				
		111 = Clock source from internal 22.1184 MHz oscillator clock.				
		Others = Reserved.				
		Note: These bits are write protected bits. Refer to the REGWRPROT register.				

Clock Source Select Control Register 1 (CLKSEL1)

Before clock switching, the related clock sources (pre-selected and new-selected) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0xFFFF_FFFF

31	30	29	28	27	26	25	24		
	UART_S								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved	SPI2_S	SPI1_S	SPI0_S	Reserved		WDT_S			

Bits	Description					
[31:26]	Reserved Reserved.					
[25:24]	UART_S	 UART Clock Source Selection 00 = Clock source from external 4~24 MHz crystal clock. 01 = Clock source from PLL clock. 10 = Reserved. 11 = Clock source from internal 22.1184 MHz oscillator clock. 				
[23:7]	Reserved	Reserved.				
[6]	SPI2_S	SPI2 Clock Source Selection0 = Clock source from PLL clock.1 = Clock source from HCLK.				
[5]	SPI1_S	SPI1 Clock Source Selection 0 = Clock source from PLL clock. 1 = Clock source from HCLK.				
[4]	SPI0_S	SPI0 Clock Source Selection 0 = Clock source from PLL clock. 1 = Clock source from HCLK.				
[3:2]	Reserved	Reserved.				
[1:0]	WDT_S	 Watchdog Timer Clock Source Selection (Write Protect) 00 = Clock source from HCLK/128 clock. 01 = Clock source from HCLK/512 clock. 10 = Clock source from HCLK/2048 clock. 11 = Clock source from internal 10 kHz oscillator clock. Note: These bits are write protected bits. Refer to the REGWRPROT register. 				

Clock Source Select Control Register 2 (CLKSEL2)

Before clock switching, the related clock sources (pre-selected and new-selected) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL2	CLK_BA+0x1C	R/W	Clock Source Select Control Register 2	0xFFFF_FFFF

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
		Rese	erved			wwi	DT_S			
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved				DIV_S	Rese	erved			

Bits	Description	
[31:18]	Reserved	Reserved.
[17:16]	wwdt_s	Window Watchdog Timer Clock Source Selection 00 = Reserved. 01 = Reserved. 10 = Clock source from HCLK/2048 clock.
[15:4]	Reserved	10 = Clock source from HCLN2048 clock. 11 = Clock source from internal 10 kHz low speed oscillator clock. Reserved.
[3:2]	FRQDIV_S	 Clock Divider Clock Source Selection 00 = Clock source from external 4~24 MHz crystal clock. 01 = Reserved. 10 = Clock source from HCLK. 11 = Clock source from internal 22.1184 MHz oscillator clock.
[1:0]	Reserved	Reserved.

Clock Divider Number Register (CLKDIV)

Register	Offset	R/W	Description	Reset Value
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Number Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			EAD	C_N						
15	14	13	12	11	10	9	8			
	Reserved				UART_N					
7	6	5	4	3	2	1	0			
	Reserved				HCL	K_N				

Bits	Description					
[31:24]	Reserved	Reserved.				
[23:16]	EADC_N	EADC Clock Divider The EADC clock frequency = (EADC clock source frequency) / (EADC_N + 1).				
[15:12]	Reserved	Reserved.				
[11:8]	UART_N	UART Clock Divider The UART clock frequency = (UART clock source frequency) / (UART_N + 1).				
[7:4]	Reserved	Reserved.				
[3:0]	HCLK_N	HCLK Clock Divider The HCLK clock frequency = (HCLK clock source frequency) / (HCLK_N + 1).				

PLL Control Register (PLLCON)

The PLL reference clock input is from the external 4~24 MHz crystal clock input or from the internal 22.1184 MHz oscillator. These registers are use to control the PLL output frequency and PLL operating mode.

Register	Offset	R/W	Description	Reset Value
PLLCON	CLK_BA+0x20	R/W	PLL Control Register	0x0005_C22E

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved			PLL_SRC	OE	BP	PD			
15	14	13	12	11	10	9	8			
τυο	_DV			FB_DV						
7	6	5	4	3	2	1	0			
	FB_DV									

Bits	Description	Description				
[31:20]	Reserved	Reserved.				
[20]	FCO_SEL	 PLL FCO Selection 0 = When the FCO frequency range between 100MHz and 200MHz, this bit should be set as 0. 1 = When the FCO frequency range between 200MHz to 500MHz, this bit should be set as 1. 				
[19]	PLL_SRC	 PLL Source Clock Selection 0 = PLL source clock from external 4~24 MHz crystal. 1 = PLL source clock from internal 22.1184 MHz oscillator. 				
[18]	OE	PLL OE (FOUT Enable) Bit 0 = PLL FOUT enable. 1 = PLL FOUT is fixed low.				
[17]	ВР	PLL Bypass Control0 = PLL is in normal mode (default).1 = PLL clock output is same as clock input.				
[16]	PD	Power-down Mode 0 = PLL is in normal mode. 1 = PLL is in power-down mode (default).				
[15:14]	OUT_DV	PLL Output Divider Control Bits Refer to the formulas below the table.				
[13:9]	IN_DV	PLL Input Divider Control Bits Refer to the formulas below the table.				

Bits	Description				
[8:0]	FB DV	PLL Feedback Divider Control Bits			
		Refer to the formulas below the table.			

Output Clock Frequency Setting

$FOUT = FIN \times \frac{NF}{NR} \times \frac{1}{NO}$	
---	--

Constrain:

1. 3.2*MHz* < *FIN* < 150*MHz*

2.
$$800 KHz < Fref = \frac{FIN}{2 \times NR} < 8MHz$$

$$200MHz < FCO = Fref \times 2 \times NF = FIN \times \frac{NF}{NR} < 500MHz, (FCO_SEL = 1)$$
3.
$$100MHz < FCO = Fref \times 2 \times NF = FIN \times \frac{NF}{NR} < 200MHz, (FCO_SEL = 0)$$

Symbol	Description
FOUT	Output Clock Frequency
FIN	Input (Reference) Clock Frequency
NR	Input Divider (IN_DV + 2)
NF	Feedback Divider (FB_DV + 2)
NO	OUT_DV = "00" : NO = 1 OUT_DV = "01" : NO = 2 OUT_DV = "10" : NO = 2 OUT_DV = "11" : NO = 4

Default Frequency Setting

The default value: 0xC22EFIN = 12 MHz NR = (1+2) = 3 NF = (46+2) = 48 NO = 4 FOUT = 12/4 x 48 x 1/3 = 48MHz

Frequency Divider Control Register (FRQDIV)

Register	Offset	R/W	Description	Reset Value
FRQDIV	CLK_BA+0x24	R/W	Frequency Divider Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	7 6 5 4 3 2 1 0							
Reserved DIV1 DIVIDER_EN FSEL								

Bits	Description	Description				
[31:6]	Reserved	Reserved.				
[5]	DIV1	Frequency Divider Divide 1 Enable Bit 0 = Frequency divider will output clock with source frequency divide by FSEL. 1 = Frequency divider will output clock with source frequency.				
[4]	DIVIDER_EN	Frequency Divider Enable Bit 0 = Frequency divider Disabled. 1 = Frequency divider Enabled.				
[3:0]	FSEL	Frequency Divider Output Selection BitsThe output formula is: $F_{CLKO} = F_{FRQDIV_CLK}/2^{(N+1)}$,.where F_{FRQDIV_CLK} is the input clock frequency, F_{CLKO} is the clock divider output frequency and N is the 4-bit value in FSEL[3:0].				

6.4 Flash Memory Controller (FMC)

6.4.1 Overview

The NuMicro[®] M0519 Series is equipped with 128/64 KB on-chip embedded flash for application program memory (APROM) and data flash, and with 8K bytes for ISP loader program memory (LDROM) that could be programmed boot loader to update APROM and data flash through In System Programming (ISP) procedure. ISP function enables user to update embedded flash when chip is soldered on PCB. After chip is powered on, Cortex[®]-M0 CPU fetches code from APROM or LDROM decided by boot select CBS (Config0[7:6]). By the way, the NuMicro[®] M0519 Series also provides data flash for user to store some application dependent data before chip power off. For 128 KB APROM device, the data flash is shared with original 128 KB program memory and its start address is configurable in Config1. For 64 KB APROM device, the data flash is fixed at 4K bytes.

6.4.2 Features

- Runs up to 72 MHz and optional up to 50 MHz with zero wait state for continuous address read access
- Supports 512 bytes page erase for all embedded flash
- Supports 128/64 Kbytes application program ROM (APROM)
- Supports 8 KB loader ROM (LDROM)
- Supports 4KB data flash for 64 Kbytes APROM device
- Supports configurable data flash size for 128KB APROM device
- Supports 8 bytes User Configuration block to control system initiation
- Support In-System-Programming (ISP) / In-Application-Programming (IAP) to update embedded flash memory

6.4.3 Block Diagram

The flash memory controller (FMC) consists of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is in Figure 6-9.

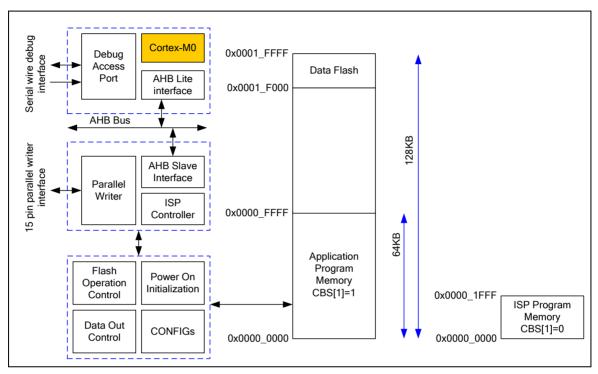


Figure 6-9 Flash Memory Control Block Diagram

6.4.4 Functional Description

FMC functions include the memory organization, boot selection, IAP, ISP, and ISP procedure.

6.4.4.1 Memory Organization

The NuMicro[®] M0519 Series flash memory consists of program memory (APROM), data flash, ISP loader program memory (LDROM), and user configuration.

Program memory is main memory for user applications and called APROM. User can write their application to APROM and set system to boot from APROM.

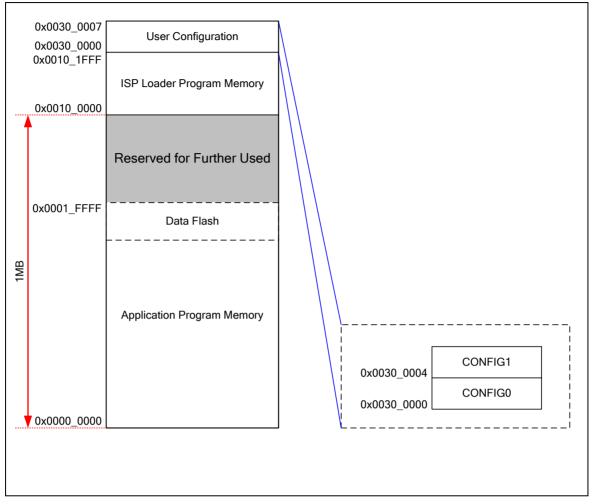
ISP loader program memory is designed for a loader to implement In-System-Programming function. LDROM is independent to APROM and system can also be set to boot from LDROM. Therefore, user can use LDROM to avoid system boot fail when code of APROM was corrupted.

Data flash is used for user to store data. It can be read by ISP read or memory read and programmed through ISP procedure. Because the size of each erase unit is 512 bytes, data flash should use 512 bytes as minimum unit. For 128 KB APROM device, the data flash and application program share the same 128 KB memory, if Data Flash Enable bit DFEN (Config0[0]) is enabled, the data flash base address is defined by DFBADR (Config1[19:0]) and its size is (0x20000 - DFBADR), At the same time, the APROM size will be (128 KB – data flash size). For 64 KB APROM devices, data flash size is always 4 KB and start address is fixed at 0x0001_F000.

User configuration provides several bytes to control system logic, such as flash security lock, boot

select, Brown-out voltage level, data flash base address, etc.... User configuration works like a fuse for power on setting and loaded from flash memory to its corresponding control registers during chip powered on.

In NuMicro[®] M0519 Series, the flash memory organization is different to system memory map. Flash memory organization is used when user using ISP command to read, program or erase flash memory. System memory map is used when CPU access flash memory to fetch code or data. For example, When system is set to boot from LDROM by CBS = 01b, CPU will be able to fetch code of LDROM from 0x0 ~ 0x1FFF. However, if user wants to read LDROM by ISP, they still need to read the address of LDROM as 0x0010_0000 ~ 0x0010_1FFF.


Table 6-8 shows the address mapping information of APROM, LDROM, data flash and user configuration for 64 and 128 KB devices.

Block Name	Device Type	Size		Start Address	End Address	
	64 KB	64 KB		0x0000_0000	0x0000_FFFF	
APROM	128 KB	Data Flash Enable	128 KB - Data Flash Size	0x0000_0000	0x20000 – (DFBADR – 1)	
		Data Flash Disable	128 KB	0x0000_0000	0x0001_FFFF	
	64 KB	4 KB		0x0001_F000		
Data Flash	128 KB	Data Flash Enable	0x20000-DFBADR	DFBADR	0x0001_FFFF	
		Data Flash Disable	0 КВ	N/A	N/A	
LDROM	64/128 KB	8 KB		0x0010_0000	0x0010_1FFF	
User Configuration	64/128 KB	2 words		0x0030_0000	0x0030_0007	

Note: The erase page is 512 bytes; the bit 0 to bit8 of DFBADR should always keep 0

Table 6-8 Address Mapping Information

The Flash memory organization is shown as Figure 6-10:

Figure 6-10 Flash Memory Organization

6.4.4.1 Boot Selection

The NuMicro[®] M0519 Series provides four booting sources for user to select, including LDROM with IAP, LDROM without IAP, APROM with IAP, and APROM without IAP. In any time, the booting source and system memory map are set by CBS (CONFIG0[7:6]).

CBS	Boot Selection/System Memory Map	Vector Mapping Supporting
00b	LDROM with IAP mode.	Yes
01b	LDROM without IAP mode.	No
10b	APROM with IAP mode.	Yes
11b	APROM without IAP mode.	No

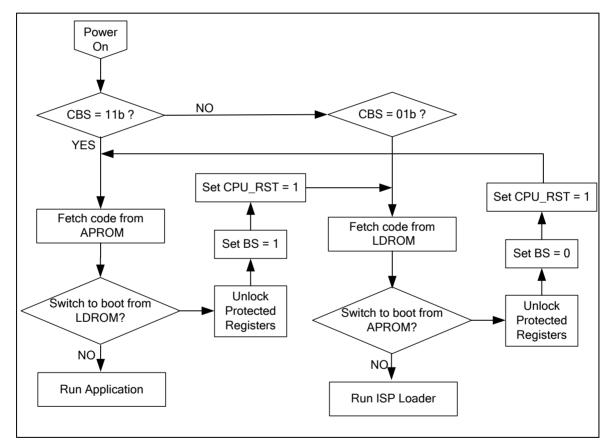
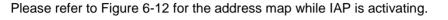


Figure 6-11 Example Flow of Boot Selection by BS Bit

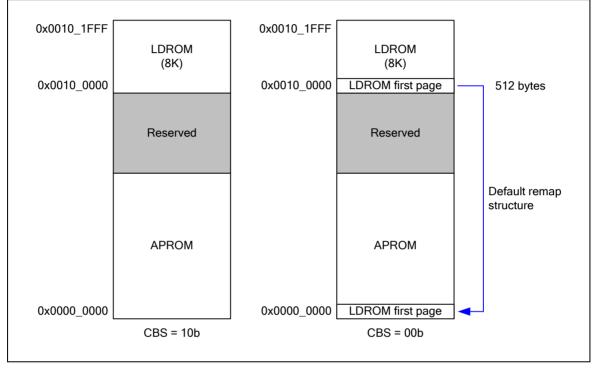

6.4.4.2 In-Application-Programming (IAP)

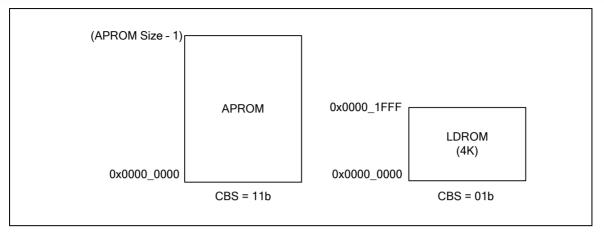
The NuMicro[®] M0519 Series provides In-application-programming (IAP) function for user to switch the code executing between APROM and LDROM without a reset. User can enable the IAP function by setting the chip boot selection bits in Config0 (CBS[1:0]) as 10b or 00b and re-booting chip.

In the case that the chip boots from APROM with the IAP function enabled (CBS[1:0] = 10b), the executable range of code includes all of APROM and LDROM. The address space of APROM is kept as the original size but the address space of the 8 KB LDROM is mapped to 0x0010_0000~

0x0010_1FFF.

In the case that the chip boots from LDROM with the IAP function enabled (CBS[1:0] = 00b), the executable range of code includes all of LDROM and almost all of APROM except for its first page. User cannot access the first page of APROM because the first page of executable code range becomes the mirror of the first page of LDROM as set by default. Meanwhile, the address space of 8 KB LDROM is mapped to $0x0010_0000 \sim 0x0010_1FFF$.




Figure 6-12 Executable Range of Code with IAP Function Enabled

When chip boots with the IAP function enabled, any other page within the executable range of code can be mirrored to the first page of executable code (0x0000_0000~0x0000_01FF) any time. User can change the remap address of the first executing page by filling the target remap address to ISPADR and then go through ISP procedure with the Vector Page Re-map command. After changing the remap address, user can check if the change is successful by reading the VECMAP (ISPSTA[20:9]) field in the ISPSTA register.

6.4.4.3 In System Program (ISP)

The NuMicro[®] M0519 Series provides In-System-Programming (ISP) feature to enable user to update program memory by a stand-along ISP firmware. A dedicated 8 KB program memory (LDROM) is used to store ISP firmware. Users can select to start program fetch from APROM or LDROM by CBS[1](Config0[7]).

In addition to set boot from APROM or LDROM, CBS in Config0 also used to control system memory map after booting. When CBS[0] = 1 and set CBS[1] = 1 to boot from APROM, the application in APROM will not be able to access LDROM by CPU read. In other words, when CBS[0] = 1 and set CBS[1] = 0 to boot from LDROM, the software executed in LDROM will not be able to access APROM by CPU read. Figure 6-13 shows the memory map when boot from APROM and LDROM.

NuMicro[®] M0519 supports ISP mode allowing a device to be reprogrammed under software control. Furthermore, the capability to update the application firmware makes wide range of applications possible.

ISP is performed without removing the microcontroller from the system. Various interfaces enable LDROM firmware to get new program code easily. The most common method to perform ISP is via UART along with the firmware in LDROM. General speaking, PC transfers the new APROM code through serial port. Then LDROM firmware receives it and re-programs into APROM through ISP commands. The ISP firmware and PC application program for NuMicro[®] M0519 Series enables user to easily perform ISP through Nuvoton ISP tool.

ISP Mode	SP Mode ISPCMD ISPADR		ISPDAT
		Valid address of flash memory organization. It must be 512 bytes page alignment.	N/A
FLASH Program	0x21	Valid address of flash memory organization	Programming Data
FLASH Read	0x00	Valid address of flash memory organization	Return Data
Read Company ID	0x0B	0x0000_0000	0x0000_00DA
		0x0000_0000	Unique ID Word 0
Read Unique ID	0x04	0x0000_0004	Unique ID Word 1
		0x0000_0008	Unique ID Word 2
Vector Remap	0x2E	Valid address in APROM,LDROM or boot loader It must be 512 bytes alignment	N/A

Table 6-9 ISP Mode Command

6.4.4.4 ISP Procedure

The NuMicro[®] M0519 Series supports booting from APROM or LDROM initially defined by user configuration bits (CBS). If user wants to update application program in APROM without IAP, he can write BS (ISPCON[1]) = 1 and uses software reset to make chip boot from LDROM. The first step to start ISP function is write ISPEN bit to 1. S/W is required to write REGWRPROT register in Global Control Register (GCR, 0x5000_0100) with 0x59, 0x16 and 0x88 before writing ISPCON

register. This procedure is used to protect flash memory from destroying owning to unintended write during power on/off duration.

Once the ISPCON register is set properly, user can set ISPCMD (refer above ISP command list) for specify operation. Set ISPADR for target flash memory based on flash memory organization. ISPDAT can be used to set the data to program or used to return the read data according to ISPCMD.

Finally, set the ISPGO (ISPTRG[0]) register to perform the relative ISP function. When ISPGO (ISPTRG[0]) is set, CPU will wait for ISP operation finish, during this period; peripheral still keeps working as usual. If any interrupt request occur, CPU will not service it till ISP operation finish. The ISPGO(ISPTRG[0]) bit is self-cleared when ISP function has been done. User can know if ISP operation is finished by checking this bit. To make sure ISP function has been finished before CPU goes ahead, ISB (Instruction Synchronization Barrier) instruction is used right after ISPGO(ISPTRG[0]) setting.

Several error conditions are checked after software sets ISPGO(ISPTRG[0]) to 1. If error condition occurs, ISP operation is not started and ISPFF (ISPSTA[6]) will be set. ISPFF (ISPSTA[6]) is cleared by software, it will not be over written in next ISP operation. The next ISP procedure can be started even ISPFF (ISPSTA[6]) keeps at 1. It is recommended that s/w to check ISPFF (ISPSTA[6]) and clear it after each ISP operation.

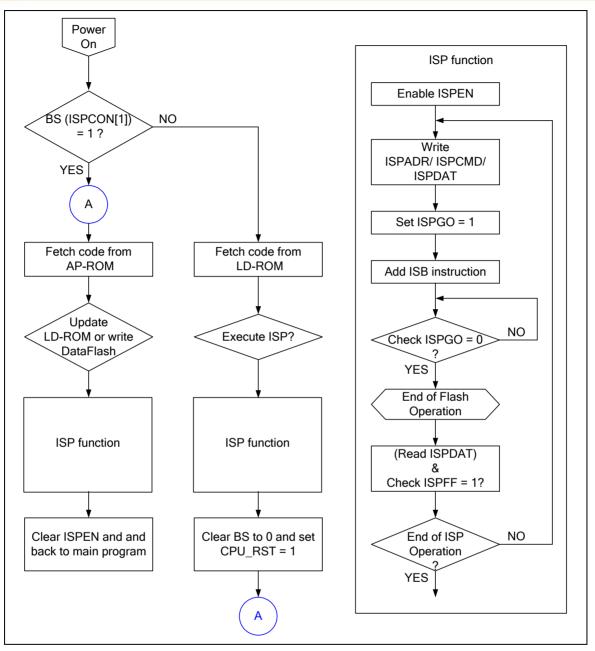


Figure 6-14 ISP Procedure Example

6.4.4.1 Data Flash

The NuMicro[®] M0519 provides data flash for user to store data, which is read or written through ISP procedure. The size of each erase unit is 512 bytes. If a word need be changed, all 128 words have to be copied to another page or SRAM in advance based on 512 bytes limitation.

The data flash size is fixed 4 K bytes for the 64K bytes application program memory (APROM) device. The start address of data flash is fixed at 0x0001_F000. The data flash size is shared with APROM with variable size defined by user for the 128K bytes application program memory (APROM) device. If DFEN (Config0[0]) is set to 1, there is no data flash and all 128K bytes size is used for APROM. If DFEN (Config0[0]) is set to 0, the data flash share with APROM and its base

address is defined by DFBADR (Config1[19:0]). Under this setting, the application program memory size is (128-0.5*N)KB and data flash size is 0.5*N KB.

0x0001_FFFF 0x0001_F000	DataFlash 4 K bytes	0x0001_FFFF	DataFlash (0.5*N) K bytes					
	Reserved	DFBADR[31:0]	Programmable start address					
0x0000_FFFF								
	Application Program 64K bytes		Application Program (128-0.5*N)K bytes					
6	64K Flash Memory Device 128K Flash Memory Device							
	Note: N is the number of pages.							

Figure 6-15 Flash Memory Structure (DFVSEN = 1)

6.4.4.2 User Configuration

User configuration is internal programmable configuration area for boot options. The user configuration is located at 0x300000 of Flash Memory Organization and they are two 32 bits words. Any change on user configuration will take effect after system reboot.

Config0 (Address = 0x0030_0000)

31	30	29	28	27	26	25	24
CWDTEN	CWDTPDEN		Reserved			CFOSC	
23	22	21	20	19	18	17	16
CBODEN	CBOV1	CBOV0	CBORST	Reserved			
15	14	13	12	11	10	9	8
Reserved		CHZ_BPWM	CHZ_Odd1	CHZ_Even1	CHZ_Odd0	CHZ_Even0	
7	6	5	4	3	2	1	0
CBS			Rese	erved		LOCK	DFEN

Config0 Bits	Description				
[31]	CWDTEN	Watchdog Enable Bit 0 = Watchdog Timer Enabled and force Watchdog Timer clock source as OSC10K after chip powered on. 1 = Watchdog Timer Disabled after chip powered on.			
[30]	CWDTPDEN	Watchdog Clock Power Down Enable Bit 0 = OSC10K Watchdog Timer clock source is forced to be always enabled. 1 = OSC10K Watchdog Timer clock source is controlled by OSC10K_EN (PWRCON[3]) when chip enters power down. Note: This bit only works at CWDTEN is set to 0			
[29:27]	Reserved	Reserved			
[26:24]	CFOSC	 CPU Clock Source Selection After Reset The value of CFOSC will be loaded to HCLK_S (CLKSEL0 [2:0]) in system register af any reset occurs. 000 = 4~24 MHz external high speed crystal oscillator (HXT) 111 = 22.1184 MHz internal high speed RC oscillator (HIRC) Others = Reserved 			
[23]	CBODEN	Brown-Out Detector Enable Bit 0= Brown-out detect Enabled after powered on. 1= Brown-out detect Disabled after powered on.			
[22:21]	CBOV1-0	Brown-Out Voltage Selection00 = Brown-out voltage is 2.2V.01 = Brown-out voltage is 2.7V.10 = Brown-out voltage is 3.7V.11 = Brown-out voltage is 4.4V.			
[20]	CBORST	Brown-out Reset Enable Bit 0 = Brown-out reset Enabled after powered on 1 = Brown-out reset Disabled after powered on			
[19:13]	Reserved	Reserved			

[12]	CHZ_BPWM	 Basic PWM0 Ports Tri-state Driving Control 0 = Basic PWM0 ports driving mode is controlled by GPIO mode registers (GPIO_PMD). 1 = Basic PWM0 ports driving mode is forced in tri-state all the time.
		This bit will be load to GPIO control bit HZ_BPWM (PWMPOEN[4]) after any reset.
		PWM Unit1 odd Ports Tri-state Driving Control
[11]		0 = PWM unit1 odd ports driving mode is controlled by GPIO mode registers (GPIO_PMD).
	CHZ_Odd1	1 = PWM unit1 odd ports driving mode is forced in tri-state all the time.
		This bit will be load to GPIO control bit HZ_Odd1 (PWMPOEN[3]) after any reset.
		PWM Unit0 Even Ports Tri-state Driving Control
[10]	CHZ_Even1	0 = PWM unit1 even ports driving mode is controlled by GPIO mode registers (GPIO_PMD).
1	_	1 = PWM unit1 even ports driving mode is forced in tri-state all the time.
		This bit will be load to GPIO control bit HZ_Even1 (PWMPOEN[2]) after any reset.
		PWM Unit0 Odd Ports Tri-state Driving Control
[9]	CHZ_Odd0	0 = PWM unit0 odd ports driving mode is controlled by GPIO mode registers (GPIO_PMD).
	_	1 = PWM unit0 odd ports driving mode is forced in tri-state all the time.
		This bit will be load to GPIO control bit HZ_Odd0 (PWMPOEN[1]) after any reset.
		PWM Unit0 Even Ports Tri-state Driving Control
[8]	CHZ_Even0	0 = PWM unit0 even ports driving mode is controlled by GPIO mode registers (GPIO_PMD).
	_	1 = PWM unit0 even ports driving mode is forced in tri-state all the time.
		This bit will be load to GPIO control bit HZ_Even0 (PWMPOEN[0]) after any reset.
		Chip Boot Selection
		When CBS[0] = 0, IAP mode enabled, the LDROM base address is mapping to 0x100000 and APROM base address is mapping to 0x0. User could access both APROM and LDROM without boot switching. In other words, if IAP mode is supported, the code in LDROM and APROM can be called by each other.
		00 = Boot from LDROM with IAP mode.
[7:6]	CBS	01 = Boot from LDROM without IAP mode.
[]		10 = Boot from APROM with IAP mode.
		11 = Boot from APROM without IAP mode.
		Note:
		BS (ISPCON[1]) is only be used to control boot switching when IAP mode disabled VECMAP (ISPSTA[20:9]) is only be used to remap 0x0~0x1ff when IAP mode enabled.
[5:2]	Reserved	Reserved
		Security Lock
[1]		0 = Flash memory content is locked
	LOCK	1 = Flash memory content is not locked
		When flash data is locked, only device ID, Config0 and Config1 can be read by writer and ICP through serial debug interface. Others data is locked as 0xFFFF_FFF. ISP can read data anywhere regardless of LOCK bit value.
		Data Flash Enable Bit (Only for 128 KB APROM Device)
[0]	DFEN	0 = Data Flash Enabled.
		1 = Data Flash Disabled.
		1

<u>Config1 (Address = 0x0030_0004)</u>

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved				DFBADR			
15	14	13	12	11	10	9	8	
DFBADR								
7	6	5	4	3	2	1	0	
DFBADR								

Config1 Bits	Description		
[31:20]	20] Reserved Reserved		
[19:0]	DFBADR	Data Flash Base Address (Only for 128 KB APROM Device) For 128 KB APROM device, its data flash base address is defined by user. Since on-chip flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 as 0. This configuration is only valid for 128 KB flash device.	

6.4.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
FMC Base Address: FMC_BA = 0x5000_C000							
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_000X			
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000			
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000			
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000			
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000			
DFBADR	FMC_BA+0x14	R	Data Flash Base Address	0x000X_XXXX			
FATCON	FMC_BA+0x18	R/W	Flash Access Time Control Register	0x0000_0000			
ISPSTA	FMC_BA+0x40	R/W	ISP Status Register	0x00XX_XX0X			

6.4.6 Register Description

ISP Control Register (ISPCON)

Register	Offset	R/W	Description	Reset Value
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_000X

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	ISPFF	LDUEN	CFGUEN	APUEN	Reserved	BS	ISPEN			

Bits	Description	escription						
[31:7]	Reserved	Reserved.						
[6]	ISPFF	 ISP Fail Flag (Write Protect) This bit is set by hardware when a triggered ISP meets any of the following conditions: (1) APROM writes to itself if APUEN is set to 0. (2) LDROM writes to itself if LDUEN is set to 0. (3) CONFIG is erased/programmed if CFGUEN is set to 0. (4) Page Erase command at LOCK mode with ICE connection (5) Erase or Program command at brown-out detected (6) Destination address is illegal, such as over an available range. (7) Invalid ISP commands Write 1 to clear this bit. 						
[5]	LDUEN	LDROM Update Enable Bit (Write Protect) LDROM update enable bit. 0 = LDROM cannot be updated. 1 = LDROM can be updated when chip runs in APROM.						
[4]	CFGUEN	Config-bits Update Enable Bit (Write Protect) 0 = User Configuration cannot be updated. 1 = User Configuration can be updated.						
[3]	APUEN	APROM Update Enable Bit (Write Protect) 0 = APROM cannot be updated when chip runs in APROM. 1 = APROM can be updated when chip runs in APROM.						
[2]	Reserved	Reserved.						

	BS	Boot Select (Write Protect)					
[1]		Set/clear this bit to select next booting from LDROM/APROM, respectively. This bit also functions as chip booting status flag, which can be used to check where chip booted from. This bit is initiated with the inversed value of CBS in Config0 after any reset is happened except CPU reset (RSTS_CPU is 1) or system reset (RSTS_SYS) is happened					
		0 = Boot from APROM.					
		1 = Boot from LDROM.					
		ISP Enable Bit (Write Protect)					
[0]	ISPEN	ISP function enable bit. Set this bit to enable ISP function.					
[0]		0 = ISP function Disabled.					
		1 = ISP function Enabled.					

ISP Address (ISPADR)

Register	Offset	R/W	Description	Reset Value
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
ISPADR										
23	22	21	20	19	18	17	16			
	ISPADR									
15	14	13	12	11	10	9	8			
	ISPADR									
7	6	5	4	3	2	1	0			
	ISPADR									

Bits	Description	
[31:0]	ISPADR	ISP Address The NuMicro [®] M0519 Series has a maximum 32Kx32 (128 KB) of embedded Flash, which supports word program only. ISPADR[1:0] must be kept 00b for ISP operation.

ISP Data Register (ISPDAT)

Register	Offset	R/W	Description	Reset Value
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000

31	30	29	28	27	26	25	24				
	ISPDAT										
23	22	21	20	19	18	17	16				
	ISPDAT										
15	14	13	12	11	10	9	8				
	ISPDAT										
7	6	5	4	3	2	1	0				
			ISP	DAT							

Bits	Description	Description							
[31:0]	ISPDAT	ISP Data Write data to this register before ISP program operation Read data from this register after ISP read operation							

ISP Command (ISPCMD)

Register Offset I		R/W	Description	Reset Value
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Rese	Reserved CMD									

Bits	Description	n					
[31:6]	Reserved	Reserved.					
[5:0]	СМД	ISP Command ISP command table is shown below: 0x00= FLASH Read. 0x04= Read Unique ID. 0x0B= Read Company ID. 0x21= FLASH Program. 0x22= FLASH Page Erase. 0x2E= Vector Remap. The other commands are invalid.					

ISP Trigger Control Register (ISPTRG)

Register	Offset	R/W	Description	Reset Value
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	7 6 5 4 3 2 1									
			Reserved				ISPGO			

Bits	Description	scription					
[31:1]	Reserved	Reserved.					
	ISPGO	ISP Start Trigger (Write Protect)					
		Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished.					
		0 = ISP operation finished.					
101		1 = ISP progressed.					
[0]		This bit is the protected bit, It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100					
		Note: To make sure ISP function has been finished before CPU goes ahead, ISB (Instruction Synchronization Barrier) instruction is used right after ISPGO (ISPTRG[0]) setting.					

Data Flash Base Address Register (DFBADR)

Register	Offset	R/W	Description	Reset Value
DFBADR	FMC_BA+0x14	R	Data Flash Base Address	0x000X_XXXX

31	30	29	28	27	26	25	24				
	DFBADR										
23	22	21	20	19	18	17	16				
	DFBADR										
15	14	13	12	11	10	9	8				
	DFBADR										
7 6 5 4 3 2 1 0											
	DFBADR										

Bits	Description						
[31:0]	DFBADR	Data Flash Base Address This register indicates data flash start address. It is read only. For 128 KB flash memory device, the data flash size is defined by user configuration, register content is loaded from Config1 when chip is powered on but for 64 KB device, it is fixed at 0x0001_F000.					

nuvoton

Flash Access Time Control Register (FATCON)

Register	Offset R		Description	Reset Value
FATCON	FMC_BA+0x18	R/W	Flash Access Time Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7 6 5 4 3 2 1							0			
Reserved	FOM_SEL[1]	Reserved	FOM_SEL[0]	Reserved						

Bits	Description						
[31:7]	Reserved	Reserved.					
		Chip Frequency Optimization Mode Select (Write Protect)					
		When chip operation frequency is lower than 25 MHz, chip can work more efficiently by setting FOM_SEL[1:0] = 01.					
		When chip operation frequency is lower than 50 MHz, chip can work more efficiently by setting FOM_SEL[1:0] = 00.					
[6]	FOM_SEL[1]	When chip operation frequency is over than 50 MHz, chip only can work by setting FOM_SEL[1:0] = 11.					
		00 = Middle frequency optimization mode Enabled.					
		01 = Low frequency optimization mode Enabled.					
		10 = Reserved.					
		11 = High frequency optimization mode Enabled.					
[5]	Reserved	Reserved.					
		Chip Frequency Optimization Mode Select (Write Protect)					
		When chip operation frequency is lower than 25 MHz, chip can work more efficiently by setting FOM_SEL[1:0] = 01.					
		When chip operation frequency is lower than 50 MHz, chip can work more efficiently by setting FOM_SEL[1:0] = 00.					
[4]	FOM_SEL[0]	When chip operation frequency is over than 50 MHz, chip only can work by setting FOM_SEL[1:0] = 11.					
		00 = Middle frequency optimization mode Enabled.					
		01 = Low frequency optimization mode Enabled.					
		10 = Reserved.					
		11 = High frequency optimization mode Enabled.					
[3:0]	Reserved	Reserved.					

ISP Status Register (ISPSTA)

Register	Offset	R/W	Description	Reset Value
ISPSTA	FMC_BA+0x40	R/W	ISP Status Register	0x00XX_XX0X

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved			VECMAP						
15	14	13	12	11	10	9	8			
			VECMAP				Reserved			
7	6	5	4	3	2	1	0			
Reserved	ISPFF		Reserved		CI	BS	ISPGO			

Bits	Description	
[31:21]	Reserved	Reserved.
[20:9]	VECMAP	Vector Page Mapping Address (Read Only) The current flash address space 0x0000_0000~0x0000_01FF is mapping to address {VECMAP[11:0], 9'h000} ~ {VECMAP[11:0], 9'h1FF} Note: vector map function only workable when IAP mode enabled
[8:7]	Reserved	Reserved.
[6]	ISPFF	 ISP Fail Flag (Write Protect) This bit is the mirror of ISPFF (ISPCON[6]), it needs to be cleared by writing 1 to ISPCON[6] or FMC_ISPSTA[6]. This bit is set by hardware when a triggered ISP meets any of the following conditions: (1) APROM writes to itself if APUEN is set to 0. (2) LDROM writes to itself if LDUEN is set to 0. (3) CONFIG is erased/programmed if CFGUEN is set to 0. (4) Page Erase command at LOCK mode with ICE connection (5) Erase or Program command at brown-out detected (6) Destination address is illegal, such as over an available range. (7) Invalid ISP commands Write 1 to clear this bit.
[5:3]	Reserved	Reserved.

		Chip Boot Selection of CONFIG (Read Only)				
		When CBS[0] = 0, the LDROM base address is mapping to 0x100000 and APROM base address is mapping to 0x0. User could access both APROM and LDROM without boot switching. In other words, if IAP mode is supported, the code in LDROM and APROM can be called by each other.				
		00 = Boot from LDROM with IAP mode.				
[2:1]	CBS	01 = Boot from LDROM without IAP mode.				
		10 = Boot from APROM with IAP mode.				
		11 = Boot from APROM without IAP mode.				
		Note:				
		BS (ISPCON[1]) is only be used to control boot switching when CBS[0] = 1.				
		VECMAP (ISPSTA[20:9]) is only be used to remap 0x0~0x1ff when CBS[0] = 0.				
		ISP Start Trigger (Read Only)				
[0]	ISPGO	Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished.				
		0 = ISP operation finished.				
		1 = ISP operation progressed.				
		Note: This bit is the same with ISPTRG bit0				

6.5 General Purpose I/O (GPIO)

6.5.1 Overview

The NuMicro[®] M0519 Series has up to 82 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 82 pins are arranged in 10 ports named as P0, P1, P2, P3, P4, P5, P6, P7, P8, P9 and PA. The P0/1/2/3/4/5/6/7/8/9 port has the maximum of 8 pins and PA port has the maximum of 2 pins. Each of the 82 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each of I/O pins can be configured by software individually as input, output, opendrain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are stay at input mode. In Quasi-bidirectional mode, I/O pin has a very weak individual pull-up resistor which is about 110~300 K Ω for V_{DD} is from 5.0 V to 2.5 V.

6.5.2 Features

- Four I/O modes:
 - Quasi-bidirectional
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
- TTL/Schmitt trigger input selectable by Px_TYPE[7:0] in Px_MFP[23:16]
- I/O pin configured as interrupt source with edge/level setting
- I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
- Enabling pin interrupt function will also enable the pin wake-up function

6.5.3 Block Diagram

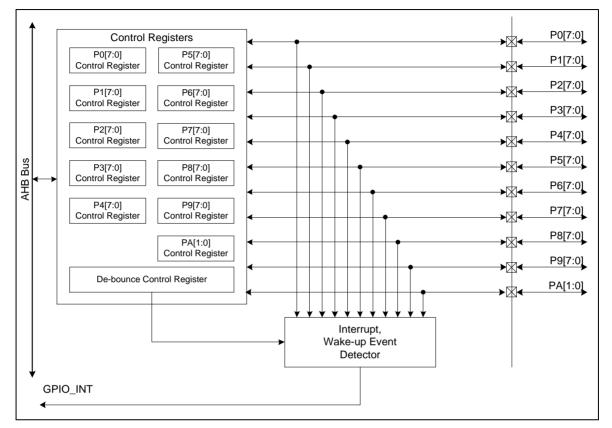


Figure 6-16 GPIO Controller Block Diagram

Basic Configuration

The GPIO pin functions are configured in P0_MFP, P1_MFP, P2_MFP, P3_MFP, P4_MFP, P5_MFP, P6_MFP, P7_MFP, P8_MFP, P9_MFP and PA_MFP registers.

6.5.4 Functional Description

6.5.4.1 Input Only Mode

Setting Px_PMD (PMDn[1:0]) to 00b as the Px port [n] pin is in Input mode and the I/O pin is in tristate (high impedance) without output drive capability. The Px_PIN value reflects the status of the corresponding port pins.

6.5.4.2 Push-Pull Output Mode

Setting Px_PMD (PMDn[1:0]) to 01b as the Px port [n] pin is in Push-pull Output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding bit [n] of Px_DOUT is driven on the pin.

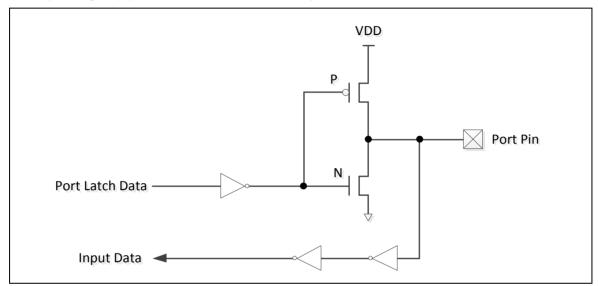


Figure 6-17 Push-Pull Output

6.5.4.3 Open-Drain Mode

Setting Px_PMD (PMDn[1:0]) to 10b as the Px port [n] pin is in Open-drain mode and the digital output function of I/O pin supports only sink current capability, an additional pull-up resister is needed for driving high state. If the bit value in the corresponding bit [n] of Px_DOUT is 0, the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of Px_DOUT is 1, the pin output drives high that is controlled by external pull high resistor.

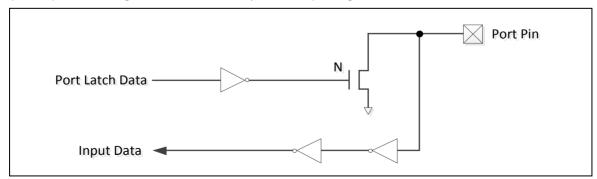


Figure 6-18 Open-Drain Output

6.5.4.4 Quasi Bi-directional Mode

Setting Px_PMD (PMDn[1:0]) to 11b as the Px port [n] pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function at the same time but the source current is only up to hundreds uA. Before the digital input function is performed the corresponding bit in

 Px_DOUT must be set to 1. The quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding bit [n] of Px_DOUT is 0, the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of Px_DOUT is 1, the pin will check the pin value. If pin value is high, no action takes. If pin state is low, then pin will drive strong high with 2 clock cycles on the pin and then disable the strong output drive and then the pin status is control by internal pull-up resistor. Note that the source current capability in quasi-bidirectional mode is only about 200uA to 30uA if VDD is from 5.0V to 2.5V.

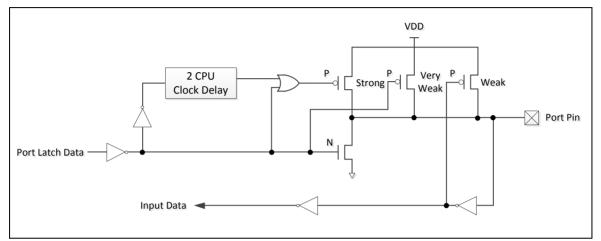


Figure 6-19 Quasi bi-directional I/O Mode

6.5.4.5 GPIO Interrupt and Wake-up Function

Each GPIO pin can be set as chip interrupt source by setting correlative Px_IEN bit and Px_IMD. There are five types of interrupt condition can be selected: low level trigger, high level trigger, falling edge trigger and rising edge trigger and both rising and falling edge trigger. For edge trigger condition, user can enable input signal de-bounce function to prevent unexpected interrupt happened which caused by noise. The de-bounce clock source and sampling cycle can be set through DEBOUNCE register.

The GPIO can also be the chip wake-up source when chip enters Idle mode or Power-down mode. The setting of wake-up trigger condition is the same as GPIO interrupt trigger, but there is one thing need to be noticed if using GPIO as chip wake-up source.

• To ensure the I/O status before enter into Power-down mode

When using toggle GPIO to wake-up system, user must make sure the I/O status before entering Idle mode or Power-down mode according to the relative wake-up settings.

For example, if configuring the wake-up event occurred by I/O rising edge/high level trigger, user must make sure the I/O status of specified pin is at low level before entering to Idle/Power-down mode; and if configure I/O falling edge/low level trigger to trigger a wake-up event, user must make sure the I/O status of specified pin is at high level before entering to Power-down mode.

6.5.5 PWM Port Output Driving Control

There are two enhanced PWM units each unit has six output pins in this device. The Enhanced PWM port outputs are P0.0~P0.5 and P1.0~P1.5 for unit 0 and unit 1, respectively. There are one Basic PWM, It is has two output pins in this device. The Basic PWM port outputs are P5.6~P5.7.

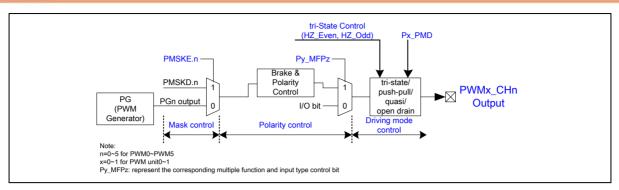


Figure 6-20 Enhanced PWM Output Driving Control

The driving mode of PWM output ports can be initialized as tri-state type or other type dependent with Px_PMD (PMDn[1:0]) register setting after any reset. Figure 6-20 show enhanced PWM output driving control diagram, for HZ_Even0 (PWMPOEN[0])/HZ_Odd0 (PWMPOEN[1])/HZ_Even1 (PWMPOEN[2])/HZ_Odd1 (PWMPOEN[3])/HZ_BPWM (PWMPOEN[3]), the initial value is defined by CHZ_Even0 (Config0[8])/ CHZ_Odd0 (Config0[9])/ CHZ_Even1 (Config0[10])/ CHZ_Odd1 (Config0[12]), respectively..

If each of register bit set to 0, the driving mode of PWM ports are controlled by GPIO mode register or multi-function register, If each of register bit set to 1, the driving mode of PWM ports are forced in tristate all the time.

HZ_Even/HZ_Odd/HZ_BPWM (In PWMPOEN Register)	PWM Outputs Drive Mode
0	Depend on Px_PMD or Px_MFP
1	Force in tri-state

 Table 6-8 PWM Outputs Drive Mode Setting Table

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GPIO Base Ado GPIO_BA = 0x5				
P0_PMD	GPIO_BA+0x000	R/W	GPIO Port 0 Pin I/O Mode Control	0x0000_0000
P0_OFFD	GPIO_BA+0x004	R/W	GPIO Port 0 Pin Digital Input Path Disable Control	0x0000_0000
P0_DOUT	GPIO_BA+0x008	R/W	GPIO Port 0 Data Output Value	0x0000_00FF
P0_DMASK	GPIO_BA+0x00C	R/W	GPIO Port 0 Data Output Write Mask	0x0000_0000
P0_PIN	GPIO_BA+0x010	R	GPIO Port 0 Pin Value	0x0000_00XX
P0_DBEN	GPIO_BA+0x014	R/W	GPIO Port 0 De-bounce Enable	0x0000_0000
P0_IMD	GPIO_BA+0x018	R/W	GPIO Port 0 Interrupt Mode Control	0x0000_0000
P0_IEN	GPIO_BA+0x01C	R/W	GPIO Port 0 Interrupt Enable	0x0000_0000
P0_ISF	GPIO_BA+0x020	R/W	GPIO Port 0 Interrupt Source Flag	0xXXXX_XXX
P1_PMD	GPIO_BA+0x040	R/W	GPIO Port 1 Pin I/O Mode Control	0x0000_0000
P1_OFFD	GPIO_BA+0x044	R/W	GPIO Port 1 Pin Digital Input Path Disable Control	0x0000_0000
P1_DOUT	GPIO_BA+0x048	R/W	GPIO Port 1 Data Output Value	0x0000_00FF
P1_DMASK	GPIO_BA+0x04C	R/W	GPIO Port 1 Data Output Write Mask	0x0000_0000
P1_PIN	GPIO_BA+0x050	R	GPIO Port 1 Pin Value	0x0000_00XX
P1_DBEN	GPIO_BA+0x054	R/W	GPIO Port 1 De-bounce Enable	0x0000_0000
P1_IMD	GPIO_BA+0x058	R/W	GPIO Port 1 Interrupt Mode Control	0x0000_0000
P1_IEN	GPIO_BA+0x05C	R/W	GPIO Port 1 Interrupt Enable	0x0000_0000
P1_ISF	GPIO_BA+0x060	R/W	GPIO Port 1 Interrupt Source Flag	0xXXXX_XXXX
P2_PMD	GPIO_BA+0x080	R/W	GPIO Port 2 Pin I/O Mode Control	0x0000_0000
P2_OFFD	GPIO_BA+0x084	R/W	GPIO Port 2 Pin Digital Input Path Disable Control	0x0000_0000
P2_DOUT	GPIO_BA+0x088	R/W	GPIO Port 2 Data Output Value	0x0000_00FF
P2_DMASK	GPIO_BA+0x08C	R/W	GPIO Port 2 Data Output Write Mask	0x0000_0000
P2_PIN	GPIO_BA+0x090	R	GPIO Port 2 Pin Value	0x0000_00XX
P2_DBEN	GPIO_BA+0x094	R/W	GPIO Port 2 De-bounce Enable	0x0000_0000
P2_IMD	GPIO_BA+0x098	R/W	GPIO Port 2 Interrupt Mode Control	0x0000_0000
P2_IEN	GPIO_BA+0x09C	R/W	GPIO Port 2 Interrupt Enable	0x0000_0000
		1		

			•	1
P2_ISF	GPIO_BA+0x0A0	R/W	GPIO Port 2 Interrupt Source Flag	0xXXXX_XXXX
P3_PMD	GPIO_BA+0x0C0	R/W	GPIO Port 3 Pin I/O Mode Control	0x0000_0000
P3_OFFD	GPIO_BA+0x0C4	R/W	GPIO Port 3 Pin Digital Input Path Disable Control	0x0000_0000
P3_DOUT	GPIO_BA+0x0C8	R/W	GPIO Port 3 Data Output Value	0x0000_00FF
P3_DMASK	GPIO_BA+0x0CC	R/W	GPIO Port 3 Data Output Write Mask	0x0000_0000
P3_PIN	GPIO_BA+0x0D0	R	GPIO Port 3 Pin Value	0x0000_00XX
P3_DBEN	GPIO_BA+0x0D4	R/W	GPIO Port 3 De-bounce Enable	0x0000_0000
P3_IMD	GPIO_BA+0x0D8	R/W	GPIO Port 3 Interrupt Mode Control	0x0000_0000
P3_IEN	GPIO_BA+0x0DC	R/W	GPIO Port 3 Interrupt Enable	0x0000_0000
P3_ISF	GPIO_BA+0x0E0	R/W	GPIO Port 3 Interrupt Source Flag	0xXXXX_XXXX
P4_PMD	GPIO_BA+0x100	R/W	GPIO Port 4 Pin I/O Mode Control	0x0000_0000
P4_OFFD	GPIO_BA+0x104	R/W	GPIO Port 4 Pin Digital Input Path Disable Control	0x0000_0000
P4_DOUT	GPIO_BA+0x108	R/W	GPIO Port 4 Data Output Value	0x0000_00FF
P4_DMASK	GPIO_BA+0x10C	R/W	GPIO Port 4 Data Output Write Mask	0x0000_0000
P4_PIN	GPIO_BA+0x110	R	GPIO Port 4 Pin Value	0x0000_00XX
P4_DBEN	GPIO_BA+0x114	R/W	GPIO Port 4 De-bounce Enable	0x0000_0000
P4_IMD	GPIO_BA+0x118	R/W	GPIO Port 4 Interrupt Mode Control	0x0000_0000
P4_IEN	GPIO_BA+0x11C	R/W	GPIO Port 4 Interrupt Enable	0x0000_0000
P4_ISF	GPIO_BA+0x120	R/W	GPIO Port 4 Interrupt Source Flag	0xXXXX_XXXX
P5_PMD	GPIO_BA+0x140	R/W	GPIO Port 5 Pin I/O Mode Control	0x0000_0000
P5_OFFD	GPIO_BA+0x144	R/W	GPIO Port 5 Pin Digital Input Path Disable Control	0x0000_0000
P5_DOUT	GPIO_BA+0x148	R/W	GPIO Port 5 Data Output Value	0x0000_00FF
P5_DMASK	GPIO_BA+0x14C	R/W	GPIO Port 5 Data Output Write Mask	0x0000_0000
P5_PIN	GPIO_BA+0x150	R	GPIO Port 5 Pin Value	0x0000_00XX
P5_DBEN	GPIO_BA+0x154	R/W	GPIO Port 5 De-bounce Enable	0x0000_0000
P5_IMD	GPIO_BA+0x158	R/W	GPIO Port 5 Interrupt Mode Control	0x0000_0000
P5_IEN	GPIO_BA+0x15C	R/W	GPIO Port 5 Interrupt Enable	0x0000_0000
P5_ISF	GPIO_BA+0x160	R/W	GPIO Port 5 Interrupt Source Flag	0xXXXX_XXXX
P6_PMD	GPIO_BA+0x180	R/W	GPIO Port 6 Pin I/O Mode Control	0x0000_0000
P6_OFFD	GPIO_BA+0x184	R/W	GPIO Port 6 Pin Digital Input Path Disable Control	0x0000_0000
P6_DOUT	GPIO_BA+0x188	R/W	GPIO Port 6 Data Output Value	0x0000_00FF

P6_DMASK	GPIO_BA+0x18C	R/W	GPIO Port 6 Data Output Write Mask	0x0000_0000
P6_PIN	GPIO_BA+0x190	R	GPIO Port 6 Pin Value	0x0000_00XX
P6_DBEN	GPIO_BA+0x194	R/W	GPIO Port 6 De-bounce Enable	0x0000_0000
P6_IMD	GPIO_BA+0x198	R/W	GPIO Port 6 Interrupt Mode Control	0x0000_0000
P6_IEN	GPIO_BA+0x19C	R/W	GPIO Port 6 Interrupt Enable	0x0000_0000
P6_ISF	GPIO_BA+0x200	R/W	GPIO Port 6 Interrupt Source Flag	0xXXXX_XXXX
P7_PMD	GPIO_BA+0x1C0	R/W	GPIO Port 7 Pin I/O Mode Control	0x0000_0000
P7_OFFD	GPIO_BA+0x1C4	R/W	GPIO Port 7 Pin Digital Input Path Disable Control	0x0000_0000
P7_DOUT	GPIO_BA+0x1C8	R/W	GPIO Port 7 Data Output Value	0x0000_00FF
P7_DMASK	GPIO_BA+0x1CC	R/W	GPIO Port 7 Data Output Write Mask	0x0000_0000
P7_PIN	GPIO_BA+0x1D0	R	GPIO Port 7 Pin Value	0x0000_00XX
P7_DBEN	GPIO_BA+0x1D4	R/W	GPIO Port 7 De-bounce Enable	0x0000_0000
P7_IMD	GPIO_BA+0x1D8	R/W	GPIO Port 7 Interrupt Mode Control	0x0000_0000
P7_IEN	GPIO_BA+0x1DC	R/W	GPIO Port 7 Interrupt Enable	0x0000_0000
P7_ISF	GPIO_BA+0x1E0	R/W	GPIO Port 7 Interrupt Source Flag	0xXXXX_XXXX
P8_PMD	GPIO_BA+0x200	R/W	GPIO Port 8 Pin I/O Mode Control	0x0000_0000
P8_OFFD	GPIO_BA+0x204	R/W	GPIO Port 8 Pin Digital Input Path Disable Control	0x0000_0000
P8_DOUT	GPIO_BA+0x208	R/W	GPIO Port 8 Data Output Value	0x0000_00FF
P8_DMASK	GPIO_BA+0x20C	R/W	GPIO Port 8 Data Output Write Mask	0x0000_0000
P8_PIN	GPIO_BA+0x210	R	GPIO Port 8 Pin Value	0x0000_00XX
P8_DBEN	GPIO_BA+0x214	R/W	GPIO Port 8 De-bounce Enable	0x0000_0000
P8_IMD	GPIO_BA+0x218	R/W	GPIO Port 8 Interrupt Mode Control	0x0000_0000
P8_IEN	GPIO_BA+0x21C	R/W	GPIO Port 8 Interrupt Enable	0x0000_0000
P8_ISF	GPIO_BA+0x220	R/W	GPIO Port 8 Interrupt Source Flag	0xXXXX_XXXX
P9_PMD	GPIO_BA+0x240	R/W	GPIO Port 9 Pin I/O Mode Control	0x0000_0000
P9_OFFD	GPIO_BA+0x244	R/W	GPIO Port 9 Pin Digital Input Path Disable Control	0x0000_0000
P9_DOUT	GPIO_BA+0x248	R/W	GPIO Port 9 Data Output Value	0x0000_00FF
P9_DMASK	GPIO_BA+0x24C	R/W	GPIO Port 9 Data Output Write Mask	0x0000_0000
P9_PIN	GPIO_BA+0x250	R	GPIO Port 9 Pin Value	0x0000_00XX
P9_DBEN	GPIO_BA+0x254	R/W	GPIO Port 9 De-bounce Enable	0x0000_0000
P9_IMD	GPIO_BA+0x258	R/W	GPIO Port 9 Interrupt Mode Control	0x0000_0000

M0519

		-	I	
P9_IEN	GPIO_BA+0x25C	R/W	GPIO Port 9 Interrupt Enable	0x0000_0000
P9_ISF	GPIO_BA+0x260	R/W	GPIO Port 9 Interrupt Source Flag	0xXXXX_XXXX
PA_PMD	GPIO_BA+0x280	R/W	GPIO Port A Pin I/O Mode Control	0x0000_0000
PA_OFFD	GPIO_BA+0x284	R/W	GPIO Port A Pin Digital Input Path Disable Control	0x0000_0000
PA_DOUT	GPIO_BA+0x288	R/W	GPIO Port A Data Output Value	0x0000_0003
PA_DMASK	GPIO_BA+0x28C	R/W	GPIO Port A Data Output Write Mask	0x0000_0000
PA_PIN	GPIO_BA+0x290	R	GPIO Port A Pin Value	0x0000_000X
PA_DBEN	GPIO_BA+0x294	R/W	GPIO Port A De-bounce Enable	0x0000_0000
PA_IMD	GPIO_BA+0x298	R/W	GPIO Port A Interrupt Mode Control	0x0000_0000
PA_IEN	GPIO_BA+0x29C	R/W	GPIO Port A Interrupt Enable	0x0000_0000
PA_ISF	GPIO_BA+0x2A0	R/W	GPIO Port A Interrupt Source Flag	0xXXXX_XXXX
DBNCECON	GPIO_BA+0x2E0	R/W	External Interrupt De-bounce Control	0x0000_0000
PWMPOEN	GPIO_BA+0x2E4	R/W	PWM Port Output Enable	0x0000_00XX
P0_N n=0,17	GPIO_BA+0x300 + 0x04 * n	R/W	GPIO P0.n Pin Data Input/Output	0x0000_000X
P1_N n=0,17	GPIO_BA+0x320 + 0x04 * n	R/W	GPIO P1.n Pin Data Input/Output	0x0000_000X
P2_N n=0,17	GPIO_BA+0x340 + 0x04 * n	R/W	GPIO P2.n Pin Data Input/Output	0x0000_000X
P3_N n=0,17	GPIO_BA+0x360 + 0x04 * n	R/W	GPIO P3.n Pin Data Input/Output	0x0000_000X
P4_N n=0,17	GPIO_BA+0x380 + 0x04 * n	R/W	GPIO P4.n Pin Data Input/Output	0x0000_000X
P5_N n=0,17	GPIO_BA+0x3A0 + 0x04 * n	R/W	GPIO P5.n Pin Data Input/Output	0x0000_000X
P6_N n=0,17	GPIO_BA+0x3C0 + 0x04 * n	R/W	GPIO P6.n Pin Data Input/Output	0x0000_000X
P7_N n=0,17	GPIO_BA+0x3E0 + 0x04 * n	R/W	GPIO P7.n Pin Data Input/Output	0x0000_000X
P8_N n=0,17	GPIO_BA+0x400 + 0x04 * n	R/W	GPIO P8.n Pin Data Input/Output	0x0000_000X
P9_N n=0,17	GPIO_BA+0x420 + 0x04 * n	R/W	GPIO P9.n Pin Data Input/Output	0x0000_000X
PA_N n=0,1	GPIO_BA+0x440 + 0x04 * n	R/W	GPIO PA.n Pin Data Input/Output	0x0000_000X

6.5.7 Register Description

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Pin I/O Mode Control (Px_PMD)

Register	Offset	R/W	Description	Reset Value
P0_PMD	GPIO_BA+0x000	R/W	GPIO Port 0 Pin I/O Mode Control	0x0000_0000
P1_PMD	GPIO_BA+0x040	R/W	GPIO Port 1 Pin I/O Mode Control	0x0000_0000
P2_PMD	GPIO_BA+0x080	R/W	GPIO Port 2 Pin I/O Mode Control	0x0000_0000
P3_PMD	GPIO_BA+0x0C0	R/W	GPIO Port 3 Pin I/O Mode Control	0x0000_0000
P4_PMD	GPIO_BA+0x100	R/W	GPIO Port 4 Pin I/O Mode Control	0x0000_0000
P5_PMD	GPIO_BA+0x140	R/W	GPIO Port 5 Pin I/O Mode Control	0x0000_0000
P6_PMD	GPIO_BA+0x180	R/W	GPIO Port 6 Pin I/O Mode Control	0x0000_0000
P7_PMD	GPIO_BA+0x1C0	R/W	GPIO Port 7 Pin I/O Mode Control	0x0000_0000
P8_PMD	GPIO_BA+0x200	R/W	GPIO Port 8 Pin I/O Mode Control	0x0000_0000
P9_PMD	GPIO_BA+0x240	R/W	GPIO Port 9 Pin I/O Mode Control	0x0000_0000
PA_PMD	GPIO_BA+0x280	R/W	GPIO Port A Pin I/O Mode Control	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
PM	PMD7 PMD6			PMD5 PMD			ID4	
7	6	5	4	3	2	1	0	
PM	PMD3 PN		ID2	PMD1		PMD0		

Bits	Description					
[31:16]	Reserved	Reserved.				
		Port 0-a I/O Pin[N] Mode Control				
	PMDn	Determine each I/O mode of Px pins.				
[0.5.4.0.5]		00 = GPIO port [n] pin is in Input mode.				
[2n+1:2n]		01 = GPIO port [n] pin is in Push-pull Output mode.				
n=0,17		10 = GPIO port [n] pin is in Open-drain Output mode.				
		11 = GPIO port [n] pin is in Quasi-bidirectional mode.				
		Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.				

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Pin Digital Input Path Disable Control (Px_OFFD)

Register	Offset	R/W	Description	Reset Value
P0_OFFD	GPIO_BA+0x004	R/W	GPIO Port 0 Pin Digital Input Path Disable Control	0x0000_0000
P1_OFFD	GPIO_BA+0x044	R/W	GPIO Port 1 Pin Digital Input Path Disable Control	0x0000_0000
P2_OFFD	GPIO_BA+0x084	R/W	GPIO Port 2 Pin Digital Input Path Disable Control	0x0000_0000
P3_OFFD	GPIO_BA+0x0C4	R/W	GPIO Port 3 Pin Digital Input Path Disable Control	0x0000_0000
P4_OFFD	GPIO_BA+0x104	R/W	GPIO Port 4 Pin Digital Input Path Disable Control	0x0000_0000
P5_OFFD	GPIO_BA+0x144	R/W	GPIO Port 5 Pin Digital Input Path Disable Control	0x0000_0000
P6_OFFD	GPIO_BA+0x184	R/W	GPIO Port 6 Pin Digital Input Path Disable Control	0x0000_0000
P7_OFFD	GPIO_BA+0x1C4	R/W	GPIO Port 7 Pin Digital Input Path Disable Control	0x0000_0000
P8_OFFD	GPIO_BA+0x204	R/W	GPIO Port 8 Pin Digital Input Path Disable Control	0x0000_0000
P9_OFFD	GPIO_BA+0x244	R/W	GPIO Port 9 Pin Digital Input Path Disable Control	0x0000_0000
PA_OFFD	GPIO_BA+0x284	R/W	GPIO Port A Pin Digital Input Path Disable Control	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			OF	FD					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Description	
[31:24]	Reserved	Reserved.
	Port 0-a Pin[N] Digital Input Path Disable Control	
[23:16]	OFFD	Each of these bits is used to control if the digital input path of corresponding GPIO pin is disabled. If input is analog signal, users can disable GPIO digital input path to avoid input current leakage.
[20.10]		0 = I/O digital input path Enabled.
		1 = I/O digital input path Disabled (digital input tied to low).
		Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.
[15:0]	Reserved	Reserved.

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Data Output Value (Px_DOUT)

Register	Offset	R/W	Description	Reset Value
P0_DOUT	GPIO_BA+0x008	R/W	GPIO Port 0 Data Output Value	0x0000_00FF
P1_DOUT	GPIO_BA+0x048	R/W	GPIO Port 1 Data Output Value	0x0000_00FF
P2_DOUT	GPIO_BA+0x088	R/W	GPIO Port 2 Data Output Value	0x0000_00FF
P3_DOUT	GPIO_BA+0x0C8	R/W	GPIO Port 3 Data Output Value	0x0000_00FF
P4_DOUT	GPIO_BA+0x108	R/W	GPIO Port 4 Data Output Value	0x0000_00FF
P5_DOUT	GPIO_BA+0x148	R/W	GPIO Port 5 Data Output Value	0x0000_00FF
P6_DOUT	GPIO_BA+0x188	R/W	GPIO Port 6 Data Output Value	0x0000_00FF
P7_DOUT	GPIO_BA+0x1C8	R/W	GPIO Port 7 Data Output Value	0x0000_00FF
P8_DOUT	GPIO_BA+0x208	R/W	GPIO Port 8 Data Output Value	0x0000_00FF
P9_DOUT	GPIO_BA+0x248	R/W	GPIO Port 9 Data Output Value	0x0000_00FF
PA_DOUT	GPIO_BA+0x288	R/W	GPIO Port A Data Output Value	0x0000_0003

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	DOUT								

Bits	Description	Description						
[31:8]	Reserved	Reserved.						
		Port 0-a Pin[N] Output Value						
		Each of these bits controls the status of a GPIO pin when the GPIO is configured as Push-pull output, Open-drain output or Quasi-bidirectional mode.						
[7:0]	DOUT	0 = GPIO port [0/1/2/3/4/5/6/7/8/9/A] Pin[n] will drive Low if the GPIO pin is configured as Push-pull output, Open-drain output or Quasi-bidirectional mode.						
		1 = GPIO port [0/1/2/3/4/5/6/7/8/9/A] Pin[n] will drive High if the GPIO pin is configured as Push-pull output or Quasi-bidirectional mode.						
		Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.						

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Data Output Write Mask (Px _DMASK)

Register	Offset	R/W	Description	Reset Value
P0_DMASK	GPIO_BA+0x00C	R/W	GPIO Port 0 Data Output Write Mask	0x0000_0000
P1_DMASK	GPIO_BA+0x04C	R/W	GPIO Port 1 Data Output Write Mask	0x0000_0000
P2_DMASK	GPIO_BA+0x08C	R/W	GPIO Port 2 Data Output Write Mask	0x0000_0000
P3_DMASK	GPIO_BA+0x0CC	R/W	GPIO Port 3 Data Output Write Mask	0x0000_0000
P4_DMASK	GPIO_BA+0x10C	R/W	GPIO Port 4 Data Output Write Mask	0x0000_0000
P5_DMASK	GPIO_BA+0x14C	R/W	GPIO Port 5 Data Output Write Mask	0x0000_0000
P6_DMASK	GPIO_BA+0x18C	R/W	GPIO Port 6 Data Output Write Mask	0x0000_0000
P7_DMASK	GPIO_BA+0x1CC	R/W	GPIO Port 7 Data Output Write Mask	0x0000_0000
P8_DMASK	GPIO_BA+0x20C	R/W	GPIO Port 8 Data Output Write Mask	0x0000_0000
P9_DMASK	GPIO_BA+0x24C	R/W	GPIO Port 9 Data Output Write Mask	0x0000_0000
PA_DMASK	GPIO_BA+0x28C	R/W	GPIO Port A Data Output Write Mask	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	DMASK								

Bits	Description	Description					
[31:8]	Reserved	Reserved.					
		Port 0-a Data Output Write Mask					
		These bits are used to protect the corresponding register of Px_DOUT bit[n]. When set the DMASK bit[n] is set to 1, the corresponding Px_DOUT[n] bit is protected. If the write signal is masked, write data to the protect bit is ignored.					
[7.0]	DMACK	0 = Corresponding Px_DOUT[n] bit can be updated.					
[7:0]	DMASK	1 = Corresponding Px_DOUT[n] bit protected.					
		Note1: This function only protects the corresponding Px_DOUT[n] bit, and will not protect the corresponding bit control register (P0_n, P1_n, P2_n, P3_n, P4_n, P5_n, P6_n, P7_n, P8_n, P9_n and PA_n).					
		Note2: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.					

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Pin Value (Px _PIN)

Register	Offset	R/W	Description	Reset Value
P0_PIN	GPIO_BA+0x010	R	GPIO Port 0 Pin Value	0x0000_00XX
P1_PIN	GPIO_BA+0x050	R	GPIO Port 1 Pin Value	0x0000_00XX
P2_PIN	GPIO_BA+0x090	R	GPIO Port 2 Pin Value	0x0000_00XX
P3_PIN	GPIO_BA+0x0D0	R	GPIO Port 3 Pin Value	0x0000_00XX
P4_PIN	GPIO_BA+0x110	R	GPIO Port 4 Pin Value	0x0000_00XX
P5_PIN	GPIO_BA+0x150	R	GPIO Port 5 Pin Value	0x0000_00XX
P6_PIN	GPIO_BA+0x190	R	GPIO Port 6 Pin Value	0x0000_00XX
P7_PIN	GPIO_BA+0x1D0	R	GPIO Port 7 Pin Value	0x0000_00XX
P8_PIN	GPIO_BA+0x210	R	GPIO Port 8 Pin Value	0x0000_00XX
P9_PIN	GPIO_BA+0x250	R	GPIO Port 9 Pin Value	0x0000_00XX
PA_PIN	GPIO_BA+0x290	R	GPIO Port A Pin Value	0x0000_000X

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	PIN								

Bits	Description	escription					
[31:8]	Reserved	Reserved.					
[7:0]	PIN	Port 0-a Pin Values Each bit of the register reflects the actual status of the respective GPIO pin. If the bit is 1, it indicates the corresponding pin status is high, else the pin status is low. Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.					

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] De-bounce Enable (Px _DBEN)

Register	Offset	R/W	Description	Reset Value
P0_DBEN	GPIO_BA+0x014	R/W	GPIO Port 0 De-bounce Enable	0x0000_0000
P1_DBEN	GPIO_BA+0x054	R/W	GPIO Port 1 De-bounce Enable	0x0000_0000
P2_DBEN	GPIO_BA+0x094	R/W	GPIO Port 2 De-bounce Enable	0x0000_0000
P3_DBEN	GPIO_BA+0x0D4	R/W	GPIO Port 3 De-bounce Enable	0x0000_0000
P4_DBEN	GPIO_BA+0x114	R/W	GPIO Port 4 De-bounce Enable	0x0000_0000
P5_DBEN	GPIO_BA+0x154	R/W	GPIO Port 5 De-bounce Enable	0x0000_0000
P6_DBEN	GPIO_BA+0x194	R/W	GPIO Port 6 De-bounce Enable	0x0000_0000
P7_DBEN	GPIO_BA+0x1D4	R/W	GPIO Port 7 De-bounce Enable	0x0000_0000
P8_DBEN	GPIO_BA+0x214	R/W	GPIO Port 8 De-bounce Enable	0x0000_0000
P9_DBEN	GPIO_BA+0x254	R/W	GPIO Port 9 De-bounce Enable	0x0000_0000
PA_DBEN	GPIO_BA+0x294	R/W	GPIO Port A De-bounce Enable	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	DBEN						

Bits	Description	Description				
[31:8]	Reserved	Reserved.				
		Port 0-a Input Signal De-bounce Enable Bits				
[7:0] D	DBEN	DBEN[n] is used to enable the de-bounce function for each corresponding bit. If the input signal pulse width cannot be sampled by continuous two de-bounce sample cycle, the input signal transition is seen as the signal bounce and will not trigger the interrupt. The de-bounce clock source is controlled by DBCLKSRC (DBNCECON[4]), one de-bounce sample cycle period is controlled by DBCLKSEL (DBNCECON[3:0]).				
		0 = Bit[n] de-bounce function Disabled.				
		1 = Bit[n] de-bounce function Enabled.				
		Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.				

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Interrupt Mode Control (Px _IMD)

Register	Offset	R/W	Description	Reset Value
P0_IMD	GPIO_BA+0x018	R/W	GPIO Port 0 Interrupt Mode Control	0x0000_0000
P1_IMD	GPIO_BA+0x058	R/W	GPIO Port 1 Interrupt Mode Control	0x0000_0000
P2_IMD	GPIO_BA+0x098	R/W	GPIO Port 2 Interrupt Mode Control	0x0000_0000
P3_IMD	GPIO_BA+0x0D8	R/W	GPIO Port 3 Interrupt Mode Control	0x0000_0000
P4_IMD	GPIO_BA+0x118	R/W	GPIO Port 4 Interrupt Mode Control	0x0000_0000
P5_IMD	GPIO_BA+0x158	R/W	GPIO Port 5 Interrupt Mode Control	0x0000_0000
P6_IMD	GPIO_BA+0x198	R/W	GPIO Port 6 Interrupt Mode Control	0x0000_0000
P7_IMD	GPIO_BA+0x1D8	R/W	GPIO Port 7 Interrupt Mode Control	0x0000_0000
P8_IMD	GPIO_BA+0x218	R/W	GPIO Port 8 Interrupt Mode Control	0x0000_0000
P9_IMD	GPIO_BA+0x258	R/W	GPIO Port 9 Interrupt Mode Control	0x0000_0000
PA_IMD	GPIO_BA+0x298	R/W	GPIO Port A Interrupt Mode Control	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	IMD						

Bits	Description	
[31:8]	Reserved	Reserved.
[7:0]	IMD	 Port 0-a Edge or Level Detection Interrupt Control IMD[n] decides the pin interrupt triggered by level or edge. If the interrupt is by edge trigger, the trigger source can be controlled by de-bounce. If the interrupt is by level trigger, the input source is sampled by one HCLK clock and generates the interrupt. 0 = Edge triggered interrupt. 1 = Level triggered interrupt. If set pin as the level trigger interrupt, then only one level can be set on the registers Px_IEN. If set both the level to trigger interrupt, the setting is ignored and no interrupt will occur.
		The de-bounce function is valid for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored. Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Interrupt Enable Control (Px _IEN)

Register	Offset	R/W	Description	Reset Value
P0_IEN	GPIO_BA+0x01C	R/W	GPIO Port 0 Interrupt Enable	0x0000_0000
P1_IEN	GPIO_BA+0x05C	R/W	GPIO Port 1 Interrupt Enable	0x0000_0000
P2_IEN	GPIO_BA+0x09C	R/W	GPIO Port 2 Interrupt Enable	0x0000_0000
P3_IEN	GPIO_BA+0x0DC	R/W	GPIO Port 3 Interrupt Enable	0x0000_0000
P4_IEN	GPIO_BA+0x11C	R/W	GPIO Port 4 Interrupt Enable	0x0000_0000
P5_IEN	GPIO_BA+0x15C	R/W	GPIO Port 5 Interrupt Enable	0x0000_0000
P6_IEN	GPIO_BA+0x19C	R/W	GPIO Port 6 Interrupt Enable	0x0000_0000
P7_IEN	GPIO_BA+0x1DC	R/W	GPIO Port 7 Interrupt Enable	0x0000_0000
P8_IEN	GPIO_BA+0x21C	R/W	GPIO Port 8 Interrupt Enable	0x0000_0000
P9_IEN	GPIO_BA+0x25C	R/W	GPIO Port 9 Interrupt Enable	0x0000_0000
PA_IEN	GPIO_BA+0x29C	R/W	GPIO Port A Interrupt Enable	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	IR_EN						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	IF_EN						

Bits	Description	Description				
[31:24]	Reserved	Reserved.				
[23:16]	IR_EN	 Port 0-a Interrupt Enable by Input Rising Edge or Input Level High IR_EN[n] used to enable the interrupt for each of the corresponding input Px_PIN[n]. Set bit to 1 also enable the pin wake-up function. When setting the IR_EN[n] bit to 1: If the interrupt is level trigger, the input PIN[n] state at level "high" will generate the interrupt. If the interrupt is edge trigger, the input PIN[n] state change from "low-to-high" will generate the interrupt. 0 = PIN[n] level-high or low-to-high interrupt Disabled. 1 = PIN[n] level-high or low-to-high interrupt Enabled. Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9. 				

[15:8]	Reserved	Reserved.
[7:0]	IF_EN[n]	 Port 0-a Interrupt Enable by Input Falling Edge or Input Level Low IF_EN[n] is used to enable the interrupt for each of the corresponding input Px_PIN[n]. Set bit to 1 also enable the pin wake-up function. When setting the IF_EN[n] bit to 1: If the interrupt is level trigger, the input PIN[n] state at level "low" will generate the interrupt. If the interrupt is edge trigger, the input PIN[n] state change from "high-to-low" will generate the interrupt. 0 = PIN[n] state low-level or high-to-low change interrupt Disabled. 1 = PIN[n] state low-level or high-to-low change interrupt Enabled. Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.

GPIO Port [0/1/2/3/4/5/6/7/8/9/A] Interrupt Source Flag (Px_ISF)

Register	Offset	R/W	Description	Reset Value
P0_ISF	GPIO_BA+0x020	R/W	GPIO Port 0 Interrupt Source Flag	0xXXXX_XXXX
P1_ISF	GPIO_BA+0x060	R/W	GPIO Port 1 Interrupt Source Flag	0xXXXX_XXXX
P2_ISF	GPIO_BA+0x0A0	R/W	GPIO Port 2 Interrupt Source Flag	0xXXXX_XXXX
P3_ISF	GPIO_BA+0x0E0	R/W	GPIO Port 3 Interrupt Source Flag	0xXXXX_XXXX
P4_ISF	GPIO_BA+0x120	R/W	GPIO Port 4 Interrupt Source Flag	0xXXXX_XXXX
P5_ISF	GPIO_BA+0x160	R/W	GPIO Port 5 Interrupt Source Flag	0xXXXX_XXXX
P6_ISF	GPIO_BA+0x1A0	R/W	GPIO Port 6 Interrupt Source Flag	0xXXXX_XXXX
P7_ISF	GPIO_BA+0x1E0	R/W	GPIO Port 7 Interrupt Source Flag	0xXXXX_XXXX
P8_ISF	GPIO_BA+0x220	R/W	GPIO Port 8 Interrupt Source Flag	0xXXXX_XXXX
P9_ISF	GPIO_BA+0x260	R/W	GPIO Port 9 Interrupt Source Flag	0xXXXX_XXXX
PA_ISF	GPIO_BA+0x2A0	R/W	GPIO Port A Interrupt Source Flag	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	IF_ISF						

Bits	Description	Description				
[31:8]	Reserved	Reserved.				
[7:0]	IF_ISF	Port 0-a Interrupt Source Flag These bits are edge/level trigger event indicators of each pin of Port x, if GPG0_INT or GPG1_INT enable bit is set, the corresponding interrupt service routine will be served. Note that P3.2 and P3.3 will only vector to INT0_INT and INT1_INT ISRs if its own interrupt is enabled. Read : 0 = No interrupt at Px[n]. 1 = Px[n] generates an interrupt. Write : 0 = No action. 1 = Clear the corresponding pending interrupt. Note: Max. n = 1 for PA; Max. n = 7 for P0/P1/P2/P3/P4/P5/P6/P7/P8/P9.				

External Interrupt De-bounce Control (DBNCECON)

Register	Offset	R/W	Description	Reset Value
DBNCECON	GPIO_BA+0x2E0	R/W	External Interrupt De-bounce Control	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	Reserved ICLK_ON DBCLKSRC DBCLKSEL						

Bits	Description	
[31:6]	Reserved	Reserved.
[5]	ICLK_ON	 Interrupt Clock on Mode 0 = Edge detection circuit is active only if I/O pin corresponding Px_IEN bit is set to 1. 1 = All I/O pins edge detection circuit is always active after reset. It is recommended to turn off this bit to save system power if no special application concern.
[4]	DBCLKSRC	 De-bounce Counter Clock Source Selection 0 = De-bounce counter clock source is the HCLK. 1 = De-bounce counter clock source is the internal 10 kHz low speed oscillator.
[3:0]	DBCLKSEL	De-bounce Sampling Cycle Selection 0000 = Sample interrupt input once per 1 clocks. 0001 = Sample interrupt input once per 2 clocks. 0010 = Sample interrupt input once per 4 clocks. 0011 = Sample interrupt input once per 8 clocks. 0100 = Sample interrupt input once per 16 clocks. 0101 = Sample interrupt input once per 32 clocks. 0101 = Sample interrupt input once per 64 clocks. 0110 = Sample interrupt input once per 128 clocks. 1011 = Sample interrupt input once per 256 clocks. 1000 = Sample interrupt input once per 2*256 clocks. 1001 = Sample interrupt input once per 4*256 clocks. 1011 = Sample interrupt input once per 8*256 clocks. 1010 = Sample interrupt input once per 16*256 clocks. 1101 = Sample interrupt input once per 32*256 clocks.

PWM Port Output Enable (PWMPOEN)

Register	Offset	R/W	Description	Reset Value
PWMPOEN	GPIO_BA+0x2E4	R/W	PWM Port Output Enable	0x0000_00XX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved			HZ_BPWM	HZ_Odd1	HZ_Even1	HZ_Odd0	HZ_Even0

Bits	Description	
[31:5]	Reserved	Reserved.
[4]	HZ_BPWM	 Basic PWM0 Ports Output Control 0 = The driving mode of Basic PWM ports are controlled by GPIO mode register. (Px_PMD) or multi-function register (Px_MFP). 1 = The driving mode of Basic PWM ports are forced in tri-state (Hi-Z) all the time. Note: The initial value is loaded from CHZ_BPWM (Config0[12]) after any reset.
[3]	HZ_Odd1	 Enhanced PWM Unit1 Odd Ports Output Control 0 = The driving mode of Enhanced PWM unit1 odd ports are controlled by GPIO mode register (Px_PMD) or multi-function register (Px_MFP). 1 = The driving mode of Enhanced PWM unit1 odd ports are forced in tri-state (Hi-Z) all the time. Note: The initial value is loaded from CHZ_Odd1 (Config0[11]) after any reset.
[2]	HZ_Even1	 Enhanced PWM Unit1 Even Ports Output Control 0 = The driving mode of Enhanced PWM unit1 even ports are controlled by GPIO mode register (Px_PMD) or multi-function register (Px_MFP). 1 = The driving mode of Enhanced PWM unit1 even ports are forced in tri-state (Hi-Z) all the time. Note: The initial value is loaded from CHZ_Even1 (Config0[10]) after any reset.
[1] HZ_Odd0		 Enhanced PWM Unit0 Odd Ports Output Control 0 = The driving mode of Enhanced PWM unit0 odd ports are controlled by GPIO mode register (Px_PMD) or multi-function register (Px_MFP). 1 = The driving mode of Enhanced PWM unit0 odd ports are forced in tri-state (Hi-Z) all the time. Note: The initial value is loaded from CHZ_Odd0 (Config0[9]) after any reset.

Bits	Description				
[0] HZ_Even0	Enhanced PWM Unit0 Even Ports Output Control				
		0 = The driving mode of Enhanced PWM unit0 even ports are controlled by GPIO mode register (Px_PMD) or multi-function register (Px_MFP).			
	1 = The driving mode of Enhanced PWM unit0 even ports are forced in tri-state (Hi-Z) all the time.				
		Note: The initial value is loaded from CHZ_Even0 (Config0[8]) after any reset.			

GPIO Px.n Pin Data Input/Output (Px_n)

Register	Offset	R/W	Description	Reset Value
P0_N n=0,17	GPIO_BA+0x300+ 0x04 * n	R/W	GPIO P0.n Pin Data Input/Output	0x0000_000X
P1_N n=0,17	GPIO_BA+0x320+ 0x04 * n	R/W	GPIO P1.n Pin Data Input/Output	0x0000_000X
P2_N n=0,17	GPIO_BA+0x340+ 0x04 * n	R/W	GPIO P2.n Pin Data Input/Output	0x0000_000X
P3_N n=0,17	GPIO_BA+0x360+ 0x04 * n	R/W	GPIO P3.n Pin Data Input/Output	0x0000_000X
P4_N n=0,17	GPIO_BA+0x380+ 0x04 * n	R/W	GPIO P4.n Pin Data Input/Output	0x0000_000X
P5_N n=0,17	GPIO_BA+0x3A0+ 0x04 * n	R/W	GPIO P5.n Pin Data Input/Output	0x0000_000X
P6_N n=0,17	GPIO_BA+0x3C0+ 0x04 * n	R/W	GPIO P6.n Pin Data Input/Output	0x0000_000X
P7_N n=0,17	GPIO_BA+0x3E0+ 0x04 * n	R/W	GPIO P7.n Pin Data Input/Output	0x0000_000X
P8_N n=0,17	GPIO_BA+0x400+ 0x04 * n	R/W	GPIO P8.n Pin Data Input/Output	0x0000_000X
P9_N n=0,17	GPIO_BA+0x420+ 0x04 * n	R/W	GPIO P9.n Pin Data Input/Output	0x0000_000X
PA_N n=0,1	GPIO_BA+0x440+ 0x04 * n	R/W	GPIO PA.n Pin Data Input/Output	0x0000_000X

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					Pxn		

Bits	Description	Description			
[31:1]	Reserved	eserved Reserved.			
[0]	Pxn	GPIO Px.N Pin Data Input/Output Write this bit can control one GPIO pin output value.			

0 = Corresponding GPIO pin set to low.
1 = Corresponding GPIO pin set to high.
Read this register to get GPIO pin status.
For example: writing P0_0 will reflect the written value to bit P0_DOUT[0], read P0_0 will return the value of P0_PIN[0].
Note: The write operation will not be affected by register Px_DMASK.

6.6 Timer Controller (TIMER)

6.6.1 Overview

The Timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, delay timing, clock generation, and event counting by external input pins, and interval measurement by external capture pins.

6.6.2 Features

- Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter
- Independent clock source for each timer
- Provides one-shot, periodic, toggle-output and continuous counting operation modes
- 24-bit up counter value is readable through TDR (TDR[23:0])
- Supports event counting function
- Supports external capture pin event for interval measurement
- Supports external capture pin event to reset 24-bit up counter

The Timer Controller block diagram and clock control are shown in Figure 6-21 and Figure 6-22.



Figure 6-21 Timer Controller Block Diagram

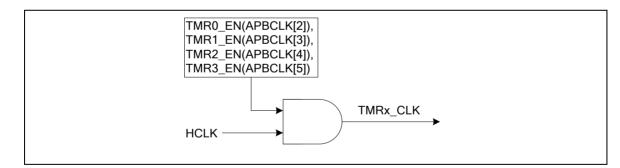


Figure 6-22 Clock Source of Timer Controller

6.6.4 Basic Configuration

The HCLK clock source of Timer0 ~ Timer3 can be enabled in TMRx_EN (APBCLK[5:2]).

6.6.5 Function Description

Timer controller provides one-shot, period, toggle and continuous counting operation modes. It also provides the event counting function to count the event from external pin and input capture function to capture or reset timer counter value. Each operating function mode is described below.

6.6.5.1 Timer Interrupt Flag

Timer controller supports two interrupt flags; one is TIF (TISR[0]) and its set while timer counter value TDR (TDR[23:0]) matches the timer compared value TCMP (TCMPR[23:0]), the other is TEXIF (TEXISR[0]) and its set when the transition on the TMx pin associated TEX_EDGE (TEXCON[2:1]) setting.

6.6.5.2 Timer Counting Mode

Timer controller provides four timer counting modes: one-shot, periodic, toggle-output and continuous counting operation modes:

6.6.5.3 One-shot Mode

If timer controller is configured at one-shot mode (TCSR[28:27] is 00) and CEN (TCSR[30]) is set, the timer counter starts up counting. Once the TDR (TDR[23:0]) value reaches TCMP (TCMPR[23:0]) value, the TIF (TISR[0]) will be set to 1, TDR value and CEN bit is cleared automatically by timer controller then timer counting operation stops. In the meantime, if the IE (TCSR[29]) is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also.

6.6.5.4 Periodic mode

If timer controller is configured at periodic mode (TCSR[28:27] is 01) and CEN (TCSR[30]) is set, the timer counter starts up counting. Once the TDR (TDR[23:0]) value reaches TCMP (TCMPR[23:0]) value, the TIF (TISR[0]) will be set to 1, TDR value will be cleared automatically by timer controller and timer counter operates counting again. In the meantime, if the IE (TCSR[29]) bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also. In this mode, timer controller operates counting and compares with TCMP value periodically until the CEN bit is cleared by user.

6.6.5.5 Toggle-Output mode

If timer controller is configured at toggle-output mode (TCSR[28:27] is 10) and CEN (TCSR[30]) is set, the timer counter starts up counting. The counting operation of toggle-output mode is almost the same as periodic mode, except toggle-output mode has associated TM0 ~ TM3 pin to output signal while specify TIF (TISR[0]) is set. Thus, the toggle-output signal on TM0 ~ TM3 pin is high and changing back and forth with 50% duty cycle.

6.6.5.6 Continuous Counting Mode

If timer controller is configured at continuous counting mode (TCSR[28:27] is 11) and CEN (TCSR[30]) is set, the timer counter starts up counting. Once the TDR (TDR[23:0]) value reaches TCMP (TCMPR[23:0]) value, the TIF (TISR[0]) will be set to 1 and TDR value keeps up counting. In the meantime, if the IE (TCSR[29]) is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also. User can change different TCMP value immediately without disabling timer counting and restarting timer counting in this mode.

For example, TCMP value is set as 80, first. The TIF will set to 1 when TDR value is equal to 80, timer counter is kept counting and TDR value will not goes back to 0, it continues to count 81, 82, 83,^{\cdots} to 2²⁴ -1, 0, 1, 2, 3, ^{\cdots} to 2²⁴ -1 again and again. Next, if user programs TCMP value as 200 and clears TIF, the TIF will set to 1 again when TDR value reaches to 200. At last, user programs TCMP as 500 and clears TIF, the TIF will set to 1 again when TDR value reaches to 500.

In this mode, the timer counting is continuous. So, this operation mode is called as continuous counting mode.

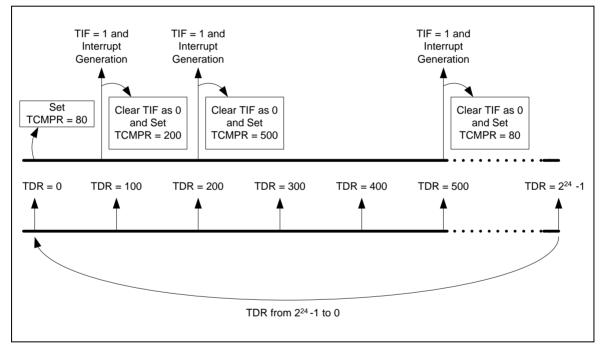


Figure 6-23 Continuous Counting Mode

6.6.5.7 Event Counting Function

Timer controller also provides an application which can count the input event from TMx (x=0~3) pin and the number of event will reflect to TDR (TDR[23:0]) value. It is also called as event counting function. In this function, CTB (TCSR[24]) should be set and the timer peripheral clock source should be set as HCLK.

User can enable or disable TMx pin de-bounce circuit by setting TCDB (TEXCON[7]). The input event frequency should be less than 1/3 HCLK if TMx pin de-bounce disabled or less than 1/8 HCLK if TMx pin de-bounce enabled to assure the returned TDR value is correct, and user can also select edge detection phase of TMx pin by setting TX_PHASE (TEXCON[0]) bit.

In event counting mode, the timer counting operation mode can be selected as one-shot, periodic and continuous counting mode to counts the counter value TDR (TDR[23:0]) for TMx pin.

6.6.5.8 External Pin Capture Function

The event capture function is used to load TDR (TDR[23:0]) value to TCAP (TCAP[23:0]) value while edge transition detected on TMx (x=0~3) pin. In this mode, RSTCAPn (TEXCON[4]) should be as 0 for select TMx transition is using to trigger event capture function and the timer peripheral clock source should be set as HCLK.

User can enable or disable TMx pin de-bounce circuit by setting TEXDB (TEXCON[6]). The transition frequency of TMx pin should be less than 1/3 HCLK if TMx pin de-bounce disabled or less than 1/8 HCLK if TMx pin de-bounce enabled to assure the capture function can be work normally, and user can also select edge transition detection of TMx pin by setting TEX_EDGE (TEXCON[2:1]).

In event capture mode, user does not consider what timer counting operation mode is selected, the capture event occurred only if edge transition on TMx pin is detected.

Users must consider the Timer will keep register TCAP unchanged and drop the new capture value, if the CPU does not clear the TEXIF status.

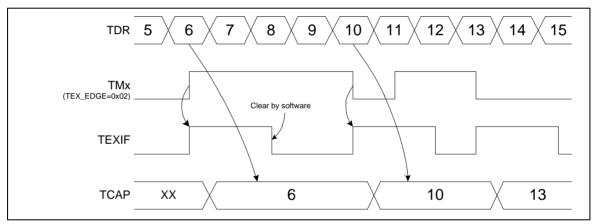


Figure 6-24 External Capture Mode

6.6.5.9 External Reset Counter Mode

Timer controller also provides reset counter function to reset TDR (TDR[23:0]) value while edge transition detected on TMx (x= 0~3). In this mode, most the settings are the same as event capture mode except RSTCAPn (TEXCON[4]) should be as 1 for select TMx transition is using to trigger reset counter value.

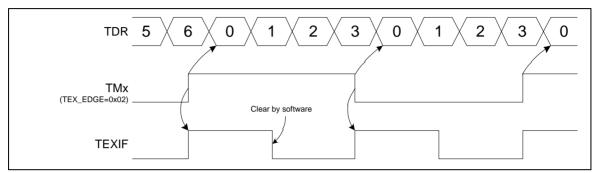


Figure 6-25 External Reset Counter Mode

6.6.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
TMR Base Add TMR01_BA = 0 TMR23_BA = 0	x4001_0000			
TCSR0	TMR01_BA+0x00	R/W	Timer0 Control and Status Register	0x0000_0005
TCMPR0	TMR01_BA+0x04	R/W	Timer0 Compare Register	0x0000_0000
TISR0	TMR01_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TDR0	TMR01_BA+0x0C	R	Timer0 Data Register	0x0000_0000
ТСАР0	TMR01_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TEXCON0	TMR01_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000
TEXISR0	TMR01_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TCSR1	TMR01_BA+0x20	R/W	Timer1 Control and Status Register	0x0000_0005
TCMPR1	TMR01_BA+0x24	R/W	Timer1 Compare Register	0x0000_0000
TISR1	TMR01_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TDR1	TMR01_BA+0x2C	R	Timer1 Data Register	0x0000_0000
TCAP1	TMR01_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000
TEXCON1	TMR01_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000
TEXISR1	TMR01_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000
TCSR2	TMR23_BA+0x00	R/W	Timer2 Control and Status Register	0x0000_0005
TCMPR2	TMR23_BA+0x04	R/W	Timer2 Compare Register	0x0000_0000
TISR2	TMR23_BA+0x08	R/W	Timer2 Interrupt Status Register	0x0000_0000
TDR2	TMR23_BA+0x0C	R	Timer2 Data Register	0x0000_0000
TCAP2	TMR23_BA+0x10	R	Timer2 Capture Data Register	0x0000_0000
TEXCON2	TMR23_BA+0x14	R/W	Timer2 External Control Register	0x0000_0000
TEXISR2	TMR23_BA+0x18	R/W	Timer2 External Interrupt Status Register	0x0000_0000
TCSR3	TMR23_BA+0x20	R/W	Timer3 Control and Status Register	0x0000_0005
TCMPR3	TMR23_BA+0x24	R/W	Timer3 Compare Register	0x0000_0000
TISR3	TMR23_BA+0x28	R/W	Timer3 Interrupt Status Register	0x0000_0000
TDR3	TMR23_BA+0x2C	R	Timer3 Data Register	0x0000_0000

ТСАР3	TMR23_BA+0x30	R	Timer3 Capture Data Register	0x0000_0000
TEXCON3	TMR23_BA+0x34	R/W	Timer3 External Control Register	0x0000_0000
TEXISR3	TMR23_BA+0x38	R/W	Timer3 External Interrupt Status Register	0x0000_0000

6.6.7 Register Description

Timer Control and Status Register (TCSR)

Register	Offset	R/W	Description	Reset Value
TCSR0	TMR01_BA+0x00	R/W	Timer0 Control and Status Register	0x0000_0005
TCSR1	TMR01_BA+0x20	R/W	Timer1 Control and Status Register	0x0000_0005
TCSR2	TMR23_BA+0x00	R/W	Timer2 Control and Status Register	0x0000_0005
TCSR3	TMR23_BA+0x20	R/W	Timer3 Control and Status Register	0x0000_0005

31	30	29	28	27	26	25	24
DBGACK_TM R	CEN	IE	МС	DE	CRST	CACT	СТВ
23	22	21	20	19	18	17	16
			Reserved				TDR_EN
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	PRESCALE						

Bits	Description	
[31]	DBGACK_TMR	ICE Debug Mode Acknowledge Disable (Write Protect) 0 = ICE debug mode acknowledgement effects TIMER counting. TIMER counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. TIMER counter will keep going no matter CPU is held by ICE or not. Note: This bit is write protected. Refer to the REGWRPROT register.
[30]	CEN	Timer Enable Bit 0 = Stops/Suspends counting. 1 = Starts counting. Note1: In stop status, and then set CEN to 1 will enable the 24-bit up counter to keep counting from the last stop counting value. Note2: This bit is auto-cleared by hardware in one-shot mode (TCSR[28:27] = 00) when the timer interrupt flag TIF (TISR[0]) is generated.
[29]	IE	Interrupt Enable Bit 0 = Timer Interrupt Disabled. 1 = Timer Interrupt Enabled. Note: If this bit is enabled, when the timer interrupt flag TIF is set to 1, the timer interrupt signal is generated and inform to CPU.

		Timer Counting Mode Select
		00 = The Timer controller is operated in One-shot mode.
[28:27]	MODE	01 = The Timer controller is operated in Periodic mode.
		10 = The Timer controller is operated in Toggle-output mode.
		11 = The Timer controller is operated in Continuous Counting mode.
		Timer Counter Reset Bit
[26]	CRST	Setting this bit will reset the 24-bit up counter value TDR and also force CEN (TCSR[30]) to 0 if CACT (TCSR[25]) is 1.
		0 = No effect.
		1 = Reset internal 8-bit prescale counter, 24-bit up counter value and CEN bit.
		Timer Active Status Bit (Read Only)
[25]	САСТ	This bit indicates the up-timer status.
[=0]		0 = Timer is not active.
		1 = Timer is active.
		Counter Mode Enable Bit
[24]	ств	This bit is for external counting pin function enabled.
[۲]	015	0 = Event counter mode Disabled.
		1 = Event counter mode Enabled.
[23:17]	Reserved	Reserved.
		Data Load Enable Bit
[16]	TDR_EN	When this bit is set, timer counter value (TDR) will be updated continuously to monitor internal 24-bit up counter value as the counter is counting.
		0 = Timer Data Register update Disabled.
		1 = Timer Data Register update Enabled while timer counter is active.
[15:8]	Reserved	Reserved.
		Prescale Counter
[7:0]	PRESCALE	Timer input clock source is divided by (PRESCALE+1) before it is fed to the timer up counter. If this field is 0 (PRESCALE = 0), then there is no scaling.

Timer Compare Register (TCMPR)

Register	Offset	R/W	Description	Reset Value
TCMPR0	TMR01_BA+0x04	R/W	Timer0 Compare Register	0x0000_0000
TCMPR1	TMR01_BA+0x24	R/W	Timer1 Compare Register	0x0000_0000
TCMPR2	TMR23_BA+0x04	R/W	Timer2 Compare Register	0x0000_0000
TCMPR3	TMR23_BA+0x24	R/W	Timer3 Compare Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			тс	MP			
15	14	13	12	11	10	9	8
	ТСМР						
7	6	5	4	3	2	1	0
	ТСМР						

Bits	Description	
[31:24]	Reserved	Reserved.
		Timer Compared Value
		TCMP is a 24-bit compared value register. When the internal 24-bit up counter value is equal to TCMP value, the TIF (TISR[0] Timer Interrupt Flag) will set to 1.
		Time-out period = (Period of timer clock input) * (8-bit PRESCALE+ 1) * (24-bit TCMP).
[23:0]	тсмр	Note1: Never write 0x0 or 0x1 in TCMP field, or the core will run into unknown state.
		Note2: When timer is operating at continuous counting mode, the 24-bit up counter will keep counting continuously even if user writes a new value into TCMP field. But if timer is operating at other modes, the 24-bit up counter will restart counting from 0 and using newest TCMP value to be the timer compared value while user writes a new value into TCMP field.

Timer Interrupt Status Register (TISR)

Register	Offset	R/W	Description	Reset Value
TISR0	TMR01_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TISR1	TMR01_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TISR2	TMR23_BA+0x08	R/W	Timer2 Interrupt Status Register	0x0000_0000
TISR3	TMR23_BA+0x28	R/W	Timer3 Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved						TIF	

Bits	Description	Description			
[31:1]	Reserved	Reserved Reserved.			
		Timer Interrupt Flag This bit indicates the interrupt flag status of Timer while 24-bit timer up counter TDR value			
[0]	TIF	reaches to TCMP (TCMPR[23:0]) value. 0 = No effect.			
		1 = TDR value matches the TCMP value.			
		Note: This bit is cleared by writing 1 to it.			

Timer Data Register (TDR)

Register	Offset	R/W	Description	Reset Value
TDR0	TMR01_BA+0x0C	R	Timer0 Data Register	0x0000_0000
TDR1	TMR01_BA+0x2C	R	Timer1 Data Register	0x0000_0000
TDR2	TMR23_BA+0x0C	R	Timer2 Data Register	0x0000_0000
TDR3	TMR23_BA+0x2C	R	Timer3 Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	TDR								
15	14	13	12	11	10	9	8		
	TDR								
7	6	5	4	3	2	1	0		
	TDR								

Bits	Description	Description			
[31:24]	Reserved	Reserved.			
		Timer Data Register			
		This field can be reflected the internal 24-bit timer counter value or external event input counter value from TMx ($x=0-3$) pin.			
[23:0]	TDR	If CTB (TCSR[24]) is 0, user can read TDR value for getting current 24- bit counter value .			
		If CTB (TCSR[24]) is 1, user can read TDR value for getting current 24- bit event input counter value.			

Timer Capture Data Register (TCAP)

Register	Offset	R/W	Description	Reset Value
TCAP0	TMR01_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TCAP1	TMR01_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000
TCAP2	TMR23_BA+0x10	R	Timer2 Capture Data Register	0x0000_0000
ТСАР3	TMR23_BA+0x30	R	Timer3 Capture Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	ТСАР								
15	14	13	12	11	10	9	8		
	ТСАР								
7	6	5	4	3	2	1	0		
	ТСАР								

Bits	Description		
[31:24]	Reserved	Reserved.	
[23:0]	ТСАР	Timer Capture Data Register When TEXEN (TEXCON[3]) bit is set, RSTCAPn (TEXCON[4]) bit is 0, and a transition on TMx (x=0~3) pin matched the TEX_EDGE (TEXCON[2:1]) setting, TEXIF (TEXISR[0]) will set to 1 and the current timer counter value TDR will be auto- loaded into this TCAP field.	

Timer External Control Register (TEXCON)

Register	Offset	R/W	Description	Reset Value
TEXCON0	TMR01_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000
TEXCON1	TMR01_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000
TEXCON2	TMR23_BA+0x14	R/W	Timer2 External Control Register	0x0000_0000
TEXCON3	TMR23_BA+0x34	R/W	Timer3 External Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
TCDB	TEXDB	TEXIEN	RSTCAPSEL	TEXEN	TEX_	TX_PHASE			

Bits	Description	
[31:8]	Reserved	Reserved.
		Timer Counter Pin De-bounce Enable Bit
		0 = TMx (x= 0~3) pin de-bounce Disabled.
[7]	TCDB	1 = TMx (x= 0~3) pin de-bounce Enabled.
		Note: If this bit is enabled, the edge detection of TMx pin is detected with de-bounce circuit.
[6]		Timer External Capture Pin De-bounce Enable Bit
		0 = TMx (x= 0~3) pin de-bounce Disabled.
	TEXDB	1 = TMx (x= 0~3) pin de-bounce Enabled.
		Note: If this bit is enabled, the edge detection of TMx pin is detected with de-bounce circuit.
		Timer External Capture Interrupt Enable Bit
		$0 = TMx (x = 0 \sim 3)$ pin detection Interrupt Disabled.
		1 = TMx (x= 0~3) pin detection Interrupt Enabled.
[5]	TEXIEN	Note: TEXIEN is used to enable timer external interrupt. If TEXIEN enabled, timer will rise an interrupt when TEXIF (TEXISR[0]) is 1.
		For example, while TEXIEN = 1, TEXEN = 1, and TEX_EDGE = 00, a 1 to 0 transition on the TMx pin will cause the TEXIF to be set then the interrupt signal is generated and sent to NVIC to inform CPU.
		Capture Function Selection
		0 = External Capture Mode Enabled.
[4]	RSTCAPSEL	1 = External Reset Mode Enabled.
		Note1: When RSTCAPn is 0, transition on TMx ($x = 0 \sim 3$) pin is using to save the 24-bit timer counter value.

		Note2: When RSTCAPn is 1, transition on TMx ($x= 0~3$) pin is using to reset the 24-bit timer counter value.
[3]	TEXEN	Timer External Capture Pin Enable Bit This bit enables the TMx pin. 0 =TMx (x= 0~3) pin Disabled. 1 =TMx (x= 0~3) pin Enabled.
[2:1]	TEX_EDGE	 Timer External Capture Pin Edge Detect 00 = A Falling edge on TMx (x= 0~3) pin will be detected. 01 = A Rising edge on TMx (x= 0~3) pin will be detected. 10 = Either Rising or Falling edge on TMx (x= 0~3) pin will be detected. 11 = Reserved.
[0]	TX_PHASE	 Timer External Count Phase This bit indicates the detection phase of external counting pin TMx (x= 0~3). 0 = A Falling edge of external counting pin will be counted. 1 = A Rising edge of external counting pin will be counted.

Timer External Interrupt Status Register (TEXISR)

Register	Offset	R/W	Description	Reset Value
TEXISR0	TMR01_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TEXISR1	TMR01_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000
TEXISR2	TMR23_BA+0x18	R/W	Timer2 External Interrupt Status Register	0x0000_0000
TEXISR3	TMR23_BA+0x38	R/W	Timer3 External Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1						0		
Reserved							TEXIF		

Bits	Description				
[31:1]	Reserved	Reserved.			
		Timer External Capture Interrupt Flag			
		This bit indicates the timer external capture interrupt flag status.			
		$0 = TMx (x = 0 \sim 3)$ pin interrupt did not occur.			
		$1 = TMx (x = 0 \sim 3)$ pin interrupt occurred.			
[0]	TEXIF	Note1: This bit is cleared by writing 1 to it.			
[0] TEXIF		Note2: When TEXEN (TEXCON[3]) bit is set, RSTCAPn (TEXCON[4]) bit is 0, and a transition on TMx ($x= 0$ -3) pin matched the TEX_EDGE (TEXCON[2:1]) setting, this bit will set to 1 by hardware.			
		Note3: There is a new incoming capture event detected before CPU clearing the TEXIF status. If the above condition occurred, the Timer will keep register TCAP unchanged and drop the new capture value.			

6.7 Basic PWM Generator and Capture Timer (BPWM)

6.7.1 Overview

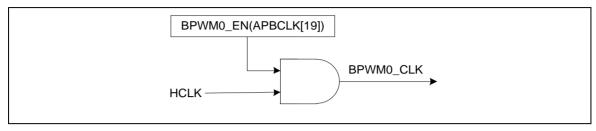
The NuMicro[®] M0519 series has 1 set of BPWM group (BPWM0), supporting 1 set of BPWM generators that can be configured as 2 independent BPWM outputs, BPWM0_CH0 and BPWM0_CH1, or as 1 complementary BPWM pairs, (BPWM0_CH0, BPWM0_CH1) with programmable dead-zone generator.

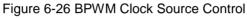
The BPWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two BPWM Timers including two clock selectors, two 16-bit BPWM down-counters for BPWM period control, two 16-bit comparators for BPWM duty control and one dead-zone generator. The BPWM generator provides two independent BPWM interrupt flags which are set by hardware when the corresponding BPWM period down counter reaches zero.

Each BPWM interrupt source with its corresponding enable bit can cause CPU to request BPWM interrupt. The BPWM generators can be configured as one-shot mode to produce only one BPWM cycle signal or auto-reload mode to output BPWM waveform continuously. BPWM can be used to trigger EADC when operation in center-aligned mode.

6.7.2 Features

6.7.2.1 BPWM Function:


- Up to 1 BPWM group to support 2 BPWM channels or 1 BPWM paired channels.
- Supports 8-bit prescaler from 1 to 255
- Up to 16-bit resolution BPWM timer
- PWM timer supports edge-aligned and center-aligned operation type
- One-shot or Auto-reload mode BPWM
- PWM Interrupt request synchronized with BPWM period or duty
- Supports dead-zone generator with 8-bit resolution for BPWM paired channels
- Supports trigger EADC


6.7.2.2 Capture Function:

- Supports 2 Capture input channels shared with 2 BPWM output channels
- Supports rising or falling capture condition
- Supports rising or falling capture interrupt

6.7.3 Block Diagram

The Figure 6-26 and Figure 6-27 illustrate the architecture of BPWM in pair.

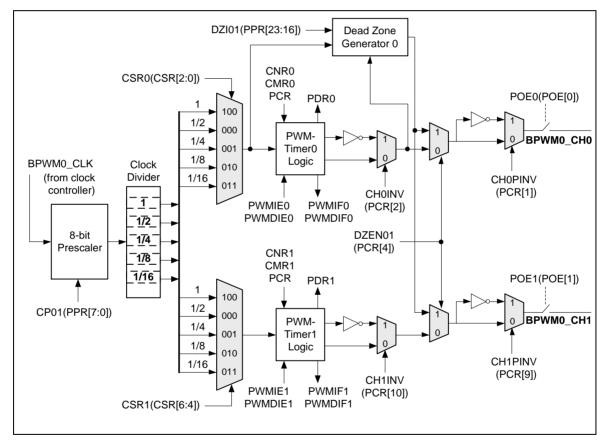


Figure 6-27 BPWM Architecture Diagram

6.7.4 Basic Configuration

The BPWM pin functions are configured in P5_MFP[7:6] Multiple Function Registers.

The peripheral clock source of BPWM can be enabled in BPWM0_EN (APBCLK[19]).

The driving mode of BPWM ports are configured in PWMPOEN[4] PWM port output enable register.

6.7.5 Function Description

BPWM controller supports 2 operation modes: Edge-aligned and Center-aligned mode.

6.7.5.1 Edge-aligned BPWM (down-counter)

In Edge-aligned BPWM output mode, the 16 bits BPWM counter will start down-counting from period value (CNRn register) to zero to finish a BPWM period, then restart down-counting from period value to zero again if auto-reload mode is enabled (CHnMOD bit is 1 in PCR register). The value of BPWM counter will be compared with comparator value (CMRn register) to control output level of BPWM generator. The BPWM generator will output low when the value of BPWM counter is larger than comparator value and output high when the value of BPWM counter is equal or smaller than comparator value.

The BPWM period interrupt (BPWMIFn (PIIR[1:0])) will be triggered by setting BPWMPIEn (PIER[1:0]) to 1, and BPWM duty interrupt (BPWMDIFn (PIIR[9:8])) will be triggered by setting BPWMDIEn (PIER[9:8]) to 1.

The BPWM period and duty control are configured by BPWM down-counter register (CNR) and BPWM comparator register (CMR). The new period and comparator value will take effect at the start of next period. The BPWM-timer timing operation is shown in Figure 6-29. The pulse width modulation follows the formula below and the legend of BPWM-Timer Comparator is shown as Figure 6-28. Note that the corresponding GPIO pins must be configured as BPWM function (enable POE and disable CAPENR) for the corresponding BPWM channel.

- BPWM frequency = BPWM0_CLK/[(prescale+1)*(clock divider)*(CNR+1)].
- Duty ratio = (CMR+1)/(CNR+1)
- CMR >= CNR: BPWM output is always high
- CMR < CNR: BPWM low width= (CNR-CMR) unit^[1]; BPWM high width = (CMR+1) unit
- CMR = 0: BPWM low width = (CNR) unit; BPWM high width = 1 unit

Note: [1] Unit = one BPWM clock cycle.

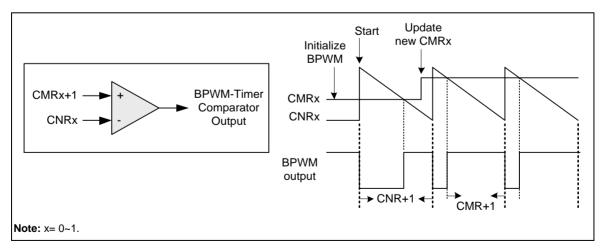


Figure 6-28 Legend of Internal Comparator Output of BPWM-Timer

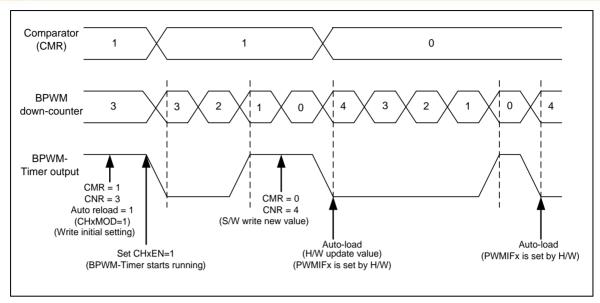


Figure 6-29 BPWM-Timer Operation Timing

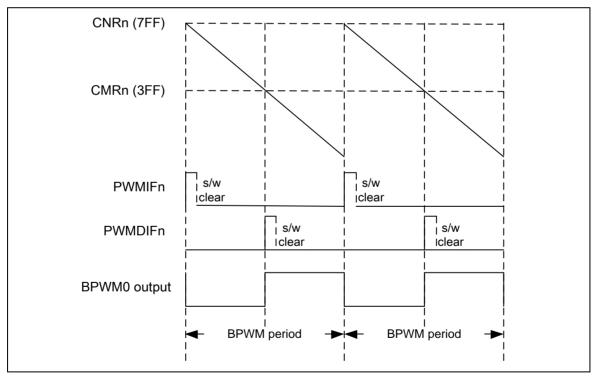


Figure 6-30 BPWM Edge-aligned Interrupt Generate Timing Waveform

6.7.5.2 Center-aligned BPWM (up/down-counter)

The Center-aligned BPWM signals are produced by the module when the BPWM time base is configured in an Up/Down Counting mode. The BPWM counter will start counting-up from zero to the value of CNRn register and then start counting down to zero to finish a BPWM period, then restart next BPWM period again if auto-reload mode is enabled (CHnMOD bit is 1 in PCR register). The value of BPWM counter will be compared with comparator value (CMRn register) to

control output level of BPWM generator. The BPWM generator will output low when the value of BPWM counter is larger than comparator value and output high when the value of BPWM counter is equal or smaller than comparator value. Once the BPWM counter underflows the new period and comparator value will take effect when BPWM timer is operating at auto-reload mode.

In Center-aligned type, the BPWM period interrupt is requested at down-counter underflow if INTTYPE (PIER[16]) =0, i.e. at start (end) of each BPWM cycle or at up-counter matching with CNRn if INTTYPE (PIER[16]) =1, i.e. at center point of BPWM cycle.

- BPWM frequency = BPWM0_CLK/[(prescale+1)*(clock divider)*(CNR+1)].
- Duty ratio = [(2 x CMR) + 1]/[2 x (CNR+1)]
- CMR > CNR: BPWM output is always high
- CMR <= CNR: BPWM low width= 2 x (CNR-CMR) + 1 unit^[1]; BPWM high width = (2 x CMR) + 1 unit
- CMR = 0: BPWM low width = 2 x CNR + 1 unit; BPWM high width = 1 unit

Note: [1] Unit = one BPWM clock cycle.

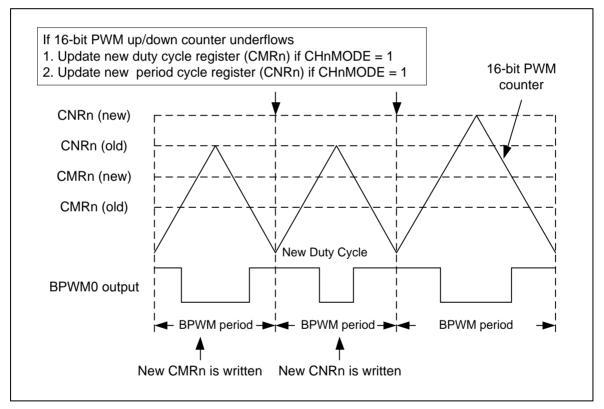


Figure 6-31 Center-aligned Type Output Waveform

In Center-aligned type, system can generate period interrupt, at two specified timings. BPWM period interrupt is generated at counter equals zero on down-count if INTTYPE (PIER[16]) = 0 or at counter equals CNRn on up-count if INTTYPE (PIER[16]) = 1, i.e. at center point of BPWM cycle.

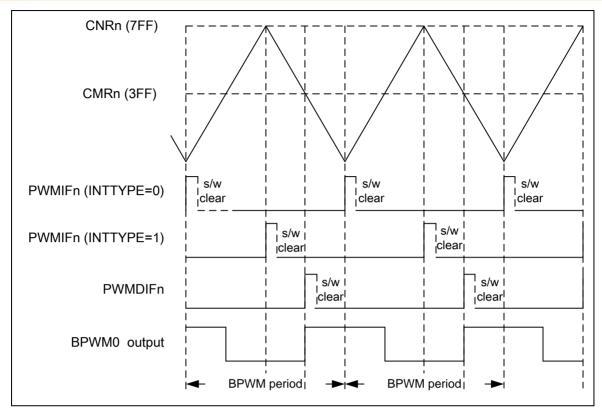


Figure 6-32 BPWM Center-aligned Interrupt Generate Timing Waveform

6.7.5.3 BPWM Double Buffering, Auto-reload and One-shot Operation

To prevent BPWM driving output pin with unsteady waveform, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers, the reload value is updated at the start of next period without affecting current timer operation and avoids glitch at BPWM outputs. The BPWM counter value can be written into CNRn and the current BPWM counter value can be read from PDRn.

BPWM0_CH0 will operate in One-shot mode if CH0MOD bit is set to 0, and operate in Autoreload mode if CH0MOD bit is set to 1. It is recommend that switch BPWM0_CH0 operating mode before set CH0EN bit to 1 to enable BPWM0_CH0 counter start running because the content of CNR0 and CMR0 will be cleared to 0 to reset the BPWM0_CH0 period and duty setting when BPWM0_CH0 operating mode is changed. As BPWM0_CH0 operate in One-shot mode, CNR0 and CMR0 should be written first and then set CH0EN bit to 1 to enable BPWM0_CH0 counter start running. After BPWM0_CH0 counter down count from CNR0 value to 0, CNR0 and CMR0 will be cleared to 0 by hardware and BPWM counter will be held. Software need to write new CNR0 and CMR0 value to set next one-shot period and duty. When re-start next one-shot operation, the CMR0 should be written first, because BPWM0_CH0 counter will auto re-start counting when CNR0 is written a non-zero value. As BPWM0_CH0 operates at auto-reload mode, CNR0 and CMR0 should be written first and then set CH0EN bit to 1 to enable BPWM0_CH0 counter start running. The value of CNR0 will reload to BPWM0_CH0 counter when it down count reaches 0. If CNR0 is set to 0, BPWM0_CH0 counter will be held. BPWM0_CH1 performs the same function as BPWM0_CH0.

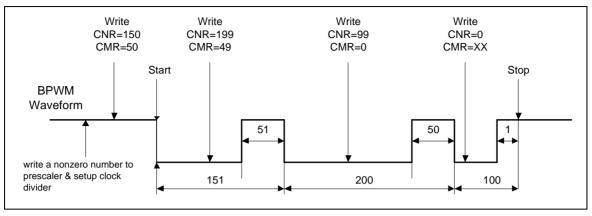


Figure 6-33 BPWM Double Buffering Illustration

6.7.5.4 Modulate Duty Ratio

The double buffering function allows CMRn written at any point in current cycle. The loaded value will take effect from next cycle.

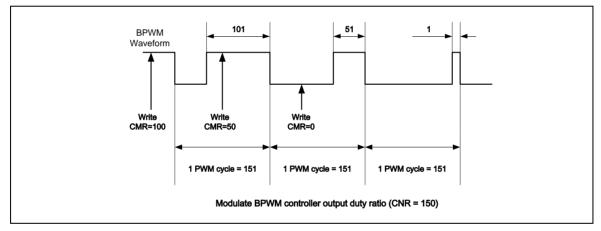


Figure 6-34 BPWM Controller Output Duty Ratio

6.7.5.5 Dead-Zone Generator

The dead-zone generator inserts an "off" period called "dead-zone" between the turnings off of one pin to the turning on of the complementary pin of the paired pins. This is to prevent damage to the power switching devices that will be connected to the BPWM output pins. The complementary output pair mode has an 8-bit down counter DZI01 (PPR[23:16]) used to produce the dead-zone insertion. The complementary outputs are delayed until the timer counts down to zero.

The dead-zone can be calculated from the following formula:

Dead-Zone = BPWM0_CLK * (DZI01 (PPR[23:16]) +1).

The timing diagram Figure 6-35 indicates the dead-zone insertion for pair of BPWM signals

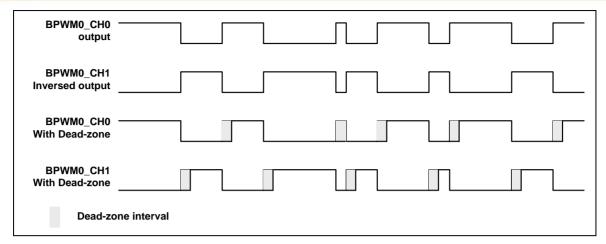


Figure 6-35 Paired-BPWM Output with Dead-zone Generation Operation

In Power inverter applications, a dead-zone insertion avoids the upper and lower switches of the half bridge from being active at the same time. Hence the dead-zone control is crucial to proper operation of a system. Some amount of time must be provided between turning off of one BPWM output in a complementary pair and turning on the other transistor as the power output devices cannot switch instantaneously.

6.7.5.6 Polarity Control

BPWM0_CH0 and BPWM0_CH1 have independent polarity control to configure the polarity of active state of BPWM output. By default, the BPWM output is active high.

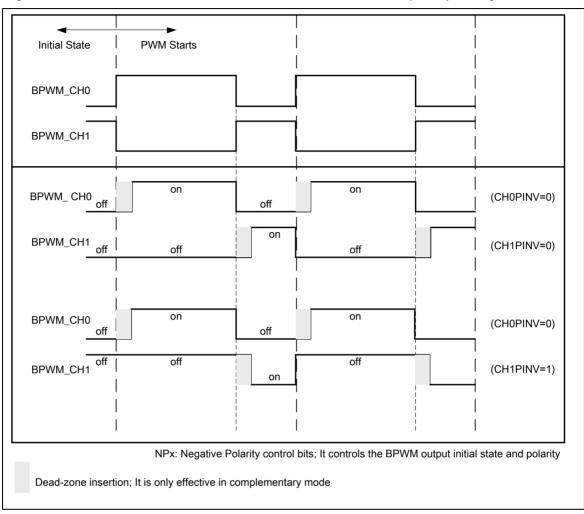


Figure 6-36 shows the initial state before BPWM starts with different polarity settings.

Figure 6-36 Initial State and Polarity Control with Rising Edge Dead-zone Insertion

6.7.5.7 BPWM Trigger EADC Function

BPWM can trigger EADC to start conversion when BPWM counter output has rising edge or, falling edge or count to period of edge-aligned, center-aligned mode or center of center-aligned mode.

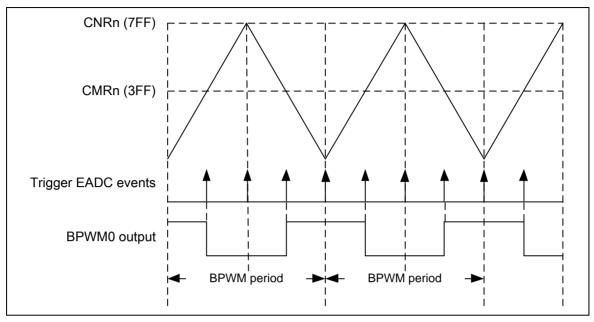
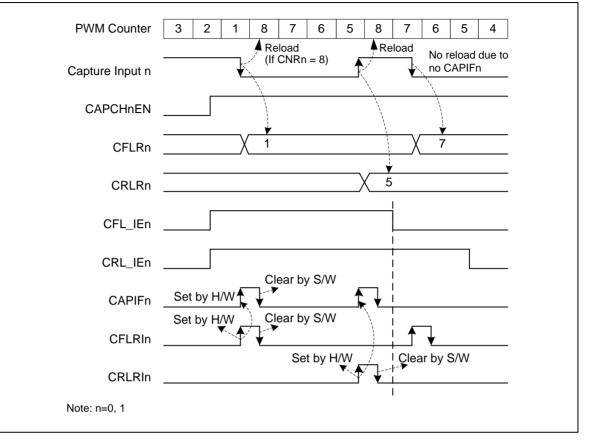


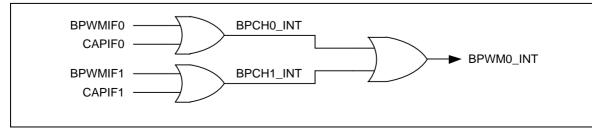
Figure 6-37 BPWM Trigger EADC Timing Diagram

6.7.5.8 Capture Operation

The alternate feature of the BPWM-timer is digital input Capture function. The Capture input channel 0 and output channel 0 share one timer and pin (BPWM0_CH0); and the Capture input channel 1 and output channel 1 share another timer and pin (BPWM0_CH1). Therefore, BPWM function and Capture function in the same channel cannot be used at the same time. User must setup the BPWM-timer before enable Capture feature. After capture feature is enabled, the capture always latches BPWM-counter to Capture Rising Latch Register CRLRn when input channel has a rising transition and latches BPWM-counter to Capture Falling Latch Register CFLRn when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CRL_IE0 (CCR[1]) (Rising latch Interrupt enable) and CFL_IE0 (CCR[2]) (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture controller issues a capture interrupt, the corresponding BPWM counter will be reloaded with CNRn at this moment. Note that the corresponding GPIO pins must be configured as capture function (POE disabled and CAPENR enabled) for the corresponding capture channel.

The maximum captured frequency that BPWM can capture is confined by the capture interrupt latency. When capture interrupt occurred, software will perform at least three steps including: Read PIIR to get interrupt source and Read CRLRn/CFLRn (n=0, 1) to get capture value and finally write 1 to clear PIIR to zero. If interrupt latency takes time T0 to finish, the capture signal must not transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0.




Figure 6-38 Capture Operation Timing

In this case, the CNR is 8:

- 1. The BPWM counter will be reloaded with CNRn when a capture interrupt flag (CAPIFn) is set.
- 2. The channel low pulse width is (CNR + 1 CRLR).
- 3. The channel high pulse width is (CNR + 1 CFLR).

6.7.5.9 BPWM-Timer Interrupt Architecture

There are two BPWM interrupts, BPCH0_INT and BPCH1_INT. BPWM output function 0 and capture input function 0 share one interrupt; BPWM output function 1 and capture input function 1 share the same interrupt. Therefore, BPWM function and Capture function in the same channel cannot be used at the same time. Figure 6-39 demonstrates the architecture of BPWM Timer interrupts.

Figure 6-39 BPWM Interrupt Architecture Diagram

6.7.5.10 BPWM-Timer Start Procedure

The following procedure is recommended for starting a BPWM drive.

- 1. Set clock source divider select register (CSR)
- 2. Set prescaler register (PPR)
- 3. Set inverter on/off, dead-zone generator on/off, auto-reload/one-shot mode and Stop BPWM-timer from BPWM control register (PCR)
- 4. Set comparator register (CMR) for setting BPWM duty.
- 5. Set BPWM down-counter register (CNR) for setting BPWM period.
- 6. Set interrupt enable register (PIER) (optional)
- 7. Set the corresponding GPIO pins as BPWM function (set HZ_BPWM (PWMPOEN[4]) = 0, enable POE and disable CAPENR) for the corresponding BPWM channel.
- 8. Enable BPWM timer start running (Set CHnEN = 1 in PCR)

6.7.5.11 BPWM-Timer Re-Start Procedure in Single-shot mode

After BPWM waveform is generated once in BPWM One-shot mode, BPWM-Timer will be stopped automatically. The following procedure is recommended for re-starting BPWM single-shot waveform.

- Set comparator register (CMR) for setting BPWM duty.
- Set BPWM down-counter register (CNR) for setting BPWM period. After setting CNR, BPWM wave will be generated.

6.7.5.12 BPWM-Timer Stop Procedure

Method 1:

Set 16-bit counter (CNR) as 0, and monitor PDR (current value of 16-bit down-counter). When PDR reaches to 0, disable BPWM-Timer (CHnEN in PCR). *(Recommended)*

Method 2:

Set 16-bit counter (CNR) as 0. When interrupt request happened, disable BPWM-Timer (CHnEN in PCR). *(Recommended)*

Method 3:

Disable BPWM-Timer directly ((CHnEN in PCR). (Not recommended)

The reason why method 3 is not recommended is that disable CHnEN will immediately stop BPWM output signal and lead to change the duty of the BPWM output, this may cause damage to the control circuit of motor

6.7.5.13 Capture Start Procedure

1. Set clock source divider select register (CSR)

- 2. Set prescaler register (PPR)
- 3. Set channel enabled, rising/falling interrupt enable and input signal inverter on/off (CCR)
- 4. Set auto-reload mode, edge-aligned type and stop BPWM-timer (PCR)
- 5. Set BPWM down-counter (CNR)
- 6. Enable BPWM timer start running (Set CHnEN = 1 in PCR)
- 7. Set corresponding GPIO pins as capture function (set HZ_BPWM (PWMPOEN[4]) = 0, disable POE and enable CAPENR) for the corresponding BPWM channel.

6.7.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
BPWM0 Bas BPWM0_BA	e Address: = 0x4004_0000			
PPR	BPWM0_BA+0x00	R/W	BPWM0 Prescaler Register	0x0000_0000
CSR	BPWM0_BA+0x04	R/W	BPWM0 Clock Source Divider Select Register	0x0000_0000
PCR	BPWM0_BA+0x08	R/W	BPWM0 Control Register	0x0000_0000
CNR0	BPWM0_BA+0x0C	R/W	BPWM0 Counter Register 0	0x0000_0000
CMR0	BPWM0_BA+0x10	R/W	BPWM0 Comparator Register 0	0x0000_0000
PDR0	BPWM0_BA+0x14	R	BPWM0 Data Register 0	0x0000_0000
CNR1	BPWM0_BA+0x18	R/W	BPWM0 Counter Register 1	0x0000_0000
CMR1	BPWM0_BA+0x1C	R/W	BPWM0 Comparator Register 1	0x0000_0000
PDR1	BPWM0_BA+0x20	R	BPWM0 Data Register 1	0x0000_0000
PIER	BPWM0_BA+0x40	R/W	BPWM0 Interrupt Enable Register	0x0000_0000
PIIR	BPWM0_BA+0x44	R/W	BPWM0 Interrupt Indication Register	0x0000_0000
CCR	BPWM0_BA+0x50	R/W	BPWM0 Capture Control Register	0x0000_0000
CRLR0	BPWM0_BA+0x58	R	BPWM0 Capture Rising Latch Register (Channel 0)	0x0000_0000
CFLR0	BPWM0_BA+0x5C	R	BPWM0 Capture Falling Latch Register (Channel 0)	0x0000_0000
CRLR1	BPWM0_BA+0x60	R	BPWM0 Capture Rising Latch Register (Channel 1)	0x0000_0000
CFLR1	BPWM0_BA+0x64	R	BPWM0 Capture Falling Latch Register (Channel 1)	0x0000_0000
CAPENR	BPWM0_BA+0x78	R/W	BPWM0 Capture Input Enable Register	0x0000_0000
POE	BPWM0_BA+0x7C	R/W	BPWM0 Output Enable	0x0000_0000

6.7.7 Register Description

BPWM0 Prescaler Register (PPR)

Register	Offset	R/W	Description	Reset Value
PPR	BPWM0_BA+0x00	R/W	BPWM0 Prescaler Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			DZ	101			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	CP01						

Bits	Description	Description				
[31:24]	Reserved	Reserved.				
[23:16]	DZI01	Dead-zone Interval for Pair of Channel 0 and Channel 1 These 8-bit determine the Dead-zone length. The unit time of dead-zone length = [(prescale+1)*(clock source divider)] / BPWM0_CLK.				
[15:8]	Reserved	Reserved.				
[7:0]	CP01	Clock Prescaler Clock input is divided by (CP01 + 1) before it is fed to the corresponding BPWM-timer If CP01=0, then the clock prescaler 0 output clock will be stopped. So corresponding BPWM-timer will also be stopped.				

BPWM0 Clock Source Divider Select Register (CSR)

Register	Offset	R/W	Description	Reset Value
CSR	BPWM0_BA+0x04	R/W	BPWM0 Clock Source Divider Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved	Reserved CSR1			Reserved		CSR0	

Bits	Description	
[31:7]	Reserved	Reserved.
		BPWM Timer 1 Clock Source Divider Selection
		Select clock source divider for BPWM timer 1.
		000 = Input clock divided by 2.
[6:4]	CSR1	001 = Input clock divided by 4.
		010 = Input clock divided by 8.
		011 = Input clock divided by 16.
		100 = Input clock divided by 1.
[3]	Reserved	Reserved.
[2:0]	CSR0	BPWM Timer 0 Clock Source Divider Selection Select clock source divider for BPWM timer 0, please refer to CSR1

BPWM0 Control Register (PCR)

Register	Offset	R/W	Description	Reset Value
PCR	BPWM0_BA+0x08	R/W	BPWM0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	PWM01TYPE			Rese	erved		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved			CH1MOD	CH1INV	CH1PINV	CH1EN
7	6	5	4	3	2	1	0
Reserved DZEN			DZEN01	CH0MOD	CH0INV	CH0PINV	CH0EN

Bits	Description				
[31]	Reserved	Reserved.			
[30]	PWM01TYPE	BPWM0_CH0/1 Aligned Type Selection Bit 0 = Edge-aligned type. 1 = Center-aligned type.			
[29:12]	Reserved	Reserved.			
[11]	CH1MOD	 BPWM-timer 1 Auto-reload/One-shot Mode 0 = One-shot mode. 1 = Auto-reload mode. Note: If there is a transition at this bit, it will cause CNR1 and CMR1 be cleared. 			
[10]	CH1INV	BPWM-timer 1 Output Inverter Enable Bit 0 = Inverter Disabled. 1 = Inverter Enabled.			
[9]	CH1PINV	BPWM-timer 1 Output Polar Inverse Enable Bit 0 = BPWM0_CH1 output polar inverse Disabled. 1 = BPWM0_CH1 output polar inverse Enabled.			
[8]	CH1EN	BPWM-timer 1 Enable Bit 0 = Corresponding BPWM-Timer Stopped. 1 = Corresponding BPWM-Timer Start Running.			
[7:5]	Reserved	Reserved.			
[4]	DZEN01	Dead-zone 0 Generator Enable Bit 0 = Dead-zone 0 generator Disabled. 1 = Dead-zone 0 generator Enabled. Note: When Dead-zone generator is enabled, the pair of BPWM0_CH0 and BPWM0_CH1 becomes a complementary pair.			
[3]	CH0MOD	BPWM-timer 0 Auto-reload/One-shot Mode			

		0 = One-shot mode. 1 = Auto-reload mode. Note: If there is a transition at this bit, it will cause CNR0 and CMR0 be cleared.
[2]	CHOINV	BPWM-timer 0 Output Inverter Enable Bit 0 = Inverter Disabled. 1 = Inverter Enabled.
[1]	CHOPINV	BPWM-timer 0 Output Polar Inverse Enable Bit 0 = BPWM0_CH0 output polar inverse Disabled. 1 = BPWM0_CH0 output polar inverse Enabled.
[0]	CH0EN	BPWM-timer 0 Enable Bit 0 = The corresponding BPWM-Timer stops running. 1 = The corresponding BPWM-Timer starts running.

BPWM0 Counter Register 0-1 (CNR0-1)

Register	Offset	R/W	Description	Reset Value
CNR0	BPWM0_BA+0x0C	R/W	BPWM0 Counter Register 0	0x0000_0000
CNR1	BPWM0_BA+0x18	R/W	BPWM0 Counter Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	CNR						
7	6	5	4	3	2	1	0
	CNR						

Bits	Description						
[31:16]	Reserved	Reserved.					
		BPWM Timer Loaded Value					
		CNR determines the BPWM period.					
		BPWM frequency = BPWM0_CLK/[(prescale+1)*(clock divider)*(CNR+1)].					
		For Edge-aligned type:					
		• Duty ratio = (CMR+1)/(CNR+1).					
		• CMR >= CNR: BPWM output is always high.					
		• CMR < CNR: BPWM low width = (CNR-CMR) unit; BPWM high width = (CMR+1) unit.					
		• CMR = 0: BPWM low width = (CNR) unit; BPWM high width = 1 unit.					
[15:0]	CNR	For Center-aligned type:					
[10.0]	O	• Duty ratio = [(2 x CMR) + 1]/[2 x (CNR+1)].					
		• CMR > CNR: BPWM output is always high.					
		• CMR <= CNR: BPWM low width = 2 x (CNR-CMR) + 1 unit; BPWM high width = (2 x CMR) + 1 unit.					
		• CMR = 0: BPWM low width = 2 x CNR + 1 unit; BPWM high width = 1 unit.					
		(Unit = one BPWM clock cycle).					
		Note: Any write to CNR will take effect in next BPWM cycle.					
		Note: When BPWM operating at Center-aligned type, CNR value should be set between 0x0000 to 0xFFFE. If CNR equal to 0xFFFF, the BPWM will work unpredictable.					
		Note: When CNR value is set to 0, BPWM output is always high.					

BPWM0 Comparator Register 0-1 (CMR0-1)

Register	Offset	R/W	Description	Reset Value
CMR0	BPWM0_BA+0x10	R/W	BPWM0 Comparator Register 0	0x0000_0000
CMR1	BPWM0_BA+0x1C	R/W	BPWM0 Comparator Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	CMR						
7	6	5	4	3	2	1	0
	CMR						

Bits	Description	Description				
[31:16]	Reserved	Reserved.				
		BPWM Comparator Register				
		CMR determines the BPWM duty.				
		BPWM frequency = BPWM_CLK/[(prescale+1)*(clock divider)*(CNR+1)].				
		For Edge-aligned type:				
		 Duty ratio = (CMR+1)/(CNR+1). 				
		• CMR >= CNR: BPWM output is always high.				
		• CMR < CNR: BPWM low width = (CNR-CMR) unit; BPWM high width = (CMR+1) unit.				
[15:0]	CMR	• CMR = 0: BPWM low width = (CNR) unit; BPWM high width = 1 unit.				
		For Center-aligned type:				
		 Duty ratio = [(2 x CMR) + 1]/[2 x (CNR+1)]. 				
		• CMR > CNR: BPWM output is always high.				
		• CMR <= CNR: BPWM low width = 2 x (CNR-CMR) + 1 unit; BPWM high width = (2 x CMR) + 1 unit.				
		• CMR = 0: BPWM low width = 2 x CNR + 1 unit; BPWM high width = 1 unit.				
		(Unit = one BPWM clock cycle).				
		Note: Any write to CMR will take effect in next BPWM cycle.				

BPWM0 Data Register 0-1 (PDR 0-1)

Register	Offset	R/W	Description	Reset Value
PDR0	BPWM0_BA+0x14	R	BPWM0 Data Register 0	0x0000_0000
PDR1	BPWM0_BA+0x20	R	BPWM0 Data Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	PDR						
7	6	5	4	3	2	1	0
	PDR						

Bits	Description	Description			
[31:16]	Reserved Reserved.				
[15:0]	PDR	BPWM Data Register User can monitor PDR to know the current value in 16-bit counter.			

BPWM0 Interrupt Enable Register (PIER)

Register	Offset	R/W	Description	Reset Value
PIER	BPWM0_BA+0x40	R/W	BPWM0 Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						INTTYPE
15	14	13	12	11	10	9	8
		Rese	erved			BPWMDIE1	BPWMDIE0
7	6	5	4	3	2	1	0
	Reserved						BPWMPIE0

Bits	Description	
[31:17]	Reserved	Reserved.
[16]	INTTYPE	 BPWM Interrupt Period Type Selection Bit 0 = BPWMIFn will be set if BPWM counter underflow. 1 = BPWMIFn will be set if BPWM counter matches CNRn register. Note: This bit is effective when BPWM in Center-aligned type only.
[15:10]	Reserved	Reserved.
[9]	BPWMDIE1	BPWM Channel 1 Duty Interrupt Enable Bit 0 = BPWM0_CH1 duty interrupt Disabled. 1 = BPWM0_CH1 duty interrupt Enabled.
[8]	BPWMDIE0	BPWM Channel 0 Duty Interrupt Enable Bit 0 = BPWM0_CH0 duty interrupt Disabled. 1 = BPWM0_CH0 duty interrupt Enabled.
[7:2]	Reserved	Reserved.
[1]	BPWMPIE1	BPWM Channel 1 Period Interrupt Enable Bit 0 = BPWM0_CH1 period interrupt Disabled. 1 = BPWM0_CH1 period interrupt Enabled.
[0]	BPWMPIE0	BPWM Channel 0 Period Interrupt Enable Bit 0 = BPWM0_CH0 period interrupt Disabled. 1 = BPWM0_CH0 period interrupt Enabled.

BPWM0 Interrupt Indication Register (PIIR)

Register	Offset	R/W	Description	Reset Value
PIIR	BPWM0_BA+0x44	R/W	BPWM0 Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
		Rese	erved			BPWMDIF1	BPWMDIF0
7	6	5	4	3	2	1	0
	Reserved					BPWMIF1	BPWMIF0

Bits	Description	Description				
[31:10]	Reserved	Reserved.				
[9]	BPWMDIF1	BPWM Channel 1 Duty Interrupt Flag Flag is set by hardware when BPWM0_CH1 counter down count and reaches CMR1, software can clear this bit by writing a one to it. Note: If CMR equal to CNR, this flag is not working in Edge-aligned type selection				
[8]	BPWMDIF0	BPWM Channel 0 Duty Interrupt Flag Flag is set by hardware when BPWM0_CH0 counter down count and reaches CMR0, software can clear this bit by writing a one to it. Note: If CMR equal to CNR, this flag is not working in Edge-aligned type selection				
[7:2]	Reserved	Reserved.				
[1]	BPWMIF1	BPWM Channel 1 Period Interrupt Flag This bit is set by hardware when BPWM0_CH1 counter reaches the requirement of interrupt (depend on INTTYPE bit of PIER register). Note: This bit can be cleared by writing '1' to it.				
[0]	BPWMIF0	BPWM Channel 0 Period Interrupt Flag This bit is set by hardware when BPWM0_CH0 counter reaches the requirement of interrupt (depend on INTTYPE bit of PIER register). Note: This bit can be cleared by writing '1' to it.				

Note: User can clear each interrupt flag by writing 1 to corresponding bit in PIIR.

BWM0 Capture Control Register (CCR)

Register	Offset	R/W	Des	scription				Reset Value
CCR	BPWM0_BA+0x	(50 R/W	BP	WM0 Capture C	ontrol Register			0x0000_0000
31	30	29		28	27	26	25	24
	Reserved							
23	22	21		20	19	18	17	16
CFLRI1	CRLRI1	Reserved		CAPIF1	CAPCH1EN	CFL_IE1	CRL_IE1	INV1
15	14	13		12	11	10	9	8
	Reserved							
7	6	5		4	3	2	1	0
CFLRI0	CRLRI0	Reserve	d	CAPIF0	CAPCH0EN	CFL_IE0	CRL_IE0	INV0

Bits	Description	
[31:24]	Reserved	Reserved.
[23]	CFLRI1	CFLR1 Latched Indicator Bit When BPWM0 input channel 1 has a falling transition, CFLR1 was latched with the value of BPWM0 down-counter and this bit is set by hardware. Note: This bit can be cleared by writing '1' to it.
[22]	CRLRI1	CRLR1 Latched Indicator Bit When BPWM0 input channel 1 has a rising transition, CRLR1 was latched with the value of BPWM0 down-counter and this bit is set by hardware. Note: This bit can be cleared by writing '1' to it.
[5]	Reserved	Reserved.
[20]	CAPIF1	Channel 1 Capture Interrupt Indication Flag If BPWM0_CH1 rising latch interrupt is enabled (CRL_IE1 = 1), a rising transition occurs at BPWM0_CH1 will result in CAPIF1 to high; Similarly, a falling transition will cause CAPIF1 to be set high if BPWM0_CH1 falling latch interrupt is enabled (CFL_IE1 = 1). Note: This bit can be cleared by writing '1' to it.
[19]	CAPCH1EN	Channel 1 Capture Function Enable Bit 0 = Capture function on BPWM0_CH1 Disabled. 1 = Capture function on BPWM0_CH1 Enabled. When Enabled, Capture latched the BPWM0-counter and saved to CRLR (Rising latch) and CFLR (Falling latch). When disabled, capture does not update CRLR and CFLR, and disable BPWM0_CH1 interrupt.
[18]	CFL_IE1	Channel 1 Falling Latch Interrupt Enable Bit 0 = Falling latch interrupt Disabled. 1 = Falling latch interrupt Enabled. When enabled, if capture detects BPWM0_CH1 has falling transition, capture will issue an interrupt.
[17]	CRL_IE1	Channel 1 Rising Latch Interrupt Enable Bit 0 = Rising latch interrupt Disabled.

		1 = Rising latch interrupt Enabled.
		When enabled, if capture detects BPWM0_CH1 has rising transition, capture will issue an interrupt.
		Channel 1 Inverter Enable Bit
[16]	INV1	0 = Inverter Disabled.
		1 = Inverter Enabled. Reverse the input signal from GPIO before fed to capture timer
[15:8]	Reserved	Reserved.
		CFLR0 Latched Indicator Bit
[7]	CFLR10	When BPWM0 input channel 0 has a falling transition, CFLR0 was latched with the value of BPWM0 down-counter and this bit is set by hardware.
		Note: This bit can be cleared by writing '1' to it.
		CRLR0 Latched Indicator Bit
[6]	CRLRIO	When BPWM0 input channel 0 has a rising transition, CRLR0 was latched with the value of BPWM0 down-counter and this bit is set by hardware.
		Note: This bit can be cleared by writing '1' to it.
[5]	Reserved	Reserved.
		Channel 0 Capture Interrupt Indication Flag
[4]	CAPIF0	If BPWM0_CH0 rising latch interrupt is enabled (CRL_IE0 = 1), a rising transition occurs at BPWM0_CH0 will result in CAPIF0 to high; Similarly, a falling transition will cause CAPIF0 to be set high if BPWM0_CH0 falling latch interrupt is enabled (CFL_IE0 = 1).
		Note: This bit can be cleared by writing '1' to it.
		Channel 0 Capture Function Enable Bit
		0 = Capture function on BPWM0_CH0 Disabled.
		1 = Capture function on BPWM0_CH0 Enabled.
[3]	CAPCH0EN	When enabled, capture latched the BPWM0-counter value and saved to CRLR (Rising latch) and CFLR (Falling latch).
		When disabled, capture does not update CRLR and CFLR, and disable BPWM0 channel 0 Interrupt.
		Channel 0 Falling Latch Interrupt Enable Bit
		0 = Falling latch interrupt Disabled.
[2]	CFL_IE0	1 = Falling latch interrupt Enabled.
		When Enabled, if Capture detects BPWM0 channel 0 has falling transition, Capture will issue an Interrupt.
		Channel 0 Rising Latch Interrupt Enable Bit
		0 = Rising latch interrupt Disabled.
[1]	CRL_IE0	1 = Rising latch interrupt Enabled.
		When Enabled, if capture detects BPWM0 channel 0 has rising transition, capture will issue an interrupt.
		Channel 0 Inverter Enable Bit
[0]	INV0	0 = Inverter Disabled.
		1 = Inverter Enabled. Reverse the input signal from GPIO before fed to capture timer

BPWM0 Capture Rising Latch Register 0-1 (CRLR0-1)

Register	Offset	R/W	Description	Reset Value
CRLR0	BPWM0_BA+0x58	R	BPWM0 Capture Rising Latch Register (Channel 0)	0x0000_0000
CRLR1	BPWM0_BA+0x60	R	BPWM0 Capture Rising Latch Register (Channel 1)	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	CRLR						
7	6	5	4	3	2	1	0
	CRLR						

Bits	Description	lescription			
[31:16]	Reserved	eserved Reserved.			
[15:0]	ICRLR	Capture Rising Latch Register Latch the BPWM0 counter when Channel 0/1 has rising transition.			

BPWM0 Capture Falling Latch Register 0-1 (CFLR0-1)

Register	Offset	R/W	Description	Reset Value
CFLR0	BPWM0_BA+0x5C	R	BPWM0 Capture Falling Latch Register (Channel 0)	0x0000_0000
CFLR1	BPWM0_BA+0x64	R	BPWM0 Capture Falling Latch Register (Channel 1)	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	CFLR								
7	6	5	4	3	2	1	0		
	CFLR								

Bi	its	Description	Description			
[3	1:16]	Reserved	Reserved.			
[1:	5:0]	CFLR	Capture Falling Latch Register Latch the BPWM0 counter when Channel 0/1 has Falling transition.			

BPWM0 Capture Input Enable Register (CAPENR)

Register	Offset	R/W	Description	Reset Value
CAPENR	BPWM0_BA+0x78	R/W	BPWM0 Capture Input Enable Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	7 6 5 4 3 2							
	Reserved					CINEN1	CINEN0	

Bits	Description	Description				
[31:2]	Reserved	Reserved.				
		Channel 1 Capture Input Enable Bit				
[1]	CINEN1	0 = BPWM0_CH1 capture input path Disabled. The input of BPWM0_CH1 capture function is always regarded as 0.				
		1 = BPWM0_CH1 capture input path Enabled. The input of BPWM0_CH1 capture function comes from correlative multifunction pin if GPIO multi-function is set as BPWM0_CH1.				
		Channel 0 Capture Input Enable Bit				
[0] CINENO	CINEN0	0 = BPWM0_CH0 capture input path Disabled. The input of BPWM0_CH0 capture function is always regarded as 0.				
	1 = BPWM0_CH0 capture input path Enabled. The input of BPWM0_CH0 capture function comes from correlative multifunction pin if GPIO multi-function is set as BPWM0_CH0.					

BPM0 Output Enable Register (POE)

Register	Offset	R/W	Description	Reset Value
POE	BPWM0_BA+0x7C	R/W	BPWM0 Output Enable	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	1	0					
	Reserved					POE1	POE0	

Bits	Description	Description				
[31:2]	Reserved	Reserved.				
[1]	POE1	Channel 1 Output Enable Bit 0 = BPWM0_CH1 output to pin Disabled. 1 = BPWM0_CH1 output to pin Enabled. Note: The corresponding GPIO pin must also be switched to BPWM0 function				
[0]	POE0	Channel 0 Output Enable Bit 0 = BPWM0_CH0 output to pin Disabled. 1 = BPWM0_CH0 output to pin Enabled. Note: The corresponding GPIO pin must also be switched to BPWM0 function				

6.8 Enhanced PWM Generator (EPWM)

6.8.1 Overview

This device has two built-in PWM units with the same architecture whose function is specially designed for driving motor control applications.

6.8.2 Features

Each unit supports the features below:

- Three independent 16-bit PWM duty control units with maximum 6 port pins:
 - 3 independent PWM output: EPWM0_CH0, EPWM0_CH2 and EPWM0_CH4 for Unit 0 EPWM1_CH0, EPWM1_CH2 and EPWM1_CH4 for Unit 1
 - 3 complementary PWM pairs, with each pin in a pair mutually complement to each other and capable of programmable dead-time insertion: (EPWMx_CH0, EPWMx_CH1), (PWMx_CH2, EPWMx_CH3) and (EPWMx_CH4, EPWMx_CH5) where x=0~1.
 - 3 synchronous PWM pairs, with each pin in a pair in-phase: (EPWMx_CH0, EPWMx_CH1), (EPWMx_CH2, EPWMx_CH3) and (EPWMx_CH4, EPWMx_CH5) where x=0~1
- Group control bits: EPWMx_CH2 and EPWMx_CH4 are synchronized with EPWMx_CH0
- Supports Edge aligned mode and Center aligned mode
- Programmable dead-time insertion between complementary paired PWMs
- Each pin of EPWMx_CH0 to EPWMx_CH5 has independent polarity setting control
- Mask output control for Electrically Commutated Motor operation
- Tri-state output at reset and brake state
- Hardware brake protection
- Two Interrupt Sources:
 - Interrupt is synchronously requested at PWM frequency when up/down counter comparison matched (edge and center aligned modes) or underflow (center aligned mode).
 - Interrupt is requested when external brake pins asserted
- PWM signals before polarity control stage are defined in the view of positive logic. The PWM ports is active high or active low are controlled by polarity control register.
- High Source/Sink current.
- Supports trigger EADC

6.8.3 Block Diagram

After CPU reset, the internal output of the each PWM channels depends on the polarity setting. The interval between successive outputs is controlled by a 16–bit up/down counter which uses a software selectable clock source with configurable internal clock pre-scalar as its input. The PWM counter clock has the frequency as the clock source F_{PWM} = EPWMx_CLK/Pre-scalar; Here the EPWMx_CLK synchronized with CPU clock HCLK.

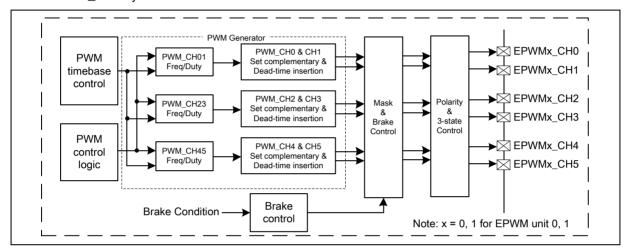
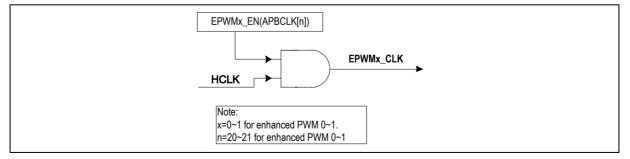


Figure 6-40 EPWM Block Diagram


6.8.4 Basic Configuration

The EPWM pin functions are configured in P0_MFP and P1_MFP Multiple Function Registers.

The peripheral clock source of EPWM can be enabled in EPWM0_EN (APBCLK[20]) and EPWM1_EN (APBCLK[21]).

6.8.5 Function Description

Figure 6-41 shows the EPWM clock source control and PWM time-base generator.

M0519

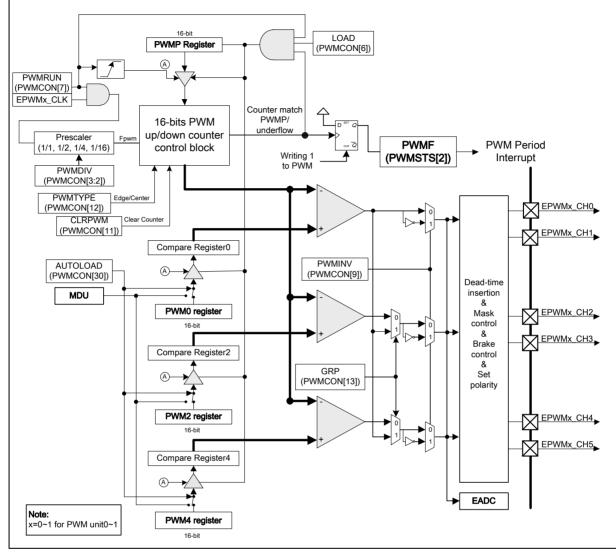


Figure 6-42 PWM Time-base Generator

The overall functioning of the PWM module is controlled by the contents of the PWMCONx0, PWMB and PWMCON registers. The operation of most of the control bits is straightforward. PWMRUN (PWMCON[7]) allows the PWM to be either in the run or idle state. The transfer of the data from the PWMP register to 16-bit PWM counter will occur on the rising edge of PWMRUN or during PWMRUN with LOAD (PWMCON[6]) and PWM counter match/underflow occurs. The transfer of the data from the PWMn registers to the compare registers is controlled by the Load bit (PWMCON [6]) (with the condition that PWMRUN = 1 and match/underflow occurs).

Note:

1. A compare value greater than the counter reloaded value resulted in the PWM output being permanently high. In addition there are two special cases. If compare register is set to 0x0000, the PWM_CHn output will stay at low, and if compare register is set to 0xFFFF, the PWM_CHn output will stuck at high until there is a change in the compare register. [n = 0-5].

2. During ICP, ISP or ICE mode, PWM pins will be tri-stated. PWM operation will stop and module reset. When exit from ICP, ISP or ICE mode, the PWM pins will follow the control register settings.

3. In ICE mode, the condition which causes CPU stops or pauses running will force the PWM_CHn output pins in tri-stated, when CPU runs the PWM_CHn pins will follow the control register settings.

When a PWM period value is written to the PWMP register by software, the value is saved in the holding register first, and then the value of the holding register will be reloaded to the actual PWM period when the following conditions are met: LOAD (PWMCON[6]) = 1, PWMRUN (PWMCON[7]) = 1 and PWM match/underflow. The width of each PWM output pulse is determined by the value in the appropriate compare register. Each PWM registers of PWMP, PWM0, PWM2 and PWM4, in the format of 16-bit width, decides the PWM period and each channel's duty cycle. If the PWMINV (PWMCON[9]) (Inverse PWM Comparator Output) is set to high the PWM comparator output signals will be inversed, therefore the PWM Duty (in percentage) is changed to (1-Duty) and PWM Duty registers, PWM0/2/4 represent Duty-off time.

Note that the duty registers PWM0/2/4 and the period registers PWMP are double-buffered registers used to set the duty cycle and counting period for the PWM time base respectively. For the 1st buffer it is accessible by user while the 2nd buffer holds the actual compare value used in the present period. Load bit must be set to 1 to enable the 1st buffer value to be loaded in to the 2nd buffer register when counter underflow/match.

6.8.5.1 PWM Operation Mode

This device supports two operation modes: Edge-aligned and Center-aligned mode.

The following equations show the formula for period and duty for each PWM operation mode:

Edge-aligned:

Period = (PWMP +1) * EPWMx_CLK period/pre-scalar

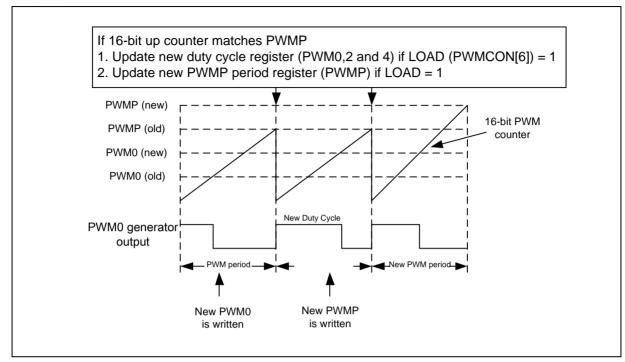
Duty = (duty + 1) * EPWMx_CLK period /pre-scalar

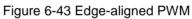
Center-aligned:

Period = (PWMP* 2) * EPWMx_CLK period/pre-scalar

Duty = (duty*2 + 1) * EPWMx_CLK period/pre-scalar

Note: "duty" refers to PWM0/2/4/6 register value.


Edge aligned PWM (Up Counter)


In Edge-aligned PWM output mode, the 16-bits PWM counter will start counting from zero to period value (PWMP register) to finish a PWM period, then restart counting from zero to period value again. The value of PWM counter will be compared with duty value (PWMn register) to control output level of PWM generator. The PWM generator will output low when the value of PWM counter is larger than duty value and output high when the value of PWM counter is equal or smaller than duty value.

The PWM period interrupt (PWMF (PWMSTS[2])) will be triggered by setting PWMI_En (PWMCON[4]) to 1, and PWM edge interrupt (PWMnEF (PWMSTS[6:4])) will be triggered by setting PWMnEI_EN (PWMEIC[2:0]) to 1.

The PWM period and duty control are configured by PWM period register (PWMP) and PWM duty register (PWMn). The new period and duty value will take effect at the start of next period if LOAD (PWMCON[6]) is set to 1.

Figure 6-43, Figure 6-44 and Figure 6-45 depict the Edge-aligned PWM timing and operation flow.

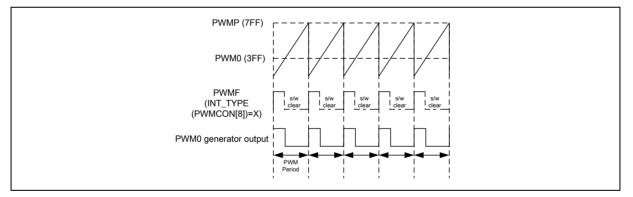


Figure 6-44 PWM0 Edge aligned Waveform Output

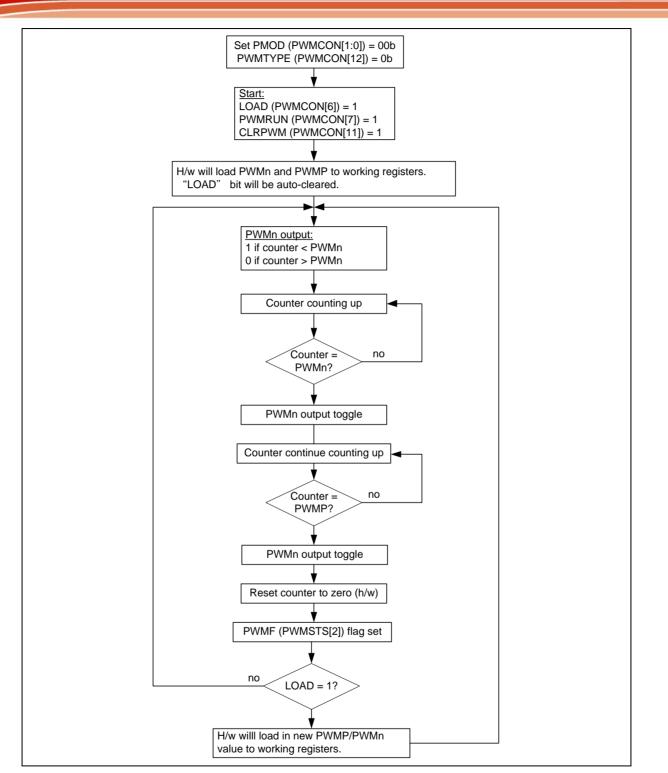


Figure 6-45 Edge-aligned Flow Diagram

Center-Aligned PWM (up/down counter)

The Center-aligned PWM signals are produced by the module when the PWM time base is configured in Up/Down Counting mode. The PWM counter will start counting-up from zero to the value of PWMP register and then start counting down to zero to finish a PWM period, then restart next PWM period again. The value of PWM counter will be compared with duty value (PWMn register) to control output level of PWM generator. The PWM generator will output low when the value of PWM counter is larger than duty value and output high when the value of PWM counter is equal or smaller than comparator value. Once the PWM counter underflows the new period and duty value will take effect if LOAD (PWMCON[6]) is set to 1.

In Center-aligned mode, the PWM interrupt is requested at down-counter underflow if INT_TYPE (PWMCON0[8]) =0, i.e. at start (end) of each PWM cycle or at up-counter matching with PWMP if INT_TYPE (PWMCON0[0]) =1, i.e. at center point of PWM cycle.

Figure 6-46, Figure 6-47 and Figure 6-48depict the Center-aligned PWM timing and operation flow.

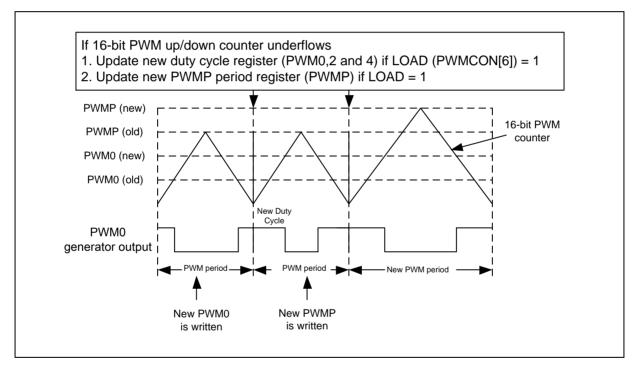


Figure 6-46 Center-aligned Mode

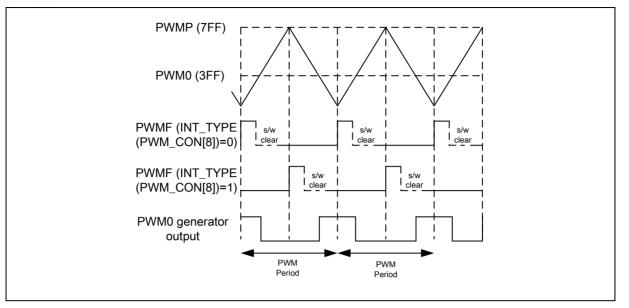


Figure 6-47 Example PWM0 Center-aligned Waveform Output

nuvoton

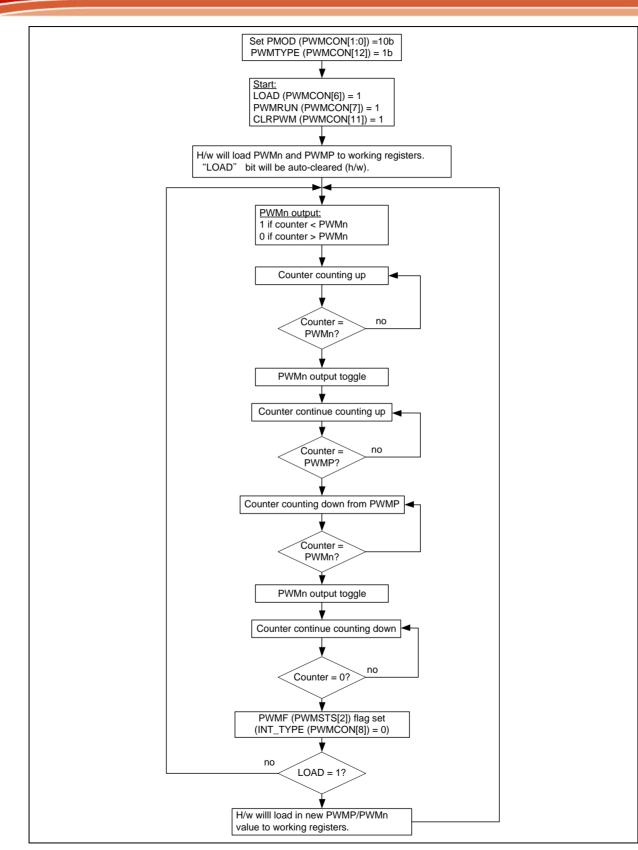


Figure 6-48 Center-aligned Flow Diagram (INT_TYPE = 0)

6.8.5.2 PWM Brake

This device supports two brake detectors, BK0 and BK1, and each of them has 4 brake signals, one external brake pin (EPWMx_BRAKE0 for BK0 and EPWMx_BRAKE1 for BK1), and three analog comparator outputs. Both external brake pins have each 4-degree digital filter that is user controllable through BKxFILT (PWMCON[23:20]) (x=0 and 1 for BK0 and BK1). The Brake function is controlled by the contents of PWMCON register.

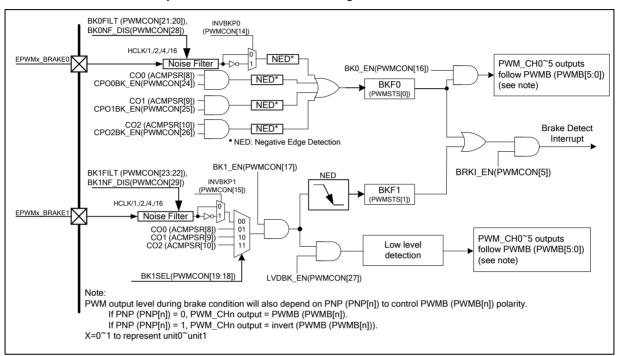


Figure 6-49 PWM Brake Function

Table 6-10 summarizes the effect of each brake pins. Figure 6-50 and Figure 6-51 illustrate the brake signals vs. PWM operation.

Brake Source	Brake Trigger Condition	Actions
BKP0 (I/O pin);	A falling edge at brake 0 edge detector.	• BKF0 (PWMSTS[0]) and BKLK0 (PWMSTS[8]) flags set by the falling edge at brake 0 edge detector; but cleared by S/W.
CO0 (ACMPSR[8]) (Comparator0 output);		• PWM_CH0~5 outputs follow PWMB (PWMB[n]) bits. PNP (PNP[n]) bits are also able to control the polarity of PWMB.
CO1 (ACMPSR[9]) (Comparator1 output);		If PNP (PNP[n])=0, PWMn pin output = PWMB (PWMB[n]). If PNP (PNP[n])=1, PWMn pin output = invert(PWMB (PWMB[n])).
CO2 (ACMPSR[10]) (Comparator2 output)		• PWM_CH0~5 output will keep in PWMB (PWMB[n]) state before BKLK0 (PWMSTS[8]) flag is cleared by S/W.
		• PWMRUN (PWMCON[7]) bit remain asserted to keep PWM generators running.
		• If the BKLK0 (PWMSTS[8]) flag is cleared, the brake state will be released on next PWM cycle/period.
		• If PWMRUN (PWMCON[7]) is cleared to 0 before the BKLK0 (PWMSTS[8]) flag is cleared, PWM_CH0~5 output will remain in PWMB (PWMB[5:0]) state.

BKP1 (I/O pin);	A falling edge at brake 1 edge detector;	 BKF1 (PWMSTS[1]) flag is set by the falling edge at brake 1 edge detector; but cleared by S/W.
CO0 (ACMPSR[8]) (Comparator0 output);	Low level state	 If LVDBK_EN (PWMCON[27])=1 and Brake 1 signal detected as low level, PWM0~5 pin outputs follow PWMB (PWMB[5:0]) bits.
CO1 (ACMPSR[9]) (Comparator1 output);		Otherwise, PWM_CH0~5 output will continue follow PWM generators' output. In both situations, PNP (PNP[5:0]) bits are also able to control port polarity.
CO2 (ACMPSR[10]) (Comparator2 output)		 PWMRUN (PWMCON[7]) bit remain asserted to keep PWM generators running.
		 PWM_CH0~5 resume if EPWMx_BRAKE1 (x=0~1) pin state returns to high state. PWM_CH0~5 will resume on start of next PWM cycle/period.

Table 6-10 Brake Source, Condition and Action

Note: The brake enable bits, BK0_EN and BK1_EN, must be set in order for the above to be effective.

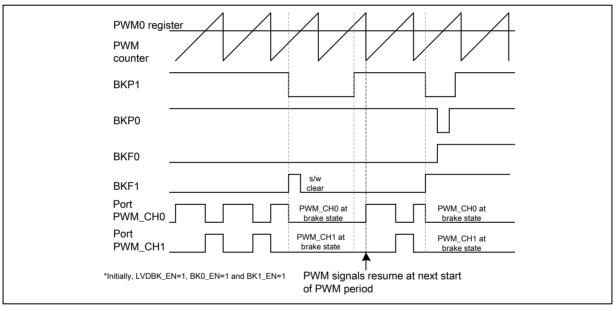


Figure 6-50 PWM Brake Condition (Edge-aligned Mode)

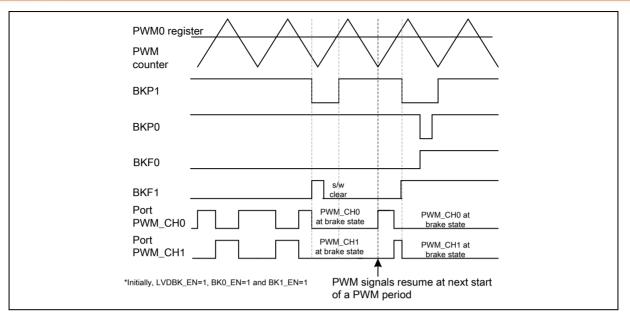


Figure 6-51 PWM Brake Condition (Center-aligned Mode)

Since both brake conditions being asserted will automatically cause BKFn flag to be set, the user program can poll these brake flag bits or enable PWM's brake interrupt to determine which condition will cause a brake to occur.

6.8.5.3 PWM Port Output Driving Control

There are two enhanced PWM units and each unit has six output pins in this device. The PWM port outputs are P0.0~P0.5 and P1.0~P1.5 for unit 0 and unit 1, respectively.

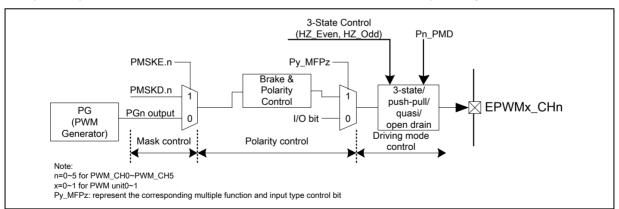


Figure 6-52 PWM Output Driving Control

The driving type of PWM output ports can be initialized as Tri-state type or other types depending on the Pn_PMD register setting after any reset. As shown in the figure above, the PWM output structures are controllable through config-bit, register bits HZ Even0/1 (PWMPOEN[0, 2]), Hz_Odd0/1 (PWMPOEN[1, 3] and Pn_PMD mode registers.

	HZ_Even/HZ_Odd	Even/Odd PWM Outputs Drive	Mode
Nov 02 2016		Page 272 of 524	Pov 1.02

(In PWMPOEN Register)	
0	Depending on Pn_PMD
1	Driving mode = Hi-Z.

Table 6-11 Even/Odd Outputs Drive Mode

Note: Register bits for HZ_Even and HZ_Odd are latched from config0 during all reset.

6.8.5.4 PWM Modes

This powerful PWM unit supports Independent mode which may be applied to DC and BLDC motor system, Complementary mode with dead-time insertion which may be used in the application of AC induction motor and synchronous motor, Synchronous mode that makes both pins of each pair are in phase. Besides, the Group mode, forces the PWM0, PWM2 and PWM4 synchronous with PWM0 generator, may simplify updating duty control in DC and BLDC motor applications.

6.8.5.4.1 Independent Mode

Independent mode is enabled when PMOD (PWMCON[1:0]) = 00b.

By default, the PWM is operating in Independent mode with three PWM even channels outputs: PWM0, PWM2 and PWM4. Each channel is running off its own duty-cycle generator module. The states of PWM1, PWM3 and PWM5 are reset to 0 by default if PWM Mask output function is not enabled (PMSKE (PMSKE[5:0]) =0x00).

6.8.5.4.2 Complementary Mode

Complementary mode is enabled when PMOD (PWMCON[1:0]) = 01b.

In this module there are three duty-cycle generators utilized for complementary mode, with total of three PWM output pair pins in this module. The total six PWM outputs are grouped into output pairs of even and odd numbered outputs. In complementary modes, the internal odd PWM signal PGx must always be the complement of the corresponding even PWM signal. For example, PG1 will be the complement of PG0. PG3 will be the complement of PG2 and PG5 will be the complement of PG4. The time base for the PWM module is provided by its own 16-bit timer, which also incorporates selectable pre-scalar options.

6.8.5.5 Dead-Time Insertion

The dead time generator inserts an "off" period called "dead time" between the turnings off of one pin to the turning on of the complementary pin of the paired pins. This is to prevent damage to the power switching devices that will be connected to the PWM output pins. The complementary output pair mode has an 11-bit down counter used to produce the dead time insertion. The complementary outputs are delayed until the timer counts down to 0.

The dead-time can be calculated from the following formula:

Dead-time = EPWMx_CLK * (DTCNT (PDTC[10:0])+1).

The timing diagram Figure 6-53 indicates the dead time insertion for one pair of PWM signals.

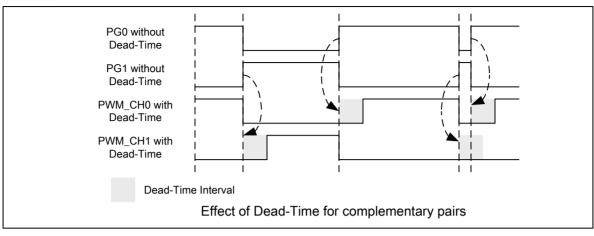


Figure 6-53 Dead-Time Insertion

The PWM Dead-time Control Register, PDTC, has write-protection. In the power inverter applications, a dead time insertion avoids the upper and lower switches of the half bridge from being active at the same time. Hence the dead time control is crucial to proper operation of a system. Some amount of time must be provided between turning off of one PWM output in a complementary pair and turning on the other transistor as the power output devices cannot switch instantaneously.

6.8.5.6 Synchronous Mode

Synchronous mode is enabled when PMOD (PWMCON[1:0]) = 10b.

In the synchronization mode the PWM pair signals from PWM Generator are in-phase.

PG1=PG0, PG3=PG2 and PG5=PG4.

6.8.5.7 Group Mode

Group mode is enabled when GRP (PWMCON[13]) = 1.

This device supports Group Mode control. This control allows all even PWM channels output to be duty controllable by PWM0 duty register.

If GRP = 1, both (PG2, PG3) and (PG4, PG5) pairs will follow (PG0, PG1), which imply;

PG4 = PG2 = PG0;

PG5 = PG3 = PG1 = invert (PG0) if Complementary mode is enabled (PMOD (PWMCON[1:0])=01b)

6.8.5.8 Polarity Control

Each PWM port of from PWM_CH0 to PWM_CH5 has independent polarity control to configure the polarity of active state of PWM output. By default, the PWM output is active high. This implies the PWM OFF state is low and ON state is high. This is controllable through the PWM Negative Polarity Control Register, PNPC, on each individual PWM channel.

Figure 6-54 shows the initial state before PWM starts with different polarity settings.

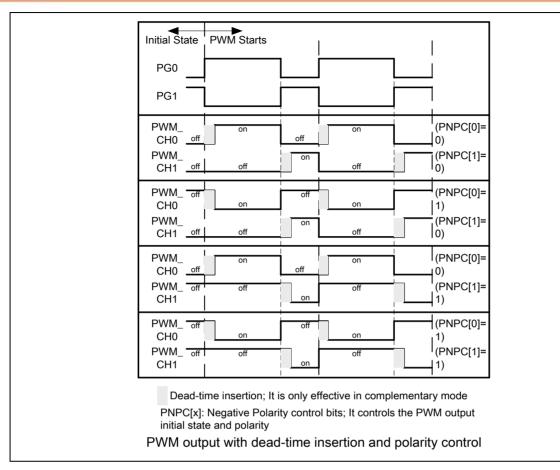
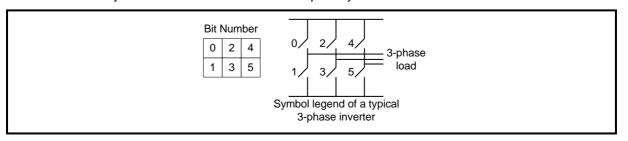



Figure 6-54 Initial State and Polarity Control with Rising Edge Dead Time Insertion

6.8.5.9 PWM Mask Output Function

Each of the PWM output channels can be manually overridden by using the appropriate bits in the PWM Mask Enable Control Register (PMSKE) and PWM Masked Data Register (PMSKD) to drive the PWM I/O pins to specified logic states independent of the duty cycle comparison units. The PWM mask bits are useful when controlling various types of Electrically Commutated Motor (ECM) like a BLDC motor. The PMSKE register contains six bits, PMSKE[5:0] determine which PWM I/O pins will be overridden. On reset PMSKE is 00H. The PMSKD register contains six bits, PMSKD[5:0] determine the state of the PWM I/O pins when a particular output is masked via the PMSKD bits. On reset PMSKD is 00H. The PMSKE[5:0] bits are active-high. When the PMSKE[5:0] bits are set, the corresponding PMSKD[5:0] bit will have effect on the PWM channel. When one of the PMSKE bits is sets, the output on the corresponding PWM I/O pin will be determined by the state of the PMSKD bit and polarity control bit.

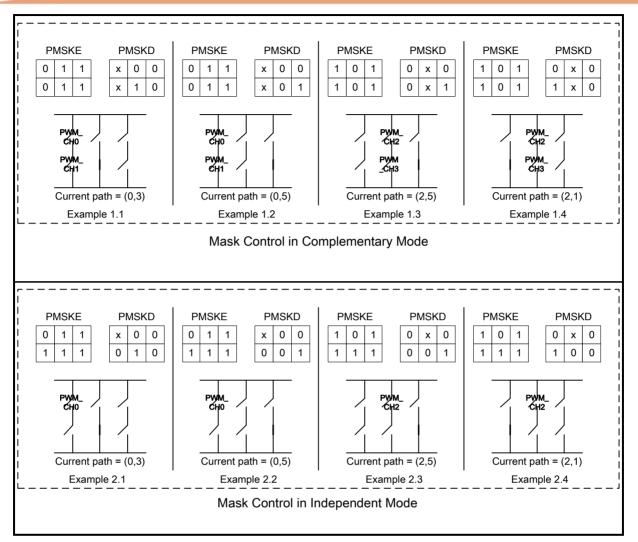


Figure 6-55 Illustration of Mask Control

Figure above shows example of how PWM mask control can be used for the override feature.

In example 1.1; PMSKE[5:0] = 11 1100b, PMSKD[5:0] = 0010xxb (Complementary Mode)

PWM channels 2-5 are masked from PWM frequency/duty generators.

PWM channels 2-5 outputs are determined by state of PMSKD bits.

PWM channels 0 and 1 follow PWM generator.

Switch 0 (On/Off) : Control by PWM_CH0 (PWM0 frequency/duty generator).

Switch 1 (On/Off) : Control by PWM_CH1 (inverted of PWM0, complementary mode).

Switch 2 (Off) : PMSKD[2] = 0.

Switch 3 (On) : PMSKD[3] = 1.

Switch 4 (Off) : PMSKD[4] = 0.

Switch 5 (Off) : PMSKD[5] = 0.

In example 1.3; PMSKE[5:0] = 11 0011b, PMSKD[5:0] = 10xx00b (Complementary Mode)

PWM channels 0, 1, 4 and 5 are masked from PWM frequency/duty generators.

PWM channels 0, 1, 4 and 5 outputs are determined by state of PMSKD bits.PWM channels 2 and 3 follow PWM generator.Switch 0 (Off): PMSKD[0] = 0.Switch 1 (Off): PMSKD[1] = 0.Switch 2 (On/Off): Control by PWM_CH2 (PWM2 frequency/duty generator).Switch 3 (On/Off): Control by PWM_CH3 (inverted of PWM2, complementary mode).Switch 4 (Off): PMSKD[4] = 0.Switch 5 (On): PMSKD[5] = 1.

In example 2.1; PMSKE[5:0] = 11 1110b, PMSKD[5:0] = 00100xb (Independent Mode)

PWM channels 1-5 are masked from PWM frequency/duty generators.

PWM channels 1-5 outputs are determined by state of PMSKD bits.

PWM channel 0 follow PWM generator.

Switch 0 (On/Off) : Control by PWM_CH0 (PWM0 frequency/duty generator).

Switch 1 (Off)	: PMSKD[1] = 0.
Switch 2 (Off)	: PMSKD[2] = 0.
Switch 3 (On)	: PMSKD[3] = 1.
Switch 4 (Off)	: PMSKD[4] = 0.
Switch 5 (Off)	: PMSKD[5] = 0.

In example 2.3; PMSKE[5:0] = 11 1011b, PMSKD[5:0] = 100x00b (Independent Mode)

PWM channels 0,1,3,4 and 5 are masked from PWM frequency/duty generators.

PWM channels 0,1,3,4 and 5 outputs are determined by state of PMSKD bits.

PWM channel 2 follow PWM generator.

Switch 0 (Off)	: PMSKD[0] = 0.
Switch 1 (Off)	: PMSKD[1] = 0.
Switch 2 (On/Off)	: Control by PWM_CH2 (PWM2 frequency/duty generator).
Switch 3 (Off)	: PMSKD[3] = 0.
Switch 4 (Off)	: PMSKD[4] = 0.
Switch 5 (On)	: PMSKD[5] = 1.

6.8.5.10 Enhanced PWM trigger EADC

EPWM can generate trigger signals to EADC, when PWM channels output rising or falling in Figure 6-56.

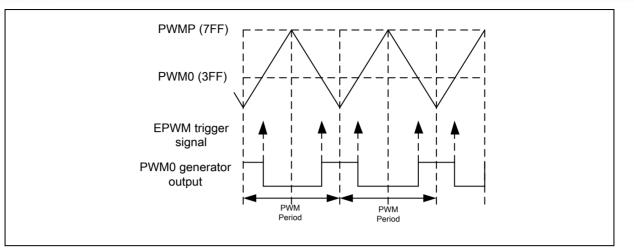


Figure 6-56 EPWM Trigger EADC Timing Diagram

6.8.5.11 Interrupt Architecture of Enhanced PWM

There are six interrupt sources for each PWM unit, including PWM period flag (PWMF), Brake0 flag (BKF0), Brake1 flag (BKF1), PWM0 edge flag, PWM2 edge flag and PWM4 edge flag. The bit BRKI_EN (PWMCON[5]) controls the brake interrupt enable; the bit PWMI_EN (PWMCON[4]) controls the PWM periodic interrupt enable; the bit PWM0EI_EN (PWMEIC[0]) controls the PWM0 edge interrupt enable; the bit PWM2EI_EN (PWMEIC[1]) controls the PWM2 edge interrupt enable; the bit PWM2EI_EN (PWMEIC[1]) controls the PWM2 edge interrupt enable; the bit PWM2EI_EN (PWMEIC[1]) controls the PWM2 edge interrupt enable; the bit PWM4EI EN (PWMEIC[2]) controls the PWM4 edge interrupt enable.

Note: All the interrupt flags are set by hardware and must be cleared by writing 1 to flags through software.

Figure 6-57 demonstrates the architecture of enhanced PWM interrupts.

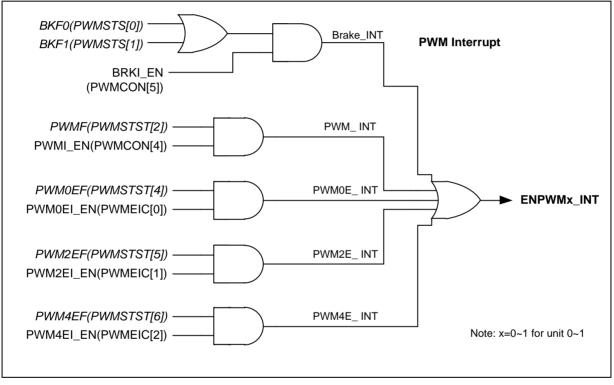


Figure 6-57 Architecture of Enhanced PWM Interrupts

6.8.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
EPWM Base / EPWMx_BA = x = 0, 1	Address: • 0x4019_0000 + (0x4000	* x)	•	
PWMCON	EPWMx_BA+0x00	R/W	EPWM Control Register	0x0000_0000
PWMSTS	EPWMx_BA+0x04	R/W	EPWM Status Register	0x0000_0000
PWMP	EPWMx_BA+0x08	R/W	EPWM Period Register	0x0000_0000
PWM0	EPWMx_BA+0x0C	R/W	EPWM PWM0 Duty Register	0x0000_0000
PWM2	EPWMx_BA+0x10	R/W	EPWM PWM2 Duty Register	0x0000_0000
PWM4	EPWMx_BA+0x14	R/W	EPWM PWM4 Duty Register	0x0000_0000
PMSKE	EPWMx_BA+0x18	R/W	EPWM Mask Mode Enable Register	0x0000_0000
PMSKD	EPWMx_BA+0x1C	R/W	EPWM Mask Mode Data Register	0x0000_0000
PDTC	EPWMx_BA+0x2C	R/W	EPWM Dead-time Control Register	0x0000_0000
PWMB	EPWMx_BA+0x30	R/W	EPWM Brake Output Register	0x0000_0000
PNPC	EPWMx_BA+0x34	R/W	EPWM Negative Polarity Control Register	0x0000_0000
PWMFCNT	EPWMx_BA+0x3C	R/W	EPWMF Compared Counter Register	0x0000_0000
PWMEIC	EPWMx_BA+0x40	R/W	EPWM Edge Interrupt Control Register	0x0000_0000

6.8.7 Register Description

EPWM Control Register (PWMCON)

Register	Offset R/M		Description	Reset Value
PWMCON	EPWMx_BA+0x00	R/W	EPWM Control Register	0x0000_0000

31	30	29	28	27	26	25	24
CLDMD	Reserved	BK1NF_DIS	BK0NF_DIS	LVDBK_EN	CPO2BK_EN	CPO1BK_EN	CPO0BK_EN
23	22	21	20	19	18	17	16
BK1	FILT	BK0FILT		BK1SEL		BKEN1	BKEN0
15	14	13	12	11	10	9	8
INVBKP1	INVBKP0	GRP	PWMTYPE	CLRPWM	Reserved	PWMINV	INT_TYPE
7	6	5	4	3	2	1	0
PWMRUN	LOAD	BRKI_EN	PWMI_EN	PWMI_EN PWMDIV		PWM	MOD

Bits	Description	
[31]	CLDMD	Center Reload Mode Enable Bit 0 = EPWM reload duty register at the period point of PWM counter. 1 = EPWM reload duty register at the center point of PWM counter. This bit only works when EPWM operating in Center-aligned mode.
[30]	Reserved	Reserved.
[29]	BK1NF_DIS	 PWM Brake 1 Noise Filter Disable Bit 0 = Noise filter of PWM Brake 1 Enabled. 1 = Noise filter of PWM Brake 1 Disabled.
[28]	BK0NF_DIS	 PWM Brake 0 Noise Filter Disable Bit 0 = Noise filter of PWM Brake 0 Enabled. 1 = Noise filter of PWM Brake 0 Disabled.
[27]	LVDBK_EN	Low-level Detection Trigger PWM Brake Function 1 Enable Bit 0 = Brake Function 1 triggered by Low-level detection Disabled. 1 = Brake Function 1 triggered by Low-level detection Enabled.
[26]	CPO2BK_EN	ACMP2 Digital Output As Brake 0 Source Enable Bit 0 = CO2 (ACMPSR[10]) as one brake source in Brake 0 Disabled. 1 = CO2 (ACMPSR[10]) as one brake source in Brake 0 Enabled.
[25]	CPO1BK_EN	ACMP1 Digital Output As Brake 0 Source Enable Bit 0 = CO1 (ACMPSR[9]) as one brake source in Brake 0 Disabled. 1 = CO1 (ACMPSR[9]) as one brake source in Brake 0 Enabled.

Bits	Description						
[24]	CPO0BK_EN	ACMP0 Digital Output As Brake0 Source Enable Bit 0 = CO0 (ACMPSR[8]) as one brake source in Brake 0 Disabled. 1 = CO0 (ACMPSR[8]) as one brake source in Brake 0 Enabled.					
[23:22]	BK1FILT	 Brake 1 (BKPx1 Pin) Edge Detector Filter Clock Selection 00 = filter clock is HCLK. 01 = filter clock is HCLK/2. 10 = filter clock is HCLK/4. 11 = filter clock is HCLK/16. 					
[21:20]	BKOFILT	 Brake 0 (BKPx0 Pin) Edge Detector Filter Clock Selection 00 = filter clock is HCLK. 01 = filter clock is HCLK/2. 10 = filter clock is HCLK/4. 11 = filter clock is HCLK/16. 					
[19:18]	BK1SEL	 Brake Function 1 Source Selection 00 = brake signal is from external pin EPWMx_BRAKE1 (x=0~1 for unit0~1). 01 = brake signal is from analog comparator 0 output CO0 (ACMPSR[8]). 10 = brake signal is from analog comparator 1 output CO1 (ACMPSR[9]). 11 = brake signal is from analog comparator 2 output CO2 (ACMPSR[10]). 					
[17]	BKEN1	 BRAKE1 Pin Trigger Brake Function 1 Enable Bit 0 = PWMx brake function 1 Disabled. 1 = PWMx brake function 1 Enabled. Note: x=0~1 for PWM unit0~1. 					
[16]	BKEN0	 BRAKE0 Pin Trigger Brake Function 0 Enable Bit 0 = PWMx brake function 0 Disabled. 1 = PWMx brake function 0 Enabled. Note: x = 0~1 for PWM unit0~1. 					
[15]	INVBKP1	Inverse Brake 1 Pin State 0 = The state of pin EPWMx_BRAKE1 is passed to the negative edge detector. 1 = The inversed state of pin EPWMx_BRAKE1 is passed to the negative edge detector.					
[14]	INVBKP0	Inverse Brake 0 Pin State 0 = The state of pin EPWMx_BRAKE0 is passed to the negative edge detector. 1 = The inversed state of pin EPWMx_BRAKE0 is passed to the negative edge detector.					
[13]	GRP	Group Bit 0 = The signals timing of PWM_CH0, PWM_CH2 and PWM_CH4 are independent. 1 = Unify the signals timing of PWM_CH0, PWM_CH2 and PWM_CH4 in the same phase which is controlled by PWM_CH0.					
[12]	PWMTYPE	PWM Aligned Type Selection Bit 0 = Edge-aligned type. 1 = Center-aligned type.					
[11]	CLRPWM	Clear PWM Counter Control Bit 0 = Ignored. 1 = Clear 16-bit PWM counter to 0000H. Note: It is automatically cleared by hardware.					

Bits	Description	
[10]	Reserved	Reserved.
[9]	PWMINV	 Inverse PWM Comparator Output When PWMINV is set to high the PWM comparator output signals will be inversed, therefore the PWM Duty (in percentage) is changed to (1-Duty) before PWMINV is set to high. 0 = Not inverse PWM comparator output. 1 = Inverse PWM comparator output.
[8]	INT_TYPE	 PWM Interrupt Type Selection Bit 0 = PWMF will be set if PWM counter underflow. 1 = PWMF will be set if PWM counter matches PWMP register. Note: This bit is effective when PWM is in Center-aligned mode only.
[7]	PWMRUN	Start PWMRUN Control Bit 0 = The PWM stops running. 1 = The PWM counter starts running.
[6]	LOAD	 Reload PWM Period Registers (PWMP) and PWM Duty Registers (PWM0~4) Control Bit 0 = No action if written with 0. The value of PWM period register (PWMP) and PWM duty registers (PWM0~PWM4) are not loaded to PWM counter and Comparator registers. 1 = Hardware will update the value of PWM period register (PWMP) and PWM duty registers (PWM0~PWM4) to PWM Counter and Comparator register at the time of PWM Counter matches PWMP in Edge- and Center-aligned modes or at the time of PWM Counter down counts with underflow in Center-aligned mode. Note: This bit is written by software, cleared by hardware, and always read as 0.
[5]	BRKI_EN	Brake0 and Brak1 Interrupt Enable Bit 0 = Flags BKF0 (PWMSTS[0]) and BKF1 (PWMSTS[1]) Disabled to trigger PWM interrupt. 1 = Flags BKF0 (PWMSTS[0]) and BKF1 (PWMSTS[1]) Enabled to trigger PWM interrupt.
[4]	PWMI_EN	PWM Interrupt Enable Bit 0 = Flag PWMF (PWMSTS[2]) Disabled to trigger PWM interrupt. 1 = Flag PWMF (PWMSTS[2]) Enabled to trigger PWM interrupt.
[3:2]	PWMDIV	PWM Clock Pre-divider Selection 00 = PWM clock is EPWMx_CLK. 01 = PWM clock is EPWMx_CLK/2. 10 = PWM clock is EPWMx_CLK/4. 11 = PWM clock is EPWMx_CLK/16.
[1:0]	PWMMOD	 PWM Mode Selection 00 = PWM mode is independent mode. 01 = PWM mode is pair/complementary mode. 10 = PWM mode is synchronized mode. 11 = Reserved.

EPWM Status Register (PWMSTS)

Register	Offset	R/W	Description	Reset Value
PWMSTS	EPWMx_BA+0x04	R/W	EPWM Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved BK1ST						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						BKLK0
7	6	5	4	3	2	1	0
Reserved	PWM4EF	PWM2EF	PWM0EF	Reserved	PWMF	BKF1	BKF0

Bits	Description					
[31:26]	Reserved	Reserved.				
[25]	BK1STS	Brake 1 Status (Read Only) 0 = PWM had been out of Brake 1 state. 1 = PWM is in Brake 1 state.				
[24]	BK0STS	Brake 0 Status (Read Only) 0 = PWM had been out of Brake 0 state. 1 = PWM is in Brake 0 state.				
[23:9]	Reserved	Reserved.				
[8]	BKLK0	 PWM Brake 0 Locked 0 = Brake 0 state is released. 1 = When PWM Brake detects a falling signal at EPWMx_BRAKE0, x=0, 1. This flag will be set to high to indicate the Brake 0 state is locked. Note: This bit must be cleared by writing 1 to itself through software. 				
[7]	Reserved	Reserved.				
[6]	PWM4EF	PWM Channel 4 Edge Flag 0 = PWM_CH4 not toggled. 1 = Hardware will set this flag to high at the time of PWM_CH4 rising or falling. If EINT4_TYPE (PWMEIC[10]) = 0, this bit is set when PWM_CH4 falling is detected. If EINT4_TYPE (PWMEIC[10]) = 1, this bit is set when PWM_CH4 rising is detected. Note: This bit must be cleared by writing 1 to itself through software.				
[5]	PWM2EF	PWM Channel 2 Edge Flag 0 = PWM_CH2 not toggled. 1 = Hardware will set this flag to high at the time of PWM_CH2 rising or falling. If EINT2_TYPE (PWMEIC[9]) = 0, this bit is set when PWM_CH2 falling is detected. If EINT2_TYPE (PWMEIC[9]) = 1, this bit is set when PWM_CH2 rising is detected. Note: This bit must be cleared by writing 1 to itself through software.				

		PWM Channel 0 Edge Flag							
		0 = PWM_CH0 not toggled.							
[4]	PWM0EF	1 = Hardware will set this flag to high at the time of PWM_CH0 rising or falling. If EINT0_TYPE (PWMEIC[8]) = 0, this bit is set when PWM_CH0 falling is detected. If EINT0_TYPE (PWMEIC[8]) = 1, this bit is set when PWM_CH0 rising is detected.							
		Note: This bit must be cleared by writing 1 to itself through software.							
[3]	Reserved	Reserved.							
		PWM Period Flag							
		0 = The PWM Counter has not up counted to the value of PWMP or down counted with underflow.							
[2]	PWMF	1 = Hardware will set this flag to high at the time of PWM Counter matches PWMP in Edge- and Center-aligned modes or at the time of PWM Counter down counts with underflow in Center-aligned mode.							
		Note: This bit must be cleared by writing 1 to itself through software.							
		PWM Brake1 Flag							
[4]	BKF1	0 = PWM Brake 1 is able to poll falling signal at EPWMx_BRAKE1, x=0, 1 and has not recognized any one.							
[1]	DRFI	1 = When PWM Brake 1 detects a falling signal at pin EPWMx_BRAKE1, x=0, 1, this flag will be set to high.							
		Note: This bit must be cleared by writing 1 to itself through software.							
		PWM Brake0 Flag							
[0]	BKF0	0 = PWM Brake 0 is able to poll falling signal at EPWMx_BRAKE0, x=0, 1 and has not recognized any one.							
[0]	BALA	1 = When PWM Brake 0 detects a falling signal at EPWMx_BRAKE0, x=0, 1, this flag will be set to high.							
		Note: This bit must be cleared by writing 1 to itself through software.							

EPWM Period Register (PWMP)

Register	Offset	R/W	Description	Reset Value
PWMP	EPWMx_BA+0x08	R/W	EPWM Period Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	PWMP						
7	6	5	4	3	2	1	0
	PWMP						

Bits	Description						
[31:16]	Reserved Reserved.						
		PWM Period Register					
		Edge-aligned:					
		Period = (PWMP +1) * EPWMx_CLK period/pre-scalar.					
[15:0]	PWMP	Duty = (Duty + 1) * EPWMx_CLK period /pre-scalar.					
		Centre-aligned:					
		Period = (PWMP* 2) * EPWMx_CLK period/pre-scalar.					
		Duty = (Duty*2 + 1) * EPWMx_CLK period/pre-scalar.					

EPWM Duty Register (PWM0/2/4)

Register	Offset		Offset R/W Description		Description	Reset Value
PWM0	EPWMx_BA+0x0C	R/W	EPWM PWM0 Duty Register	0x0000_0000		
PWM2	EPWMx_BA+0x10	R/W	EPWM PWM2 Duty Register	0x0000_0000		
PWM4	EPWMx_BA+0x14	R/W	EPWM PWM4 Duty Register	0x0000_0000		

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			PWM	_Duty			
7	6	5	4	3	2	1	0
	PWM_Duty						

Bits	Description	Description					
[31:16]	Reserved	Reserved.					
[15:0]	PWM_Duty	PWM Duty Register Edge-aligned: Period = (PWMP +1) * EPWMx_CLK period/pre-scalar. Duty = (Duty + 1) * EPWMx_CLK period /pre-scalar. Centre-aligned: Period = (PWMP* 2) * EPWMx_CLK period/pre-scalar. Duty = (Duty*2 + 1) * EPWMx_CLK period/pre-scalar.					

EPWM Mask Mode Enable Control Register (PMSKE)

Register	Offset	R/W	Description	Reset Value
PMSKE	EPWMx_BA+0x18	R/W	EPWM Mask Mode Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	erved			PMS	SKE		

Bits	Description					
[31:6]	Reserved Reserved.					
		PWM Mask Enable Bits				
[5:0]	PMSKE	The PWM generator signal will be masked when this bit is enabled. The corresponding PWM channel n will be output with PMSKD[n] data.				
		0 = PWM generator signal is output to next stage.				
		1 = PWM generator signal is masked and PMSKD[n] is output to next stage, n = 0~5.				

nuvoTon

EPWM Mask Mode Data Register (PMSKD)

Register	Offset	R/W	Description	Reset Value
PMSKD	EPWMx_BA+0x1C	R/W	EPWM Mask Mode Data Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	Reserved		PMSKD				

Bits	Description	Description				
[31:6]	Reserved	eserved Reserved.				
		PWM Mask Data Bit				
[5:0]	PMSKD	This data bit control the state of PWM_CHn output pin, if corresponding PMSKE[n] = 1, n = $0 \sim 5$.				
		0 = Output logic low to PWM_CHn.				
		1 = Output logic high to PWM_CHn.				

EPWM Dead-time Control Register (PDTC)

Register	Offset	R/W	Description	Reset Value
PDTC	EPWMx_BA+0x2C	R/W	EPWM Dead-time Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved				DTEN4	DTEN2	DTEN0
15	14	13	12	11	10	9	8
	Reserved					DTCNT	
7 6 5			4	3	2	1	0
	DTCNT						

Bits	Description				
[31:19]	Reserved	Reserved.			
[18]	DTEN4	Enable Dead-time Insertion for PWMx Pair (PWM_CH4, PWM_CH5) Dead-time insertion is only active when this pair of complementary PWM is enabled. If dead- time insertion is inactive, the outputs of pin pair are complementary without any delay. 0 = Dead-time insertion Disabled on the pin pair (PWM_CH4, PWM_CH5). 1 = Dead-time insertion Enabled on the pin pair (PWM_CH4, PWM_CH5). Note: x=0~1 for PWM unit0~1.			
[17]	DTEN2	Enable Dead-time Insertion for PWMx Pair (PWM_CH2, PWM_CH3) Dead-time insertion is only active when this pair of complementary PWM is enabled. If dead time insertion is inactive, the outputs of pin pair are complementary without any delay. 0 = Dead-time insertion Disabled on the pin pair (PWM_CH2, PWM_CH3). 1 = Dead-time insertion Enabled on the pin pair (PWM_CH2, PWM_CH3). Note: x=0~1 for PWM unit0~1.			
[16]	DTEN0 Enable Dead-time Insertion for PWMx Pair (PWM_CH0, PWM_CH1) Dead-time insertion is only active when this pair of complementary PWM is enabled. time insertion is inactive, the outputs of pin pair are complementary without any delay 0 = Dead-time insertion Disabled on the pin pair (PWM_CH0, PWM_CH1). 1 = Dead-time insertion Enabled on the pin pair (PWM_CH0, PWM_CH1). Note: x=0~1 for PWM unit0~1.				
[15:11]	Reserved	Reserved.			
[10:0]	DTCNT	Dead-time Counter The dead-time can be calculated according to the following formula: Dead-time = EPWMx_CLK * (DTCNT+1).			

nuvoTon

EPWM Brake Output Register (PWMB)

Register	Offset	R/W	Description	Reset Value
РШМВ	EPWMx_BA+0x30	R/W	EPWM Brake Output Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Rese	Reserved			PWMB				

Bits	Description	Description				
[31:6]	Reserved	eserved Reserved.				
	PWM Brake Output					
[5:0]	РШМВ	When PWM Brake is asserted, the PWM_CHn output state before polarity control will follow PWMB[n] setting, n = 0~5.				
		0 = PWM_CHn output before polarity control is low when Brake is asserted.				
		1 = PWM_CHn output before polarity control is high when Brake is asserted.				

EPWM Negative Polarity Control Register (PNPC)

Register	Offset	R/W	Description	Reset Value
PNPC	EPWMx_BA+0x34	R/W	EPWM Negative Polarity Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	Reserved		PNP				

Bits	Description	Description			
[31:6]	Reserved	eserved Reserved.			
[5:0]	PNP	PWM Negative Polarity Control The register bit controls polarity/active state of real PWM_CHn output, n = 0~5. 0 = PWM_CHn output is active high. 1 = PWM_CHn output is active low.			

EPWMF Compared Counter Register (PWMFCNT)

Register	Offset	R/W	Description	Reset Value
PWMFCNT	PWMFCNT EPWMx_BA+0x3C R/W		EPWMF Compared Counter Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved			PWMFCNT						

Bits	Description					
[31:4]	Reserved Reserved.					
	PWMFCNT	PWMF Compared Counter				
[3:0]		The register sets the count number which defines how many times of PWM period occurs to set bit PWMF (PWMSTS[2]) to request the PWM period interrupt.				
		PWMF (PWMSTS[2]) will be set in every (PWMFCNT[3:0] + 1) times of PWM period or center point defined by INT_TYPE at PWMCON[8] occurs				

EPWM Edge Interrupt Control Register (PWMEIC)

Register	Offset	R/W	Description	Reset Value
PWMEIC	EPWMx_BA+0x40	R/W	EPWM Edge Interrupt Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
		Reserved			EINT4_TYPE	EINT2_TYPE	EINT0_TYPE		
7	6	5	4	3	2	1	0		
Reserved				PWM4EI_EN	PWM2EI_EN	PWM0EI_EN			

Bits	Description	
[31:11]	Reserved	Reserved.
[10]	EINT4_TYPE	 PWM Channel 4 Edge Interrupt Type 0 = PWM4EF will be set if falling edge is detected at PWM_CH4. 1 = PWM4EF will be set if rising edge is detected at PWM_CH4.
[9]	EINT2_TYPE	 PWM Channel 2 Edge Interrupt Type 0 = PWM2EF will be set if falling edge is detected at PWM_CH2. 1 = PWM2EF will be set if rising edge is detected at PWM_CH2.
[8]	EINT0_TYPE	 PWM Channel 0 Edge Interrupt Type 0 = PWM0EF will be set if falling edge is detected at PWM_CH0. 1 = PWM0EF will be set if rising edge is detected at PWM_CH0.
[7:3]	Reserved	Reserved.
[2]	PWM4EI_EN	Enable PWM Channel 4 Edge Interrupt 0 = Flag PWM4EF Disabled to trigger PWM interrupt. 1 = Flag PWM4EF Enabled to trigger PWM interrupt.
[1]	PWM2EI_EN	Enable PWM Channel 2 Edge Interrupt 0 = Flag PWM2EF Disabled to trigger PWM interrupt. 1 = Flag PWM2EF Enabled to trigger PWM interrupt.
[0]	PWM0EI_EN	Enable PWM Channel 0 Edge Interrupt 0 = Flag PWM0EF Disabled to trigger PWM interrupt. 1 = Flag PWM0EF Enabled to trigger PWM interrupt.

6.9 Enhanced Input Capture Timer (ECAP)

6.9.1 Overview

This device provides up to two units of Input Capture Timer/Counter which capture function can detect the digital edge changed signal at channel inputs. Each unit has three input capture channels. The timer/counter is equipped with up counting, reload and compare-match capabilities.

6.9.2 Features

- Up to two Input Capture Timer/Counter Units, Input Capture 0 and Input Capture 1.
- Each unit has own interrupt vector
- 24-bit Input Capture up-counting timer/counter
- With noise filter in front end of input ports
- Edge detector with three options
 - Rising edge detection
 - Falling edge detection
 - Both edge detection
- Each input channel is supported with one capture counter hold register
- Captured event reset/reload capture counter option
- Supports the compare-match function

6.9.3 Input Capture Timer/Counter Architecture

Each of the input capture timer/counter unit supports 3 input channels with three programmable input signal sources. The pins ECAPx_IC0 to ECAPx_IC2 can be fed to the inputs of capture unit, besides, analog comparator output (COx), OPA digital output (OPDOx), and ADC compare output (ADCMPOx) can also be internally routed to the capture inputs by software configuration. Figure 6-58 illustrates the architecture of Input Capture.

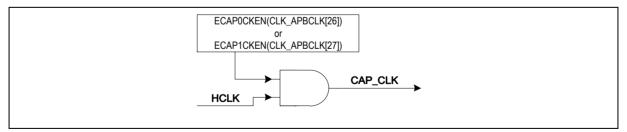


Figure 6-58 Input Capture Timer/Counter Clock Source Control

nuvoton

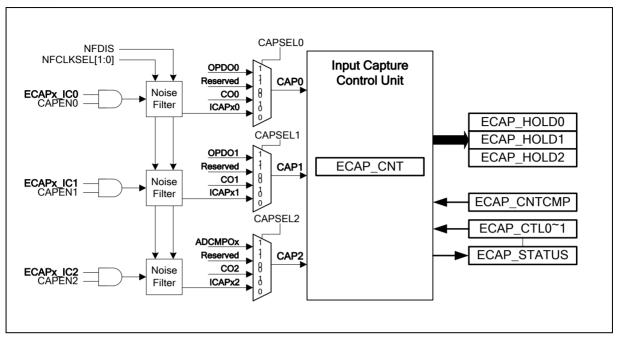


Figure 6-59 Input Capture Timer/Counter Architecture

6.9.4 Input Noise Filter

Each pin of ECAP inputs is equipped a noise filter which can filter the unwanted noise. The ECAPx_IC0, ECAPx_IC1 and ECAPx_IC2 noise filters can be disabled through bits CAPNF_DIS (ECAP_CTLx[3]). If enabled, the capture logic required to sample 4 consecutive same capture input value in order to recognize an edge as a capture event. The interval between pulses requirement for input capture is 4 CAP_CLK clocks width. Any pulse width less than or equal to 3 CAP_CLK clocks will not have any trigger. ICAPx0, ICAPx1 and ICAPx2 are the outputs of ECAPx_IC0, ECAPx_IC1 and ECAPx_IC2 respectively after going through noise filter and polarity control in Figure 6-60. If the noise filter is disabled the input signals ECAPx_IC0, ECAPx_IC1 and ECAPx_IC2 are passed to the internal signals ICAPx0, ICAPx1 and ICAPx2 respectively without any delay.

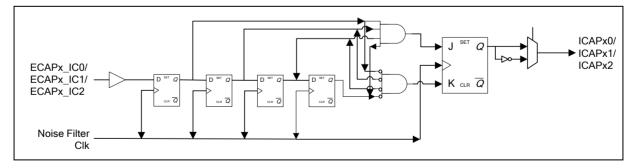


Figure 6-60 Noise Filter Structure

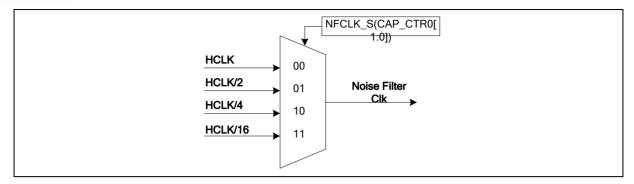


Figure 6-61 Noise Filter Sampling Clock Selection

6.9.5 Operation of Input Capture Timer/Counter

The capture modules are functioned to detect and measure pulse width and period of a square wave. The input channel 0 to 2 have their own edge detector but share with one capture timer/counter i.e. CAP_CNT. The trigger option is programmable through CAPEDG in CAP_CTR1 register. It supports positive edge, negative edge and both edge triggers. Each capture module consists of an enable control bit, IC0_EN to IC2_EN. The capture counter (CAP_CNT) serves as a 24-bit up counter. It supports reload and compared modes. The Input Capture Timer/Counter Enable bit (CAP_EN) must be set to enable Input Capture Timer/Counter functions. More details are described in next sections.

6.9.5.1 Capture Function

Each time the capture input trigger is validated, the content of the free running 24 bits capture counter ECAP_CNT will be captured/transferred into the capture hold registers, ECAP_HOLD0~2, depending on which channel trigger. This action also causes the CAPF flag bits in ECAP_STATUS to be set, which will also generate an interrupt (if enabled by CAPIENx (ECAP_CTL0[16]). The CAPF0~2 flags are logical "OR" to the interrupt module. Flag is set by hardware and cleared by software. Software will have to resolve on the priority of the interrupt flags.

Setting the CPTCLR (ECAP_CTL0[26]), will allow hardware to reset capture counter (ECAP_CNT) automatically after the value of ECAP_CNT has been captured. Priority is given to reset counter after capturing the counter value in the capture register.

Nov. 02, 2016

CAP0 CAP1 CAP2 *2 *2 *2 Input Capture Input Capture Input Capture IC1 Block Unit0 IC2 Block IC0 Block CAPF1 CAPF2 CAPF0 Clear CMPCLR CMPF CPTCLR · ECAP_CNT SRCSEL CAPF0 _____ CAPF1 ____ CAP2 24-bit up counte 11 ſ CAP1 DIV by 10 ECAP CNT CAP0 OVF 1,4,16,32 01 CAP0_CLK 00 CLKSEL[1:0] OVF 100 CMPF CAPF0 -000 CMPEN RLDEN CAPF1 001 010 CAPF2 A ECAP_CNTCMP RLDSEL[2:0]-* Note: 1. If reload and clear counter conditions occur at the same time, only reload counter will be performed. 2. Function block is illustrated for input capture unit.

Figure 6-62 Input Capture Timer/Counter Functions Block

nuvoTon

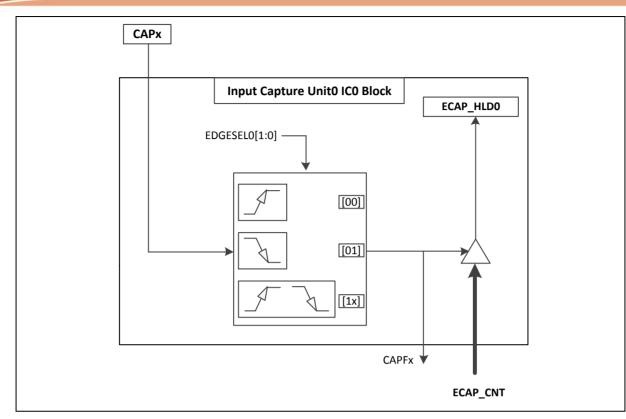


Figure 6-63 Input Capture Units

6.9.5.2 Compare Mode

The compare function is enabled by setting the CMPEN (ECAP_CTL0[28]) bit to 1. ECAP_CNTCMP will serves as a compare register. As ECAP_CNT counting up, upon matching with ECAP_CNTCMP value, CMPF (ECAP_STATUS[4]) will be set, which will generate an interrupt request if capture compare interrupt enable bit, CMPIEN (ECAP_CTL0[21]), is set. And then the timer reload from 0 and starts counting again.

Setting the CMPCLR (ECAP_CTL0[25]), will allow hardware to reset capture counter automatically after a match has occurred.

6.9.5.3 Reload Mode

Input Capture Timer/Counter can be also be configured for reload mode. The reload function is enabled by setting the RLDEN (ECAP_CTL0[27]) to 1. In this mode, ECAP_CNTCMP serves as a reload register. When ECAP_CNT overflows, a reload is generated that causes the contents of the ECAP_CNTCMP register to be reloaded into the ECAP_CNT register, if RLDEN is set. However, if RLDEN = 0, ECAP_CNT will be reload with 0, and count up again.

Alternatively, other reload source is also possible by the capture inputs by configuring the RLDSEL (ECAP_CTL1[10:8]). This action also sets the CAPFx flag bits in ECAP_STATUS register.

6.9.5.4 Input Capture Timer/Counter Interrupt Architecture

There are five interrupt sources for one input capture unit, each one has an interrupt flag and enable control bit, which can trigger Input Capture Timer/Counter Interrupt. Note that all the interrupt flags are set by hardware and must be cleared by software.

Figure 6-64 demonstrates the architecture of Input Capture Timer/Counter interrupts.

nuvoton

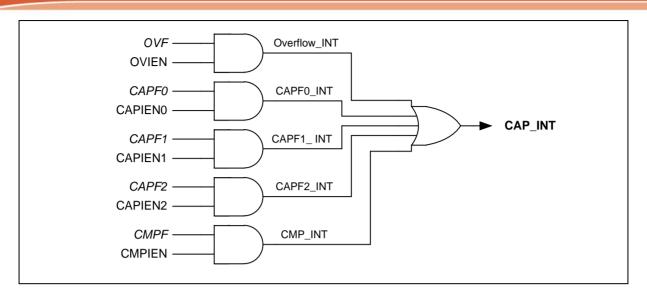


Figure 6-64 Input Capture Timer/Counter Interrupt Architecture Diagram

6.9.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
ECAP Base Address: ECAPn_BA = 0x401B_0000 + n*0x4000 n=0,1								
ECAP_CNT	ECAPn_BA+0x00	R/W	Input Capture Counter (24-bit up counter)	0x0000_0000				
ECAP_HOLD0	ECAPn_BA+0x04	R/W	Input Capture Counter Hold Register 0	0x0000_0000				
ECAP_HOLD1	ECAPn_BA+0x08	R/W	Input Capture Counter Hold Register 1	0x0000_0000				
ECAP_HOLD2	ECAPn_BA+0x0C	R/W	Input Capture Counter Hold Register 2	0x0000_0000				
ECAP_CNTCMP	ECAPn_BA+0x10	R/W	Input Capture Counter Compare Register	0x0000_0000				
ECAP_CTL0	ECAPn_BA+0x14	R/W	Input Capture Control Register 0	0x0000_0000				
ECAP_CTL1	ECAPn_BA+0x18	R/W	Input Capture Control Register 1	0x0000_0000				
ECAP_STATUS	ECAPn_BA+0x1C	R/W	Input Capture Status Register	0x0000_0000				

6.9.7 Register Description

Input Capture Counter (CAP_CNT)

Register	Offset	R/W	Description	Reset Value
ECAP_CNT	ECAPn_BA+0x00	R/W	Input Capture Counter (24-bit up counter)	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			V	AL						
15	14	13	12	11	10	9	8			
	VAL									
7	6	5	4	3	2	1	0			
	VAL									

Bits	Description	Description					
[31:24]	Reserved	Reserved.					
[23:0]	VAL	Input Capture Timer/Counter The input Capture Timer/Counter is a 24-bit up-counting counter. The clock source for the counter is from the clock divider output which the CAP_CLK is software optionally divided by 1,4,16 or 32.					

Input Capture Counter Hold Register (ECAP_HOLD0~2)

Register Offset R/W		R/W	Description	Reset Value
ECAP_HOLD0	ECAPn_BA+0x04	R/W	Input Capture Counter Hold Register 0	0x0000_0000
ECAP_HOLD1	ECAPn_BA+0x08	R/W	Input Capture Counter Hold Register 1	0x0000_0000
ECAP_HOLD2	ECAPn_BA+0x0C	R/W	Input Capture Counter Hold Register 2	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	VAL									
15	14	13	12	11	10	9	8			
	VAL									
7	6	5	4	3	2	1	0			
	VAL									

Bits	Description	escription				
[31:24]	Reserved	eserved Reserved.				
[23:0]	VAL	Input Capture Counter Hold Register When an active input capture channel detects a valid edge signal change, the ECAP_CNT value is latched into the corresponding holding register. Each input channel has itself holding register named by ECAP_HOLDx where x is from 0 to 2 to indicate inputs from ECAPx_IC0 to ECAPx_IC2, respectively.				

Input Capture Counter Compare Register (ECAP_CNTCMP)

Register	Offset	R/W	Description	Reset Value
ECAP_CNTCMP ECAPn_BA+0x10		R/W	Input Capture Counter Compare Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			V	AL			
15	14	13	12	11	10	9	8
			V	AL			
7	6	5	4	3	2	1	0
			V	AL			

Bits	Description	
[31:24]	Reserved	Reserved.
[23:0] VAL	Input Capture Counter Compare Register If the compare function is enabled (CMPEN(ECAP_CTL0[28]) = 1), the compare register is loaded with the value that the compare function compares the capture counter (ECAP_CNT) with.	
		If the reload control is enabled (RLDEN = 1), an overflow event or capture events will trigger the hardware to reload ECAP_CNTCMP into ECAP_CNT.

Input Capture Timer/Counter Control Register (ECAP_CTL0)

Register	Offset	R/W	Description	Reset Value
ECAP_CTL0	ECAPn_BA+0x14	R/W	Input Capture Control Register 0	0x0000_0000

31	30	29	28	27	26	25	24
Rese	erved	CAPEN	CMPEN	RLDEN	CPTCLR	CMPCLR	CNTEN
23	22	21	20	19	18	17	16
Rese	erved	CMPIEN	OVIEN	Reserved	CAPIEN2	CAPIEN1	CAPIEN0
15	14	13	12	11	10	9	8
Rese	Reserved CAPSEL2		CAPSEL2 CAPSEL1		CAP	SEL0	
7	6	5	4	3	2	1	0
Reserved	CAPEN2	CAPEN1	CAPEN0	CAPNF_DIS	Reserved	NF	DIS

Bits	Description	
[31:30]	Reserved	Reserved.
[00]		Input Capture Timer/Counter Enable Bit
[29]	CAPEN	0 = Input Capture function Disabled.1 = Input Capture function Enabled.
		Compare Function Enable Bit
[28]	CMPEN	The compare function in input capture timer/counter is to compare the dynamic counting ECAP_CNT with the compare register ECAP_CNTCMP, if ECAP_CNT value reaches ECAP_CNTCMP, the flag CMPF will be set.
		0 = The compare function Disabled.
		1 = The compare function Enabled.
		Reload Function Enable Bit
[27]	RLDEN	Setting this bit to enable the reload function. If the reload control is enabled, an overflow event (OVF) or capture events (CAPFx) will trigger the hardware to reload ECAP_CNTCMP into ECAP_CNT.
		0 = The reload function Disabled.
		1 = The reload function Enabled.
		Input Capture Counter Cleared by Capture Events Control
[26]	CPTCLR	If this bit is set to 1, the capture counter (ECAP_CNT) will be cleared to zero when any one of capture events (CAPF0~3) occurs.
		0 = Capture events (CAPF0~3) can clear capture counter (ECAP_CNT) Disabled.
		1 = Capture events (CAPF0~3) can clear capture counter (ECAP_CNT) Enabled.
		Input Capture Counter Cleared by Compare-match Control
[25]	CMPCLR	If this bit is set to 1, the capture counter (ECAP_CNT) will be cleared to 0 when the compare-match event (CAMCMPF = 1) occurs.
		0 = Compare-match event (CAMCMPF) can clear capture counter (ECAP_CNT) Disabled.
		1 = Compare-match event (CAMCMPF) can clear capture counter (ECAP_CNT) Enabled.

Bits	Description	
[24]	CNTEN	Input Capture Counter Start Setting this bit to 1, the capture counter (ECAP_CNT) starts up-counting synchronously with capture clock input (CAP_CLK). 0 = ECAP_CNT stop counting. 1 = ECAP_CNT starts up-counting.
[23:22]	Reserved	Reserved.
[21]	CMPIEN	 CMPF Trigger Input Capture Interrupt Enable Bit 0 = The flag CMPF can trigger Input Capture interrupt Disabled. 1 = The flag CMPF can trigger Input Capture interrupt Enabled.
[20]	OVIEN	OVF Trigger Input Capture Interrupt Enable Bit 0 = The flag OVUNF can trigger Input Capture interrupt Disabled. 1 = The flag OVUNF can trigger Input Capture interrupt Enabled.
[19]	Reserved	Reserved.
[18]	CAPIEN2	Input Capture Channel 2 Interrupt Enable Bit 0 = The flag CAPF2 can trigger Input Capture interrupt Disabled. 1 = The flag CAPF2 can trigger Input Capture interrupt Enabled.
[17]	CAPIEN1	Input Capture Channel 1 Interrupt Enable Bit 0 = The flag CAPF1 can trigger Input Capture interrupt Disabled. 1 = The flag CAPF1 can trigger Input Capture interrupt Enabled.
[16]	CAPIENO	Input Capture Channel 0 Interrupt Enable Bit 0 = The flag CAPF0 can trigger Input Capture interrupt Disabled. 1 = The flag CAPF0 can trigger Input Capture interrupt Enabled.
[15:14]	Reserved	Reserved.
[13:12]	CAPSEL2	 CAP2 Input Source Selection 00 = CAP2 input is from pin RCAPx_IC2. 01 = CAP2 input is from CO2 (ACMPSR[10]). 10 = Reserved. 10 = Reserved. 11 = CAP2 input is from signal ADCMPOx (ADC compare output x). Note: Input capture unit n matches comparator unit x, where x = 0~1.
[11:10]	CAPSEL1	 CAP1 Input Source Selection 00 = CAP1 input is from pin ECAPx_IC1. 01 = CAP1 input is from CO1 (ACMPSR[9]). 10 = Reserved. 10 = Reserved. 11 = CAP1 input is from OPDO1 (OPASR[1]). Note: Input capture unit n matches comparator unit x, where x = 0~1.

nuvoTon

Bits	Description	
[9:8]	CAPSEL0	 CAP0 Input Source Selection 00 = CAP0 input is from pin ECAPx_IC0. 01 = CAP0 input is from CO0 (ACMPSR[8]). 10 = Reserved. 10 = Reserved. 11 = CAP0 input is from OPDO0 (OPASR[0]). Note: Input capture unit n matches comparator unit x, where x = 0~1.
[7]	Reserved	Reserved.
[6]	CAPEN2	Pin ECAPx_IC2 Input to Input Capture Unit Enable Bit 0 = ECAPx_IC2 input to Input Capture Unit Disabled. 1 = ECAPx_IC2 input to Input Capture Unit Enabled.
[5]	CAPEN1	Pin ECAPx_IC1 Input to Input Capture Unit Enable Bit 0 = ECAPx_IC1 input to Input Capture Unit Disabled. 1 = ECAPx_IC1 input to Input Capture Unit Enabled.
[4]	CAPEN0	Pin ECAPx_IC0 Input to Input Capture Unit Enable Bit 0 = ECAPx_IC0 input to Input Capture Unit Disabled. 1 = ECAPx_IC0 input to Input Capture Unit Enabled.
[3]	CAPNF_DIS	Input Capture Noise Filter Disable Bit 0 = Noise filter of Input Capture Enabled. 1 = Noise filter of Input Capture Disabled.
[2]	Reserved	Reserved.
[1:0]	NFDIS	Noise Filter Clock Pre-divide Selection To determine the sampling frequency of the Noise Filter clock 00 = CAP_CLK. 01 = CAP_CLK/2. 10 = CAP_CLK/4. 11 = CAP_CLK/16.

Input Capture Timer/Counter Control Register (ECAP_CTL1)

Register	Offset	R/W	Description	Reset Value
ECAP_CTL1	ECAPn_BA+0x18	R/W	Input Capture Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
		Rese	erved			SRC	SEL
15	14	13	12	11	10	9	8
Reserved		CLKSEL		Reserved		RLDSEL	
7	6	5	4	3	2	1	0
Rese	Reserved EDGESEL2			EDGE	SEL1	EDGE	SEL0

Bits	Description				
[31:18]	Reserved	Reserved.			
[17:16]	SRCSEL	Capture Timer/Counter Clock Source Selection Select the capture timer/counter clock source. 00 = CAP_CLK (default). 01 = CAP0. 10 = CAP1.			
		10 = CAP1. 11 = CAP2.			
[15]	Reserved	Reserved.			
[14:12]	CLKSEL	Capture Timer Clock Divide Selection The capture timer clock has a pre-divider with eight divided options controlled by CLKSEL[1:0]. 000 = CAP_CLK/1. 001 = CAP_CLK/4. 010 = CAP_CLK/16. 011 = CAP_CLK/32. 100 = CAP_CLK/64. 101 = CAP_CLK/96. 110 = CAP_CLK/112. 111 = CAP_CLK/128.			
[11]	Reserved	Reserved.			

Bits	Description	
		ECAP_CNT Reload Trigger Source Selection
		If the reload function is enabled RLDEN (ECAP_CTL0[27]) = 1, when a reload trigger event comes, the ECAP_CNT is reloaded with ECAP_CNTCMP.
		RLDSEL[2:0] determines the ECAP_CNT reload trigger source
[10:8]	RLDSEL	000 = CAPF0.
		001 = CAPF1.
		010 = CAPF2.
		100 = OVF.
		Others = Reserved.
[7:6]	Reserved	Reserved.
		Channel 2 Captured Edge Selection
		Input capture can detect falling edge change or rising edge change only, or one of both edge changes.
[5:4]	EDGESEL2	00 = Detect rising edge.
		01 = Detect falling edge.
		1x = Detect either rising or falling edge.
		Channel 1 Captured Edge Selection
		Input capture can detect falling edge change only, rising edge change only or one of both edge change
[3:2]	EDGESEL1	00 = Detect rising edge.
		01 = Detect falling edge.
		1x = Detect either rising or falling edge.
		Channel 0 Captured Edge Selection
		Input capture can detect falling edge change only, rising edge change only or one of both edge change
[1:0]	EDGESEL0	00 = Detect rising edge.
		01 = Detect falling edge.
		1x = Detect either rising or falling edge.

Input Capture Timer/Counter Status Register (ECAP_STATUS)

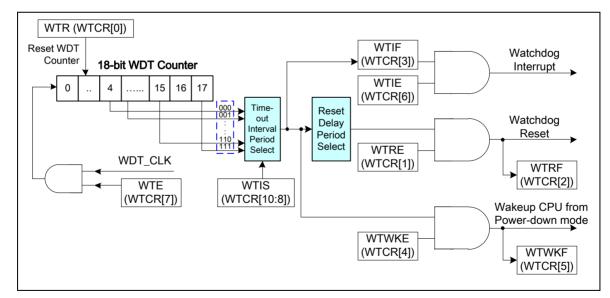
Register	Offset	R/W	Description	Reset Value
ECAP_STATUS	ECAPn_BA+0x1C	R/W	Input Capture Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Rese	erved	OVF	CMPF	Reserved	CAPF2	CAPF1	CAPF0			

Bits	Description					
[31:6]	Reserved	Reserved.				
		Input Capture Counter Overflow Flag				
		Flag is set by hardware when input capture up counter (ECAP_CNT) overflows from 0x00FF_FFFF to zero.				
[5]	OVF	0 = No overflow occurs in ECAP_CNT.				
		1 = ECAP_CNT overflows.				
		Note: This bit is only cleared by writing 1 to it.				
		Input Capture Compare-match Flag				
		If the input capture compare function is enabled, the flag is set by hardware while capture counter (ECAP_CNT) up counts and reach to the ECAP_CNTCMP value.				
[4]	CMPF	0 = ECAP_CNT does not match with ECAP_CNTCMP value.				
		1 = ECAP_CNT counts to the same as ECAP_CNTCMP value.				
		Note: This bit is only cleared by writing 1 to it.				
[3]	Reserved	Reserved.				
		Input Capture Channel 2 Captured Flag				
		When the input capture channel 2 detects a valid edge change at CAP2 input, it will set flag CAPF2 to high.				
[2]	CAPF2	0 = No valid edge change is detected at CAP2 input.				
		1 = A valid edge change is detected at CAP2 input.				
		Note: This bit is only cleared by writing 1 to it.				
		Input Capture Channel 1 Captured Flag				
		When the input capture channel 1 detects a valid edge change at CAP1 input, it will set flag CAPF1 to high.				
[1]	CAPF1	0 = No valid edge change is detected at CAP1 input.				
		1 = A valid edge change is detected at CAP1 input.				
		Note: This bit is only cleared by writing 1 to it.				

Bits	Description	
		Input Capture Channel 0 Captured Flag
		When the input capture channel 0 detects a valid edge change at CAP0 input, it will set flag CAPF0 to high.
[0]	CAPF0	0 = No valid edge change is detected at CAP0 input.
		1 = A valid edge change is detected at CAP0 input.
		Note: This bit is only cleared by writing 1 to it.

6.10 Watchdog Timer (WDT)


6.10.1 Overview

The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

6.10.2 Features

- 18-bit free running up counter for WDT time-out interval
- Selectable time-out interval (2⁴ ~ 2¹⁸) and the time-out interval is 1.6 ms ~ 26.214 s if WDT_CLK = 10 kHz
- System kept in reset state for a period of (1 / WDT_CLK) * 63
- Supports selectable WDT reset delay period, including 1026

 130
 18 or 3 WDT_CLK reset delay period
- Supports to force WDT enabled after chip powered on or reset by setting CWDTEN in Config0 register
- Supports WDT time-out wake-up function only if WDT clock source is selected as 10 kHz

6.10.3 Block Diagram

Figure 6-65 Watchdog Timer Block Diagram

Note1: WDT resets CPU and lasts 63 WDT_CLK.

Note2: Chip can be woken-up by WDT time-out interrupt signal generated only,

if WDT clock source is selected to 10kHz oscillator.

Note3: The WDT reset delay period can be selected as 3/18/130/1026 WDT_CLK.

6.10.4 Clock Control

The WDT clock control are shown in Figure 6-66.

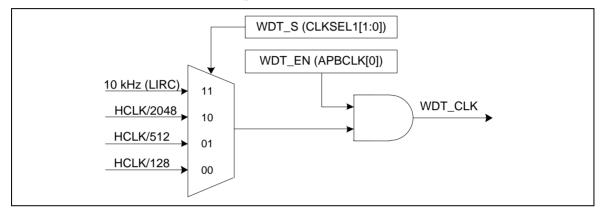


Figure 6-66 Watchdog Timer Clock Control

6.10.5 Basic Configuration

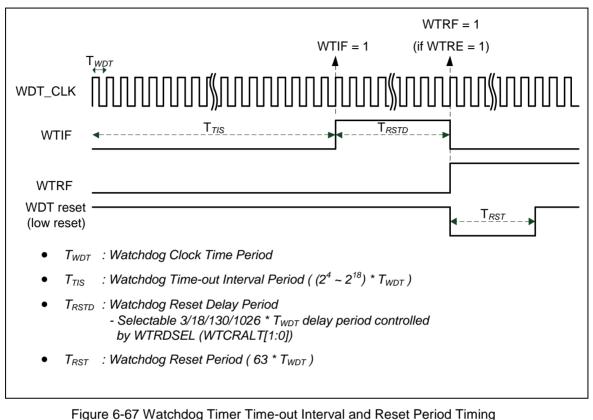
The WDT peripheral clock is enabled in WDT_EN (APBCLK[0]) and clock source can be selected in WDT_S (CLKSEL1[1:0]).

WDT controller also can be forced enabled and active in 10 kHz after chip powered on or reset while CWDTEN (Config0[31]) is configure to 0.

6.10.6 Functional Description

The WDT includes an 18-bit free running up counter with programmable time-out intervals. Table 6-12 shows the WDT time-out interval period selection and Figure 6-67 shows the WDT time-out interval and reset period timing.

6.10.6.1 WDT Time-out Interrupt


Setting WTE (WTCR[7]) to 1 will enable the WDT function and the WDT counter to start counting up. There are eight time-out interval period can be selected by setting WTIS (WTCR[10:8]). When the WDT up counter reaches the WTIS (WTCR[10:8]) settings, WDT time-out interrupt will occur then WDT time-out interrupt flag WTIF (WTCR[3]) will be set to 1 immediately.

6.10.6.2 WDT Reset Delay Period and Reset System

A specified T_{RSTD} reset delay period occurs when the WTIF (WTCR[3]) is set to 1. User should set WTR (WTCR[0]) to reset the 18-bit WDT up counter value to avoid generate WDT time-out reset signal before the T_{RSTD} reset delay period expires. Moreover, user should set WTRDSEL (WTCRALT[1:0]) to select reset delay period to clear WDT counter. If the WDT up counter value has not been cleared after the specific T_{RSTD} delay period expires, the WDT control will set WTRF (WTCR[2]) to 1 if WTRE (WTCR[1]) bit is enabled, then chip enters to reset state immediately. Refer to Figure 6-67, T_{RST} reset period will keep last 63 WDT clocks then chip restart executing program from reset vector (0x0000_0000). The WTRF (WTCR[2]) will keep 1 after WDT time-out reset the chip, user can check WTRF (WTCR[2]) by software to recognize the system has been reset by WDT time-out reset or not.

WTIS	Time-Out Interval Period T _{TIS}	Reset Delay Period T _{RSTD}
000	2 ⁴ * T _{WDT}	(3/18/130/1026) * T _{WDT}
001	2 ⁶ * T _{WDT}	(3/18/130/1026) * T _{WDT}
010	2 ⁸ * T _{WDT}	(3/18/130/1026) * T _{WDT}
011	2 ¹⁰ * T _{WDT}	(3/18/130/1026) * T _{WDT}
100	2 ¹² * T _{WDT}	(3/18/130/1026) * T _{WDT}
101	2 ¹⁴ * T _{WDT}	(3/18/130/1026) * T _{WDT}
110	2 ¹⁶ * T _{WDT}	(3/18/130/1026) * T _{WDT}
111	2 ¹⁸ * T _{WDT}	(3/18/130/1026) * T _{WDT}

Table 6-12 Watchdog Timer Time-out Interval Period Selection

6.10.6.3 WDT Wake-up

If WDT clock source is selected to 10 kHz, system can be waken-up from Power-down mode while WDT time-out interrupt signal is generated and WTWKE (WTCR[4]) enabled. Notice that user should set OSC10K_EN (PWRCON[3]) before system entries power down mode because the system peripheral clock are disabled when system is power down mode. In the meanwhile, the WTWKF (WTCR[5]) will set to 1 automatically, user can check WTWKF (WTCR[5]) status by software to recognize the system has been waken-up by WDT time-out interrupt or not.

6.10.7 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset R/W Description F							
WDT Base Address: WDT_BA = 0x4000_4000								
WTCR	WDT_BA+0x00	R/W	WDT Control Register	0x0000_0700				
WTCRALT	WDT_BA+0x04	R/W	WDT Alternative Control Register	0x0000_0000				

6.10.8 Register Description

WDT Control Register (WTCR)

Register	Offset	R/W	Description	Reset Value
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700

31	30	29	28	27	26	25	24	
DBGACK_WD T	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
		Reserved				WTIS		
7	7 6 5 4 3 2 1 0							
WTE	WTIE	WTWKF	WTWKE	WTIF	WTRF	WTRE	WTR	

Bits	Description			
[31]	DBGACK_WDT	ICE Debug Mode Acknowledge Disable (Write Protect) 0 = ICE debug mode acknowledgement affects WDT counting. WDT up counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. WDT up counter will keep going no matter CPU is held by ICE or not. Note: This bit is write protected. Refer to the REGWRPROT register.		
[30:11]	Reserved	Reserved.		
[10:8]	WTIS	WDT Time-out Interval Selection (Write Protect)These three bits select the time-out interval period for the WDT. $000 = 2^4 * WDT_CLK.$ $001 = 2^6 * WDT_CLK.$ $010 = 2^8 * WDT_CLK.$ $011 = 2^{10} * WDT_CLK.$ $101 = 2^{12} * WDT_CLK.$ $100 = 2^{12} * WDT_CLK.$ $101 = 2^{14} * WDT_CLK.$ $101 = 2^{16} * WDT_CLK.$ $110 = 2^{16} * WDT_CLK.$ $111 = 2^{16} * WDT_CLK.$ $111 = 2^{18} * WDT_CLK.$ Note: This bit is write protected. Refer to the REGWRPROT register.		
[7]	WTE	 WDT Enable Bit (Write Protect) 0 = WDT Disabled (This action will reset the internal up counter value). 1 = WDT Enabled. Note1: This bit is write protected. Refer to the REGWRPROT register. Note2: If CWDTEN (Config0[31]) bits is configure to 0, this bit is forced as 1 and user cannot change this bit to 0. 		
[6]	WTIE	WDT Time-out Interrupt Enable Bit (Write Protect)		

		If this bit is enabled, the WDT time-out interrupt signal is generated and inform to CPU.
		0 = WDT time-out interrupt Disabled.
		1 = WDT time-out interrupt Enabled.
		Note: This bit is write protected. Refer to the REGWRPROT register.
		WDT Time-out Wake-up Flag (Write Protect)
		This bit indicates the interrupt wake-up flag status of WDT
		0 = WDT does not cause chip wake-up.
[5]	WTWKF	1 = Chip wake-up from Idle or Power-down mode if WDT time-out interrupt signal generated.
		Note1: This bit is write protected. Refer to the REGWRPROT register.
		Note2: This bit is cleared by writing 1 to it.
		WDT Time-out Wake-up Function Control (Write Protect)
		If this bit is set to 1, while WDT time-out interrupt flag IF (WTCR[3]) is generated to 1 and interrupt enable bit WTIE (WTCR[6]) is enabled, the WDT time-out interrupt signal will generate a wake-up trigger event to chip.
[4]	WTWKE	0 = Wake-up trigger event Disabled if WDT time-out interrupt signal generated.
[.]		1 = Wake-up trigger event Enabled if WDT time-out interrupt signal generated.
		Note1: This bit is write protected. Refer to the REGWRPROT register.
		Note2: Chip can be woken-up by WDT time-out interrupt signal generated only if
		WDT clock source is selected to 10 kHz internal low speed RC oscillator (LIRC).
		WDT Time-out Interrupt Flag
		This bit will set to 1 while WDT up counter value reaches the selected WDT time-out
[3]	WTIF	interval
[-]		0 = WDT time-out interrupt did not occur.
		1 = WDT time-out interrupt occurred.
		Note: This bit is cleared by writing 1 to it.
		WDT Time-out Reset Flag
		This bit indicates the system has been reset by WDT time-out reset or not.
[2]	WTRF	0 = WDT time-out reset did not occur.
		1 = WDT time-out reset occurred.
		Note: This bit is cleared by writing 1 to it.
		WDT Time-out Reset Enable Bit (Write Protect)
		Setting this bit will enable the WDT time-out reset function If the WDT up counter
[1]	WTRE	value has not been cleared after the specific WDT reset delay period expires.
Ľ		0 = WDT time-out reset function Disabled.
		1 = WDT time-out reset function Enabled.
<u> </u>		Note: This bit is write protected. Refer to the REGWRPROT register.
		Reset WDT Up Counter (Write Protect)
		0 = No effect.
[0]	WTR	1 = Reset the internal 18-bit WDT up counter value.
		Note1: This bit is write protected. Refer to the REGWRPROT register.
		Note2: This bit will be automatically cleared by hardware.

WDT Alternative Control Register (WTCRALT)

Register	Offset	R/W	Description	Reset Value
WTCRALT	WDT_BA+0x04	R/W	WDT Alternative Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved				WTRDSEL			

Bits	Description			
[31:2]	Reserved	Reserved.		
[1:0]	WTRDSEL	 WDT Reset Delay Selection (Write Protect) When WDT time-out happened, user has a time named WDT Reset Delay Period to clear WDT counter by setting WTR (WTCR[0]) to prevent WDT time-out reset happened. User can select a suitable setting of WTRDSEL for different WDT Reset Delay Period. 00 = WDT Reset Delay Period is 1026 * WDT_CLK. 01 = WDT Reset Delay Period is 130 * WDT_CLK. 10 = WDT Reset Delay Period is 18 * WDT_CLK. 11 = WDT Reset Delay Period is 3 * WDT_CLK. Note1: This bit is write protected. Refer to the REGWRPROT register. Note2: This register will be reset to 0 if WDT time-out reset happened. 		

6.11 Window Watchdog Timer (WWDT)

6.11.1 Overview

The Window Watchdog Timer is used to perform a system reset within a specified window period to prevent software from running to uncontrollable state by any unpredictable condition usually generated by external interferences or unexpected logical conditions.

When the window function is used to trim the watchdog behavior to match the application perfectly, software must refresh the counter before time-out.

6.11.2 Features

- 6-bit down counter value WWDTCVAL (WWDTCVR[5:0]) and 6-bit compare value WINCMP (WWDTCR[21:16]) to make the WWDT time-out window period flexible
- Supports 4-bit value PERIODSEL (WWDTCR[11:8]) to programmable maximum 11-bit prescale counter period of WWDT counter
- WWDT counter suspends in Idle/Power-down mode

6.11.3 Block Diagram

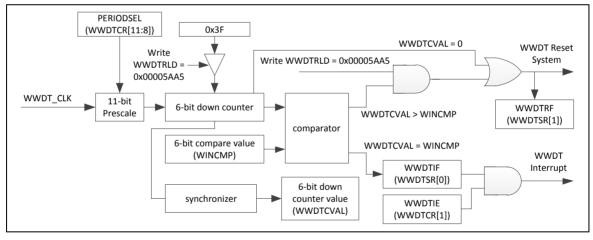


Figure 6-68 Window Watchdog Timer Block Diagram

6.11.4 Clock Diagram

The Window Watchdog Timer block diagram is shown in Figure 6-69.

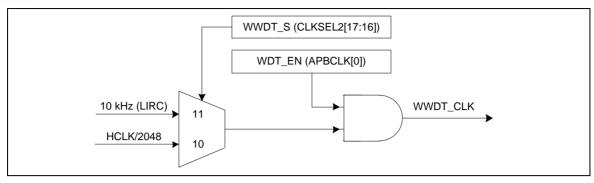


Figure 6-69 Window Watchdog Timer Clock Control

6.11.5 Basic Configuration

The WWDT peripheral clock is enabled in WDT_EN (APBCLK[0]) and clock source can be selected in WWDT_S (CLKSEL2[17:16]).

6.11.6 Functional Description

The WWDT includes a 6-bit down counter with programmable prescaler to define different time-out intervals. The clock source of 6-bit WWDT is based on system clock divide 2048 or internal 10 kHz oscillator with a programmable 11-bit prescaler. The programmable 11-bit prescaler is controlled by register PERIODSEL (WWDTCR[11:8]) and the correlate of PERIODSEL and prescaler value is listed in Table 6-13.

PERIODSEL	Prescaler Value	Time-Out Period	Time-Out Interval (WWDT_CLK=10 KHz)
0000	1	1 * 64 * T _{WWDT}	6.4 ms
0001	2	2 * 64 * T _{WWDT}	12.8 ms
0010	4	4 * 64 * T _{WWDT}	25.6 ms
0011	8	8 * 64 * T _{WWDT}	51.2 ms
0100	16	16 * 64 * T _{WWDT}	102.4 ms
0101	32	32 * 64 * T _{WWDT}	204.8 ms
0110	64	64 * 64 * T _{WWDT}	409.6 ms
0111	128	128 * 64 * T _{WWDT}	819.2 ms
1000	192	192 * 64 * T _{WWDT}	1.2288 s
1001	256	256 * 64 * T _{WWDT}	1.6384 s
1010	384	384 * 64 * T _{WWDT}	2.4576 s
1011	512	512 * 64 * T _{WWDT}	3.2768 s
1100	768	768 * 64 * T _{WWDT}	4.9152 s
1101	1024	1024 * 64 * T _{WWDT}	6.5536 s

1110	1536	1536 * 64 * T _{WWDT}	9.8304 s
1111	2048	2048 * 64 * T _{WWDT}	13.1072 s

Table 6-13 WWDT Prescale Value Selection

6.11.6.1 WWDT Counting

When the WWDTEN (WWDTCR[0]) is set, WWDT down counter will start counting from 0x3F to 0. To prevent program runs to disable WWDT counter counting unexpected, the WWDTCR register can only be written once after chip is powered on or reset. User cannot disable WWDT counter counting WWDTEN (WWDTCR[0]), change counter prescale period (PERIODSEL) or change window compare value WINCMP (WWDTCR[21:16]) while WWDTEN (WWDTCR[0]) has been enabled by user unless chip is reset.

6.11.6.2 WWDT Compare Match Interrupt

During down counting by the WWDT counter, the WWDTIF (WWDTSR[0]) is set to 1 while the WWDT counter value WWDTCVAL (WWDTCVR[5:0]) is equal to window compare value WINCMP (WWDTCR[21:16]) and WWDTIF can be cleared by user; if WWDTIE (WWDTCR[1]) is also set to 1 by user, the WWDT compare match interrupt signal is generated also while WWDTIF is set to 1 by hardware.

6.11.6.3 WWDT Reset System

When WWDTIF (WWDTSR[0]) is generated, user must write 0x00005AA5 in WWDTRLD register to reload WWDTCVAL (WWDTCVR[5:0]) to 0x3F, and also to prevent WWDT reset system signal occurred while WWDTCVAL reached to 0 and internal prescale counter value down count to 0.

If current WWDTCVAL is larger than WINCMP (WWDTCR[21:16]) and user writes 0x00005AA5 to the WWDTRLD register, the WWDT reset system signal will be generated immediately to cause chip reset also.

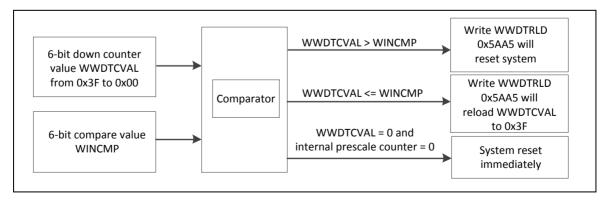


Figure 6-70 WWDT Reset and Reload Behavior

6.11.6.4 WWDT Window Setting Limitation

When user writes 0x00005AA5 to WWDTRLD register to reload WWDT counter value to 0x3F, it needs 3 WWDT clocks to sync the reload command to actually perform reload action. Notice that if user set PERIODSEL (WWDTCR[11:8]) to 0000, the counter prescale value should be as 1, and the WINCMP (WWDTCR[21:16]) must be larger than 2. Otherwise, writing WWDTRLD register to reload WWDT counter value to 0x3F is unavailable, WWDTIF (WWDTSR[0]) is generated, and WWDT reset system event always happened.

PERIODSEL	Prescale Value	Valid WINCMP Value
0000	1	0x3 ~ 0x3F
0001	2	0x2 ~ 0x3F
Others	Others	0x0 ~ 0x3F

Table 6-14 WWDT WINCMP Setting Limitation

6.11.7 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value	
WWDT Base Address: WWDT_BA = 0x4000_4100					
WWDTRLD	WWDT_BA+0x00	W	WWDT Reload Counter Register	0x0000_0000	
WWDTCR	WWDT_BA+0x04	R/W	WWDT Control Register	0x003F_0800	
WWDTSR	WWDT_BA+0x08	R/W	WWDT Status Register	0x0000_0000	
WWDTCVR	WWDT_BA+0x0C	R	WWDT Counter Value Register	0x0000_003F	

6.11.8 Register Description

WWDT Reload Counter Register (WWDTRLD)

Register	Offset	R/W	Description	Reset Value
WWDTRLD	WWDT_BA+0x00	W	WWDT Reload Counter Register	0x0000_0000

31	30	29	28	27	26	25	24
	WWDTRLD						
23	22	21	20	19	18	17	16
	WWDTRLD						
15	14	13	12	11	10	9	8
	WWDTRLD						
7	6	5	4	3	2	1	0
	WWDTRLD						

Bits	Description		
		WWDT Reload Counter Register Writing 0x00005AA5 to this register will reload the WWDT counter value to 0x3F.	
[31:0]		Note: User can only write WWDTRLD to reload WWDT counter value when current WWDT counter value between 0 and WINCMP (WWDTCR[21:16]). If user writes WWDTRLD when current WWDT counter value is larger than WINCMP, WWDT reset signal will generate immediately.	

WWDT Control Register (WWDTCR)

Register	Offset	R/W	R/W Description				Reset Value
WWDTCR	WWDT_BA+0x0	04 R/W WWDT Control Register				0x003F_0800	
Note: This regi	Note: This register can be written only one time after chip is powered on or reset.						
31	30	29	28	27	26	25	24
DBGACK_W WDT		Reserved					
23	22	21	20	19	18	17	16
Rese	erved			WINCMP			
15	14	13	12	11	10	9	8
Reserved			PERIODSEL				
7	6	5	4	3	2	1	0
	Reserved					WWDTIE	WWDTEN

Bits	Description				
[31] [30:22]	DBGACK_WWDT Reserved	ICE Debug Mode Acknowledge Disable Control 0 = ICE debug mode acknowledgement effects WWDT counting. WWDT down counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. WWDT down counter will keep going no matter CPU is held by ICE or not. Reserved. WWDT Window Compare Register			
[21:16]	WINCMP	Set this register to adjust the valid reload window. Note: User can only write WWDTRLD to reload WWDT counter value when current WWDT counter value between 0 and WINCMP. If user writes WWDTRLD when current WWDT counter value larger than WINCMP, WWDT reset signal will generate immediately.			
[15:12]	Reserved	Reserved.			
[11:8]	PERIODSEL	WWDT Counter Prescale Period Selection 0000 = Pre-scale is 1; Max time-out period is 1 * 64 * WWDT_CLK. 0001 = Pre-scale is 2; Max time-out period is 2 * 64 * WWDT_CLK. 0010 = Pre-scale is 4; Max time-out period is 4 * 64 * WWDT_CLK. 0011 = Pre-scale is 8; Max time-out period is 8 * 64 * WWDT_CLK. 0100 = Pre-scale is 16; Max time-out period is 16 * 64 * WWDT_CLK. 0101 = Pre-scale is 32; Max time-out period is 32 * 64 * WWDT_CLK. 0110 = Pre-scale is 64; Max time-out period is 64 * 64 * WWDT_CLK. 0111 = Pre-scale is 64; Max time-out period is 128 * 64 * WWDT_CLK. 0111 = Pre-scale is 128; Max time-out period is 192 * 64 * WWDT_CLK. 1000 = Pre-scale is 256; Max time-out period is 384 * 64 * WWDT_CLK. 1011 = Pre-scale is 384; Max time-out period is 384 * 64 * WWDT_CLK. 1010 = Pre-scale is 384; Max time-out period is 768 * 64 * WWDT_CLK.			

		 1101 = Pre-scale is 1024; Max time-out period is 1024 * 64 * WWDT_CLK. 1110 = Pre-scale is 1536; Max time-out period is 1536 * 64 * WWDT_CLK. 1111 = Pre-scale is 2048; Max time-out period is 2048 * 64 * WWDT_CLK.
[7:2]	Reserved	Reserved.
[1]	WWDTIE	 WWDT Interrupt Enable Bit If this bit is enabled, the WWDT counter compare match interrupt signal is generated and inform to CPU. 0 = WWDT counter compare match interrupt Disabled. 1 = WWDT counter compare match interrupt Enabled.
[0]	WWDTEN	 WWDT Enable Bit Set this bit to enable WWDT counter counting 0 = WWDT counter is stopped. 1 = WWDT counter is starting counting.

WWDT Status Register (WWDTSR)

Register	Offset	R/W	Description	Reset Value
WWDTSR	WWDT_BA+0x08	R/W	WWDT Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved						WWDTIF

Bits	Description	
[31:2]	Reserved	Reserved.
[1]	WWDTRF	 WWDT Time-out Reset Flag This bit indicates the system has been reset by WWDT time-out reset or not. 0 = WWDT time-out reset did not occur. 1 = WWDT time-out reset occurred. Note: This bit is cleared by writing 1 to it.
[0]	WWDTIF	 WWDT Compare Match Interrupt Flag This bit indicates the interrupt flag status of WWDT while WWDT counter value matches WINCMP (WWDTCR[21:16]). 0 = No effect. 1 = WWDT counter value matches WINCMP value. Note: This bit is cleared by writing 1 to it.

WWDT Counter Value Register (WWDTCVR)

Register	Offset	R/W	Description	Reset Value
WWDTCVR	WWDT_BA+0x0C	R	WWDT Counter Value Register	0x0000_003F

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved				WWD	ſCVAL		

Bits	Description		
[31:6]	Reserved	Reserved.	
[5:0]	WWDTCVAL	WWDT Counter Value WWDTCVAL will be updated continuously to monitor 6-bit down counter value.	

6.12 Universal Asynchronous Receiver Transmitter (UART)

6.12.1 Overview

The NuMicro[®] M0519 series provides two channels of Universal Asynchronous Receiver/Transmitters (UART). UART Controller performs Normal Speed UART and supports flow control function. The UART Controller performs a serial-to-parallel conversion on data received from the peripheral and a parallel-to-serial conversion on data transmitted from the CPU. Each UART Controller channel supports seven types of interrupts. The UART controller also supports IrDA SIR, RS-485 and LIN.

6.12.2 Features

- Full duplex, asynchronous communications
- Separates receive / transmit 16 bytes entry FIFO for data payloads
- Supports hardware auto-flow control/flow control function (nCTS, nRTS) and programmable nRTS flow control trigger level
- Programmable receiver buffer trigger level
- Supports programmable baud-rate generator for each channel individually
- Supports nCTS wake-up function
- Supports 8-bit receiver buffer time out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting DLY (UA_TOR [15:8]) register
- Supports break error, frame error, parity error and receive / transmit buffer overflow detect function
- Fully programmable serial-interface characteristics
 - Programmable data bit length, 5-, 6-, 7-, 8-bit character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit length, 1, 1.5, or 2 stop bit generation
- IrDA SIR function mode
 - Supports 3-/16-bit duration for normal mode
- LIN function mode
 - Supports LIN master/slave mode
 - Supports programmable break generation function for transmitter
 - Supports break detect function for receiver
- RS-485 function mode
 - Supports RS-485 9-bit mode
 - Supports hardware or software direct enable control provided by nRTS pin

6.12.3 Block Diagram

The UART clock control and block diagram are shown in Figure 6-71 and Figure 6-72

respectively.

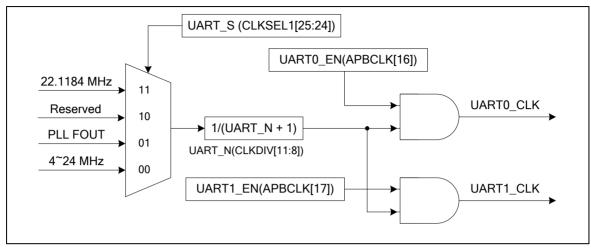


Figure 6-71 UART Clock Control Diagram

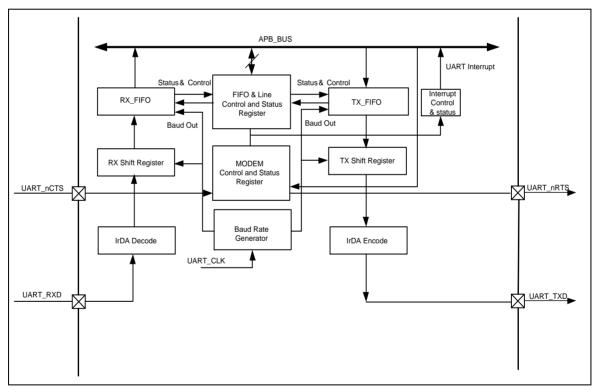


Figure 6-72 UART Block Diagram

TX_FIFO

The transmitter is buffered with a 16 byte FIFO to reduce the number of interrupts presented to the CPU.

RX_FIFO

The receiver is buffered with a 16 byte FIFO (plus three error bits BIF (UA_FSR[6]), FEF (UA_FSR[5]), PEF (UA_FSR[4]) per byte) to reduce the number of interrupts presented to the CPU.

TX shift Register

This block is responsible for shifting out the transmitting data serially.

RX shift Register

This block is responsible for shifting in the receiving data serially.

Modem Control Register

This register controls the interface to the MODEM or data set (or a peripheral device emulating a MODEM).

Baud Rate Generator

Divide the external clock by the divisor to get the desired baud rate. Refer to baud rate equation.

IrDA Encode

This block is IrDA encode control block.

IrDA Decode

This block is IrDA decode control block.

FIFO & Line Control and Status Register

This field is register set that including the FIFO Control Register (UA_FCR), FIFO Status Register (UA_FSR), and Line Control Register (UA_LCR) for transmitter and receiver. The Time Out Register (UA_TOR) identifies the condition of time-out interrupt. This register set also includes the Interrupt Enable Register (UA_IER) and Interrupt Status Register (UA_ISR) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt.

Interrupt Control and Status Register

There are seven types of interrupts, transmitter FIFO empty interrupt(THRE_INT), receiver threshold level reached interrupt (RDA_INT), line status interrupt (parity error or frame error or break error) (RLS_INT), receiver buffer time-out interrupt (TOUT_INT), MODEM status interrupt (MODEM_INT), Buffer error interrupt (BUF_ERR_INT) and LIN bus interrupt (LIN_INT).

6.12.4 Basic Configuration

The basic configurations of UART0 are as follows:

- UART0 pins are configured in P3_MFP or P5_MFP registers.
- Enable UART0 peripheral clock in UART0_EN (APBCLK[16]).
- Reset UART0 controller in UART0_RST (IPRSTC2[16]).

The basic configurations of UART1 are as follows:

- UART1 pins are configured in P2_MFP and PA_MFP register.
- Enable UART1 peripheral clock in UART1_EN (APBCLK[17]).
- Reset UART1 controller in UART1_RST (IPRSTC2[17]).

6.12.5 Functional Description

The UART Controller supports four function modes including UART, IrDA, RS-485 and LIN mode. User can select a function by setting the UA_FUN_SEL register. The four function modes will be described in following section.

6.12.5.1 UART Controller Baud Rate Generator

The UART Controller includes a programmable baud rate generator capable of dividing clock input by divisors to produce the serial clock that transmitter and receiver need. Table 6-15 lists the UART baud rate equations in the various conditions and UART baud rate parameter settings. There is no error for the baud rate results calculated through the baud rate parameter and register setting below. In IrDA function mode, the baud rate generator must be set in mode 0. More detail register description is shown in UA_BAUD register. There are three setting mode. Mode 0 is set by UA_BAUD[29:28] with 00. Mode 1 is set by UA_BAUD[29:28] with 10. Mode 2 is set by UA_BAUD[29:28] with 11.

Mode	DIV_X_EN	DIV_X_ONE	Baud Rate Equation
Mode 0	0	0	UART_CLK / [16 * (BRD+2)]
Mode 1	1	0	UART_CLK / [(DIVIDER _X+1) * (BRD+2)], DIVIDER_X must >= 8
Mode 2	1	1	UART_CLK / (BRD+2), If UART_CLK <= HCLK, BRD must >=9. If HCLK < UART_CLK <= 2*HCLK, BRD must >=15. If 2*HCLK < UART_CLK <= 3*HCLK, BRD must >=21. If UART_CLK > 3*HCLK, it is unsupported.

Table 6-15 Baud Rate Equation Table

UART Peripheral Clock = 22.1184 MHz						
Baud Rate	Mode 0	Mode 1	Mode 2			
921600	Not support	BRD=0, DIVIDER_X=11	BRD=22			
460800	BRD=1	BRD=1, DIVIDER_X =15 BRD=2, DIVIDER_X =11	BRD=46			

230400	BRD =4	BRD =4, DIVIDER_X =15 BRD =6, DIVIDER_X =11	BRD =94
115200	BRD =10	BRD =10, DIVIDER_X =15 BRD =14, DIVIDER_X =11	BRD =190
57600	BRD =22	BRD =22, DIVIDER_X =15 BRD =30, DIVIDER_X =11	BRD =382
38400	BRD =34	BRD =62, DIVIDER_X =8 BRD =46, DIVIDER_X =11 BRD =34, E DIVIDER_X =15	BRD =574
19200	BRD =70	BRD =126, DIVIDER_X =8 BRD =94, DIVIDER_X =11 BRD =70, DIVIDER_X =15	BRD =1150
9600	BRD =142	BRD =254, DIVIDER_X =8 BRD =190, DIVIDER_X =11 BRD =142, DIVIDER_X =15	BRD =2302
4800	BRD =286	BRD =510, DIVIDER_X =8 BRD =382, DIVIDER_X =11 BRD =286, DIVIDER_X =15	BRD =4606

Table 6-16 UART Controller Baud Rate Parameter Setting Example Table

	UART Peripheral Clock = 22.1184 MHz						
Baud Rate	UA_BAUD Value						
Dauu Kale	Mode 0	Mode 1	Mode 2				
921600	Not support	0x2B00_0000	0x3000_0016				
460800	0x0000_0001	0x2F00_0001 0x2B00_0002	0x3000_002E				
230400	0x0000_0004	0x2F00_0004 0x2B00_0006	0x3000_005E				
115200	0x0000_000A	0x2F00_000A 0x2B00_000E	0x3000_00BE				
57600	0x0000_0016	0x2F00_0016 0x2B00_001E	0x3000_017E				
38400	0x0000_0022	0x2800_003E 0x2B00_002E 0x2F00_0022	0x3000_023E				
19200	0x0000_0046	0x2800_007E 0x2B00_005E 0x2F00_0046	0x3000_047E				
9600	0x0000_008E	0x2800_00FE 0x2B00_00BE 0x2F00_008E	0x3000_08FE				
4800	0x0000_011E	0x2800_01FE 0x2B00_017E 0x2F00_011E	0x3000_11FE				

Table 6-17 UART Controller Baud Rate Register Setting Example Table

6.12.5.2 UART Controller Transmit Delay Time Value

The UART Controller programs DLY (UA_TOR[15:8]) to control the transfer delay time between the last stop bit and next start bit in transmission. The unit is baud. The operation is shown in Figure 6-73.

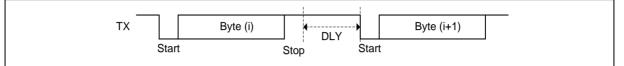
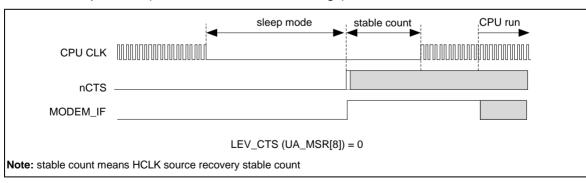


Figure 6-73 Transmit Delay Time Operation


6.12.5.3 UART Controller FIFO Control and Status

The UART Controller is built-in with a 16 bytes transmitter FIFO (TX_FIFO) and a 16 bytes receiver FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU. The CPU can read the status of the UART at any time during operation. The reported status information includes condition of the transfer operations being performed by the UART, as well as 3 error conditions (parity error, frame error, break error) occur if receiving data has parity, frame or break error. UART, IrDA, LIN and RS-485 mode support FIFO control and status function.

If there is any overrun event in transmitter or receiver FIFO, the buffer error flag BUF_ERR_IF (UA_ISR[5]) will be set automatically.

6.12.5.4 UART Controller Wake-up Function

The UART controller supports wake-up system function. The wake-up function includes nCTS. When the system is in Power-down, the UART can wake-up system by nCTS pin. Figure 6-74 demonstrates the wake-up function.

nCTS Wake-up Case 1 (nCTS transition from low to high)

Figure 6-74 UART nCTS Wake-up Case1

nCTS Wake-up Case 2 (nCTS transition from high to low)

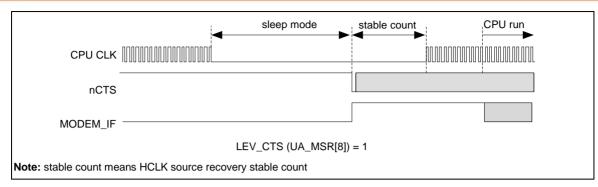


Figure 6-75 UART nCTS Wake-up Case2

6.12.5.5 UART Controller Interrupt and Status

Each UART Controller supports seven types of interrupts including:

- Receiver threshold level reached interrupt (RDA_INT)
- Transmitter FIFO empty interrupt (THRE_INT)
- Line status interrupt (parity error or frame error or break error) (RLS_INT)
- MODEM status interrupt (MODEM_INT)
- Receiver buffer time-out interrupt (TOUT_INT)
- Buffer error interrupt (BUF_ERR_INT)
- LIN bus interrupt (LIN_INT)

Table 6-18 describes the interrupt sources and flags. The interrupt is generated when the interrupt flag is generated and the interrupt enable bit is set. User must clear the interrupt flag after the interrupt is generated.

UART Interrupt Source		Interrupt Indicator To Interrupt Controller	Interrupt Flag	Flag Cleared By
LIN interrupt	LIN_IEN	LIN_INT	LIN_IF	Write '1' to LINS_HDET_F/LIN_B KDET_F/BIT_ERR_F/ LINS_IDPERR_F/LIN S_HERR_F
Duffor From Interrupt			BUF_ERR_IF = TX_OVER_IF	Write '1' to TX_OVER_IF
Buffer Error Interrupt	BUF_ERR_IEN	BUF_ERR_INT	BUF_ERR_IF = RX_OVER_IF	Write '1' to RX_OVER_IF
Receiver Buffer Time-out Interrupt	TOUT_IEN	TOUT_INT	TOUT_IF	Read UA_RBR
Modem Status Interrupt	MODEM_IEN	MODEM_INT	MODEM_IF = DCTSF	Write '1' to DCTSF
			RLS_IF = BIF	Write '1' to BIF
			RLS_IF = FEF	Write '1' to FEF
Receive Line Status Interrupt	RLS_IEN	RLS_INT	RLS_IF = PEF	Write '1' to PEF
			RLS_IF = RS485_ADD_DETF	Write '1' to RS485_ADD_DETF

Transmit Holding Register Empty Interrupt	THRE_IEN	THRE_INT	THRE_IF	Write UA_THR
Receive Data Available Interrupt	RDA_IEN	RDA_INT	RDA_IF	Read UA_RBR

Table 6-18 UART Interrupt Sources and Flags Table in Software Mode

6.12.5.6 UART Function Mode

The UART Controller provides UART function (Setting FUN_SEL (UA_FUN_SEL [1:0]) to 00 to enable UART function mode). The UART baud rate is up to 1 Mbps.

The UART provides full-duplex and asynchronous communications. The transmitter and receiver contain 16 bytes FIFO for payloads. User can program receiver buffer trigger level and receiver buffer time-out detection for receiver.

The UART supports hardware auto-flow control that provides programmable nRTS flow control trigger level. When number of data bytes in RX FIFO is equal to or greater than RTS_TRI_LEV (UA_FCR[19:16]), the nRTS is de-asserted.

UART Line Control Function

The UART Controller supports fully programmable serial-interface characteristics by setting the UA_LCR register. User can program UA_LCR register for the word length, stop bit and parity bit setting. Table 6-19 lists the UART word, stop bit length and the parity bit settings.

NSB (UA_LCR[2])	WLS (UA_LCR[1:0])	Word Length (Bit)	Stop Length (Bit)
0	00	5	1
0	01	6	1
0	10	7	1
0	11	8	1
1	00	5	1.5
1	01	6	2
1	10	7	2
1	11	8	2

Table 6-19 UART Line Control of Word and Stop Length Setting

Parity Type	SPE (UA_LCR[5])	EPE (UA_LCR[4])	PBE (UA_LCR[3])	Description
No Parity	х	х	0	No parity bit output.
Odd Parity	0	0		Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number.
Even Parity	0	1		Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an even number.

Forced Mark Parity	1	0	1	Parity bit always logic 1. Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).
Forced Space Parity	1	1	1	Parity bit always logic 0. Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).

Table 6-20 UART Line Control of Pa	arity Bit Setting
------------------------------------	-------------------

UART Auto-Flow Control Function

The UART supports auto-flow control function that uses two signals, nCTS (clear-to-send) and nRTS (request-to-send), to control the flow of data transfer between the UART and external devices (e.g. Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts nRTS to external device. When the number of bytes stored in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR[19:16]), the nRTS is de-asserted. The UART sends data out when UART detects nCTS is asserted from external device. If the valid asserted nCTS is not detected, the UART will not send data out.

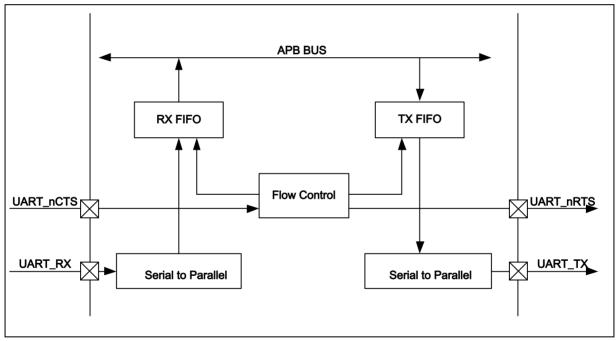


Figure 6-76 Auto-Flow Control Block Diagram

Figure 6-77 demonstrates the nCTS auto-flow control of UART function mode. User must set AUTO_CTS_EN (UA_IER[13]) to enable nCTS auto-flow control function. The LEV_CTS (UA_MSR[8]) can set nCTS pin input active state. The DCTSF (UA_MSR[0]) is set when any state change of nCTS pin input has occurred, and then TX data will be automatically transmitted from TX FIFO.

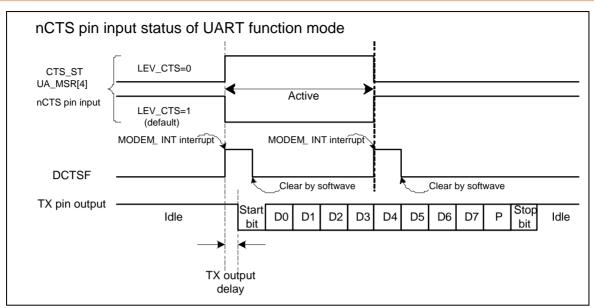


Figure 6-77 UART nCTS Auto-Flow Control Enabled

In Figure 6-78, UART nRTS auto-flow control mode (AUTO_RTS_EN (UA_IER[12])=1), the nRTS internal signal is controlled by UA_FCR controller with RTS_TRI_LEV (UA_FCR[19:16]) trigger level.

Setting LEV_RTS(UA_MCR[9]) can control the nRTS pin output is inverse or non-inverse from nRTS signal. User can read the RTS_ST (UA_MCR[13]) bit to get real nRTS pin output voltage logic status.

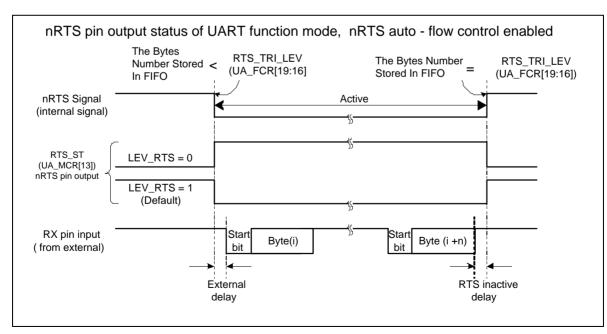


Figure 6-78 UART nRTS Auto-Flow Control Enabled

As shown in the Figure 6-79, in software mode (AUTO_RTS_EN (UA_IER[12])=0), the nRTS flow is directly controlled by software programming of RTS(UA_MCR[1]) control bit.

Setting LEV_RTS (UA_MCR[9]) can control the nRTS pin output is inverse or non-inverse from RTS(UA_MCR[1]) control bit. User can read the RTS_ST(UA_MCR[13]) bit to get real nRTS pin output voltage logic status.

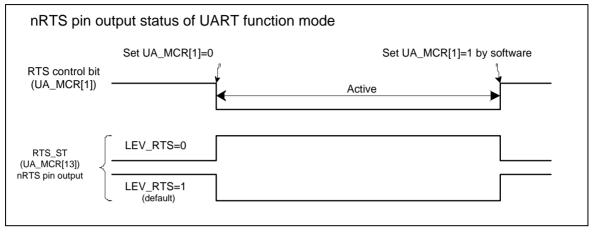


Figure 6-79 UART nRTS Auto-Flow with Software Control

6.12.5.7 IrDA Function Mode

The UART Controller also provides Serial IrDA (SIR, Serial Infrared) function (Setting FUN_SEL (UA_FUN_SEL[1:0]) to 10 to enable the IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 kbps. The IrDA SIR block contains an IrDA SIR protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So, it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10 ms transfer delay between transmission and reception, and this delay feature must be implemented by software.

In IrDA mode, the DIV_X_EN (UA_BAUD[29]) register must be cleared.

Baud Rate = Clock / (16 * (BRD+2)), where BRD is Baud Rate Divider in UA_BAUD register.

The IrDA control block diagram is shown in Figure 6-80

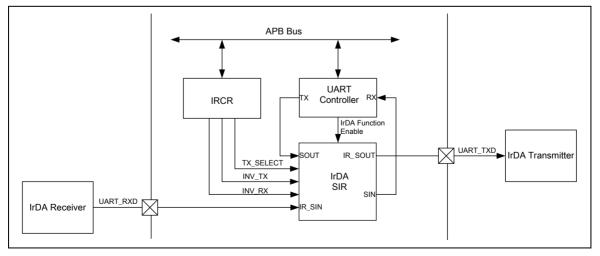


Figure 6-80 IrDA Block Diagram

6.12.5.7.1 IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies the use of Return-to-Zero Inverted (RZI) modulation scheme which represents logic 0 as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared Light Emitting Diode.

In Normal mode, the transmitted pulse width is specified as 3/16 period of baud rate.

6.12.5.7.2 IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the Return-to-Zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input. The decoder input is normally high in the idle state and the start bit is detected when the decoder input is LOW. (Because of this, INV_RX (UA_IRCR[6]) should be set as 1 by default and the INV_TX (UA_IRCR[5]) is set to '0').

6.12.5.7.3 IrDA SIR Operation

The IrDA SIR Encoder/Decoder provides functionality which converts between UART data stream and half duplex serial SIR interface. Figure 6-81is IrDA encoder/decoder waveform:

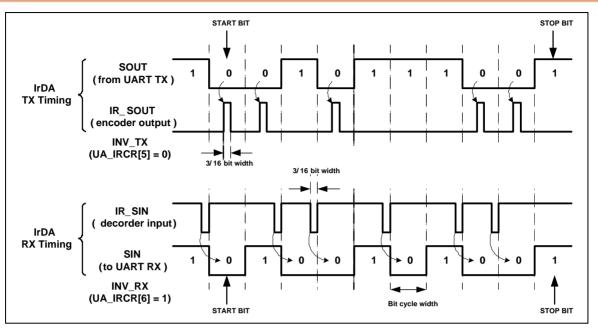


Figure 6-81 IrDA Timing Diagram

6.12.5.8 RS-485 function mode

Another alternate function of UART Controller is RS-485 function (user must set FUN_SEL (UA_FUN_SEL[1:0]) to 11 to enable RS-485 function), and direction control provided by nRTS pin from an asynchronous serial port. The RS-485 transceiver control is implemented by using the nRTS control signal to enable the RS-485 driver, many characteristics of the RX and TX are same as UART in RS-485 mode.

The UART controller can be configured as an RS-485 addressable slave and the RS-485 master transmitter will identify an address character by setting the parity (9-th bit) to 1. For data characters, the parity is set to 0. Software can use UA_LCR register to control the 9-th bit (When the PBE (UA_LCR[3]), EPE (UA_LCR[4]) and SPE (UA_LCR[5]) are set, the 9-th bit is transmitted 0 and when PBE (UA_LCR[3]) and SPE (UA_LCR[5]) are set and EPE (UA_LCR[4]) is cleared, the 9-th bit is transmitted 1).

The controller supports three operation modes: RS-485 Normal Multidrop Operation Mode (NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto Direction Control Operation Mode (AUD). Software can choose any operation mode by programming the UA_ALT_CSR register, and drive the transfer delay time between the last stop bit leaving the TX-FIFO and the de-assertion of by setting DLY (UA_TOR[15:8]) register.

The Controller support three operation mode that is

RS-485 Normal Multidrop Operation Mode (NMM)

In RS-485 Normal Multidrop operation mode (RS485_NMM (UA_ALT_CSR[8]) = 1), in first, software must decide the data which before the address byte be detected will be stored in RX-FIFO or not. If software want to ignore any data before address byte detected, the flow is set RX_DIS (UA_FCR[8]), then enable RS485_NMM (UA_ALT_CSR[8]) and the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data will be stored in the RX-FIFO. If software wants to receive any data before address byte detected, the flow is clear RX_DIS (UA_FCR[8]), then enables RS485_NMM (UA_ALT_CSR[8]) and the receiver will receiver will receive any data before address byte detected.

If an address byte is detected (bit9 =1), it will generate an interrupt to CPU and RX_DIS (UA_FCR[8]) can decide whether accepting the following data bytes are stored in the RX-FIFO. If software disables receiver by setting RX_DIS (UA_FCR[8]) register, when the next address byte be detected, the controller will clear the RX_DIS (UA_FCR[8]) bit and the address byte data will be stored in the RX-FIFO.

RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation mode (RS485_AAD (UA_ALT_CSR[9]) = 1), the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data match the ADDR_MATCH (UA_ALT_CSR [31:24]) value. The address byte data will be stored in the RX-FIFO. The all received byte data will be accepted and stored in the RX-FIFO until an address byte data not match the ADDR_MATCH (UA_ALT_CSR[31:24]) value.

RS-485 Auto Direction Mode (AUD)

Another option function of RS-485 controllers is RS-485 auto direction control function (RS485_AUD (UA_ALT_CSR[10] = 1). The RS-485 transceiver control is implemented by using the nRTS control signal from an asynchronous serial port. The nRTS line is connected to the RS-485 transceiver enable pin such that setting the nRTS line to high (logic 1) enables the RS-485 transceiver. Setting the nRTS line to low (logic 0) puts the transceiver into the tri-state condition to disabled. User can setting LEV_RTS (UA_MCR[9]) to change the nRTS driving level.

Figure 6-82 demonstrates the RS-485 nRTS driving level in AUD mode. The nRTS pin will be automatically driven during TX data transmission.

Setting LEV_RTS (UA_MCR[9]) can control nRTS pin output driving level. User can read the RTS_ST(UA_MCR[13]) bit to get real nRTS pin output voltage logic status.

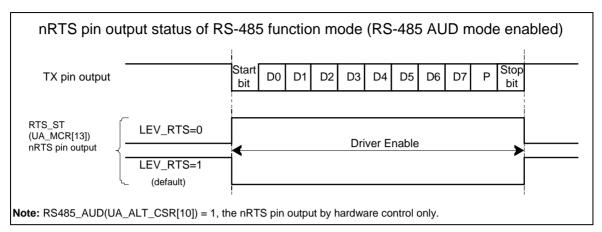


Figure 6-82 RS-485 nRTS Driving Level in Auto Direction Mode

Figure 6-83 demonstrates the RS-485 nRTS driving level in software control (RS485_AUD (UA_ALT_CSR[10])=0). The nRTS driving level is controlled by programing the RTS(UA_MCR[1]) control bit.

Setting LEV_RTS (UA_MCR[9]) can control the nRTS pin output is inverse or non-inverse from RTS (UA_MCR[1]) control bit. User can read the RTS_ST (UA_MCR[13]) bit to get real nRTS pin output voltage logic status.

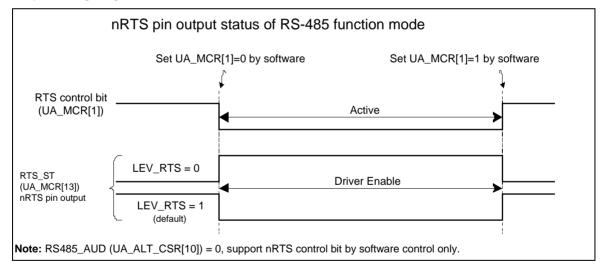


Figure 6-83 RS-485 nRTS Driving Level with Software Control

Program Sequence Example:

- 1. Program FUN_SEL in UA_FUN_SEL to select RS-485 function.
- 2. Program the RX_DIS (UA_FCR[8]) to determine enable or disable RS-485 receiver.
- 3. Program the RS485_NMM (UA_ALT_CSR[8]) or RS485_AAD (UA_ALT_CSR[9]) mode.
- 4. If the RS485_AAD (UA_ALT_CSR[9]) mode is selected, the ADDR_MATCH (UA_ALT_CSR[31:24]) is programmed for auto address match value.
- 5. Determine auto direction control by programming RS485_AUD (UA_ALT_CSR[10]).

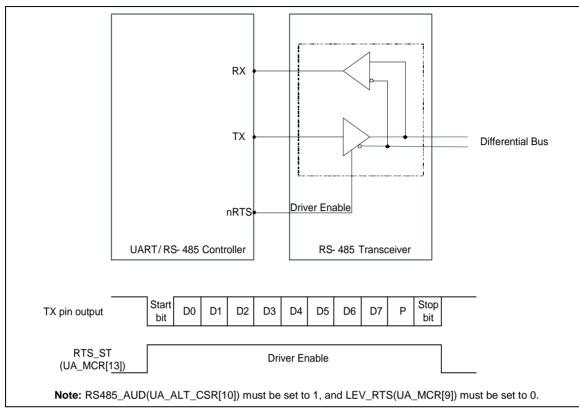


Figure 6-84 Structure of RS-485 Frame

6.12.5.9 LIN (Local Interconnection Network) mode

The UART supports LIN function, and LIN mode is selected by setting the FUN_SEL (UA_FUN_SEL[1:0]) to 01. The UART support LIN break/delimiter generation and break/delimiter detection in LIN master mode, support header detection and automatic resynchronization in LIN slave mode.

6.12.5.9.1 Structure of LIN Frame

According to the LIN protocol, all information is transmitted packed as frames; a frame consist a header (provided by the master task) and a response (provided by a slave task). That is any communication on the LIN bus is started by the master sending a header, followed by the response. The header (provided by the master task) consists of a break field and sync field followed by a frame identifier (frame ID). The frame identifier uniquely defines the purpose of the frame. The slave task appointed for providing the response associated with the frame ID and the response consists of a data field and a checksum field. Figure 6-85 is the structure of LIN Frame.

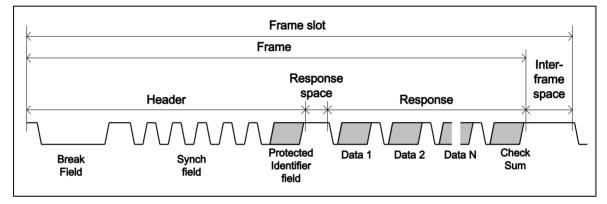


Figure 6-85 Structure of LIN Frame

6.12.5.9.2 Structure of LIN Byte

In LIN mode, each byte field is initiated by a START bit with value zero (dominant), followed by 8 data bits WLS (UA_LCR[1:0]) = 11 and no parity bit, LSB is first and ended by 1 stop bit NSB (UA_LCR[2]) = 0 with value one (recessive) in accordance with the LIN standard. Structure of Byte is in Figure 6-86.

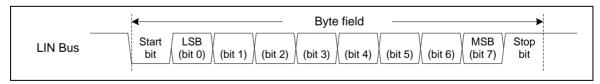


Figure 6-86 Structure of LIN Byte

6.12.5.9.3 LIN Master Mode

The UART controller support LIN master mode by setting the UA_FUN_SEL register. To enable and initialize the LIN master mode, the following steps are necessary.

- 1. Select the desired baud-rate by setting the UA_BAUD register.
- Configure the data length to 8 bits by setting WLS (UA_LCR[1:0]) = 11 and disable parity check by clearing PBE (UA_LCR[3]) bit and configure the stop bit to 1 by clearing NSB (UA_LCR[2]) bit.

3. Select LIN function mode by setting UA_FUN_SEL register.

A complete header consists of a break field and sync field followed by a frame identifier (frame ID). The UART controller can be selected header sending by three header selected mode. The header selected mode can be "break field" or "break field and sync field" or "break field, sync field and frame ID field" by setting LIN_HEAD_SEL (UA_LIN_CTL[23:22]) in UA_LIN_CTL register. If the header selected is "break field", software must handle the following sequence to sending a complete header to bus by filled sync data (0x55) and frame ID data to UA_THR register. If the header selected is "break field and sync field", software must handle the sequence to sending a complete header to bus by filled frame ID data to UA_THR register, and if the header selected is "break field and sync field", hardware will control the header sending sequence automatically but software must filled frame ID data to LIN_PID (UA_LIN_CTL[31:24]) register. When operating in header selected is "break field, sync field and frame ID data to LIN_PID (UA_LIN_CTL[31:24]) register. UA_LIN_CTL[9]) bit setting or not.

LIN_HEAD_SEL	Break Field	Sync Field	ID Field
0	Generated by H/W	Handled by S/W	Handled by S/W
1	Generated by H/W	Generated by H/W	Handled by S/W
2	Generated by H/W	Generated by H/W	Generated by H/W (But S/W needs to fill ID to LIN_PID (UA_LIN_CTL[31:24]) first)

Table 6-21	LIN Header	selection	in	master mode
------------	------------	-----------	----	-------------

When operating in LIN data transmission, software can monitor the LIN bus transfer state by hardware or software. User can enable hardware monitoring by setting BIT_ERR_EN (UA_LIN_CTL[12]) to "1", if the input pin (SIN) state is not equal to the output pin (SOUT) state in LIN transmitter state that the hardware will generator an interrupt to CPU. Software also can monitor the LIN bus transfer state by checking the read back data in UA_RBR register. The following sequence is a program sequence example:

Procedure without software error monitoring in master mode

- 1. Fill Protected Identifier to LIN_PID (UA_LIN_CTL[31:24]).
- 2. Choose the hardware transmission header field include "break field + sync field + Protected identifier field" by setting LIN_HEAD_SEL (UA_LIN_CTL[23:22]) = 10.
- 3. Request header transmission by setting the LIN_SHD (UA_LIN_CTL[8]).
- 4. Wait until LIN_SHD (UA_LIN_CTL[8]) be cleared by hardware.
- 5. Wait until TE_FLAG (UA_FSR[28]) set to "1" by hardware.

Note1: The break field + break/sync delimiter default setting is 13 dominant bits(break field) and 1 recessive bit(break/sync delimiter), software can change it by setting LIN_BKFL (UA_LIN_CTL[19:16]) and LIN_BS_LEN (UA_LIN_CTL[21:20]), to change the dominant bits.

Note2: The break/sync delimiter length default setting is 1 bit time and the inter-byte spaces default setting is also 1 bit time, software can change them by setting LIN_BS_LEN (UA_LIN_CTL[21:20]) and DLY (UA_TOR[15:8]).

Note3: If the header includes "break field, sync field and frame ID field", software must fill frame ID in LIN_PID (UA_LIN_CTL[31:24]) register before trigger header transmission (setting the LIN_SHD (UA_LIN_CTL[8])). The frame ID parity can be generated by software or hardware depends on LIN_IDPEN (UA_LIN_CTL[9]). If the parity generated by software (LIN_IDPEN (UA_LIN_CTL[9]) = 0), software must fill 8 bit data (include 2 bit parity) in this field, and if the parity generated by hardware (LIN_IDPEN (UA_LIN_CTL[9]) = 1), software fill ID0~ID5, hardware will calculate P0 and P1.

Procedure with software error monitoring in master mode

- 1. Choose the hardware transmission header field only include "break field" by setting LIN_HEAD_SEL (UA_LIN_CTL[23:22]) = 0x00.
- 2. Enable break detection function by setting LIN_BKDET_EN (UA_LIN_CTL[10]).
- 3. Request break + break/sync delimiter transmission by setting the LIN_SHD (UA_LIN_CTL[8]).
- 4. Wait until the LIN_BKDET_F (UA_LIN_SR[8]) be set to "1" by hardware.
- 5. Request sync field transmission by writing 0x55 into UA_THR register.
- 6. Wait until the RDA_IF (UA_ISR[0]) set to "1" by hardware and then read back the UA_RBR register.
- 7. Request header frame ID transmission by writing the protected identifier value to UA_THR register.
- 8. Wait until the RDA_IF (UA_ISR[0]) set to "1" by hardware and then read back the UA_RBR register.

LIN break and delimiter detection

When software enable the break detection function by setting LIN_BKDET_EN (UA_LIN_CTL[10]), the break detection circuit is activated. The break detection circuit is totally independent from the UART receiver.

When enable break detection function, the circuit looks at the input SIN pin for a start signal. If circuit detected consecutive dominant greater than 11 bits dominant followed by a recessive bit(delimiter), the LIN_BKDET_F (UA_LIN_SR[8]) flag is set at the end of break field. If the LIN_IEN (UA_IER[8]) =1, an interrupt will be generated. The behavior of the break detection and break flag is shown in Figure 6-87.

Case 1 : break sig	gnal not lor	ng eno	ugh i	gnore	this b	reak	signal	and L	.IN_BI	KDET	_F is	not se	t	
LIN Bus	IDLE													Delimiter
Capture Strobe													A	
LIN_BKDET_F		0	1	2	3	4	5	6	7	8	9	10	11	
Case 2 : break sig	gnal long e	nough	brea	k dete	ect and	d LIN_	_BKD	ET_F	set				!	
LIN Bus	IDLE													Delimiter
Capture Strobe			A			A	A		A		A	A		
LIN_BKDET_F		0	1	2	3	4	5	6	7	8	9	10	11	

Figure 6-87 Break detection in LIN mode

6.12.5.9.4 LIN Slave Mode

The UART controller support LIN slave mode by setting the LINS_EN (UA_LIN_CTL[0]). To enable and initialize the LIN slave mode, the following steps are necessary:

- 1. Select the desired baud-rate by setting the UA_BAUD register.
- Configure the data length to 8 bits by setting WLS (UA_LCR[1:0]) = 11 and disable parity check by clearing PBE (UA_LCR[3]) bit and configure the stop bit to 1 by clearing NSB (UA_LCR[2])] bit.
- 3. Select LIN function mode by setting UA_FUN_SEL register.
- 4. Enable LIN slave mode by setting the LINS_EN (UA_LIN_CTL[0]).

LIN header reception

According to the LIN protocol, a slave node must wait for a valid header which came from the master node. Then application will take one of following actions (depend on the master header frame ID value)

- Receive the response.
- Transmit the response.
- Ignore the response and wait for next header.

In LIN slave mode, user can enable slave header detection function by setting LINS_HDET_EN (UA_LIN_CTL[1]) register to detect complete frame header (receive "break field", "sync field" and "frame ID field"). When a LIN header is received, the LINS_HDET_F (UA_LIN_SR[0]) register will be set (If the LIN_IEN (UA_IER[8]) bit =1, an interrupt will be generated). User can enable frame ID parity check function by setting LIN_IDPEN (UA_LIN_CTL[9]). If only received frame ID parity is not correct (break and sync filed are correct), the LIN_IDPERR_F (UA_LIN_SR[2]) flag (If the LIN_IEN (UA_IER[8]) =1, an interrupt will be generated) and LINS_HDET_F (UA_LIN_SR[2]) flag (If the LIN_IEN (UA_IER[8]) =1, an interrupt will be generated) and LINS_HDET_F (UA_LIN_SR[0]) both will be set. User also can put LIN in mute mode by setting LIN_MUTE_EN (UA_LIN_CTL[4]) to 1. This mode allows detection of headers only (break + sync + frame ID) and prevents the reception of any other characters. In order to avoid bit rate tolerance, the controller support automatic resynchronization function to avoid clock deviation error, user can enable this feature by setting LINS_ARS_EN (UA_LIN_CTL[2]) register.

LIN response transmission

LIN slave node can transmit response and receive response. When slave node is the publisher of the response, the slave node send response by filling data to UA_THR register, and if the slave node is the subscriber of the response, the slave node received data from LIN bus.

LIN header time-out error

The LIN slave controller contains a header time-out counter. If the entire header is not received within the maximum time limit of 57 bit times, the header error flag LINS_HERR_F (UR_LIN_SR[1]) will be set. The time-out counter is enabled at each break detect edge and stopped in the following conditions.

- A LIN frame ID field has been received.
- The header error flag assert.
- Software write 1 to LINS_SYNC_F (UR_LIN_SR[3]) to re-search new frame header.

Mute mode and LIN exit from mute mode condition

In mute mode, LIN slave node will not receive any data until specified condition occurred. It allows detection of headers only and prevents the reception of any other characters. User can enable mute mode by setting LIN_MUTE_EN (UA_LIN_CTL[4]) and exit from mute mode condition can be selected by LIN_HEAD_SEL (UA_LIN_CTL[23:22]).

Note: It is recommended to set LIN slave node to mute mode after checksum transmission.

LIN slave controller exit from mute mode conditions is shown as follows: If LIN_HEAD_SEL (UA_LIN_CTL[23:22]) is set to "break field", when LIN slave controller detects a valid LIN break + delimiter, the controller will enable the receiver (exit from mute mode) and subsequent data(sync data, frame ID data, response data) are received in RX-FIFO.

If LIN_HEAD_SEL (UA_LIN_CTL[23:22]) is set to "break field and sync field", when LIN slave controller detects a valid LIN break + delimiter followed by a valid sync field without frame error, the controller will enable the receiver (exit from mute mode) and subsequent data(ID data, response data) are received in RX-FIFO.

If LIN_HEAD_SEL (UA_LIN_CTL[23:22]) is set to "break field, sync field and ID field", when LIN slave controller detects a valid LIN break + delimiter and valid sync field without frame error followed by ID data without frame error and received ID data matched LIN_PID (UA_LIN_CTL[31:24]) value. The controller will enable the receiver (exit from mute mode) and subsequent data (response data) are received in RX-FIFO.

Slave mode without automatic resynchronization

User can disable automatic resynchronization function to fix the communication baud rate. When operating in without automatic resynchronization mode, software need some initial process, and the initialization process flow of without automatic resynchronization mode is shown as follows:

- 1. Select the desired baud-rate by setting the UA_BAUD register.
- 2. Select LIN function mode by setting UA_FUN_SEL register.
- Disable automatic resynchronization function by setting LINS_ARS_EN (UA_LIN_CTL[2]) = 0.
- 4. Enable LIN slave mode by setting the LINS_EN (UA_LIN_CTL[0]).

Slave mode with automatic resynchronization

User can enable automatic resynchronization function by setting LINS_ARS_EN (UA_LIN_CTL[2]). In automatic resynchronization mode, the controller will adjust the baud rate generator after each sync field reception. The initialization process flow of automatic resynchronization mode is shown as follows:

- 1. Select the desired baud-rate by setting the UA_BAUD register.
- 2. Select LIN function mode by setting UA_FUN_SEL register.
- Enable automatic resynchronization function by setting LINS_ARS_EN (UA_LIN_CTL[2]) = 1.
- 4. Enable LIN slave mode by setting the LINS_EN (UA_LIN_CTL[0]).

When automatic resynchronization function is enabled, after each LIN break field, the time duration between five falling edges is sampled on UART peripheral clock and the result of this measurement is stored in an internal 13-bit register and the UA_BAUD register value will automatically updated at the end of the fifth falling edge. If the measure timer (13bit) overflow before five falling edges, then the header error flag LINS_HERR_F (UA_LIN_SR[1]) will be set.

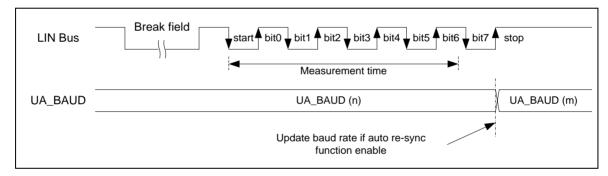


Figure 6-88 LIN sync field measurement

When operating in automatic resynchronization mode, software must select the desired baud rate by setting the UA_BAUD register and hardware will store it at internal TEMP_REG register, after each LIN break field, the time duration between five falling edges is sampled on UART peripheral clock and the result of this measurement is stored in an internal 13-bit register (BAUD_LIN) and the result will be updated to UA_BAUD register automatically.

In order to guarantee the transmission baud rate, the baud rate generator must reload the initial value before each new break reception. The initial value is programmed by the application during initialization (TEMP_REG). User can setting LINS_DUM_EN (UA_LIN_CTL[3]) to enable auto reload initial baud rate value function. If the LINS_DUM_EN (UA_LIN_CTL[3]) is set, when received the next character, hardware will auto reload the initial value to UA_BAUD, and when the UA_BAUD be updated, the LINS_DUM_EN (UA_LIN_CTL[3]) will be cleared automatically. The behavior of LIN updated method as shown in Figure 6-89.

Note1: It is recommended setting the LINS_DUM_EN (UA_LIN_CTL[3]) before every checksum reception.

Note2: When header error been detected, user must writing 1 to LINS_SYNC_F (UA_LIN_SR[3]) register to re-search new frame header. When user writing 1 to it, hardware will reload the initial baud-rate (TEMP_REG) and re-search new frame header.

Note3: When operation in automatic resynchronization mode, the baud rate setting must be mode2 (DIV_X_EN (UA_BAUD[29]) and DIV_X_ONE (UA_BAUD[28]) must be 1).

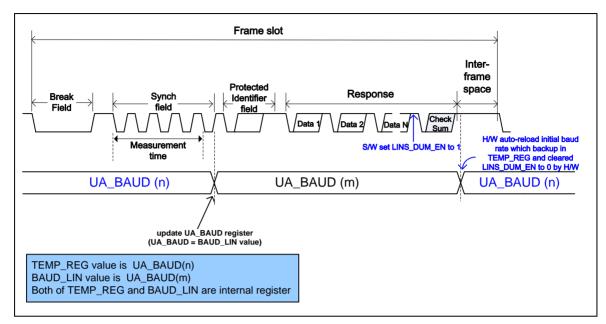


Figure 6-89 UA_BAUD update sequence in automatic resynchronization mode when LINS_DUM_EN $(UA_LIN_CTL[3]) = 1$

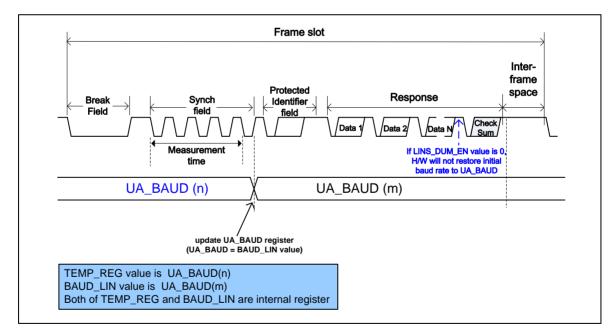


Figure 6-90 UA_BAUD update sequence in automatic resynchronization mode when LINS_DUM_EN (UA_LIN_CTL[3]) = 0

Deviation error on the sync field

When operating in automatic resynchronization mode, the controller will check the deviation error on the sync field. The deviation error is checked by comparing the current baud rate with the received sync field. Two checks are performed in parallel.

Check1: Based on measurement of time between the first falling edge and the last falling edge of the sync field.

- If the difference more than 14.84%, the header error flag LINS_HERR_F (UA_LIN_SR[1]) will be set.
- If the difference less than 14.06%, the header error flag LINS_HERR_F (UA_LIN_SR[1]) will not be set.
- If the difference between 14.84% and 14.06%, the header error flag LINS_HERR_F (UA_LIN_SR[1]) may either set or not (it is depending on the data dephasing).

Check2: Based on measurement of time between each falling edge of the sync field.

- If the difference more than 18.75%, the header error flag LINS_HERR_F (UA_LIN_SR[1]) will be set.
- If the difference less than 15.62%, the header error flag LINS_HERR_F (UA_LIN_SR[1]) will not be set.
- If the difference between 18.75% and 15.62%, the header error flag LINS_HERR_F (UA_LIN_SR[1]) may either set or not (it is depending on the data dephasing).

Note: The deviation check is based on the current baud-rate clock. Therefore, in order to guarantee correct deviation checking, the baud-rate must reload the nominal value before each new break reception by setting LINS_DUM_EN (UA_LIN_CTL[3]) register (It is recommend setting the LINS_DUM_EN (UA_LIN_CTL[3]) before every checksum reception).

LIN header error detection

In LIN slave function mode, when user enables header detection function by setting LINS_HDET_EN (UA_LIN_CTL[1]) register, the hardware will handle the header detect flow. If the header has error, the LIN header error flag LINS_HERR_F (UA_LIN_SR[1]) will be set and an interrupt is generated if the LIN_IEN (UA_IER[8]) is set. When header error is detected, user must to reset the detect circuit to re-search new frame header by writing 1 to LINS_SYNC_F (UA_LIN_SR[3]) register.

The LIN header error flag LINS_HERR_F (UA_LIN_SR[1]) is set if one of the following conditions occurs:

- Break Delimiter is too short (less than 0.5 bit time).
- Frame error in sync field or Identifier field.
- The sync field data is not 0x55 (without automatic resynchronization mode).
- The sync field deviation error (with automatic resynchronization mode).
- The sync field measure time-out (with automatic resynchronization mode).
- LIN header reception time-out

6.12.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value					
	UART Base Address: UARTx_BA = 0x4005_0000 + (0x10_0000 * x) x = 0, 1								
UA_RBR	UARTx_BA+0x00	R	UART Receive Buffer Register	Undefined					
UA_THR	UARTx_BA+0x00	W	UART Transmit Holding Register	Undefined					
UA_IER	UARTx_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000					
UA_FCR	UARTx_BA+0x08	R/W	UART FIFO Control Register	0x0000_0000					
UA_LCR	UARTx_BA+0x0C	R/W	UART Line Control Register	0x0000_0000					
UA_MCR	UARTx_BA+0x10	R/W	UART Modem Control Register	0x0000_0200					
UA_MSR	UARTx_BA+0x14	R/W	UART Modem Status Register	0x0000_0110					
UA_FSR	UARTx_BA+0x18	R/W	UART FIFO Status Register	0x1040_4000					
UA_ISR	UARTx_BA+0x1C	R/W	UART Interrupt Status Register	0x0000_0002					
UA_TOR	UARTx_BA+0x20	R/W	UART Time Out Register	0x0000_0000					
UA_BAUD	UARTx_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0F00_0000					
UA_IRCR	UARTx_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040					
UA_ALT_CSR	UARTx_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_000C					
UA_FUN_SEL	UARTx_BA+0x30	R/W	UART Function Select Register	0x0000_0000					
UA_LIN_CTL	UARTx_BA+0x34	R/W	UART LIN Control Register	0x000C_0000					
UA_LIN_SR	UARTx_BA+0x38	R/W	UART LIN Status Register	0x0000_0000					

6.12.7 Register Description

Receive Buffer Register (UA_RBR)

Register	Offset	R/W	Description	Reset Value
UA_RBR	UARTx_BA+0x00	R	UART Receive Buffer Register	Undefined

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	RBR								

Bits	Description	Description					
[31:8]	Reserved	Reserved.					
[7:0]		Receive Buffer Register (Read Only) By reading this register, the UART will return an 8-bit data received from UART_RXD pin (LSB first).					

Transmit Holding Register (UA_THR)

Register	Offset	R/W	Description	Reset Value
UA_THR	UARTx_BA+0x00	W	UART Transmit Holding Register	Undefined

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	THR									

Bits	Description					
[31:8]	Reserved	erved Reserved.				
		Transmit Holding Register				
[7:0]		By writing one byte to this register, the data byte will be stored in transmitter FIFO. The UART Controller will send out the data stored in transmitter FIFO top location through the UART_TXD pin. (LSB first)				

Interrupt Enable Register (UA_IER)

Register	Offset	R/W	Description	Reset Value
UA_IER	UARTx_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Rese	erved	AUTO_CTS_E N	AUTO_RTS_E N	TIME_OUT_E N	Rese	erved	LIN_IEN		
7	6	5	4	3	2	1	0		
Reserved	WAKE_EN	BUF_ERR_IE N	TOUT_IEN	MODEM_IEN	RLS_IEN	THRE_IEN	RDA_IEN		

Bits	Description	
[31:14]	Reserved	Reserved.
[13]	AUTO_CTS_EN	 nCTS Auto Flow Control Enable Bit 0 = nCTS auto-flow control Disabled. 1 = nCTS auto-flow control Enabled. When nCTS auto-flow is enabled, the UART will send data to external device when nCTS input assert (UART will not send data to device until nCTS is asserted).
[12]	AUTO_RTS_EN	nRTS Auto Flow Control Enable Bit 0 = nRTS auto-flow control Disabled. 1 = nRTS auto-flow control Enabled. When nRTS auto-flow is enabled, if the number of bytes in the RX FIFO equals the RTS_TRI_LEV (UA_FCR[19:16]), the UART will de-assert nRTS signal.
[11]	TIME_OUT_EN	Receive Buffer Time Out Counter Enable Bit 0 = Receive Buffer time out counter Disabled. 1 = Receive Buffer time out counter Enabled.
[10:9]	Reserved	Reserved.
[8]	LIN_IEN	LIN Bus Interrupt Enable Bit 0 = Lin bus interrupt Disabled. 1 = Lin bus interrupt Enabled. Note: This field is used for LIN function mode.
[7]	Reserved	Reserved.
[6]	WAKE_EN	 UART Wake-up Function Enable Bit 0 = UART wake-up function Disabled. 1 = UART wake-up function Enabled, when the chip is in Power-down mode, an external nCTS change will wake-up chip from Power-down mode.
[5]	BUF_ERR_IEN	Buffer Error Interrupt Enable Bit

		0 = Buffer error interrupt Disabled. 1 = Buffer error interrupt Enabled.
[4]	TOUT_IEN	RX Time Out Interrupt Enable Bit 0 = RX time-out interrupt Disabled. 1 = RX time-out interrupt Enabled.
[3]	MODEM_IEN	Modem Status Interrupt Enable Bit 0 = Modem status interrupt Disabled. 1 = Modem status interrupt Enabled.
[2]	RLS_IEN	Receive Line Status Interrupt Enable Bit 0 = Receive Line Status interrupt Disabled. 1 = Receive Line Status interrupt Enabled.
[1]	THRE_IEN	Transmit Holding Register Empty Interrupt Enable Bit 0 = Transmit holding register empty interrupt Disabled. 1 = Transmit holding register empty interrupt Enabled.
[0]	RDA_IEN	Receive Data Available Interrupt Enable Bit 0 = Receive data available interrupt Disabled. 1 = Receive data available interrupt Enabled.

FIFO Control Register (UA_FCR)

Register	Offset	R/W	Description	Reset Value
UA_FCR	UARTx_BA+0x08	R/W	UART FIFO Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Rese	erved		RTS_TRI_LEV				
15	14	13	12	11	10	9	8	
Reserved						RX_DIS		
7	6	5	4	3	2	1	0	
	RFITL				TFR	RFR	Reserved	

Bits	Description				
[31:20]	Reserved	Reserved.			
[19:16]		nRTS Trigger Level for Auto-flow Control Use			
		0000 = nRTS Trigger Level is 1 byte.			
		0001 = nRTS Trigger Level is 4 bytes.			
	RTS_TRI_LEV	0010 = nRTS Trigger Level is 8 bytes.			
		0011 = nRTS Trigger Level is 14 bytes.			
		Others = Reserved.			
		Note: This field is used for auto nRTS flow control.			
[15:9]	Reserved	Reserved.			
		Receiver Disable Register			
		The receiver is disabled or not (set 1 to disable receiver)			
[8]	RX DIS	0 = Receiver Enabled.			
[0]		1 = Receiver Disabled.			
		Note: This field is used for RS-485 Normal Multi-drop mode. It should be programmed before RS485_NMM (UA_ALT_CSR [8]) is programmed.			
		RX FIFO Interrupt Trigger Level			
		When the number of bytes in the receive FIFO equals the RFITL, the RDA_IF will be set (if RDA_IEN(UA_IER [0]) enabled, and an interrupt will be generated).			
		0000 = RX FIFO Interrupt Trigger Level is 1 byte.			
[7:4]	RFITL	0001 = RX FIFO Interrupt Trigger Level is 4 bytes.			
		0010 = RX FIFO Interrupt Trigger Level is 8 bytes.			
		0011 = RX FIFO Interrupt Trigger Level is 14 bytes.			
		Others = Reserved.			
[3]	Reserved	Reserved.			
[2]		TX Field Software Reset			
	TFR	When TFR is set, all the byte in the transmit FIFO and TX internal state machine are cleared.			

		0 = No effect. 1 = Reset the TX internal state machine and pointers.
		Note: This bit will automatically clear at least 3 UART engine clock cycles.
	RFR	RX Field Software Reset
[4]		When RFR is set, all the byte in the receiver FIFO and RX internal state machine are cleared.
[,]		0 = No effect.
		1 = Reset the RX internal state machine and pointers.
		Note: This bit will automatically clear at least 3 UART engine clock cycles.
[0]	Reserved	Reserved.

Line Control Register (UA_LCR)

Register	Offset	R/W	Description	Reset Value
UA_LCR	UARTx_BA+0x0C	R/W	UART Line Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
Reserved	BCB	SPE	EPE	PBE	NSB	WLS			

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	всв	 Break Control Bit 0 = Break Control Disabled. 1 = Break Control Enabled. Note: When this bit is set to logic 1, the serial data output (TX) is forced to the Spacing State (logic 0). This bit acts only on TX and has no effect on the transmitter logic.
[5]	SPE	Stick Parity Enable Bit 0 = Stick parity Disabled. 1 = Stick parity Enabled. Note: If PBE (UA_LCR[3]) and EBE (UA_LCR[4]) are logic 1, the parity bit is transmitted and checked as logic 0. If PBE (UA_LCR[3]) is 1 and EBE (UA_LCR[4]) is 0 then the parity bit is transmitted and checked as 1.
[4]	EPE	Even Parity Enable Bit 0 = Odd number of logic 1's is transmitted and checked in each word. 1 = Even number of logic 1's is transmitted and checked in each word. Note: This bit has effect only when PBE (UA_LCR[3]) is set.
[3]	PBE	 Parity Bit Enable Bit 0 = No parity bit. 1 = Parity bit generated Enabled. Note: Parity bit is generated on each outgoing character and is checked on each incoming data.
[2]	NSB	Number of "STOP Bit" 0 = One "STOP bit" is generated in the transmitted data. 1 = When select 5-bit word length, 1.5 "STOP bit" is generated in the transmitted data. When select 6-,7- and 8-bit word length, 2 "STOP bit" is generated in the transmitted data.
[1:0]	WLS	Word Length Selection 00 = character length is 5-bit.

	01 = character length is 6-bit.
	10 = character length is 7-bit.
	11 = character length is 8-bit.

nuvoton

MODEM Control Register (UA_MCR)

Register	Offset	R/W	Description	Reset Value
UA_MCR	UARTx_BA+0x10	R/W	UART Modem Control Register	0x0000_0200

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Rese	erved	RTS_ST		Reserved		LEV_RTS	Reserved		
7	6	5	4	3	2	1	0		
		RTS	Reserved						

Bits	Description	
[31:14]	Reserved	Reserved.
[13]	RTS_ST	 nRTS Pin State (Read Only) This bit mirror from nRTS pin output of voltage logic status. 0 = nRTS pin output is low level voltage logic state. 1 = nRTS pin output is high level voltage logic state.
[12:10]	Reserved	Reserved.
[9]	LEV_RTS	 nRTS Pin Active Level This bit defines the active level state of nRTS pin output. 0 = nRTS pin output is high level active. 1 = nRTS pin output is low level active. (Default) Note1: Refer to Figure 6-78 and Figure 6-79 for UART function mode. Note2: Refer to Figure 6-82 and Figure 6-83 for RS-485 function mode.
[8:2]	Reserved	Reserved.
[1]	RTS	 nRTS (Request-to-send) Signal This bit is direct control internal nRTS signal active or not, and then drive the nRTS pin output with LEV_RTS bit configuration. 0 = nRTS signal is active. 1 = nRTS signal is inactive. Note1: This nRTS signal control bit is not effective when nRTS auto-flow control is enabled in UART function mode. Note2: This nRTS signal control bit is not effective when RS-485 auto direction mode (AUD) is enabled in RS-485 function mode.
[0]	Reserved	Reserved.

Modem Status Register (UA_MSR)

Register	Offset	R/W	Description	Reset Value
UA_MSR	UARTx_BA+0x14	R/W	UART Modem Status Register	0x0000_0110

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved				Reserved		DCTSF	

Bits	Description	
[31:9]	Reserved	Reserved.
		nCTS Pin Active Level
[8]	LEV_CTS	This bit defines the active level state of nCTS pin input.
[0]	LLV_013	0 = nCTS pin input is high level active.
		1 = nCTS pin input is low level active. (Default)
[7:5]	Reserved	Reserved.
		nCTS Pin Status (Read Only)
		This bit mirror from nCTS pin input of voltage logic status.
[4]	CTS_ST	0 = nCTS pin input is low level voltage logic state.
ניין	010_01	1 = nCTS pin input is low level voltage logic state.
		Note: This bit echoes when UART Controller peripheral clock is enabled, and nCTS multi- function port is selected.
[3:1]	Reserved	Reserved.
		Detect nCTS State Change Flag
[0]	DCTSF	This bit is set whenever nCTS input has change state, and it will generate Modem interrupt to CPU when MODEM_IEN (UA_IER[3]) is set to 1.
		Write 1 to clear this bit to 0

FIFO Status Register (UA_FSR)

Register	Offset	R/W	Description	Reset Value
UA_FSR	UARTx_BA+0x18	R/W	UART FIFO Status Register	0x1040_4000

31	30	29	28	27	26	25	24
	Reserved				Reserved		
23	22	21	20	19	18	17	16
TX_FULL	TX_EMPTY		TX_POINTER				
15	14	13	12	11	10	9	8
RX_FULL	RX_EMPTY		RX_POINTER				
7	6	5	4	3	2	1	0
Reserved	BIF	FEF	PEF	RS485_ADD_ DETF	Reserved F		RX_OVER_IF

Bits	Description					
[31:29]	Reserved	Reserved.				
[28]	TE_FLAG	 Transmitter Empty Flag (Read Only) This bit is set by hardware when TX FIFO (UA_THR) is empty and the STOP bit of the last byte has been transmitted. 0 = TX FIFO is not empty or the STOP bit of the last byte has not been transmitted. 1 = TX FIFO is empty and the STOP bit of the last byte has been transmitted. Note: This bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed. 				
[27:25]	Reserved	Reserved.				
[24]	TX_OVER_IF	 TX Overflow Error Interrupt Flag If TX FIFO (UA_THR) is full, an additional write to UA_THR will cause this bit to logic 1. 0 = TX FIFO is not overflow. 1 = TX FIFO is overflow. Note: This bit can be cleared by writing '1' to it. 				
[23]	TX_FULL	Transmitter FIFO Full (Read Only) This bit indicates TX FIFO is full or not. 0 = TX FIFO is not full. 1 = TX FIFO is full. Note: This bit is set when the number of usage in TX FIFO Buffer equal to 16, otherwise it is cleared by hardware.				
[22]	TX_EMPTY	Transmitter FIFO Empty (Read Only) This bit indicates TX FIFO is empty or not. 0 = TX FIFO is not empty. 1 = TX FIFO is empty. Note: When the last byte of TX FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into UA_THR (TX FIFO not empty).				

		TX FIFO Pointer (Read Only)
[21:16]		This field indicates the TX FIFO Buffer Pointer. When CPU writes one byte into UA_THR, TX_POINTER increases one. When one byte of TX FIFO is transferred to Transmitter Shift Register, TX_POINTER decreases one.
[21.10]		The Maximum value shown in TX_POINTER is 15. When the using level of TX FIFO Buffer equal to 16, the TX_FULL bit is set to 1 and TX_POINTER will show 0. As one byte of TX FIFO is transferred to Transmitter Shift Register, the TX_FULL bit is cleared to 0 and TX_POINTER will show 15.
		Receiver FIFO Full (Read Only)
		This bit indicates RX FIFO is full or not.
[15]	RX_FULL	0 = RX FIFO is not full.
[13]	KA_FULL	1 = RX FIFO is full.
		Note: This bit is set when the number of usage in RX FIFO Buffer is equal to 16, otherwise is cleared by hardware.
		Receiver FIFO Empty (Read Only)
		This bit indicates RX FIFO empty or not.
[14]	RX_EMPTY	0 = RX FIFO is not empty.
[]		1 = RX FIFO is empty.
		Note: When the last byte of RX FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.
		RX FIFO Pointer (Read Only)
[42.0]	RX_POINTER	This field indicates the RX FIFO Buffer Pointer. When UART receives one byte from external device, RX_POINTER increases one. When one byte of RX FIFO is read by CPU, RX_POINTER decreases one.
[13:8]	KA_FOINTER	The Maximum value shown in RX_POINTER is 15. When the using level of RX FIFO Buffer equal to 16, the RX_FULL bit is set to 1 and RX_POINTER will show 0. As one byte of RX FIFO is read by CPU, the RX_FULL bit is cleared to 0 and RX_POINTER will show 15.
[7]	Reserved	Reserved.
		Break Error Interrupt Flag
[6]	BIF	This bit is set to a logic 1 whenever the received data input(RX) is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits).
[6]	DIF	0 = No Break error is generated.
		1 = Break error is generated.
		Note: This bit can be cleared by writing '1' to it.
		Frame Error Flag
		This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic 0).
[5]	FEF	0 = No frame error is generated.
		1 = Frame error is generated.
		Note: This bit can be cleared by writing '1' to it.
		Parity Error Flag
[4]	PEF	This bit is set to logic 1 whenever the received character does not have a valid "parity bit" .
		0 = No parity error is generated.
		1 = Parity error is generated.
		Note: This bit can be cleared by writing '1' to it.
[3]	RS485_ADD_DETF	

		1 = Receiver detects a data that is an address bit (bit 9 ='1').
		Note1: This field is used for RS-485 function mode and RS485_ADD_EN (UA_ALT_CSR[15]) is set to 1 to enable Address detection mode.
		Note2: This bit can be cleared by writing '1' to it.
[2:1]	Reserved	Reserved.
		RX Overflow Error Interrupt Flag
		This bit is set when RX FIFO overflow.
[0]	RX_OVER_IF	If the number of bytes of received data is greater than RX_FIFO (UA_RBR) size, this bit will be set.
		0 = RX FIFO is not overflow.
		1 = RX FIFO is overflow.
		Note: This bit can be cleared by writing '1' to it.

Interrupt Status Control Register (UA_ISR)

Register	Offset	Offset R/W			Description				
UA_ISR	UARTx_BA+	-0x1C	R/W	UART Interrupt S	Status Register			0x0000_0002	
31	30	2	29	28	27	26	25	24	
	Reserved								
23	22	2	21	20	19	18	17	16	
				Rese	erved				
15	14	1	13	12	11	10	9	8	
LIN_INT	Reserved	BUF_E	ERR_IN T	TOUT_INT	MODEM_INT	RLS_INT	THRE_INT	RDA_INT	
7	6		5	4	3	2	1	0	
LIN_IF	Reserved	BUF_	ERR_IF	TOUT_IF	MODEM_IF	RLS_IF	THRE_IF	RDA_IF	

Bits	Description	
[31:16]	Reserved	Reserved.
[15]	LIN_INT	LIN Bus Interrupt Indicator (Read Only) This bit is set if LIN_IEN (UA_IER[8]) and LIN_IF (UA_ISR[7]) are both set to 1. 0 = No LIN Bus interrupt is generated. 1 = The LIN Bus interrupt is generated.
[14]	Reserved	Reserved.
[13]	BUF_ERR_INT	Buffer Error Interrupt Indicator (Read Only) This bit is set if BUF_ERR_IEN (UA_IER[5]) and BUF_ERR_IF (UA_ISR[5]) are both set to 1. 0 = No buffer error interrupt is generated. 1 = Buffer error interrupt is generated.
[12]	TOUT_INT	Time Out Interrupt Indicator (Read Only) This bit is set if TOUT_IEN (UA_IER[4]) and TOUT_IF (UA_ISR[4]) are both set to 1. 0 = No time-out interrupt is generated. 1 = Time-out interrupt is generated.
[11]	MODEM_INT	 MODEM Status Interrupt Indicator (Read Only) This bit is set if MODEM_IEN (UA_IER[3]) and MODEM_IF (UA_ISR[3]) are both set to 1. 0 = No Modem interrupt is generated. 1 = Modem interrupt is generated.
[10]	RLS_INT	Receive Line Status Interrupt Indicator (Read Only) This bit is set if RLS_IEN (UA_IER[2] and RLS_IF (UA_ISR[2]) are both set to 1. 0 = No RLS interrupt is generated. 1 = RLS interrupt is generated.
[9]	THRE_INT	Transmit Holding Register Empty Interrupt Indicator (Read Only) This bit is set if THRE_IEN (UA_IER[1]) and THRE_IF (UA_ISR[1]) are both set to 1. 0 = No THRE interrupt is generated.

		1 = THRE interrupt is generated.
		Receive Data Available Interrupt Indicator (Read Only)
[8]	RDA_INT	This bit is set if RDA_IEN (UA_IER[0]) and RDA_IF (UA_ISR[0]) are both set to 1.
		0 = No RDA interrupt is generated.
		1 = RDA interrupt is generated.
		LIN Bus Flag (Read Only)
		This bit is set when LIN slave header detect (LINS_HDET_F (UA_LIN_SR[0]) =1), LIN break detect (LIN_BKDET_F (UA_LIN_SR[8]) = 1), bit error detect (BIT_ERR_F (UA_LIN_SR[9]) = 1), LIN slave ID parity error (LINS_IDPERR_F (UA_LIN_SR[2]) = 1) or LIN slave header error detect (LINS_HERR_F (UA_LIN_SR[1]) = 1). If LIN_IEN (UA_IER [8]) is enabled the LIN interrupt will be generated.
[7]	LIN_IF	0 = None of LINS_HDET_F, LIN_BKDET_F, BIT_ERR_F, LINS_IDPERR_F and LINS_HERR_F is generated.
		1 = At least one of LINS_HDET_F, LIN_BKDET_F, BIT_ERR_F, LINS_IDPERR_F and LINS_HERR_F is generated.
		Note: This bit is read only. This bit is cleared when LINS_HDET_F (UA_LIN_SR[0]), LIN_BKDET_F (UA_LIN_SR[8]), BIT_ERR_F (UA_LIN_SR[9]), LINS_IDPENR_F (UA_LIN_SR[2]) and LINS_HERR_F (UA_LIN_SR[1]) all are cleared.
[6]	Reserved	Reserved.
		Buffer Error Interrupt Flag (Read Only)
		This bit is set when the TX or RX FIFO overflows (TX_OVER_IF (UA_FSR[24]) or RX_OVER_IF (UA_FSR[0]) is set. When BUF_ERR_IF (UA_ISR[5]) is set, the transfer is not correct. If BUF_ERR_IEN (UA_IER [5]) is enabled, the buffer error interrupt will be generated.
[5]	BUF_ERR_IF	0 = No buffer error interrupt flag is generated.
		1 = Buffer error interrupt flag is generated.
		Note: This bit is cleared if both of RX_OVER_IF (UA_FSR[0]) and TX_OVER_IF (UA_FSR[24]) are cleared to 0 by writing 1 to RX_OVER_IF (UA_FSR[0]) and TX_OVER_IF (UA_FSR[24]).
		Time Out Interrupt Flag (Read Only)
[4]	TOUT_IF	This bit is set when the RX FIFO is not empty and no activities occurred in the RX FIFO and the time out counter equal to TOIC (UA_TOR[7:0]). If TOUT_IEN (UA_IER [4]) is enabled, the time-out interrupt will be generated.
[4]	1001_11	0 = No Time-out interrupt flag is generated.
		1 = Time-out interrupt flag is generated.
		Note: User can read UA_RBR (RX is in active) to clear it.
		MODEM Interrupt Flag (Read Only)
		This bit is set when the nCTS pin has state change (DCTSF (UA_MSR[0]) = 1). If MODEM_IEN (UA_IER [3]) is enabled, the Modem interrupt will be generated.
[3]	MODEM_IF	0 = No Modem interrupt flag is generated.
		1 = Modem interrupt flag is generated.
		Note: This bit is reset to 0 when bit DCTSF (UA_MSR[0]) is cleared by a write 1 on DCTSF (UA_MSR[0]).
		Receive Line Interrupt Flag (Read Only)
		This bit is set when the RX receive data have parity error, frame error or break error (at least one of 3 bits, BIF (UA_FSR[6]), FEF (UA_FSR[5]) and PEF (UA_FSR[4]), is set). If RLS_IEN (UA_IER [2]) is enabled, the RLS interrupt will be generated.
[2]	RLS_IF	0 = No RLS interrupt flag is generated.
l .=.1		1 = RLS interrupt flag is generated.
		Note1: In RS-485 function mode, this field is set include "receiver detect and received address byte character (bit9 = '1') bit". At the same time, the bit of RS485_ADD_DETF (UA_FSR[3]) is also set.
		Note2: This bit is read only and reset to 0 when all bits of BIF (UA_FSR[6]), FEF

		(UA_FSR[5]) and PEF (UA_FSR[4]) are cleared.				
		Note3: In RS-485 function mode, this bit is read only and reset to 0 when all bits of BIF (UA_FSR[6]) , FEF(UA_FSR[5]) and PEF(UA_FSR[4]) and RS485_ADD_DETF (UA_FSR[3]) are cleared.				
		Transmit Holding Register Empty Interrupt Flag (Read Only)				
		This bit is set when the last data of TX FIFO is transferred to Transmitter Shift Register. If THRE_IEN (UA_IER [1]) is enabled, the THRE interrupt will be generated.				
[1]	THRE_IF	0 = No THRE interrupt flag is generated.				
		1 = THRE interrupt flag is generated.				
		Note: This bit is read only and it will be cleared when writing data into THR (TX FIFO not empty).				
		Receive Data Available Interrupt Flag (Read Only)				
		When the number of bytes in the RX FIFO equals the RFITL (UA_FCR[7:4]) then the RDA_IF (UA_ISR[0]) will be set. If RDA_IEN (UA_IER [0]) is enabled, the RDA interrupt will be generated.				
[0]	RDA_IF	0 = No RDA interrupt flag is generated.				
		1 = RDA interrupt flag is generated.				
		Note: This bit is read only and it will be cleared when the number of unread bytes of RX FIFO drops below the threshold level (RFITL (UA_FCR[7:4])).				

Time out Register (UA_TOR)

Register	Offset	R/W	Description	Reset Value
UA_TOR	UARTx_BA+0x20	R/W	UART Time Out Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	DLY									
7	6	5	4	3	2	1	0			
	ΤΟΙϹ									

Bits	Description	Description				
[31:16]	Reserved	Reserved.				
[15:8]	DLY	TX Delay Time Value This field is used to programming the transfer delay time between the last stop bit and new start bit. The unit is bit time.				
[7:0]	тоіс	Time Out Interrupt Comparator The time out counter resets and starts counting (the counting clock = baud rate) whenever the RX FIFO receives a new data word if time out counter is enabled by setting TIME_OUT_EN (UA_IER[11]). Once the content of time out counter is equal to that of time out interrupt comparator (TOIC (UA_TOR[7:0])), a receiver time out interrupt (TOUT_INT (UA_ISR[12])) is generated if TOUT_IEN (UA_IER [4]) enabled. A new incoming data word or RX FIFO empty will clear TOUT_IF (UA_ISR[4]). In order to avoid receiver time out interrupt generation immediately during one character is being received, TOIC value should be set between 40 and 255. So, for example, if TOIC is set with 40, the time out interrupt is generated after four characters are not received when 1 stop bit and no parity check is set for UART transfer.				

Baud Rate Divider Register (UA_BAUD)

Register	Offset	R/W	Description	Reset Value
UA_BAUD	UARTx_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0F00_0000

31	30	29	28	27	26	25	24
Rese	Reserved		DIV_X_ONE	DIVIDER_X		ER_X	
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			BI	RD			
7	6	5	4	3	2	1	0
	BRD						

Bits	Description	escription					
[31:30]	Reserved	Reserved.					
		Divider X Enable Bit					
		The BRD = Baud Rate Divider, and the baud rate equation is Baud Rate = Clock / $[M * (BRD + 2)]$; The default value of M is 16.					
[20]		0 = Divider X Disabled (the equation of M = 16).					
[29]	DIV_X_EN	1 = Divider X Enabled (the equation of M = X+1, but DIVIDER_X [27:24] must >= 8).					
		Note1: The detail description is shown in UART Controller Baud Rate Generator section.					
		Note2: In IrDA mode, this bit must disable.					
[28]	DIV_X_ONE	Divider X Equal to 1 0 = Divider M = X+1 (the equation of M = X+1, but DIVIDER_X[27:24] must >= 8). 1 = Divider M = 1.					
		Note: The detail description is shown in UART Controller Baud Rate Generator section.					
		Divider X The baud rate divider $M = X+1$.					
[27:24]	DIVIDER_X	Note 1: This field is used for baud rate calculation in mode 1 and has no effect for baud rate calculation in mode 0 and mode 2.					
		Note 2: The detail description is shown in UART Controller Baud Rate Generator section.					
[23:16]	Reserved	Reserved.					
[15:0]	BRD	Baud Rate Divider The field indicates the baud rate divider. This filed is used in baud rate calculation. Note: The detail description is shown in UART Controller Baud Rate Generator section.					

IrDA Control Register (UA_IRCR)

Register	Offset	R/W	Description	Reset Value
UA_IRCR	UARTx_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved	INV_RX	INV_TX		Reserved		TX_SELECT	Reserved

Bits	Description	Description						
[31:7]	Reserved	Reserved.						
[6]	INV_RX	IrDA Inverse Receive Input Signal 0 = None inverse receiving input signal. 1 = Inverse receiving input signal. (Default)						
[5]	INV_TX	IrDA Inverse Transmitting Output Signal 0 = None inverse transmitting signal. (Default) 1 = Inverse transmitting output signal.						
[4:2]	Reserved	Reserved.						
[1]	TX_SELECT	IrDA Receiver/Transmitter Selection Enable Bit 0 = IrDA Transmitter Disabled and Receiver Enabled. (Default) 1 = IrDA Transmitter Enabled and Receiver Disabled.						
[0]	Reserved	Reserved.						

UART Alternate Control/Status Register (UA_ALT_CSR)

Register	Offset	R/W	Description	Reset Value
UA_ALT_CSR	UARTx_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_000C

31	30	29	28	27	26	25	24
	ADDR_MATCH						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
RS485_ADD_ EN		Reserved			RS485_AUD	RS485_AAD	RS485_NMM
7	6	5	4	3	2	1	0
LIN_TX_EN	LIN_RX_EN Reserved				LIN_I	BKFL	

Bits	Description					
[31:24]	ADDR_MATCH	Address Match Value Register This field contains the RS-485 address match values. Note: This field is used for RS-485 auto address detection mode.				
[23:16]	Reserved	Reserved.				
[15]	RS485_ADD_EN	 RS-485 Address Detection Enable Bit This bit is used to enable RS-485 Address Detection mode. 0 = Address detection mode Disabled. 1 = Address detection mode Enabled. Note: This field is used for RS-485 any operation mode. 				
[14:11]	Reserved	Reserved.				
[10]	RS485_AUD	RS-485 Auto Direction Mode (AUD) 0 = RS-485 Auto Direction Operation mode (AUO) Disabled. 1 = RS-485 Auto Direction Operation mode (AUO) Enabled. Note: It can be active with RS-485_AAD or RS-485_NMM operation mode.				
[9]	RS485_AAD	 RS-485 Auto Address Detection Operation Mode (AAD) 0 = RS-485 Auto Address Detection Operation mode (AAD) Disabled. 1 = RS-485 Auto Address Detection Operation mode (AAD) Enabled. Note: It cannot be active with RS-485_NMM operation mode. 				
[8]	RS485_NMM	RS-485 Normal Multi-drop Operation Mode (NMM) 0 = RS-485 Normal Multi-drop Operation mode (NMM) Disabled. 1 = RS-485 Normal Multi-drop Operation mode (NMM) Enabled. Note: It cannot be active with RS-485_AAD operation mode.				
[7]	LIN_TX_EN	LIN TX Break Mode Enable Bit 0 = LIN TX Break mode Disabled. 1 = LIN TX Break mode Enabled.				

		Note: When TX break field transfer operation finished, this bit will be cleared automatically.
[6]	LIN_RX_EN	LIN RX Enable Bit 0 = LIN RX mode Disabled. 1 = LIN RX mode Enabled.
[5:4]	Reserved	Reserved.
[3:0]	LIN_BKFL	UART LIN Break Field Length This field indicates a 4-bit LIN TX break field count. Note1: This break field length is UA_LIN_BKFL + 1. Note2: According to LIN spec, the reset value is 0xC (break field length = 13).

UART Function Select Register (UA_FUN_SEL)

Register	Offset	R/W	Description	Reset Value
UA_FUN_SEL	UARTx_BA+0x30	R/W	UART Function Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					FUN	_SEL

Bits	Description	Description			
[31:2]	Reserved	rved Reserved.			
[1:0]		Function Select Enable Bit 00 = UART function Enabled. 01 = LIN function Enabled. 10 = IrDA function Enabled. 11 = RS-485 function Enabled.			

UART LIN Control Register (UA_LIN_CTL)

Register	Offset	R/W	Description	Reset Value
UA_LIN_CTL	UARTx_BA+0x34	R/W	UART LIN Control Register	0x000C_0000

31	30	29	28	27	26	25	24	
			LIN	_PID				
23	22	21	20	19	18	17	16	
LIN_HE	LIN_HEAD_SEL LIN_BS_LEN			LIN_BKFL				
15	14	13	12	11	10	9	8	
	Reserved BIT_ERR_EN		LIN_RX_DIS	LIN_BKDET_ EN	LIN_IDPEN	LIN_SHD		
7	6	5	4	3	2	1	0	
	Reserved		LIN_MUTE_E N	LINS_DUM_E N	LINS_ARS_E N	LINS_HDET_ EN	LINS_EN	

Bits	Description	iption										
		LIN PID Register This field contains the LIN frame ID value when in LIN function mode, the frame ID parity can be generated by software or hardware depends on LIN_IDPEN (UA_LIN_CTL[9]).										
		If the parity ge (LIN_PID[24:2 user must filled	9]hardw	are will	calculà	te P0(L	IN_PÌD					
[31:24]	LIN_PID	PID	Start	ID0	ID1	ID2	ID3	ID4	ID5	P0	P1	
						ID2 xor or ID4 x						
		Note1: User c Note2: This fie								icates II	D0 (LSE	3 first).
		LIN Header Select										
		00 = The LIN header includes "break field".										
		01 = The LIN header includes "break field" and "sync field".										
[23:22]	LIN_HEAD_SEL	10 = The LIN header includes "break field", "sync field" and "frame ID field".11 = Reserved.										
		Note: This bit (UA_LIN_CTL (LIN_MUTE_E	[8]) = 1)	or used	d to slav							
		LIN Break/Sync Delimiter Length										
		00 = The LIN break/sync delimiter length is 1 bit time.										
[21:20]	LIN_BS_LEN	10 = The LIN b				0						
		10 = The LIN b				0						
		11 = The LIN b	oreak/sy	nc delir	niter ler	ngth is 4	bit time	э.				

		Header				
		Break Field Synch field Protected Identifier field				
		Break/Sync Inter-byte spaces Delimiter Length				
		Note: This bit is used for LIN master to sending header field.				
		LIN Break Field Length				
		This field indicates a 4-bit LIN TX break field count.				
[19:16]	LIN_BKFL	Note1: These registers are shadow registers of LIN_BKFL (UA_ALT_CSR[19:16]), User can read/write it by setting LIN_BKFL (UA_ALT_CSR[3:0]) or LIN_BKFL (UA_LIN_CTL[19:16]).				
		Note2: This break field length is LIN_BKFL + 1.				
		Note3: According to LIN spec, the reset value is 0XC (break field length = 13).				
[15:13]	Reserved	Reserved.				
		Bit Error Detect Enable Bit				
		0 = Bit error detection function Disabled.				
[12]	BIT_ERR_EN	1 = Bit error detection Enabled.				
		Note: In LIN function mode, when occur bit error, the BIT_ERR_F (UA_LIN_SR[9]) flag will be asserted. If the LIN_IEN (UA_IER[8]) = 1, an interrupt will be generated.				
		LIN Receiver Disable Bit				
[11]	LIN_RX_DIS	If the receiver is enabled (LIN_RX_DIS (UA_LIN_CTL[11]) = 0), all received byte data will be accepted and stored in the RX-FIFO, and if the receiver is disabled (LIN_RX_DIS (UA_LIN_CTL[11]) = 1), all received byte data will be ignore.				
[11]		0 = LIN receiver Enabled.				
		1 = LIN receiver Disabled.				
		Note: This bit is only valid when operating in LIN function mode (FUN_SEL (UA_FUN_SEL[1:0]) = 01).				
		LIN Break Detection Enable Bit				
[10]	LIN_BKDET_EN	When detect consecutive dominant greater than 11 bits, and are followed by a delimiter character, the LIN_BKDET_F (UA_LIN_SR[8]) flag is set in UA_LIN_SR register at the end of break field. If the LIN_IEN (UA_IER[8]) =1, an interrupt will be generated.				
		0 = LIN break detection Disabled. 1 = LIN break detection Enabled.				
		LIN ID Parity Enable Bit 0 = LIN frame ID parity Disabled.				
		1 = LIN frame ID parity Enabled.				
[0]	LIN IDPEN	Note1: This bit can be used for LIN master to sending header field (LIN_SHD				
[9]	LIN_IDFEN	(UA_LIN_CTL[8]) = 1 and LIN_HEAD_SEL (UA_LIN_CTL[23:22]) = 10) or be used for enable LIN slave received frame ID parity checked.				
		Note2: This bit is only use when operation header transmitter is in LIN_HEAD_SEL (UA_LIN_CTL[23:22]) = 10.				
		LIN TX Send Header Enable Bit				
		The LIN TX header can be "break field" or "break and sync field" or "break, sync and frame ID field", it is depend on setting LIN_HEAD_SEL (UA_LIN_CTL[23:22]).				
[8]	LIN_SHD	0 = Send LIN TX header Disabled.				
		1 = Send LIN TX header Enabled.				
		Note1: These registers are shadow registers of LIN_TX_EN (UA_ALT_CSR[7]); user can read/write it by setting LIN_TX_EN (UA_ALT_CSR[7]) or LIN_SHD (UA_LIN_CTL[8]).				

		Note2: When transmitter header field (it may be "break" or "break + sync" or "break + sync + frame ID" selected by LIN_HEAD_SEL (UA_LIN_CTL[23:22]) field) transfer operation finished, this bit will be cleared automatically.
[7:5]	Reserved	Reserved.
		LIN Mute Mode Enable Bit
		0 = LIN mute mode Disabled.
[4]	LIN_MUTE_EN	1 = LIN mute mode Enabled.
		Note: The exit from mute mode condition and each control and interactions of this field are explained in LIN slave mode.
		LIN Slave Divider Update Method Enable Bit
		0 = UA_BAUD updated is writing by software (if no automatic resynchronization update occurs at the same time).
[2]	LINS_DUM_EN	1 = UA_BAUD is updated at the next received character. User must set the bit before checksum reception.
[3]	LINS_DOW_EN	Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).
		Note2: This bit is used for LIN Slave Automatic Resynchronization mode. (for Non-Automatic Resynchronization mode, this bit should be kept cleared)
		Note3: The control and interactions of this field are explained in 6.12.5.9.4 (Slave mode with automatic resynchronization).
		LIN Slave Automatic Resynchronization Mode Enable Bit
		0 = LIN automatic resynchronization Disabled.
		1 = LIN automatic resynchronization Enabled.
[2]	LINS_ARS_EN	Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).
		Note2: When operation in Automatic Resynchronization mode, the baud rate setting must be mode2 (DIV_X_EN (UA_BAUD [29]) and DIV_X_ONE (UA_BAUD [28]) must be 1).
		Note3: The control and interactions of this field are explained in 6.12.5.9.4 (Slave mode with automatic resynchronization).
		LIN Slave Header Detection Enable Bit
		0 = LIN slave header detection Disabled.
		1 = LIN slave header detection Enabled.
[1]	LINS_HDET_EN	Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).
		Note2: In LIN function mode, when detect header field (break + sync + frame ID), LINS_HDET_F (UA_LIN_SR [0]) flag will be asserted. If the LIN_IEN (UA_IER[8]) = 1, an interrupt will be generated.
		LIN Slave Mode Enable Bit
[0]	LINS_EN	0 = LIN slave mode Disabled.

UART LIN Status Register (UA_LIN_SR)

Register	Offset	R/W	Description	Reset Value
UA_LIN_SR	UARTx_BA+0x38	R/W	UART LIN Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
		BIT_ERR_F	LIN_BKDET_ F				
7	6	5	4	3	2	1	0
	Reserved LINS_SYNC_ LINS_IDPERR F _F						LINS_HDET_F

Bits	Description						
[31:10]	Reserved	Reserved.					
		Bit Error Detect Status Flag					
		At TX transfer state, hardware will monitoring the bus state, if the input pin (SIN) state not equals to the output pin (SOUT) state, BIT_ERR_F (UA_LIN_SR[9]) will be set.					
[9]	BIT_ERR_F	When occur bit error, if the LIN_IEN (UA_IER[8]) = 1, an interrupt will be generated.					
		Note1: This bit is cleared by writing 1 to it.					
		Note2: This bit is only valid when enable bit error detection function (BIT_ERR_EN (UA_LIN_CTL[12]) = 1).					
		LIN Break Detection Flag					
		This bit is set by hardware when a break is detected and be cleared by writing 1 to it.					
		0 = LIN break not detected.					
[8]	LIN_BKDET_F	1 = LIN break detected.					
		Note1: This bit is cleared by writing 1 to it.					
		Note2 : This bit is only valid when enable LIN break detection function (LIN_BKDET_EN (UA_LIN_CTL[10]) = 1).					
[7:4]	Reserved	Reserved.					
		LIN Slave Sync Field					
		This bit indicates that the LIN sync field is being analyzed in automatic resynchronization mode. When the receiver header have some error been detect, user must to reset the internal circuit to re-search new frame header by writing 1 to this bit.					
		0 = The current character is not at LIN sync state.					
[3]	LINS_SYNC_F	1 = The current character is at LIN sync state.					
		Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).					
		Note2: This bit is cleared by writing 1 to it.					
		Note3: When user writing 1 to it, hardware will reload the initial baud-rate and re-search new frame header.					
[2]	LINS_IDPERR_F	LIN Slave ID Parity Error Flag					

		This bit is set by hardware when receipted frame ID parity is not correct.				
		0 = no active.				
		1 = Receipted frame ID parity is not correct.				
		Note1: This bit is cleared by writing 1 to it.				
		Note2: This bit is only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL [0]) = 1) and enable LIN frame ID parity check function (LIN_IDPEN (UA_LIN_CTL [9]) = 1).				
		LIN Slave Header Error Flag				
[1] LINS_HERR_F		This bit is set by hardware when a LIN header error is detected in LIN slave mode and be cleared by writing 1 to it. The header errors include "break delimiter is too short", "frame error in sync field or Identifier field", "sync field data is not 0x55 without automatic resynchronization mode", "sync field deviation error with automatic resynchronization mode", "sync field measure time-out with automatic resynchronization mode" and "LIN header reception time-out".				
		0 = LIN header error not detected.				
		1 = LIN header error detected.				
		Note1: This bit is cleared by writing 1 to it.				
		Note2: This bit is only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL [0]) = 1) and enable LIN slave header detection function (LINS_HDET_EN (UA_LIN_CTL [1]) = 1).				
		LIN Slave Header Detection Flag				
		This bit is set by hardware when a LIN header is detected in LIN slave mode and be cleared by writing 1 to it.				
		0 = LIN header not detected.				
		1 = LIN header detected (break + sync + frame ID).				
[0]	LINS_HDET_F	Note1: This bit is cleared by writing 1 to it.				
		Note2: This bit is only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL [0]) = 1) and enable LIN slave header detection function (LINS_HDET_EN (UA_LIN_CTL [1])).				
		Note3: When enable ID parity check (LIN_IDPEN (UA_LIN_CTL [9]) = 1), if hardware detect complete header ("break + sync + frame ID"), the LINS_HDET_F will be set weather the frame ID correct or not.				

6.13 I²C Serial Interface Controller (I²C)

6.13.1 Overview

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I²C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously. I²C controller supports Power-down wake-up function.

6.13.2 Features

The I²C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- A built-in a 14-bit time out counter requested the I²C interrupt if the I²C bus hangs up and timer-out counter overflows.
- External pull-up resistors are needed for high output
- Programmable clocks allow versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address with mask option)

6.13.3 Basic Configuration

The basic configurations of I^2C are as follows:

- I²C0 pins are configured on P3_MFP[5:4] or P5_MFP[1:0] or PA_MFP[1:0] registers..
- I²C0 interrupt vector are configured on NVIC_ISER registers.
- Enable I²C0 clock (I2C_EN) on APBCLK [8] register.
- Reset I²C0 controller (I2C_RST) on IPRSTC2 [8] register.

6.13.4 Block Diagram

The block diagram of I²C controller is shown in Figure 6-91.

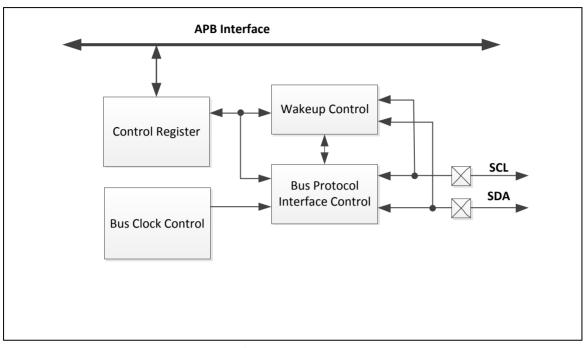


Figure 6-91 I²C Controller Block Diagram

6.13.5 Functional Description

On I²C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the Figure 6-92 for more detailed I²C Bus Timing.

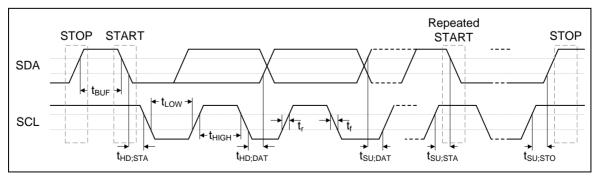


Figure 6-92 I²C Bus Timing

The device's on-chip I²C logic provides the serial interface that meets the I²C bus standard mode

specification. The I²C port handles byte transfers autonomously. To enable this port, the bit ENS1 (I2CON[6]) should be set to '1'. The I²C H/W interfaces to the I²C bus via two pins: SDA and SCL. Pull-up resistor is needed for I²C operation as these SDA and SCL are open drain pins. When the I/O pins are used as I²C port, user must set the pins function to I²C in advance.

Note: Pull-up resistor is needed for I²C operation as the SDA and SCL are open-drain pins

6.13.5.1 ^PC Protocol

Figure 6-93 shows the typical I²C protocol. Normally, a standard communication consists of four parts:

- 1. START or Repeated START signal generation
- 2. Slave address and R/W bit transfer
- 3. Data transfer
- 4. STOP signal generation

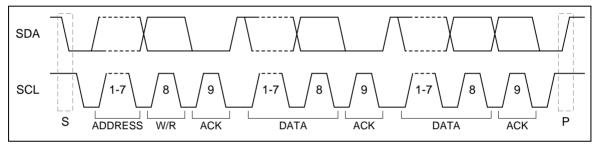


Figure 6-93 I²C Protocol

6.13.5.1.1 START or Repeated START signal

When the bus is free/idle, which means no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the "S" bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transmission.

After having sent the address byte (address and read/write bit), the master may send any number of bytes followed by a stop condition. Instead of sending the stop condition it is also allowed to send another start condition again followed by an address (and of course including a read/write bit) and more data. The start condition is called as Repeat START (Sr). This is defined recursively allowing any number of start conditions to be sent. The purpose of this is to allow combined write/read operations to one or more devices without releasing the bus and thus with the guarantee that the operation is not interrupted. The controller uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

6.13.5.1.2 STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the "P" bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH.

M0519

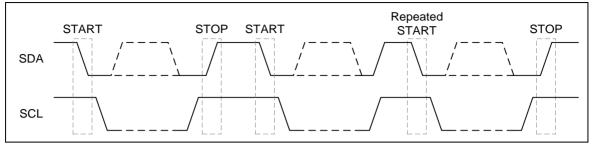


Figure 6-94 START and STOP Condition

6.13.5.1.3 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address. This is a 7-bit calling address followed by a Read/Write (R/W) bit. The R/W bit signals the slave the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

6.13.5.1.4 Data Transfer

When slave receives a correct address with a R/W bit, the data will follow R/W bit specified to transfer. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as the receiving device, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

nuvoton

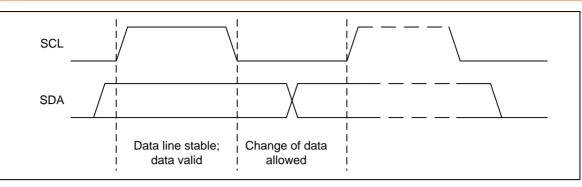


Figure 6-95 Bit Transfer on the I²C Bus

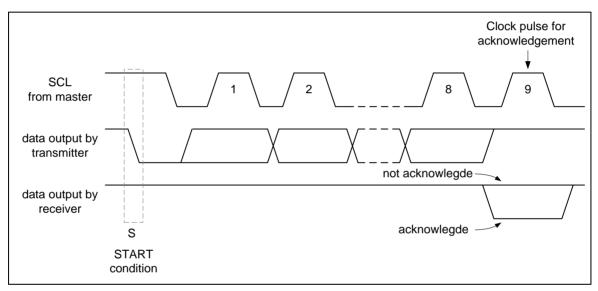


Figure 6-96 Acknowledge on the I²C Bus

6.13.5.1.5 Data transfer on the l^2 C-bus

Figure 6-97 shows a master transmits data to slave. A master addresses a slave with a 7-bit address and 1-bit write index to denote master wants to transmit data to slave. The master keep transmitting data after slave returns acknowledge to master.

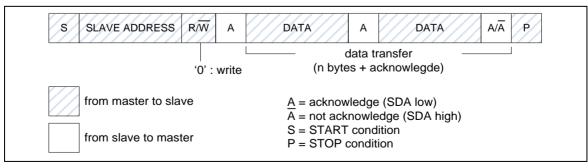


Figure 6-97 Master Transmits Data to Slave

Figure 6-98 shows a master read data from slave. A master addresses a slave with a 7-bit address and 1-bit read index to denote master wants to read data from slave. The slave will start transmitting data after slave returns acknowledge to master.

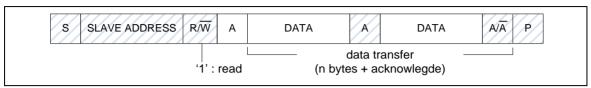


Figure 6-98 Master Reads Data from Slave

6.13.5.2 Operation Mode

The on-chip I²C ports support three operation modes, Master, Slave, and General Call Mode.

In a given application, I^2C port may operate as a master or as a slave. In Slave mode, the I^2C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA (I2CON[2]) bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, hardware waits until the bus is free before entering Master mode so that a possible slave action is not be interrupted. If bus arbitration is lost in Master mode, I^2C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer.

To control the I²C bus transfer in each mode, user needs to set I2CON, I2CDAT registers according to current status code of I2CSTATUS register. In other words, for each I²C bus action, user needs to check current status by I2CSTATUS register, and then set I2CON, I2CDAT registers to take bus action. Finally, check the response status by I2CSTATUS.

The bits, STA , STO (I2CON[5:4]) and AA (I2CON[2]) are used to control the next state of the I²C hardware after SI (I2CON[3]) flag is cleared. Upon completion of the new action, a new status code will be updated in I2CSTATUS register and the SI flag (I2CON[3]) will be set. If the I²C interrupt control bit EI (I2CON [7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

Figure 6-99 shows the current I^2C status code is 0x08, and then set DATA=SLA+W and (STA,STO,SI,AA) = (0,0,1,x) to send the address to I^2C bus. If a slave on the bus matches the address and response AA, the I2CSTATUS will be updated by status code 0x18.

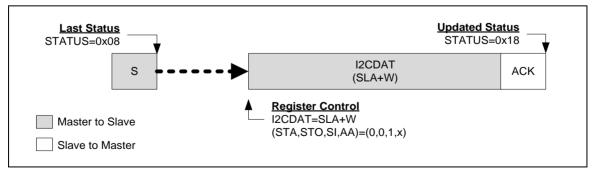


Figure 6-99 Control I²C Bus According to Current I²C Status

6.13.5.3 Master Mode

In Figure 6-100, all possible protocols for I²C master are shown. User needs to follow proper path

of the flow to implement required I²C protocol.

In other words, user can send a START signal to bus and I^2C will be in Master Transmitter mode or Master receiver mode after START signal has been sent successfully and new status code would be 0x08. Followed by START signal, user can send slave address, read/write bit, data and Repeat START, STOP to perform I^2C protocol.

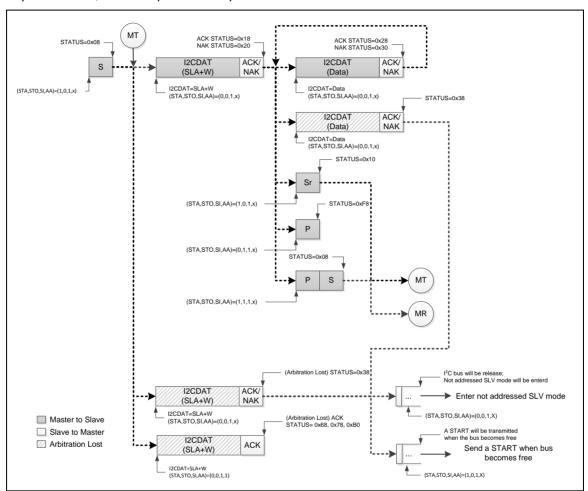


Figure 6-100 Master Transmitter Mode Control Flow

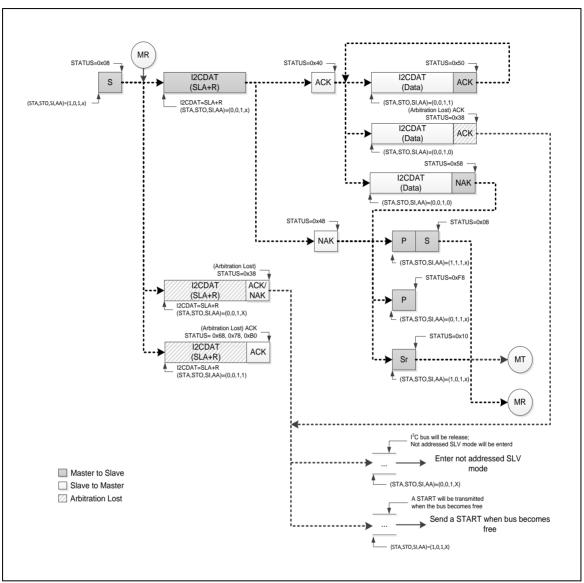


Figure 6-101 Master Receiver Mode Control Flow

If the I^2C is in Master mode and gets arbitration lost, the status code will be 0x38. In status 0x38, user may set (STA, STO, SI, AA) = (1, 0, 1, X) to send START to re-start Master operation when bus become free. Otherwise, user may set (STA, STO, SI, AA) = (0, 0, 1, X) to release I^2C bus and enter not addressed Slave mode.

6.13.5.4 Slave Mode

When reset default, I^2C is not addressed and will not recognize the address on I^2C bus. User can set slave address by I2CADDRx and set (STA, STO, SI, AA) = (0, 0, 1, 1) to let I^2C recognize the address sent by master. Figure 6-102 shows all the possible flow for I^2C in Slave mode. Users need to follow a proper flow to implement their own I^2C protocol.

If bus arbitration is lost in Master mode, I^2C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer. If the detected address is SLA+W (Master want to write data to Slave) after arbitration lost, the status code is 0x68. If the detected address is SLA+R (Master want to read data from Slave) after arbitration lost, the status code is 0x80.

Note: During I²C communication, the SCL clock will be released when writing '1' to clear SI flag in Slave mode.

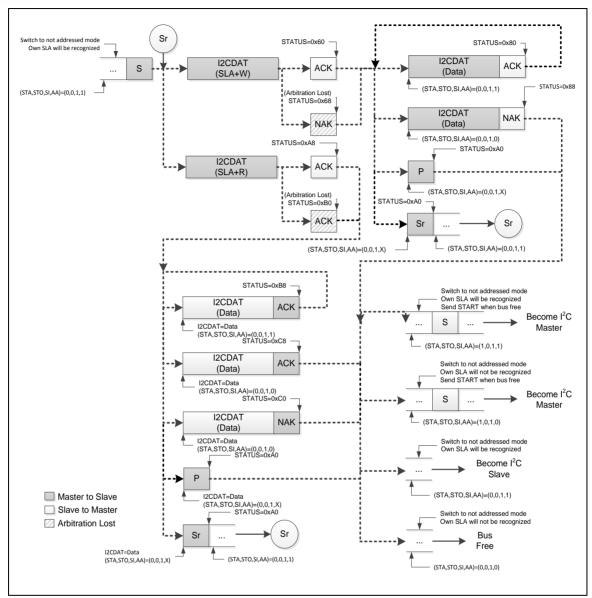


Figure 6-102 Slave Mode Control Flow

If I^2C is still receiving data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x88 as shown in the above figure when getting 0xA0 status.

If I^2C is still transmitting data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0xC8 as shown in the above figure when getting 0xA0 status.

Note: After slave gets status of 0x88, 0xC8, 0xC0 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I^2C signal or address from master. At this status, I^2C should be reset to leave this status.

6.13.5.5 General Call (GC) Mode

If the GC (I2CADDR[0]) bit is set to 1, the I²C port hardware will respond to General Call address (00H). User can clear GC bit to disable general call function. When the GC bit is set and the I²C is

in Slave mode, it can receive the general call address by 0x00 after master send general call address to I^2C bus, then it will follow status of GC mode.

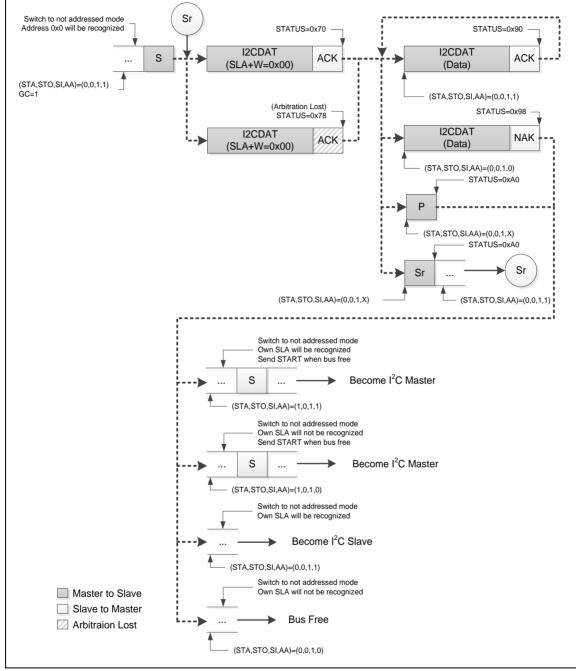


Figure 6-103 GC Mode

If I²C is still receiving data in GC mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x98 in the above figure when getting 0xA0 status.

Note: After slave gets status of 0x98 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I^2C signal or address from master. At this time, I^2C controller should be reset to leave this status.

6.13.5.6 Multi-master

In some applications, there are two or more masters on the same I^2C bus to access slaves, and the masters may transmit data simultaneously. The I^2C supports multi-master by including collision detection and arbitration to prevent data corruption.

If for some reason two masters initiate command at the same time, the arbitration procedure determines which master wins and can continue with the command. Arbitration is performed on the SDA signal while the SCL signal is high. Each master checks if the SDA signal on the bus corresponds to the generated SDA signal. If the SDA signal on the bus is low but it should be high, then this master has lost arbitration. The device that has lost arbitration can generate SCL pulses until the byte ends and must then release the bus and go into slave mode. The arbitration procedure can continue until all the data is transferred. This means that in multi-master system each master must monitor the bus for collisions and act accordingly.

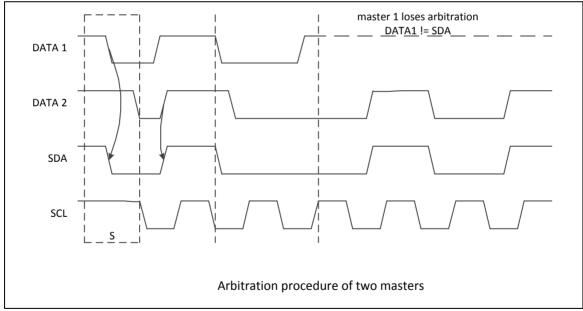


Figure 6-104 Arbitration Lost

- When I2CSTATUS = 0x38, an "Arbitration Lost" is received. Arbitration lost event maybe occur during the send START bit, data bits or STOP bit. User could set (STA, STO, SI, AA) = (1, 0, 1, X) to send START again when bus free, or set (STA, STO, SI, AA) = (0, 0, 1, X) to send STOP to back to not addressed Slave mode.
- When I2CSTATUS = 0x00, a "Bus Error" is received. To recover I²C bus from a bus error, STO should be set and SI should be cleared, and then STO is cleared to release bus.

- Set (STA, STO, SI, AA) = (0, 1, 1, X) to stop current transfer
- Set (STA, STO, SI, AA) = (0, 0, 1, X) to release bus

6.13.6 Protocol Registers

To control I²C port through the following fifteen special function registers: I2CCON (control register), I2CSTATUS (status register), I2CDAT (data register), I2CADDRn (address registers, n=0~3), I2CADMn (address mask registers, n=0~3), I2CLK (clock rate register), I2CTOC (Timeout control register), I2CWKUPCON (wake up control register), I2CWKUPSTS (wake up status register).

6.13.6.1 Address Registers (I2CADDR)

 I^2C port is equipped with four slave address registers I2CADDRn (n=0~3). The contents of the register are irrelevant when I^2C is in Master mode. In the Slave mode, the bit field I2CADDRn[7:1] must be loaded with the chip's own slave address. The I^2C hardware will react if the contents of I2CADDRn are matched with the received slave address.

The I²C ports support the "General Call" function. If the GC bit (I2CADDRn [0]) is set the I²C port hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

When GC bit is set and the I²C is in Slave mode, it can receive the general call address by 00H after Master send general call address to I²C bus, then it will follow status of GC mode.

 I^2C bus controllers support multiple address recognition with four address mask registers I2CADMn (n=0~3). When the bit in the address mask register is set to one, it means the received corresponding address bit doesn't care. If the bit is set to 0, that means the received corresponding register bit should be exact the same as address register.

6.13.6.2 Slave Address Mask Register (I2CADM)

The I^2C bus controllers support multiple address recognition with four address mask registers I2CADMn (n=0~3). When the bit in the address mask register is set to 1 it means the received corresponding address bit is "Don't-care". If the bit is set to 0, that means the received corresponding register bit should be exact the same as address register.

6.13.6.3 Data Register (I2CDAT)

This register contains a byte of serial data to be transmitted or a byte which just has been received. The CPU can read from or write to this 8-bit (I2CDAT [7:0]) directly while it is not in the process of shifting a byte. When I^2C is in a defined state and the serial interrupt flag (SI) is set data in I2CDAT [7:0] remains stable. While data is being shifted out, data on the bus is simultaneously being shifted in; I2CDAT [7:0] always contains the last data byte present on the bus.

The acknowledge bit is controlled by the I²C hardware and cannot be accessed by the CPU. Serial data is shifted into I2CDAT [7:0] on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2CDAT [7:0], the serial data is available in I2CDAT [7:0], and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. In order to monitor bus status while sending data, the bus date will be shifted into I2CDATA[7:0] when sending I2CDATA[7:0] to bus. In case of sending data, serial data bits are shifted out from I2CDAT [7:0] on the falling edge of SCL clocks, and is shifted into I2CDAT [7:0] on the rising edge of SCL clocks.

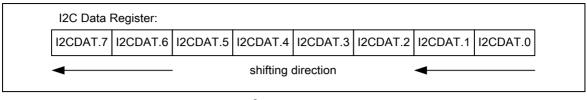


Figure 6-105 I²C Data Shifting Direction

6.13.6.4 Control Register (I2CON)

The CPU can read from and write to I2CON [7:0] directly. Two bits are affected by hardware: the SI bit is set when the I^2C hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENS1 = 0.

6.13.6.5 Status Register (I2CSTATUS)

I2CSTATUS [7:0] is an 8-bit read-only register. The three least significant bits are always 0. The bit field I2CSTATUS [7:0] contain the status code and there are 26 possible status codes. All states are listed in Table 6-17. When I2CSTATUS [7:0] is F8H, no serial interrupt is requested. All other I2CSTATUS [7:0] values correspond to defined I²C states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS[7:0] one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software.

In addition, the state 00H stands for a Bus Error, which occurs when a START or STOP condition is present at an illegal position in the format frame. A Bus Error may occur during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover I²C from bus error, STO should be set and SI should be clear to enter Not Addressed Slave mode. Then STO is cleared to release bus and to wait new communication. I²C bus cannot recognize stop condition during this action when bus error occurs.

Master Mod	le	Slave Mode	Slave Mode		
STATUS	Description	STATUS	Description		
0x08	Start	0xA0	Slave Transmit Repeat Start or Stop		
0x10	Master Repeat Start	0xA8	Slave Transmit Address ACK		
0x18	Master Transmit Address ACK	0xB0	Slave Transmit Arbitration Lost		
0x20	Master Transmit Address NACK	0xB8	Slave Transmit Data ACK		
0x28	Master Transmit Data ACK	0xC0	Slave Transmit Data NACK		
0x30	Master Transmit Data NACK	0xC8	Slave Transmit Last Data ACK		
0x38	Master Arbitration Lost	0x60	Slave Receive Address ACK		
0x40	Master Receive ACK	0x68	Slave Receive Arbitration Lost		
0x48	Master Receive NACK	0x80	Slave Receive Data ACK		
0x50	Master Receive ACK	0x88	Slave Receive Data NACK		
0x58	Master Receive NACK	0x70	GC mode Address ACK		
0x00	Bus error	0x78	GC mode Arbitration Lost		
		0x90	GC mode Data ACK		

		0x98	GC mode Data NACK				
0xF8							
	Note: Status "0xF8" exists in both Master/Slave modes, and it won't raise interrupt.						

Table 6-22 I²C Status Code Description Table

6.13.6.6

6.13.6.7 PC Clock Baud Rate Bits (I2CLK)

The data baud rate of I^2C is determined by I2CLK [7:0] register when I^2C is in Master mode, and it is not necessary when I^2C is in Slave mode. In the Slave mode, I^2C will automatically synchronize it with any clock frequency from master I^2C device.

The data baud rate of I^2C setting is Data Baud Rate of I^2C = (system clock) / (4x (I2CLK [7:0] +1)). If system clock = 16 MHz, the I2CLK [7:0] = 40 (28H), so data baud rate of I^2C = 16 MHz/ (4x (40 +1)) = 97.5 Kbits/sec.

6.13.6.8 ²C Time-out Counter Register (I2CTOC)

There is a 14-bit time-out counter which can be used to deal with the I2C bus hang-up. If the time out counter is enabled, the counter starts up counting until it overflows (TIF(I2CTOC[0])=1) and generates I2C interrupt to CPU or stops counting by clearing ENTI(I2CTOC[2]) to 0. When time-out counter is enabled, write 1 to SI flag will reset counter and re-start up counting after SI is cleared. If I2C bus hangs up, it causes the I2CSTATUS and flag SI(I2CON[3]) are not updated for a period, the 14-bit time-out counter may overflow and acknowledge CPU the I2C interrupt. Refer to the Figure 6-106 for the 14-bit time out counter. User may write 1 to clear TIF(I2CTOC[0]) to 0.

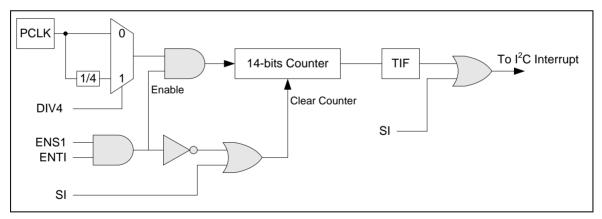
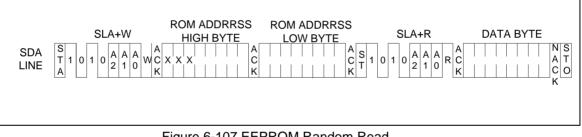


Figure 6-106 I²C Time out Count Block Diagram

6.13.6.9 ²C wake-up control Register (I2CWKUPCON)

When chip enters Power-down mode, other I²C master can wake up our chip by addressing our I²C device, user must configure the related setting before entering sleep mode. When the chip is wokenup by address match with one of the four address register, the following data will be abandoned at this time.

6.13.6.10 ²C wake-up status Register (I2CWKUPSTS)


When system is woken up by other I²C master device, WKUPIF(I2CWKUPSTS[0]) is set to indicate this event. User needs write "1" to clear this bit.

6.13.6.11 Example for Random Read on EEPROM

The following steps are used to configure the I^2C0 related registers when using I^2C to read data from EEPROM.

- 1. Set I²C0 the multi-function pin in the P3_MFP[5:4] registers as SCL and SDA pins.
- 2. Enable I²C0 APB clock, I2C0_EN=1 in the "APBCLK0" register.
- 3. Set I2C0_RST=1 to reset I²C0 controller then set I²C0 controller to normal operation, I2C0_RST=0 in the "IPRSTC2" register.
- 4. Set EI=1 to enable I²C0 controller in the "I2CON" register.
- 5. Give I²C0 clock a divided register value for I²C clock rate in the "I2CLK".
- 6. Set SETENA=0x00000040 in the "NVIC_ISER" register to set I²C0 IRQ.
- 7. Set EI=1 to enable I^2C0 Interrupt in the "I2CON" register.
- 8. Set I²C0 address registers "I2CADDR0 ~ I2CADDR3".

Random read operation is one of the methods of access EEPROM. The method allows the master to access any address of EEPROM space. Figure 6-107 shows the EEPROM random read operation.

Figure 6-107 EEPROM Random Read

Figure 6-108 shows how to use I²C controller to implement the protocol of EEPROM random read.

nuvoton

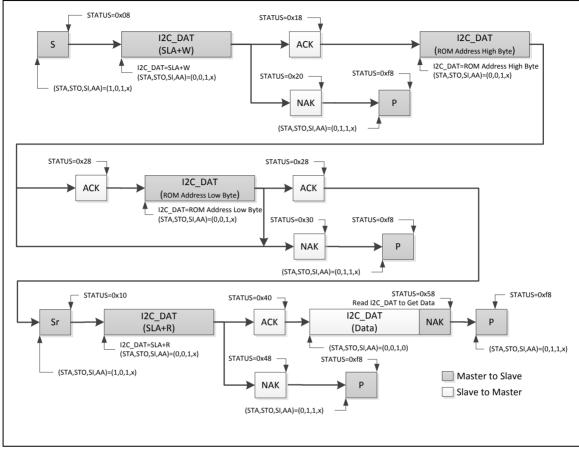


Figure 6-108 Protocol of EEPROM Random Read

The I²C controller, which is a master, sends START to bus. Then, it sends a SLA+W (Slave address + Write bit) to EERPOM followed by two bytes data address to set the EEPROM address to read. Finally, a Repeat START followed by SLA+R is sent to read the data from EEPROM.

6.13.7 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
I2C Base Addre I2C0_BA = 0x40		•		
I2CON	I2Cx_BA+0x00	R/W	I ² C Control Register	0x0000_0000
I2CADDR0	I2Cx_BA+0x04	R/W	I ² C Slave Address Register0	0x0000_0000
I2CDAT	I2Cx_BA+0x08	R/W	I ² C Data Register	0x0000_0000
I2CSTATUS	I2Cx_BA+0x0C	R	I ² C Status Register	0x0000_00F8
I2CLK	I2Cx_BA+0x10	R/W	I ² C Clock Divided Register	0x0000_0000
I2CTOC	I2Cx_BA+0x14	R/W	I ² C Time Out Counter Register	0x0000_0000
I2CADDR1	I2Cx_BA+0x18	R/W	I ² C Slave Address Register1	0x0000_0000
I2CADDR2	I2Cx_BA+0x1C	R/W	I ² C Slave Address Register2	0x0000_0000
I2CADDR3	I2Cx_BA+0x20	R/W	I ² C Slave Address Register3	0x0000_0000
I2CADM0	I2Cx_BA+0x24	R/W	I ² C Slave Address Mask Register0	0x0000_0000
I2CADM1	I2Cx_BA+0x28	R/W	I ² C Slave Address Mask Register1	0x0000_0000
I2CADM2	I2Cx_BA+0x2C	R/W	I ² C Slave Address Mask Register2	0x0000_0000
I2CADM3	I2Cx_BA+0x30	R/W	I ² C Slave Address Mask Register3	0x0000_0000
I2CWKUPCON	I2Cx_BA+0x3C	R/W	I ² C Wake Up Control Register	0x0000_0000
I2CWKUPSTS	I2Cx_BA+0x40	R/W	I ² C Wake Up Status Register	0x0000_0000

6.13.8 Register Description

I²C Control Register (I2CON)

Register	Offset	R/W	Description	Reset Value
I2CON	I2Cx_BA+0x00	R/W	I ² C Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
EI	ENS1	STA	STO	SI	AA	Rese	erved	

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	EI	Interrupt Enable Bit $0 = I^2 C$ interrupt Disabled. $1 = I^2 C$ interrupt Enabled.
[6]	ENS1	 I²C Controller Enable Bit Set to enable I²C serial function controller. When ENS1 =1 the I²C serial function enables. The multi-function pin function must set to I²C function first. 0 = I²C controller Disabled. 1 = I²C controller Enabled.
[5]	STA	I ² C START Control Bit Setting STA to logic 1 to enter Master mode, the I ² C hardware sends a START or repeat START condition to bus when the bus is free.
[4]	STO	I ² C STOP Control Bit In Master mode, setting STO to transmit a STOP condition to bus then I ² C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In Slave mode, setting STO resets I ² C hardware to the defined "not addressed" Slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.
[3]	SI	I²C Interrupt Flag When a new I ² C state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON [7]) is set, the I ² C interrupt is requested. SI must be cleared by software. Clear SI is by writing 1 to this bit.
[2]	AA	Assert Acknowledge Control Bit When AA=1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when 1.). A slave is acknowledging the address sent from master, 2.) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on

		the SCL line.
[1:0]	Reserved	Reserved.

M0519

I²C Data Register (I2CDAT)

Register	Offset	R/W	Description	Reset Value
I2CDAT	I2Cx_BA+0x08	R/W	I ² C Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	I2CDAT							

Bits	Description	escription			
[31:8]	Reserved	Reserved.			
[7:0]	II2CDAT	I ² C Data Register Bit [7:0] is located with the 8-bit transferred data of I ² C serial port.			

I²C Status Register (I2CSTATUS)

Register	Offset	R/W	Description	Reset Value
I2CSTATUS	I2Cx_BA+0x0C	R	I ² C Status Register	0x0000_00F8

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	I2CSTATUS							

Bits	Description	
[31:8]	Reserved	Reserved.
		I ² C Status Register
		The three least significant bits are always 0. The five most significant bits contain the status code. There are 26 possible status codes.
[7:0]	I2CSTATUS	When I2CSTATUS contains F8H, no serial interrupt is requested. All other I2CSTATUS values correspond to defined I^2C states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software.
		In addition, states 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the formation frame. Example of illegal position are during the serial transfer of an address byte, a data byte or an acknowledge bit.

I²C Clock Divided Register (I2CLK)

Register	Offset	R/W	Description	Reset Value
I2CLK	I2Cx_BA+0x10	R/W	I ² C Clock Divided Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	I2CLK						

Bits	Description				
[31:8]	Reserved	served Reserved.			
[7:0]	I2CLK	I ² C Clock Divided Register The I ² C clock rate bits: Data Baud Rate of I ² C = (system clock) / (4x (I2CLK+1)). Note: The minimum value of I2CLK is 4.			

I²C Time-out Counter Register (I2CTOC)

Register	Offset	R/W	Description	Reset Value
I2CTOC	I2Cx_BA+0x14	R/W	I ² C Time-out Counter Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved				ENTI	DIV4	TIF

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	ENTI	Time-out Counter Enable Bit When Enabled, the 14-bit time out counter will start counting when SI is clear. Write 1 to SI flag will reset counter and re-start up counting after SI is cleared. 0 = Time out counter Disabled. 1 = Time out counter Enabled.
[1]	DIV4	 Time-out Counter Input Clock Is Divided by 4 When Enabled, the time out period is extend 4 times. 0 = The time out counter input clock divided by 4 Disabled. 1 = The time out counter input clock divided by 4 Enabled.
[0]	TIF	Time-out Flag This bit is set by H/W when I ² C time out happened and it can interrupt CPU if I ² C interrupt enable bit (EI) is set to 1. Note: This bit can be cleared by writing '1' to it.

I²C Slave Address Register (I2CADDRx)

Register	Offset	R/W	Description	Reset Value
I2CADDR0	I2Cx_BA+0x04	R/W	I ² C Slave Address Register0	0x0000_0000
I2CADDR1	I2Cx_BA+0x18	R/W	I ² C Slave Address Register1	0x0000_0000
I2CADDR2	I2Cx_BA+0x1C	R/W	I ² C Slave Address Register2	0x0000_0000
I2CADDR3	I2Cx_BA+0x20	R/W	I ² C Slave Address Register3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	I2CADDR					GC	

Bits	Description	Description			
[31:8]	Reserved	Reserved.			
[7:1]	I2CADDR	I ² C Address Register The content of this register is irrelevant when I ² C is in Master mode. In Slave mode, the seven most significant bits must be loaded with the chip's own address. The I ² C hardware will react if one of the addresses is matched.			
[0]	GC	General Call Function 0 = General Call function Disabled. 1 = General Call function Enabled.			

I²C Slave Address Mask Register (I2CADMx)

Register	Offset	R/W	Description	Reset Value
I2CADM0	I2Cx_BA+0x24	R/W	I ² C Slave Address Mask Register0	0x0000_0000
I2CADM1	I2Cx_BA+0x28	R/W	I ² C Slave Address Mask Register1	0x0000_0000
I2CADM2	I2Cx_BA+0x2C	R/W	I ² C Slave Address Mask Register2	0x0000_0000
I2CADM3	I2Cx_BA+0x30	R/W	I ² C Slave Address Mask Register3	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	I2CADM					Reserved	

Bits	Description				
[31:8]	Reserved	Reserved.			
	I ² C Address Mask Register				
[7:1]	I2CADM	I ² C bus controller supports multiple address recognition with four address mask registers. When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to 0, that means the received corresponding register bit should be exact the same as address register.			
		0 = Mask Disabled (the received corresponding register bit should be exact the same as address register.).			
		1 = Mask Enabled (the received corresponding address bit is don't care.).			
[0]	Reserved	Reserved.			

I²C Wake Up Control Register (I2CWKUPCON)

Register	Offset	R/W	Description	Reset Value
I2CWKUPCON	I2Cx_BA+0x3C	R/W	I ² C Wake Up Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved						WKUPEN	

Bits	Description				
[31:1]	Reserved	served Reserved.			
[0]	WKUPEN	 I²C Wake-up Function Enable Bit 0 = I²C wake up function Disabled. 1 = I²C wake up function Enabled. 			

I²C Wake-up Status Register (I2CWKUPSTS)

Register	Offset	R/W	Description	Reset Value
I2CWKUPSTS	I2Cx_BA+0x40	R/W	I ² C Wake-up Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved						WKUPIF	

Bits	Description	Description			
[31:1]	Reserved	erved Reserved.			
[0]	WKUPIF	 I²C Wake-up Interrupt Flag When chip is woken-up from Power-down mode by I²C, this bit is set to 1. Note: This bit can be cleared by writing '1' to it. 			

6.14 Serial Peripheral Interface (SPI)

6.14.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bidirection interface. The NuMicro[®] M0519 series contains up to three sets of SPI controllers performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller can be configured as a master or a slave device.

6.14.2 Features

- Up to three sets of SPI controllers
- Supports Master or Slave mode operation
- Configurable bit length of a transaction word from 8 to 32-bit
- Provides separate 8-layer depth transmit and receive FIFO buffers
- Supports MSB first or LSB first transfer sequence
- Supports the Byte Reorder function
- Supports 3-wire, no slave select signal, bi-direction interface

6.14.3 Block Diagram

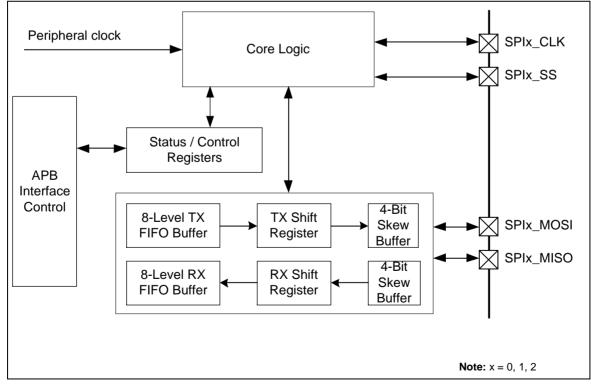


Figure 6-109 SPI Block Diagram

TX FIFO Buffer:

The transmit FIFO buffer is an 8-level depth, 32-bit wide, first-in, first-out register buffer. The data can be written to the transmit FIFO buffer in advance through software by writing the SPI_TX register.

RX FIFO Buffer:

The received FIFO buffer is also an 8-level depth, 32-bit wide, first-in, first-out register buffer. The receive control logic will store the received data to this buffer. The FIFO buffer data can be read from SPI_RX register by software.

TX Shift Register:

The transmit shift register is a 32-bit wide register buffer. The transmit data is loaded from the TX FIFO buffer and shifted out bit-by-bit to the skew buffer.

RX Shift Register:

The receive shift register is also a 32-bit wide register buffer. The receive data is shifted in bit-by-bit from the skew buffer and is loaded into RX FIFO buffer when a transaction done.

Skew Buffer:

The skew buffer is a 4-bit buffer.

For transmitting, it is written from shift register by peripheral clock and read out by SPI bus clock. The first three bits of TX shift register will be loaded to skew buffer in the beginning of transmission. The remaining bits will be shifted into skew buffer as any bit in skew buffer is shifted out to SPI bus.

For receiving, the serial data captured from SPI bus is written into the skew buffer basing on the SPI bus clock. These captured data will be read out and written into the RX shift register basing on the SPI peripheral clock.

6.14.4 Basic Configuration

The basic configurations of SPI0 are as follows:

- SPI0 pin functions are configured in P2_MFP and P5_MFP registers.
- Select the source of SPI0 peripheral clock on SPI0_S (CLKSEL1[4]).
- Enable SPI0 peripheral clock on SPI0_EN (APBCLK[12]).
- Reset SPI0 controller on SPI0_RST (IPRSTC2[12]).

The basic configurations of SPI1 are as follows:

- SPI1 pin functions are configured in P9_MFP register.
- Select the source of SPI1 peripheral clock on SPI1_S (CLKSEL1[5]).
- Enable SPI1 peripheral clock on SPI1_EN (APBCLK[13]).
- Reset SPI1 controller on SPI1_RST (IPRSTC2[13]).

The basic configurations of SPI2 are as follows:

- SPI2 pin functions are configured in P2_MFP and P5_MFP registers.
- Select the source of SPI2 peripheral clock on SPI2_S (CLKSEL1[6]).

- Enable SPI2 peripheral clock on SPI2_EN (APBCLK[14]).
- Reset SPI2 controller on SPI2_RST (IPRSTC2[14]).

6.14.5 Functional Description

6.14.5.1 Terminology

SPI Peripheral Clock and SPI Serial Clock

The SPI controller needs the SPI peripheral clock to drive the SPI logic unit to perform the data transfer. The SPI peripheral clock rate is determined by the settings of clock source and clock divisor. The SPIx_SS bit of CLKSEL1 register determines the clock source of the SPI peripheral clock. The clock source can be HCLK or PLL output clock. The DIVIDER setting of SPI_DIVIDER register determines the divisor of the clock rate calculation.

In Master mode, the output frequency of the SPI bus clock output pin is equal to the SPI peripheral clock rate. In general, the SPI bus clock denotes as SPI clock. In Slave mode, the SPI bus clock is provided by an off-chip master device. The SPI peripheral clock rate of slave device must be faster than the SPI bus clock rate of the master device connected together. The frequency of SPI peripheral clock cannot be faster than the APB clock rate regardless of Master or Slave mode.

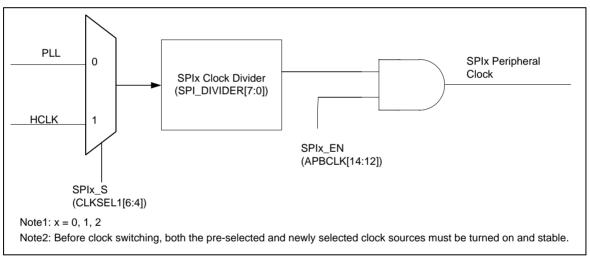


Figure 6-110 SPI Clock Diagram

Master/Slave Mode

The SPI controller can be set as Master or Slave mode by setting the SLAVE bit (SPI_CNTRL[18]) to communicate with the off-chip SPI Slave or Master device. The application block diagrams in Master and Slave mode are shown in Figure 6-111 and Figure 6-112.

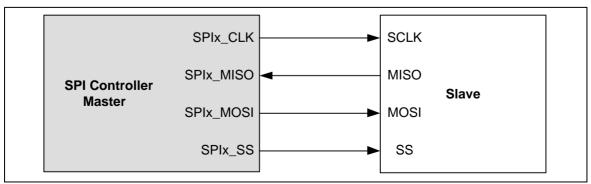


Figure 6-111 SPI Master Mode Application Block Diagram

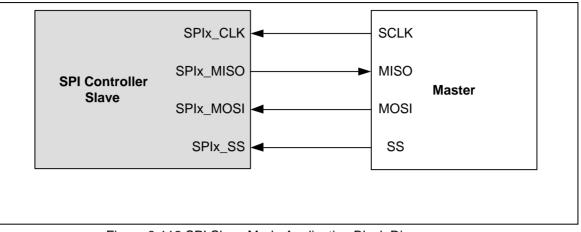


Figure 6-112 SPI Slave Mode Application Block Diagram

Slave Selection

In Master mode, this SPI controller can drive off-chip Slave device through the slave select output pin SPIx_SS. In Slave mode, the off-chip Master device drives the slave select signal from the SPIx_SS input port to this SPI controller. The duration between the slave select active edge and the first SPI clock input shall over 3 SPI peripheral clock cycles of Slave.

In Master/Slave mode, the active state of slave select signal can be programmed to low active or high active in SS_LVL (SPI_SSR[2]). The selection of slave select condition depends on what type of device is connected.

In Slave mode, the SS_LTRIG (SPI_SSR[4]) defines the slave select signal SPIx_SS is level trigger or edge trigger. If the SS_LTRIG bit is configured as level trigger, the LTRIG_FLAG bit (SPI_SSR[5]) is used to indicate if the received bits among one transaction meets the requirement defined in TX_BIT_LEN (SPI_CNTRL[7:3]). To recognize the inactive state of the slave selection signal, the inactive period of the slave selection signal must be larger than or equal to 3 peripheral clock cycles between two successive transactions.

Level-trigger/Edge-trigger

In Slave mode, the slave select signal can be configured as level-trigger or edge-trigger. In edgetrigger, the data transfer starts from an active edge and ends on an inactive edge of the slave signal. The unit-transfer interrupt flag IF (SPI_CNTRL[16]) will be set to 1 as an inactive edge is detected If the master does not send an inactive edge to slave, the transfer procedure will not be completed and the unit transfer interrupt flag of slave will not be set. In level-trigger, the unittransfer interrupt flag IF of slave will be set when one of the following two conditions occurs. The first condition is that if the number of transferred bits matches the settings of TX_BIT_LEN (SPI_CNTRL[7:3]), the unit transfer interrupt flag IF of slave will be set. As to the second condition, if the master set the slave select pin to inactive level during the transfer is in progress, it will force slave device to terminate the current transfer no matter how many bits have been transferred and the unit transfer interrupt flag will be set. User can read the status of LTRIG_FLAG bit to check if the data has been completely transferred

Timing Condition

The CLKP (SPI_CNTRL[11]) defines the SPI clock idle state. If CLKP = 1, the output of SPI bus clock is high at idle state; if CLKP = 0, it is low at idle state.

TX_NEG (SPI_CNTRL[2]) defines the data transmitted out either on negative edge or on positive edge of SPI bus clock.

RX_NEG (SPI_CNTRL[1]) defines the data received either on negative edge or on positive edge of SPI bus clock.

Note: The settings of TX_NEG and RX_NEG are mutual exclusive. In other words, do not transmit and receive data at the same clock edge.

Transmit/Receive Bit Length

The bit length of a transaction word is defined in TX_BIT_LEN (SPI_CNTRL[7:3]). It can be configured up to 32-bit length in a transaction word for transmitting and receiving.

When SPI controller finishes a transaction, i.e. receives or transmits a special count of bits defined in TX_BIT_LEN (SPI_CNTRL[7:3]), the unit transfer interrupt flag will be set to 1.

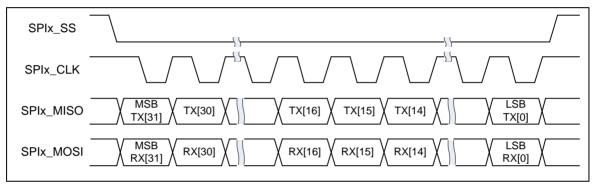


Figure 6-11332-Bit in One Transaction

LSB/MSB First

The LSB (SPI_CNTRL[10]) defines the bit transfer sequence in a transaction. If the LSB bit is set to 1, the transfer sequence is LSB first. The bit 0 will be transferred firstly. If the LSB bit is cleared to 0, the transfer sequence is MSB first.

6.14.5.2 Automatic Slave Selection

In Master mode, if AUTOSS (SPI_SSR[3]) is set, the slave select signal will be generated automatically and output to the SPIx_SS pin according to whether SSR (SPI_SSR[0]) is enabled or not. The slave selection signal will be set to active state automatically when the SPI data transfer is started by writing to TX FIFO in FIFO mode or by setting the GO_BUSY (SPI_CNTRL[0]) when the FIFO mode is disabled. It will be set to inactive state when SPI bus is idle. If SPI bus is not idle, i.e. TX FIFO, TX shift register or TX skew buffer is not empty, the slave selection signal will be set to inactive state between transactions if the value of SP_CYCLE (SPI_CNTRL[15:12]) is greater than or equal to 3.

In Master mode, if the value of SP_CYCLE[3:0] is less than 3 and the AUTOSS is set as 1, the slave select signal will be kept in active state between two successive transactions.

If the AUTOSS bit is cleared, the slave select output signal will be asserted/de-asserted by manual setting/clearing SSR (SPI_SSR[0]). The active state of the slave select output signal is specified in SS_LVL bit (SPI_SSR[2]).

In Slave mode, to recognize the inactive state of the slave select signal, the inactive period of the slave select signal must be larger than or equal to 6 peripheral clock periods between two

successive transactions.

The duration between the slave selection signal active edge and the first SPI bus clock edge is 1 SPI bus clock cycle and the duration between the last SPI bus clock and the slave selection signal inactive edge is 1.5 SPI bus clock cycle.

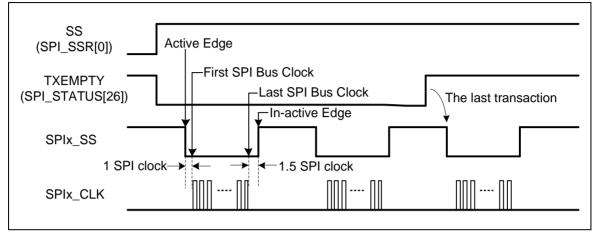


Figure 6-114 Automatic Slave Selection (SS_LVL = 0, SP_CYCLE > 0x2)

6.14.5.1 Word Suspend

These four bits field of SP_CYCLE (SPI_CNTRL[15:12]) provide a configurable suspend interval, 0.5 ~ 15.5 serial clock periods, between two successive transaction words in Master mode. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word. The default value of SP_CYCLE is 0x3 (3.5 serial clock cycles). This SP_CYCLE setting will not take effect to the word suspend interval if the software disables the FIFO mode.

6.14.5.2 Byte Reorder

When the transfer is set as MSB first (LSB (SPI_CNTRL[10])= 0) and the REORDER (SPI_CNTRL[19]) is set to 1, the data stored in the TX buffer and RX buffer will be rearranged in the order as [Byte0, Byte1, Byte2, Byte3] in 32-bit Transfer mode (TX_BIT_LEN = 0). The sequence of transmitted/received data will be Byte0, Byte1, Byte2, and then Byte3. If the TX_BIT_LEN is set as 24-bit transfer mode, the data in TX buffer and RX buffer will be rearranged as [unknown byte, Byte0, Byte1, Byte2]. The SPI controller will transmit/receive data with the sequence of Byte0, Byte1 and then Byte2. Each byte will be transmitted/received with MSB first. The rule of 16-bit mode is the same as above. Byte reorder function is only available when TX_BIT_LEN (SPI_CNTRL[7:3]) is configured as 16, 24, or 32 bits.

nuvoton

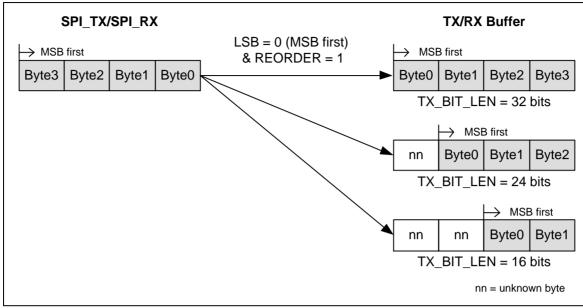


Figure 6-115 Byte Reorder Function

6.14.5.3 Byte Suspend

In Master mode, if REORDER (SPI_CNTRL[19]) is set to 1, a suspend interval of 0.5 ~ 15.5 SPI clock periods will be inserted by hardware between two successive bytes in a transaction word. Both settings of byte suspend interval and word suspend interval are configured in SP_CYCLE (SPI_CNTRL[15:12]).

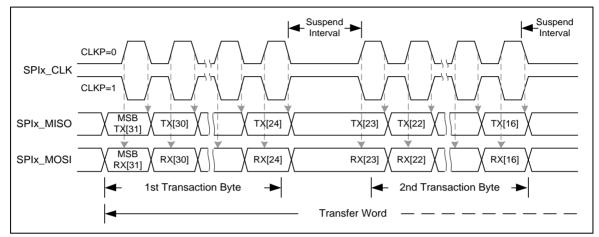


Figure 6-116 Timing Waveform for Byte Suspend

6.14.5.4 Slave 3-Wire Mode

When the NOSLVSEL (SPI_CNTRL2[8]) is set by software to enable the Slave 3-wire mode, the SPI controller can work with no slave select signal in Slave mode. The NOSLVSEL bit only takes effect in Slave mode. Only three pins, SPIx_CLK, SPIx_MISO, and SPIx_MOSI, are required to communicate with a SPI master. The SPIx_SS pin can be configured as a GPIO. When the NOSLVSEL bit is set to 1, the SPI slave will be ready to transmit/receive data after the GO_BUSY (SPI_CNTRL[0]) is set to 1. As the number of received bits meets the requirement which defined in TX_BIT_LEN (SPI_CNTRL[7:3]), the unit-transfer interrupt flag IF (SPI_CNTRL[16]) will be set to 1.

Note: In Slave 3-wire mode, the SS_LTRIG, SPI_SSR[4], should be set as 1.

6.14.5.5 FIFO Mode

The SPI controller supports FIFO mode when the FIFO (SPI_CNTRL[21]) is set as 1. The SPI controller equips with eight 32-bit wide transmit and receive FIFO buffers.

The transmit FIFO buffer is an 8-layer depth, 32-bit wide, first-in and first-out register buffer. Data can be written to the transmit FIFO buffer through software by writing the SPI_TX register. The data stored in the transmit FIFO buffer will be read and sent out by the transmission control logic. If the 8-layer transmit FIFO buffer is full, the TX_FULL (SPI_STATUS[27]) will be set to 1. When the SPI transmission logic unit draws out the last datum of the transmit FIFO buffer, so that the 8-layer transmit FIFO buffer is empty, the TX_EMPTY (SPI_STATUS[26]) will be set to 1. Notice that the TX_EMPTY flag (SPI_STATUS[26]) is set to 1 while the last transaction is still in progress. In Master mode, both the GO_BUSY (SPI_CNTRL[0]) and TX_EMPTY (SPI_STATUS[26]) should be checked by software to make sure whether the SPI is in idle or not.

The received FIFO buffer is also an 8-layer depth, 32-bit wide, first-in and first-out register buffer. The receive control logic will store the received data to this buffer. The software can read the FIFO buffer data from SPI_RX register. There are FIFO related status bits, like RX_EMPTY (SPI_STATUS[24]) and RX_FULL (SPI_STATUS[25]), to indicate the current status of FIFO buffer.

The transmitting and receiving threshold can be configured by setting the TX_THRESHOLD (SPI_FIFO_CTL[30:28]) and RX_THRESHOLD (SPI_FIFO_CTL[26:24]). When the count of valid data stored in transmit FIFO buffer is less than or equal to TX_THRESHOLD setting, the TX_INTSTS (SPI_STATUS[4]) will be set to 1. When the count of valid data stored in receive FIFO buffer is larger than RX_THRESHOLD setting, the RX_INTSTS (SPI_STATUS[0]) will be set to 1.

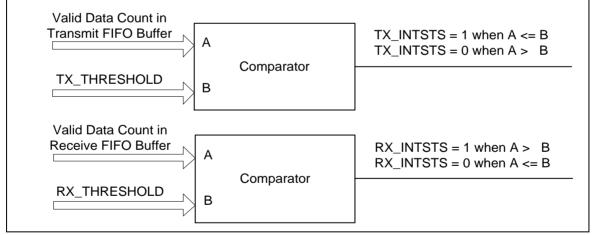


Figure 6-117 FIFO Threshold Comparator

In FIFO mode, the software can write 8 data to the SPI transmit FIFO buffer in advance. When the SPI controller operates with FIFO mode, GO_BUSY (SPI_CNTRL[0]) will be controlled by hardware, software should not modify the content of SPI_CNTRL register unless clearing the FIFO bit (SPI_CNTRL[21]) to disable the FIFO mode.

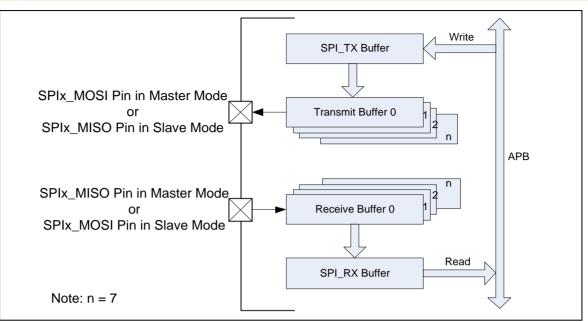


Figure 6-118 FIFO Mode Block Diagram

In Master mode, the first datum is written to the SPI_TX register, the TX_EMPTY flag (SPI_STATUS[16]) will be cleared to 0. The transmission will start after 1 APB clock cycle and 6 peripheral clock cycles. User can write the next data into SPI_TX register immediately. The SPI controller will insert a suspend interval between two successive transactions. The period of suspend interval is decided by the setting of SP_CYCLE (SPI_CNRTL[15:12]). If the SP_CYCLE (SPI_CNTRL[15:12]) equals 0, SPI controller can perform continuous transfer. User can write data into SPI_TX register as long as the TX_FULL (SPI_STATUS[27]) is 0.

In the Example 1 of Figure 6-119, it indicates the updated condition of TX_EMPTY (SPI_STATUS[26]) and the relationship among the FIFO buffer, shift register and the skew buffer. The TX_EMPTY (SPI_STATUS[16]) is set to 0 when the Data 0 is written into the FIFO buffer. The Data 0 will be loaded into the shift register by core logical and the TX_EMPTY (SPI_STATUS[26]) will be to 1. The Data 0 in shift register will be shifted into skew buffer by bit for transmission until the transfer is done.

In the Example 2, it indicates the updated condition of TX_FULL (SPI_STATUS[27]) when there are 8 data in the FIFO buffer and the next data of Data 9 is not written into the FIFO buffer when the TX_FULL = 1.

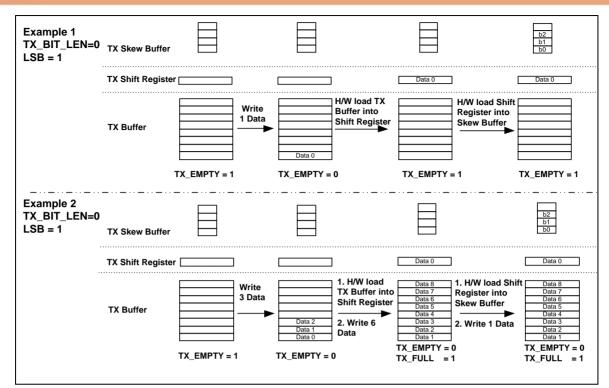


Figure 6-119 Transmit FIFO Buffer Example

The subsequent transactions will be triggered automatically if the transmitted data are updated in time. If the SPI_TX register does not be updated after all data transfer are done, the transfer will stop.

In Master mode, during reception operation, the serial data are received from SPIx_MISO pin and stored to receive FIFO buffer.

The receive data (Data 0's b0, b1, ..., b31) is stored into skew buffer first according the serial clock (SPIx_CLK) and then is shifted into the shift register bit by bit. The core logic will load the data in shift register into FIFO buffer when the receive data bit reach the value of TX_BIT_LEN (SPI_CNTRL[7:3]). The RX_EMPTY (SPI_STATUS[24]) will be cleared to 0 while the receive FIFO buffer contains unread data (see the Example 1 of Receive FIFO Buffer Example). The received data can be read by software from SPI_RX register as long as the RX_EMPTY (SPI_STATUS[24]) is 0. If the receive FIFO buffer contains 8 unread data, the RX_FULL (SPI_STATUS[25]) will be set to 1 (see the Example 2 of Receive FIFO Buffer Example).In Slave mode, when the FIFO bit is set as 1, the GO_BUSY bit will be set as 1 by hardware automatically. If user wants to stop the Slave mode SPI data transfer, both the FIFO bit and GO_BUSY bit must be cleared to 0 by software.

M0519

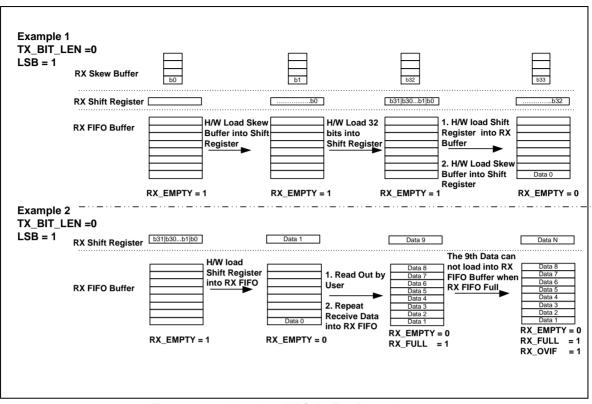


Figure 6-120 Receive FIFO Buffer Example

In Slave mode, during transmission operation, when the software writes data to SPI_TX register, the data will be loaded into transmit FIFO buffer and the TX_EMPTY flag will be set to 0. The transmission will start when the Slave device receives clock signal from Master. The software can write data to SPI_TX register as long as TX_FULL flag is 0. After all data have been drawn out by the SPI transmission logic unit and the software does not update the SPI_TX register, the TX_EMPTY flag will be set to 1.

In Slave mode reception operation, the serial data is received from SPIx_MOSI pin and stored to SPI_RX register. The reception mechanism is similar to Master mode reception operation.

6.14.5.6 Interrupt

SPI unit transfer interrupt

As the SPI controller finishes a unit transfer, the unit transfer interrupt flag IF (SPI_CNTRL[16]) will be set to 1. The unit transfer interrupt event will generate an interrupt to CPU if the unit transfer interrupt enable bit IE (SPI_CNTRL[17]) is set. The unit transfer interrupt flag can be cleared only by writing 1 to it.

■ SPI slave 3-wire mode start interrupt

In 3-wire mode, the Slave 3-wire mode start interrupt flag, SLV_START_INTSTS (SPI_STATUS[11]), will be set to 1 when the slave senses the SPI clock signal. The SPI controller will issue an interrupt if the SSTA_INTEN (SPI_CNTRL2[10]) is set to 1. If the count of the received bits is less than the setting of TX_BIT_LEN (SPI_CNTRL[7:3]) and there is no more SPI clock input over the expected time period which is defined by the user, the user can set the SLV_ABORT (SPI_CNTRL2[9]) to abort the current transfer. The unit transfer interrupt flag, IF, (SPI_STATUS[16]) will be set to 1 if the software set the SLV_ABORT bit (SPI_CNTRL2[9]).

Receive FIFO time out interrupt

In FIFO mode, there is time out function to inform user. If there is a received data in the FIFO and it does not be read by software over 64 SPI peripheral clock periods in Master mode or over 576 SPI peripheral clock periods in Slave mode, it will send a time out interrupt to the system if the time out interrupt enable bit TIMEOUT_INTEN (FIFO_CTL[21]) is set to 1.

Transmit FIFO interrupt

In FIFO mode, if the valid data count of the transmit FIFO buffer is less than or equal to the setting value of TX_THRESHOLD, the transmit FIFO interrupt flag will be set to 1. The SPI controller will generate a transmit FIFO interrupt to the system if the transmit FIFO interrupt enable bit TX_INTEN (SPI_FIFO_CTL[3]) is set to 1.

Receive FIFO interrupt

In FIFO mode, if the valid data count of the receive FIFO buffer is larger than the setting value of RX_THRESHOLD, the receive FIFO interrupt flag will be set to 1. The SPI controller will generate a receive FIFO interrupt to the system if the receive FIFO interrupt enable bit RX_INTEN (SPI_FIFO_CTL[2]) is set to 1.

6.14.6 Timing Diagram

The active state of slave select signal can be defined by setting the SS_LVL bit (SPI_SSR[2]) and SS_LTRIG bit (SPI_SSR[4]). The SPI clock idle state can be configured as high or low state by setting the CLKP bit (SPI_CNTRL[11]). It also provides the bit length of a transaction word in TX_BIT_LEN (SPI_CNTRL[7:3]), and transmit/receive data from MSB or LSB first in LSB bit (SPI_CNTRL[10]). User can also select which edge of SPI clock to transmit/receive data in TX_NEG/RX_NEG (SPI_CNTRL[2:1]). Four SPI timing diagrams for master/slave operations and the related settings are shown in Figure 6-121, Figure 6-122, Figure 6-123 and Figure 6-124.

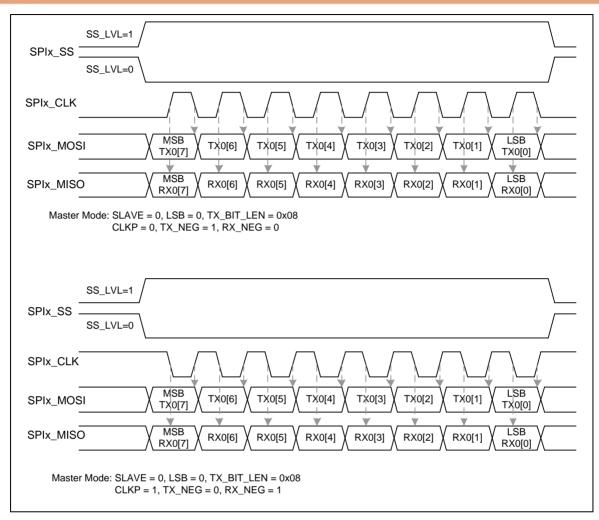


Figure 6-121 SPI Timing in Master Mode

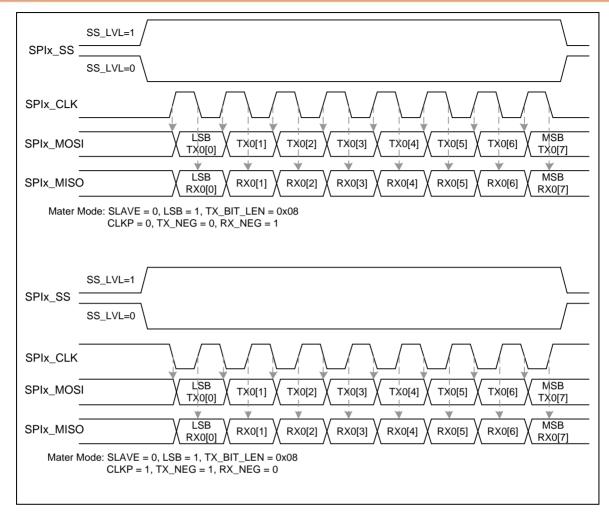


Figure 6-122 SPI Timing in Master Mode (Alternate Phase of SPI_CLK)

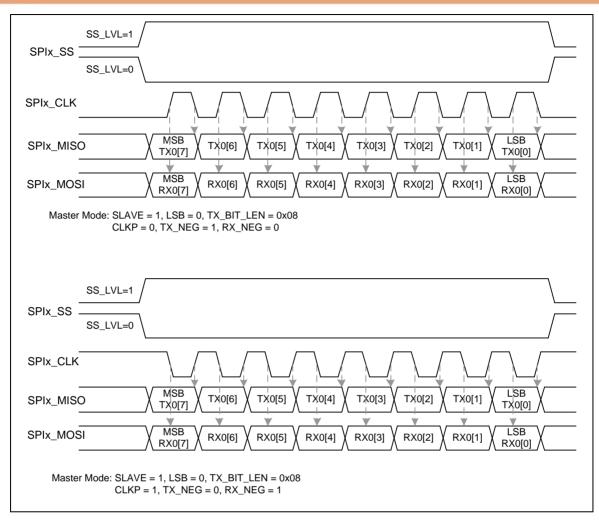


Figure 6-123 SPI Timing in Slave Mode

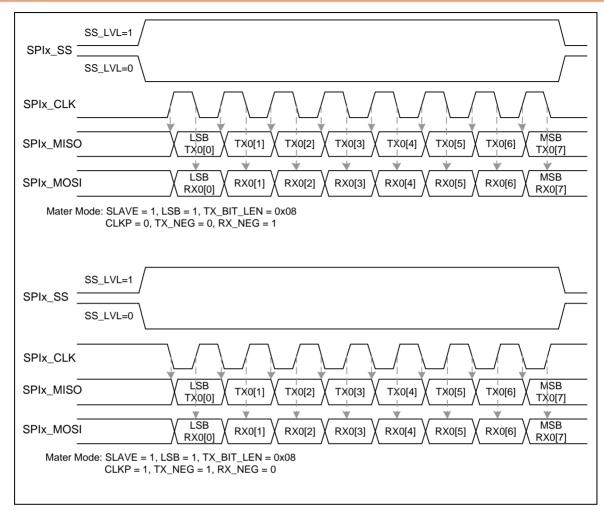


Figure 6-124 SPI Timing in Slave Mode (Alternate Phase of SPI bus clock)

6.14.7 Programming Examples

Example 1: The SPI controller is set as a master to access an off-chip slave device with the following specifications:

- Data bit is latched on positive-edge of SPI bus clock.
- Data bit is driven on negative-edge of SPI bus clock.
- Data is transferred from MSB first.
- SPI bus clock is low at idle state.
- Only one byte of data will be transmitted/received in a transaction.
- The slave select signal is active low.

The operation flow is as follows.

1) Set the DIVIDER (SPI_DIVIDER[7:0]) register to determine the output frequency of SPI bus clock.

2) Write the related settings into the SPI_CNTRL register to control this SPI Master actions

Page **427** of **524**

- 1. Set this SPI controller as Master device. SLAVE (SPI_CNTRL[18]) = 0.
- 2. Set the SPI bus clock idle state as low-level. CLKP (SPI_CNTRL[11]) = 0.
- 3. Transmit data on falling edge of SPI bus clock. TX_NEG (SPI_CNTRL[2]) = 1.
- 4. Capture data on rising edge of SPI bus clock. RX_NEG (SPI_CNTRL[1]) = 0.
- 5. Set the bit length of a transaction as 8 bits. TX_BIT_LEN (SPI_CNTRL[7:3]) = 0x08.
- 6. Set transfer sequence as MSB first. LSB (SPI_CNTRL[10]) = 0.
- 3) Write the SPI_SSR register a proper value for the related settings of Master mode:
 - 1. Disable the automatic slave selection function. AUTOSS (SPI_SSR[3]) to 0.
 - Select low level trigger output of slave select signal. Set SS_LVL (SPI_SSR[2]) = 0 and SS_LTRIG (SPI_SSR[4]) = 1.
 - 3. Set SSR (SPI_SSR[0]) to 1 to active the off-chip Slave device.
- 4) If this SPI Master attempts to transmit (write) one byte data to the off-chip Slave device, write the byte data that will be transmitted into the SPI_TX register.
- 5) If this SPI Master just only attempts to receive (read) one byte data from the off-chip Slave device and does not care what data will be transmitted, software does not need to update the SPI_TX register.
- 6) Set the GO_BUSY (SPI_CNTRL[0]) to 1 to start the data transfer on the SPI interface.
- 7) Waiting for SPI interrupt if the Unit Transfer Interrupt function is enabled or just polling the GO_BUSY bit (SPI_CNTRL[0]) till it is cleared to 0 by hardware automatically.
- 8) Read out the received one byte data from SPI_RX[7:0].
- 9) Go to 4) to continue another data transfer or set SSR to 0 to inactivate the off-chip Slave device.

Example 2: The SPI controller is set as a Slave device and connects with an off-chip Master device. The off-chip Master device communicates with the on-chip SPI Slave controller through the SPI interface with the following specifications:

- Data bit is latched on positive-edge of SPI bus clock.
- Data bit is driven on negative-edge of SPI bus clock.
- Data is transferred from LSB first.
- SPI bus clock is high at idle state.
- Only one byte of data will be transmitted/received in a transaction.
- Slave select signal is high level trigger.

The operation flow is as follows.

1) Write the SPI_SSR register a proper value for the related settings of Slave mode.

Select high level and level trigger for the input of slave select signal by setting SS_LVL (SPI_SSR[2]) to 1 and setting SS_LTRIG (SPI_SSR[4]) to 1.

- 2) Write the related settings into the SPI_CNTRL register to control this SPI Slave actions
 - 1. Set the SPI controller as Slave device. SLAVE (SPI_CNTRL[18]) = 1.
 - 2. Select the SPI clock high at idle state. CLKP (SPI_CNTRL[11]) = 1.

- 3. Transmit data at negative-edge of SPI bus clock. TX_NEG (SPI_CNTRL[2])= 1.
- 4. Capture data at positive-edge of SPI bus clock. RX_NEG (SPI_CNTRL[1]) = 0.
- 5. Set the bit length of a transaction as 8-bit. TX_BIT_LEN (SPI_CNTRL[7:3])= 0x08.
- 6. Set transfer sequence as LSB first. LSB (SPI_CNTRL[10]) = 1.
- 3) If this SPI Slave attempts to transmit (be read) one byte data to the off-chip Master device, write the byte data that will be transmitted into the SPI_TX register.
- 4) If this SPI Slave just only attempts to receive (be written) one byte data from the off-chip Master device and does not care what data will be transmitted, software does not need to updatethe SPI_TX register.
- 5) Set GO_BUSY (SPI_CNTRL[0]) to 1 to wait for the slave select trigger input and SPI bus clock input from the off-chip Master device to start the data transfer with the SPI interface.
- 6) Waiting for SPI interrupt if the Unit Transfer Interrupt function is enabled, or just polling the GO_BUSY bit (SPI_CNTRL[0]) till it is cleared to 0 by hardware automatically.
- 7) Read out the received one byte data from SPI_RX[7:0].
- 8) Go to 3) to continue another data transfer orclear GO_BUSY bit to stop data transfer.

6.14.8 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
SPI0_BA = 0x40 SPI1_BA = 0x40	SPI Base Address: SPI0_BA = 0x4003_0000 SPI1_BA = 0x4003_4000 SPI2_BA = 0x4013_0000					
SPI_CNTRL x=0,1,2	SPIx_BA+0x00	R/W	Control and Status Register	0x0500_3004		
SPI_DIVIDER x=0,1,2	SPIx_BA+0x04	R/W	Clock Divider Register	0x0000_0000		
SPI_SSR x=0,1,2	SPIx_BA+0x08	R/W	Slave Select Register	0x0000_0000		
SPI_RX x=0,1,2	SPIx_BA+0x10	R	Data Receive Register	0x0000_0000		
SPI_TX x=0,1,2	SPIx_BA+0x20	W	Data Transmit Register	0x0000_0000		
SPI_CNTRL2 x=0,1,2	SPIx_BA+0x3C	R/W	Control and Status Register 2	0x0000_1000		
SPI_FIFO_CTL x=0,1,2	SPIx_BA+0x40	R/W	SPI FIFO Control Register	0x4400_0000		
SPI_STATUS x=0,1,2	SPIx_BA+0x44	R/W	SPI Status Register	0x0500_0000		

6.14.9 Register Description

SPI Control and Status Register (SPI_CNTRL)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL	SPIx_BA+0x00	R/W	Control and Status Register	0x0500_3004

31	30	29	28	27	26	25	24
Reserved				TX_FULL	TX_EMPTY	RX_FULL	RX_EMPTY
23	22	21	20	19	18	17	16
Rese	Reserved		Reserved	REORDER	SLAVE	IE	IF
15	14	13	12	11	10	9	8
	SP_CYCLE				LSB	Rese	erved
7	6	5	4	3	2	1	0
TX_BIT_LEN					TX_NEG	RX_NEG	GO_BUSY

Bits	Description			
[31:28]	Reserved	Reserved.		
[27]	TX_FULL	Transmit FIFO Buffer Full Indicator (Read Only) A mutual mirror bit of SPI_STATUS[27]. 0 = Transmit FIFO buffer is not full. 1 = Transmit FIFO buffer is full.		
[26]	TX_EMPTY Transmit FIFO Buffer Empty Indicator (Read Only) A mutual mirror bit of SPI_STAUTS[26]. 0 = Transmit FIFO buffer is not empty. 1 = Transmit FIFO buffer is empty.			
[25]	RX_FULL	Receive FIFO Buffer Full Indicator (Read Only) A mutual mirror bit of SPI_STATUS[25]. 0 = Receive FIOF buffer is not full. 1 = Receive FIFO buffer is full.		
[24]	RX_EMPTY	Receive FIFO Buffer Empty Indicator (Read Only) A mutual mirror bit of SPI_STATUS[24]. 0 = Receive FIFO buffer is not empty. 1 = Receive FIFO buffer is empty.		
[23:22]	Reserved	Reserved.		
[21]	FIFO	 FIFO Mode Enable Bit 0 = FIFO mode Disabled. 1 = FIFO mode Enabled. Note: 1. Before enabling FIFO mode, the other related settings should be set in advance. 2. In Master mode, if the FIFO mode is enabled, the GO_BUSY bit will be set to 1 automatically after writing data to the transmit FIFO buffer; the GO_BUSY bit will be 		

		cleared to 0 automatically when the SPI controller is in idle. If all data stored at transmit FIFO buffer are sent out, the TX_EMPTY bit will be set to 1 and the GO_BUSY bit will be cleared to 0.
[20]	Reserved	Reserved.
[19]	REORDER	Byte Reorder Function Enable Bit 0 = Byte reorder function Disabled. 1 = Byte reorder function Enabled. A byte suspend interval will be inserted among each byte. The period of the byte suspend interval depends on the setting of SP_CYCLE. Note: 1. Byte reorder function is only available if TX_BIT_LEN is defined as 16, 24, and 32 bits. 2. In Slave mode with level-trigger configuration, the slave select pin must be kept at active state during the byte suspend interval.
[18]	SLAVE	Slave Mode Enable Bit 0 = Master mode. 1 = Slave mode.
[17]	IE	Unit Transfer Interrupt Enable Bit 0 = SPI unit transfer interrupt Disabled. 1 = SPI unit transfer interrupt Enabled.
[16]	IF	 Unit Transfer Interrupt Flag 0 = No transaction has been finished since this bit was cleared to 0. 1 = SPI controller has finished one unit transfer. Note: This bit will be cleared by writing 1 to itself.
[15:12]	SP_CYCLE	Suspend Interval (Master Only) The four bits provide configurable suspend interval between two successive transmit/receive transaction in a transfer. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word. The default value is 0x3. The period of the suspend interval is obtained according to the following equation. (SP_CYCLE[3:0] + 0.5) * period of SPI clock cycle Example: SP_CYCLE = 0x0 0.5 SPI clock cycle. SP_CYCLE = 0x1 1.5 SPI clock cycle. SP_CYCLE = 0x5 14.5 SPI clock cycle. SP_CYCLE = 0x7 15.5 SPI clock cycle.
[11]	CLKP	Clock Polarity 0 = SPI bus clock is idle low. 1 = SPI bus clock is idle high.
[10]	LSB	 Send LSB First 0 = The MSB, which bit of transmit/receive register depends on the setting of TX_BIT_LEN, is transmitted/received first. 1 = The LSB, bit 0 of the SPI TX register, is sent first to the SPI data output pin, and the first bit received from the SPI data input pin will be put in the LSB position of the RX register (bit 0 of SPI_RX).
[9:8]	Reserved	Reserved.
[7:3]	TX_BIT_LEN	Transmit Bit Length This field specifies how many bits can be transmitted / received in one transaction. The minimum bit length is 8 bits and can up to 32 bits.

		TX_BIT_LEN = 0x01~0x07 can't use.
		TX_BIT_LEN = 0x08 8 bits.
		TX_BIT_LEN = 0x09 9 bits.
		TX_BIT_LEN = 0x1F 31 bits.
		TX_BIT_LEN = 0x00 32 bits.
		Transmit on Negative Edge
[2]	TX_NEG	0 = Transmitted data output signal is changed on the rising-edge of SPI bus clock.
		1 = Transmitted data output signal is changed on the falling-edge of SPI bus clock.
		Receive on Negative Edge
[1]	RX_NEG	0 = Received data input signal is latched on the rising-edge of SPI bus clock.
		1 = Received data input signal is latched on the falling-edge of SPI bus clock.
		SPI Transfer Control Bit and Busy Status
		If FIFO mode is disabled, during the data transfer, this bit keeps the value of 1. As the transfer is finished, this bit will be cleared automatically. Software can read this bit to check if the SPI is in busy status.
[0]	GO BUSY	In FIFO mode, this bit will be controlled by hardware. Software should not modify this bit. In Slave mode, this bit always returns 1 when this register is read by software. In Master mode, this bit reflects the busy or idle status of SPI.
[0]	00_0001	0 = Data transfer stopped.
		1 = In Master mode, writing 1 to this bit to start the SPI data transfer; in Slave mode, writing 1 to this bit indicates that the slave is ready to communicate with a master.
		Note:
		When FIFO mode is disabled, all configurations should be set before writing 1 to this GO_BUSY bit.

SPI Clock Divider Register (SPI_DIVIDER)

Register	Offset	R/W	Description	Reset Value
SPI_DIVIDER	SPIx_BA+0x04	R/W	Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
			DIVI	DER						

Bits	Description					
[31:8]	Reserved	Reserved.				
[7:0]	DIVIDER	Clock Divider 1 Register The value in this field is the frequency divider for generating the SPI peripheral clock, $f_{spi_eclk_i}$ and the SPI bus clock of SPI master. The frequency is obtained according to the following equation. $f_{spi_eclk} = \frac{f_{spi_clock_src}}{(DIVIDER+1)*2}$ where $f_{spi_clock_src}$ is the SPI peripheral clock source, which is defined in the CLKSEL1 register.				

SPI Slave Select Register (SPI_SSR)

Register	Offset	R/W	Description	Reset Value
SPI_SSR	SPIx_BA+0x08	R/W	Slave Select Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Rese	erved	LTRIG_FLAG	SS_LTRIG	AUTOSS	SS_LVL	Reserved	SSR			

Bits	Description	Description							
[31:6]	Reserved	Reserved.							
		Level Trigger Accomplish Flag							
		In Slave mode, this bit indicates whether the received bit number meets the requirement or not after the current transaction done.							
[5]	LTRIG_FLAG	0 = Transferred bit length of one transaction does not meet the specified requirement.							
		1 = Transferred bit length meets the specified requirement which defined in TX_BIT_LEN. Note: This bit is READ only. As the GO_BUSY bit is set to 1 by software, the LTRIG_FLAG will be cleared to 0 after 4 SPI peripheral clock periods plus 1 system clock period. In FIFO mode, this bit has no meaning.							
		Slave Select Level Trigger Enable Bit (Slave Only)							
[4]	SS_LTRIG	0 = Slave select signal is edge-trigger. This is the default value. The SS_LVL bit decides the signal is active after a falling-edge or rising-edge.							
		1 = Slave select signal is level-trigger. The SS_LVL bit decides the signal is active low or active high.							
		Automatic Slave Select Function Enable Bit (Master Only)							
		0 = If this bit is cleared, slave select signals will be asserted/de-asserted by setting /clearing the corresponding bits of SPI_SSR[0].							
[3]	AUTOSS	1 = If this bit is set, SPI_SS signals will be generated automatically by hardware. It means that device/slave select signal, which is set in SPI_SSR[0], will be asserted by the SPI controller when transmit/receive is started, and will be de-asserted after each transmit/receive is finished.							
		Slave Select Active Level							
[0]	SS LVL	This bit defines the active status of slave select signal (SPI_SS).							
[2]	33_LVL	0 = The slave select signal SPI_SS is active on low-level/falling-edge.							
		1 = The slave select signal SPI_SS is active on high-level/rising-edge.							
[1]	Reserved	Reserved.							
		Slave Select Control Bits (Master Only)							
[0]	SSR	If AUTOSS bit is cleared							
		0 = Set the SPIx_SS pin to inactive state.							

1 = Set the SPIx_SS pin to active state.
If the AUTOSS bit is set
0 = Keep the SPIx_SS pin to inactive state.
1 = Select the SPIx_SS pin to be automatically driven to active state for the duration of data transfer, and will be driven to inactive state for the rest of the time. The active state of SPIx_SS is specified in SS_LVL.

SPI Data Receive Register (SPI_RX)

Register	Offset	R/W	Description	Reset Value
SPI_RX	SPIx_BA+0x10	R	Data Receive Register	0x0000_0000

31	30	29	28	27	26	25	24			
	RX									
23	22	21	20	19	18	17	16			
			R	X						
15	14	13	12	11	10	9	8			
	RX									
7	6	5	4	3	2	1	0			
			R	X						

Bits	Description					
		Data Receive Register				
[31:0]		The data receive register holds the datum received from SPI data input pin. If the FIFO mode is disabled, the software can access the last received data by reading this register. If the FIFO bit is set as 1 and the RX_EMPTY bit, SPI_CNTRL[24] or SPI_STATUS[24], is not set to 1, then the receive FIFO buffers can be accessed through software by reading this register. This is a read-only register.				

SPI Data Transmit Register (SPI_TX)

Register	Offset	R/W	Description	Reset Value
SPI_TX	SPIx_BA+0x20	W	Data Transmit Register	0x0000_0000

31	30	29	28	27	26	25	24		
	ТХ								
23	22	21	20	19	18	17	16		
			т	х					
15	14	13	12	11	10	9	8		
			т	X					
7	6	5	4	3	2	1	0		
			Т	x					

Bits	Description	1
		Data Transmit Register
	The Data Transmit Register holds the data to be transmitted in the next transfer. The number of valid bits depends on the setting of transmit bit length field TX_BIT_LEN in the SPI_CNTRL register.	
[31:0]	31:0] TX	For example, if TX_BIT_LEN is set to 0x08, the bit field TX[7:0] will be transmitted in next transfer. If TX_BIT_LEN is set to 0x00, the SPI controller will perform a 32-bit transfer.
		Note: When the SPI controller is configured as a slave device and FIFO mode is disabled, if the SPI controller attempts to transmit data to a master, the transmit data register should be updated by software before setting the GO_BUSY bit to 1

SPI Control and Status Register 2 (SPI_CNTRL2)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL2	SPIx_BA+0x3C	R/W	Control and Status Register 2	0x0000_1000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Reserved				SS_INT_OPT	
15	14	13	12	11	10	9	8	
	Reserved SLV_START SSTA_INTE SLV_ABORT						NOSLVSEL	
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Description				
[31:17]	Reserved	Reserved.			
[16]	SS_INT_OPT	 Slave Select Inactive Interrupt Option This setting is only available if the SPI controller is configured as level trigger slave device. 0 = As the slave select signal goes to inactive level, the IF bit will NOT be set to 1. 1 = As the slave select signal goes to inactive level, the IF bit will be set to 1. 			
[15:12]	Reserved	Reserved.			
[11]	SLV_START_INTSTS	 Slave 3-wire Mode Start Interrupt Status This bit indicates if a transaction has started in Slave 3-wire mode. It is a mutual mirror bit of SPI_STATUS[11]. 0 = Slave has not detected any SPI clock transition since the SSTA_INTEN bit was set to 1. 1 = A transaction has started in Slave 3-wire mode. It will be cleared automatically when a transaction is done or by writing 1 to this bit. 			
[10]	SSTA_INTEN	 Slave 3-wire Mode Start Interrupt Enable Bit Used to enable interrupt when the transfer has started in Slave 3-wire mode. If there is no transfer done interrupt over the time period which is defined by user after the transfer start, the user can set the SLV_ABORT bit to force the transfer done. 0 = Transaction start interrupt Disabled. 1 = Transaction start interrupt Enabled. It will be cleared to 0 as the current transfer is done or the SLV_START_INTSTS bit is cleared. 			
[9]	SLV_ABORT	Slave 3-wire Mode Abort Control In normal operation, there is an interrupt event when the received data meet the required bits which defined in TX_BIT_LEN. If the received bits are less than the requirement and there is no more SPI clock input over one transaction time in Slave 3-wire mode, user can set this bit to for the current transfer done and then user can get a transfer done interrupt event. 0 = No effect.			

		1 = Force the current transaction done. Note: This bit will be cleared to 0 automatically by hardware after it is set to 1 by software
		Slave 3-wire Mode Enable Bit
		In Slave 3-wire mode, the SPI controller can work with 3-wire interface including SPI_CLK, SPI_MISO, and SPI_MOSI.
[8]	NOSLVSEL	0 = 4-wire bi-direction interface in Slave mode.
[0]		1 = 3-wire bi-direction interface in Slave mode. The controller will be ready to transmit/receive data after the GO_BUSY bit is set to 1.
		Note: In Slave 3-wire mode, the SS_LTRIG (SPI_SSR[4]) will be set as 1 automatically.
[7:0]	Reserved	Reserved.

SPI FIFO Control Register (SPI_FIFO_CTL)

Register	Offset	R/W	Description	Reset Value
SPI_FIFO_CTL	SPIx_BA+0x40	R/W	SPI FIFO Control Register	0x4400_0000

31	30	29	28	27	26	25	24
Reserved	TX_THRESHOLD			Reserved	RX_THRESHOLD		
23	22	21	20	19	18	17	16
Rese	erved	TIMEOUT_IN TEN		Reserved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	RXOV_INTE N	Rese	erved	TX_INTEN	RX_INTEN	TX_CLR	RX_CLR

Bits	Description	
[31]	Reserved	Reserved.
[30:28]	TX_THRESHOLD	Transmit FIFO Threshold If the valid data count of the transmit FIFO buffer is less than or equal to the TX_THRESHOLD setting, the TX_INTSTS bit will be set to 1, else the TX_INTSTS bit will be cleared to 0.
[27]	Reserved	Reserved.
[26:24]	RX_THRESHOLD	Receive FIFO Threshold If the valid data count of the receive FIFO buffer is larger than the RX_THRESHOLD setting, the RX_INTSTS bit will be set to 1, else the RX_INTSTS bit will be cleared to 0.
[23:22]	Reserved	Reserved.
[21]	TIMEOUT_INTEN	Receive FIFO Time-out Interrupt Enable Bit 0 = Time-out interrupt Disabled. 1 = Time-out interrupt Enabled.
[20:7]	Reserved	Reserved.
[6]	RXOV_INTEN	Receive FIFO Overrun Interrupt Enable Bit 0 = Receive FIFO overrun interrupt Disabled. 1 = Receive FIFO overrun interrupt Enabled.
[5:4]	Reserved	Reserved.
[3]	TX_INTEN	Transmit Threshold Interrupt Enable Bit 0 = TX threshold interrupt Disabled. 1 = TX threshold interrupt Enabled.
[2]	RX_INTEN	Receive Threshold Interrupt Enable Bit 0 = RX threshold interrupt Disabled.

		1 = RX threshold interrupt Enabled.
[1]	TX_CLR	Clear Transmit FIFO Buffer 0 = No effect. 1 = Clear transmit FIFO buffer. The TX_FULL flag will be cleared to 0 and the TX_EMPTY flag will be set to 1. This bit will be cleared to 0 by hardware after it is set to 1 by software.
[0]	RX_CLR	Clear Receive FIFO Buffer 0 = No effect. 1 = Clear receive FIFO buffer. The RX_FULL flag will be cleared to 0 and the RX_EMPTY flag will be set to 1. This bit will be cleared to 0 by hardware after it is set to 1 by software.

SPI Status Register (SPI_STATUS)

Register	Offset	R/W	Description	Reset Value
SPI_STATUS	SPIx_BA+0x44	R/W	SPI Status Register	0x0500_0000

31	30	29	28	27	26	25	24
	TX_FIFO_COUNT				TX_EMPTY	RX_FULL	RX_EMPTY
23	22	21	20	19	18	17	16
	Reserved			Reserved			IF
15	14	13	12	11	10	9	8
	RX_FIFO_COUNT				Reserved		
7	6	5	4	3	2	1	0
Reserved TX_INT			TX_INTSTS	Reserved	RX_OVERRU N	Reserved	RX_INTSTS

Bits	Description	
[31:28]	TX_FIFO_COUNT	Transmit FIFO Data Count (Read Only) This bit field indicates the valid data count of transmit FIFO buffer.
[27]	TX_FULL	Transmit FIFO Buffer Full Indicator (Read Only) A mutual mirror bit of SPI_CNTRL[27]. 0 = Transmit FIFO buffer is not full. 1 = Transmit FIFO buffer is full.
[26]	TX_EMPTY	Transmit FIFO Buffer Empty Indicator (Read Only) A mutual mirror bit of SPI_CNTRL[26]. 0 = Transmit FIFO buffer is not empty. 1 = Transmit FIFO buffer is empty.
[25]	RX_FULL	Receive FIFO Buffer Empty Indicator (Read Only) A mutual mirror bit of SPI_CNTRL[25]. 0 = Receive FIFO buffer is not empty. 1 = Receive FIFO buffer is empty.
[24]	RX_EMPTY	Receive FIFO Buffer Empty Indicator (Read Only) A mutual mirror bit of SPI_CNTRL[24]. 0 = Receive FIFO buffer is not empty. 1 = Receive FIFO buffer is empty.
[23:21]	Reserved	Reserved.
[20]	TIMEOUT	Time-out Interrupt Flag 0 = No receive FIFO time-out event. 1 = Receive FIFO buffer is not empty and no read operation on receive FIFO buffer over 64 SPI clock period in Master mode or over 576 SPI peripheral clock period in Slave mode. When the received FIFO buffer is read by software, the time-out status will be cleared automatically.

		Note: This bit will be cleared by writing 1 to itself.				
[19:17]	Reserved	Reserved.				
[16]	IF	 SPI Unit Transfer Interrupt Flag A mutual mirror bit of SPI_CNTRL[16]. 0 = No transaction has been finished since this bit was cleared to 0. 1 = SPI controller has finished one unit transfer. Note: This bit will be cleared by writing 1 to itself. 				
[15:12]	RX_FIFO_COUNT	Receive FIFO Data Count (Read Only) This bit field indicates the valid data count of receive FIFO buffer.				
[11]	SLV_START_INT STS	 Slave Start Interrupt Status It is used to dedicate if a transaction has started in Slave 3-wire mode. It is a mutual mirror bit of SPI_CNTRL2[11]. 0 = Slave has not detected any SPI clock transition since the SSTA_INTEN bit was set to 1. The transfer is not started. 1 = A transaction has started in Slave 3-wire mode. It will be cleared as a transaction is done or by writing 1 to this bit. 				
[10:5]	Reserved	Reserved.				
[4]	TX_INTSTS	 Transmit FIFO Threshold Interrupt Status (Read Only) 0 = The valid data count within the transmit FIFO buffer is larger than the setting value of TX_THRESHOLD. 1 = The valid data count within the transmit FIFO buffer is less than or equal to the setting value of TX_THRESHOLD. 				
[3]	Reserved	Reserved.				
[2]	RX_OVERRUN	 Receive FIFO Overrun Status When the receive FIFO buffer is full, the follow-up data will be dropped and this bit will be set to 1. 0 = Receive FIFO does not overrun. 1 = Receive FIFO overruns. Note: This bit will be cleared by writing 1 to itself. 				
[1]	Reserved	Reserved.				
[0]	RX_INTSTS	Receive FIFO Threshold Interrupt Status (Read Only) 0 = The valid data count within the receive FIFO buffer is less than or equal to the setting value of RX_THRESHOLD. 1 = The valid data count within the receive FIFO buffer is larger than the setting value of RX_THRESHOLD.				

6.15 Hardware Divider (HDIV)

6.15.1 Overview

The hardware divider is useful to the high performance application. The hardware divider is a signed, integer divider with quotient and remainder outputs.

6.15.2 Features

- Supports Signed (two's complement) integer calculation.
- Supports 32-bit dividend with 16-bit divisor calculation capacity.
- Supports 32-bit quotient and 16-bit remainder outputs.
- Supports divided by 0 warning flag.
- 7 HCLK clocks taken for one cycle calculation.
- Software triggered with finish flag.

6.15.3 Functional Description

Figure 6-125 shows the HDIV clock source control.

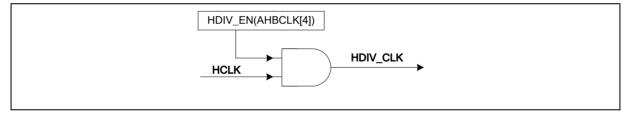
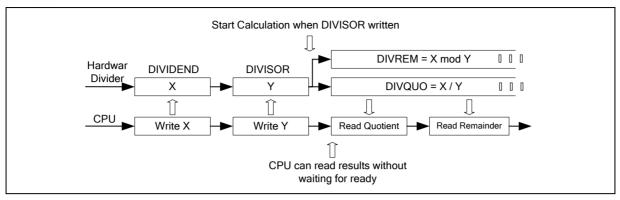
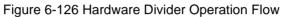


Figure 6-125 HDIV Clock Source Control


To use hardware divider, it needs to set dividend first. Then set divisor and the hardware divider will trigger calculation automatically after divisor written. The calculation results including the quotient and remainder could be got by reading DIVQUO and DIVREM register. If CPU reads DIVQUO or DIVREM before hardware divider calculation finishing, CPU will be held until hardware divider finishing the calculation. Therefore, CPU can always get valid results after trigger one hardware divider calculation without software delay.


DIV0 (DIVSTS[0]) flag of will be set if divisor is 0.

The dividend is 32-bit signed integer and divisor is 16-bit signed integer. The quotient is 32-bit signed integer and the remainder is 16-bit signed integer.

Figure 6-126 shows the operation flow of hardware divider. To calculation X / Y, CPU needs to write X to DIVIDEND register, and then write Y to DIVISOR. CPU can read DIVQUO and DIVREM registers to get calculation results after DIVISOR been written.

nuvoton

6.15.4 Register Map

R: read only	, W: write only	, R/W: both	read and write
--------------	-----------------	-------------	----------------

Register	Offset	R/W	Description	Reset Value			
	HDIV Base Address: HDIV_BA = 0x5001_4000						
DIVIDEND	HDIV_BA+0x04	R/W	Dividend Source Register (Signed 32-bit)	0x0000_0000			
DIVISOR	HDIV_BA+0x08	R/W	Divisor Source Resister (Signed 16-bit)	0x0000_FFFF			
DIVQUO	HDIV_BA+0x0C	R	Quotient Result Resister (Signed 32-bit)	0x0000_0000			
DIVREM	HDIV_BA+0x10	R	Reminder Result Register (Signed 16-bit)	0x0000_0000			
DIVSTS	HDIV_BA+0x14	R/W	Divider Status Register	0x0000_0001			

6.15.5 Register Description

Divider Dividend Source Register (DIVIDEND)

Register	Offset	R/W	Description	Reset Value
DIVIDEND	HDIV_BA+0x04	R/W	Dividend Source Register (Signed 32-bit)	0x0000_0000

31	30	29	28	27	26	25	24			
	Dividend									
23	22	21	20	19	18	17	16			
			Divid	dend						
15	14	13	12	11	10	9	8			
	Dividend									
7	7 6 5 4 3 2 1 0									
			Divid	dend						

Bits	Description	
[31:0]	Dividend	Dividend Source
[51.0]		This register is given the dividend (signed 32-bit) of divider before calculation starts.

Divider Divisor Source Register (DIVISOR)

Register	Offset	R/W	Description	Reset Value
DIVISOR	HDIV_BA+0x08	R/W	Divisor Source Resister (Signed 16-bit)	0x0000_FFFF

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Divisor								
7 6 5 4 3 2 1 0							0		
	Divisor								

Bits	Description	escription				
[31:16]	Reserved	served Reserved.				
[15:0]	Divisor	Divisor Source This register is given the divisor of divider before calculation starts. Note: When this register is written, hardware divider will start calculation.				

Divider Quotient Result Register (DIVQUO)

Register	Offset	R/W	Description	Reset Value
DIVQUO	HDIV_BA+0x0C	R	Quotient Result Resister (Signed 32-bit)	0x0000_0000

31	30	29	28	27	26	25	24			
	Quotient									
23	22	21	20	19	18	17	16			
	Quotient									
15	14	13	12	11	10	9	8			
			Quo	tient						
7	6	5	4	3	2	1	0			
	Quotient									

Bits	Description	
[31:0]	Quotient	Quotient Result
	Quotient	This register holds the quotient (signed 32-bit) result of divider after calculation completed.

Divider Reminder Result Register (DIVREM)

Register	Offset	R/W	Description	Reset Value
DIVREM	HDIV_BA+0x10	R	Reminder Result Register (Signed 16-bit)	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	23 22 21 20 19 18 17 16							
	Reserved							
15	14	13	12	11	10	9	8	
	Reminder							
7	6	5	4	3	2	1	0	
Reminder								

Bits	Description				
[31:16]	Reserved	Reserved.			
[15:0]	Reminder	Reminder Result This register holds the reminder (signed 16-bit) result of divider after calculation completed.			

Divider Status Register (DIVSTS)

Register	Offset	R/W	Description	Reset Value
DIVSTS	HDIV_BA+0x14	R/W	Divider Status Register	0x0000_0001

31	30	29	28	27	26	25	24	
	Reserved							
23	23 22 21 20 19 18 17 16							
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved					DIV0	DIV_FINISH	

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	DIVFF	Divider Operation Finish Flag When divider calculation has finished, this bit is set to 1. This bit is cleared to 0 by writing 1 to it through software
[1]	DIV0	Divisor Zero Warning 0 = The divisor is not 0. 1 = The divisor is 0. This register is read only.
[0]	DIV_FINISH	 Divider Operation Finished 0 = The divider calculation not finished yet. 1 = The divider calculation finished. This register is read only.

6.16 Enhanced Analog-to-Digital Converter (EADC)

6.16.1 Overview

The NuMicro[®] M0519 Series contains two 12-bit successive approximation analog-to-digital converters (SAR A/D converter) with 16 input channels. The two A/D converters ADCA and ADCB can be sampled with Simultaneous or Single Sampling mode. The A/D converters can be started by software, PWM triggers, timer0~3 overflow pulse triggers, ADINT0, ADINT1 interrupt EOC pulse trigger and external STADC pin input signal.

Note: The analog input port pins must be configured as input type before the EADC function is enabled.

6.16.2 Features

- Analog input voltage range: 0~V_{REF}(Max to 5.0V).
- 12-bit resolution and 10-bit accuracy is guaranteed.
- Up to 16 single-end analog input channels.
- Two SAR ADC converters.
- Four EADC interrupts with individual interrupt vector addresses.
- Maximum EADC clock frequency: 16MHz.
- Up to 1.6M SPS conversion rate, each of ADC converter conversion time less than 1.25µs.
- Two operating modes
 - Single sampling mode: two ADC converters run at normal operation.
 - Simultaneous sampling mode: Allow two ADC converters can be sampled simultaneously.
- An A/D conversion can be started by:
 - Writing 1 to ADST(ADSSTR[n]) bit (n = 0~15) through software
 - External pin STADC
 - Timer0~3 overflow pulse triggers
 - ADINT0, ADINT1 interrupt EOC pulse triggers
 - PWM triggers
- Conversion results are held in 16 data registers with valid and overrun indicators.
- SAMPLEA0~7 ADC control logic modules, each of them is configurable for ADCA converter channel AINA0~7 and trigger source.
- SAMPLEB0~7 ADC control logic modules, each of them is configurable for ADCB converter channel AINB0~7 and trigger source.
- Channel AINA0 supports 2 input sources: external analog voltage and internal OP0 Amplifier output voltage.
- Channel AINB0 supports 2 input sources: external analog voltage and internal OP1 Amplifier output voltage.
- Channel AINA7 supports 4 input sources: external analog voltage, internal fixed band-gap voltage, internal temperature sensor output, and analog ground.

6.16.3 Block Diagram

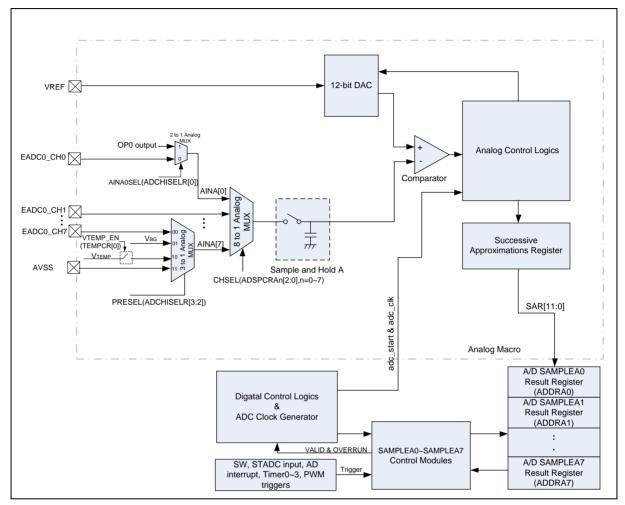


Figure 6-127 ADCA Converter Block Diagram

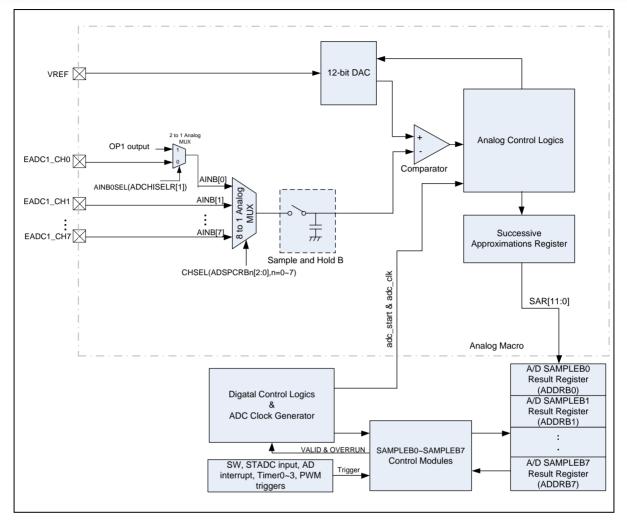
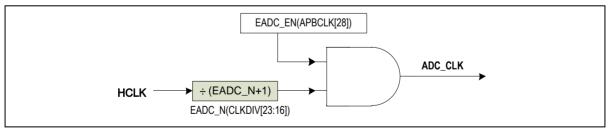



Figure 6-128 ADCB Converter Block Diagram

6.16.4 Operation Procedure

There are two ADC converters, and each ADC converter consists of an eight-channel input select function and eight SAMPLE control modules, the A/D converter operates by successive approximation with 12-bit resolution.

The A/D operation is based on SAMPLEA0~7(ADCA converter) and SAMPLEB0~7(ADCB converter) control logic modules, and each of them has its configuration to decide which trigger source to start the conversion and which channel to convert. Different SAMPLE modules can be configured for the same channel, trigger source. It provides user a flexible means to get the over-sampling results.

The ADC conversion trigger sources are listed below:

- Writing 1 to ADST(ADSSTR[n]) bit (n = 0~15) by software
- External pin STADC
- Timer0~3 overflow pulse triggers
- ADINT0, ADINT1 ADC interrupt EOC pulse triggers
- PWM triggers

The ADINT0, ADINT1 interrupt pulses are generated whenever the specific SAMPLE A/D EOC (End of conversion) pulse is generated. The ADINT0, 1 interrupt pulse triggers can be fed back to trigger another A/D conversion, and is useful if a continuous scan conversion is needed.

6.16.4.1 ADC Clock Generator

The maximum sampling rate is up to 800 kHz and the conversion time is less than 1.25µs. It needs 20 EADC clocks to complete an A/D conversion. The EADC engine clock source is from HCLK clock, the EADC clock frequency is divided by an 8-bit pre-scalar with the formula:

The EADC clock frequency = (HCLK) / (EADC_N+1).

Where the 8-bit EADC_N is located in register CLKDIV[23:16].

In generally, software can set EADC_N to get 16 MHz or slightly less.

6.16.4.2 ADC Single Sampling Mode

When an ADC conversion is performed on the SAMPLEx specified single channel, the operations are as follows:

- A/D conversion is started when the ADST(ADSSTR[n]) bit in ADSSTR is set to 1 by software or other trigger inputs.
- When A/D conversion is finished, the 12-bit result is stored in the EADC data register ADDRx corresponding to the SAMPLEx.
- On completion of conversion, the ADFn bit in ADSR is set to 1 and EADC interrupt (ADINTn) is requested if the ADIEn bit is set to 1.
- The ADST(ADSSTR[n]) bit remains 1 during A/D conversion. When A/D conversion ends, the ADST(ADSSTR[n]) bit is automatically cleared to 0 and the A/D converter will do another pending conversion.

Note: If software or other trigger enables more than one channel in single or simultaneous sampling mode, the SAMPLE specified channel with highest priority is converted and other enabled channels will be pended.

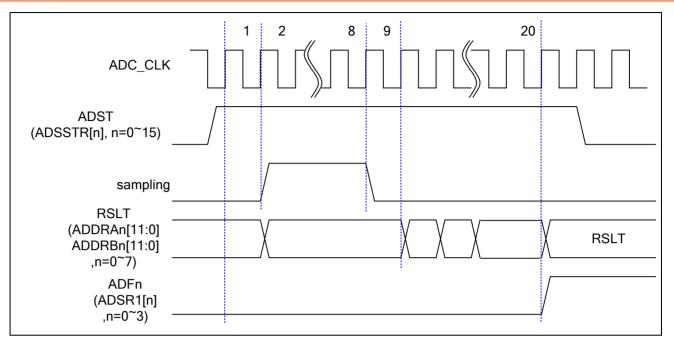


Figure 6-130 Single Sampling Mode Conversion Timing Diagram

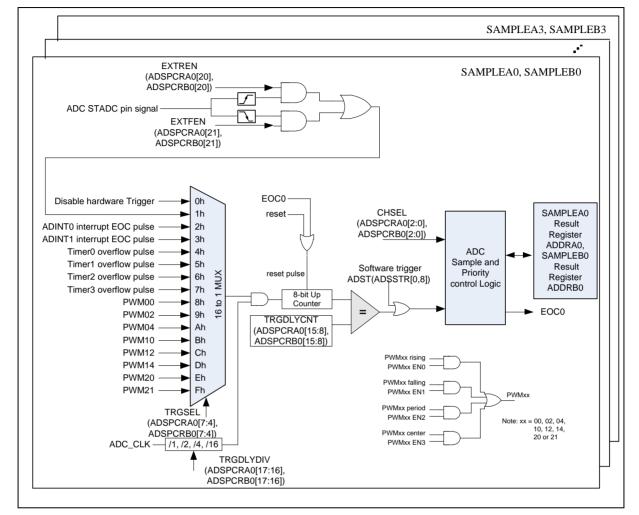


Figure 6-131 SAMPLEA0~3 and SAMPLEB0~3 Control Block Diagram

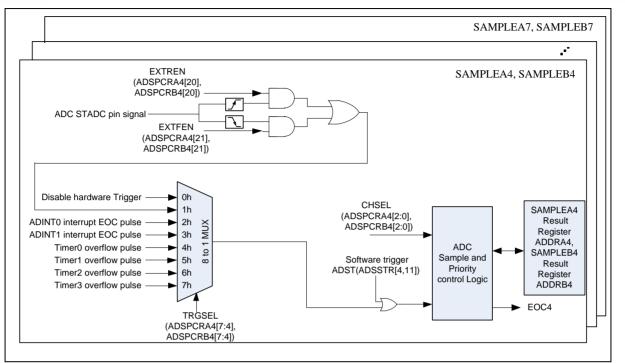


Figure 6-132 SAMPLEA4~7 and SAMPLEB4~7 Control Block Diagram

6.16.4.3 ADC Simultaneous Sampling Mode

The NuMicro[®] M0519 has two ADCs that allow two different ADC channels to be simultaneously sampled. The priority rules are same as the single sampling mode.

The same numbered of SAMPLEA and the SAMPLEB are coupled together. For example, SAMPLEA0 and SAMPLEB0 are coupled when simultaneous sampling mode enable bit SIMUSEL0(ADSMSELR[0] bit = 1.

The ADC simultaneous sampling mode conversion operations are described below:

- 1. Only SAMPLEA trigger can start a pair of conversions.
- 2. SAMPLEA assign an A-channel and SAMPLEB also assign a B-channel in simultaneous sampling mode. The SAMPLEB specified trigger will be ignored.
- 3. The A-channel conversion result is stored in specific SAMPLEA ADDRA register, and the conversion result of the B-channel is placed in the same numbered SAMPLEB ADDRB register.

For example:

If SIMUSEL2(ADSMSELR[2]) bit = 1 and SAMPLEA2 is configured to sample EADC0_CH4 (CHSEL(ADSPCRA2[2:0]) = 4), it defines the SAMPLEA2 and same numbered SAMPLEB2 are coupled at simultaneous sampling conversion mode, if SAMPLEB2 is configured to sample EADC1_CH3 (CHSEL(ADSPCRB2[2:0]) = 3), the pair of ADC conversion channels are EADC0_CH4 and EADC1_CH3.

After a channel pair (AINA[4], AINB[3]) of ADC conversion completes, the results of those two ADC conversions will be placed in registers ADDRA2 and ADDRB2.

6.16.4.4 ADC Conversion Priority

There are two priority groups of converter for determining the conversion order when multiple SAMPLE trigger flags are set at the same time. SAMPLEA0~7 priority group is for ADCA converter, and SAMPLEB0~7 priority group is for ADCB converter.

The SAMPLE with lower number has higher priority than the higher number SAMPLE, if two

SAMPLEs are triggered at the same time; the SAMPLE with lower number will start to convert ADC first.

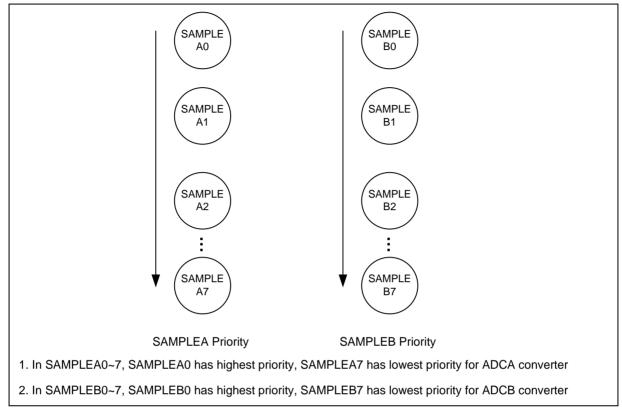


Figure 6-133 SAMPLE Conversion Priority Arbitrator Diagram

6.16.4.5 Internal Reference Voltage

The band-gap voltage reference (V_{BG}) is an internal fixed reference voltage regardless of power supply variations. The V_{BG} output is internally connected to ADC channel 7 source multiplexer and Analog Comparators's (ACMP) negative input side.

For battery power detection application, user can use the V_{BG} as ADC input channel such that user can convert the A/D conversion result to calculate AV_{DD} with following formula.

 $AV_{DD} = ((2 \land N) / R) * V_{BG}$

N: ADC resolution

R: A/D conversion result

V_{BG}: Band-gap voltage

The block diagram is shown as Figure 6-134.

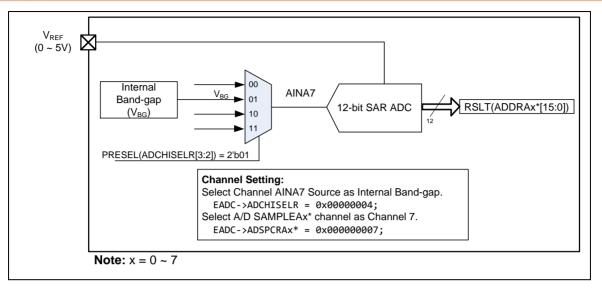


Figure 6-134 V_{BG} for Measuring AV_{DD} Application Block Diagram

For example, the V_{BG} typical value is 1.25 V, the ADC is 12-bit resolution, select V_{BG} as ADC channel 7 input source, and enable ADC channel 7. Then trigger ADC to converse.

If the A/D conversion result is 1707:

N = 12

R = 1707

 $V_{BG} = 1.25 V$

AV_{DD} = ((2 ^ 12) / 1707) * 1.25 = (4096 / 1707) * 1.25 = 3 V

If the A/D conversion result is 2048:

AV_{DD} = ((2 ^ 12) / 2048) * 1.25 = (4096 / 2048) * 1.25 = 2.5 V

6.16.4.6 ADC Start Synchronous with PWM

Besides starting ADC conversion by software, ADINTO, 1 interrupt pulse, external pin STADC, and Timer0~3 overflow pulse, this device has a new feature to allow PWM channels to trigger the ADC start. User may configure the PWM trigger types: rising, falling PWM edge, period point of PWM or center point of PWM (Center-aligned mode only) to trigger ADC start. The device also allows user to configure the amount of delay prior to ADC start after hardware detected the PWM edge. User can configure the trigger delay time by setting TRGDLYCNT and TRGDLYDIV bits in ADSPCRAn and ADSPCRBn(n=0~3) registers. Figure 6-135 shows the programmable delay time for PWM-triggered ADC to start conversion.

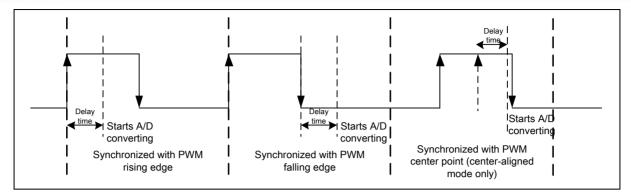


Figure 6-135 PWM-triggered ADC Start

6.16.4.7 ADC SAMPLE End of Conversion Interrupt Operation

There are 4 ADC interrupts ADINT0~3, and each of these interrupts has its own interrupt vector address and can be configured to select a specific SAMPLE EOC pulse (SAMPLEA0~7, SAMPLEB0~7 End of conversion pulses) as its interrupt trigger source. Each of them has its own interrupt overwritten flag ADFOVn(ADIFOVR[n], n=0~3). This flag set to 1 if the corresponding interrupt is overwritten to 1.

When ADIE0(ADCR[2]) = 1 and ADINT0SRCTL[7:0]=0xFF, all of SAMPLEA EOC pulses can cause an ADINT0 interrupt.

If ADIE1(ADCR[3]) = 1 and ADINT1SRCTL[15:8]=0xFF, all of SAMPLEB EOC pulses also can cause an ADINT1 interrupt.

The ADINT0, ADINT1 interrupt pulses are generated whenever the specific SAMPLE A/D EOC (End of conversion) pulse is generated. It also can be the SAMPLE conversion trigger sources, and user can use it to do the ADC continuous scan conversion.

Example for "Continuous scan":

Step1. If ADC SAMPLEA2's EOCA2 pulse is selected as ADINT0 interrupt trigger (ADINT0SRCTL[7:0] = 0x04) and ADINT0 is selected as SAMPLEA0, B1, A2 hardware conversion trigger.

Step2. Set software trigger ADST(ADSSTR[2]) bit to 1 to start a SAMPLEA2 ADC conversion, after the conversion completes, it generates an EOCA2 pulse signal and ADINT0 interrupt pulse at end of SAMPLEA2 ADC conversion, ADINT0 interrupt pulse will trigger the SAMPLEA0, B1, A2 to start the ADC conversions.

Step3. ADINT0 interrupt pulse repeats to trigger SAMPLEA0, B1, A2 ADC conversions automatically.

Step4. Clear TRGSEL(ADSPCRA2[7:4]) to 0 to disable SAMPLEA2 module's ADINT0 interrupt pulse hardware trigger, if needs to stop the continuous scan.

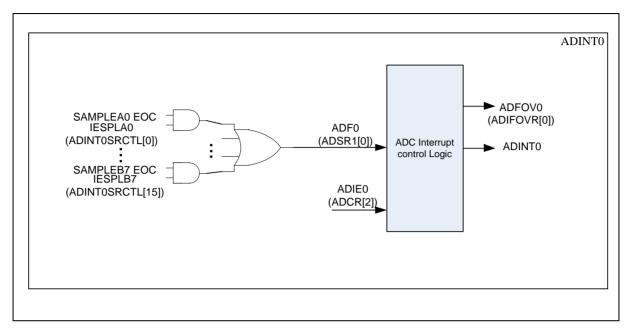


Figure 6-136 Specific SAMPLE A/D EOC Signal for ADINT0 Interrupt

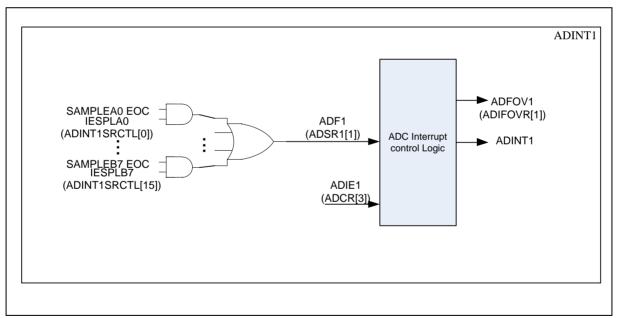


Figure 6-137 Specific SAMPLE A/D EOC Signal for ADINT1 Interrupt

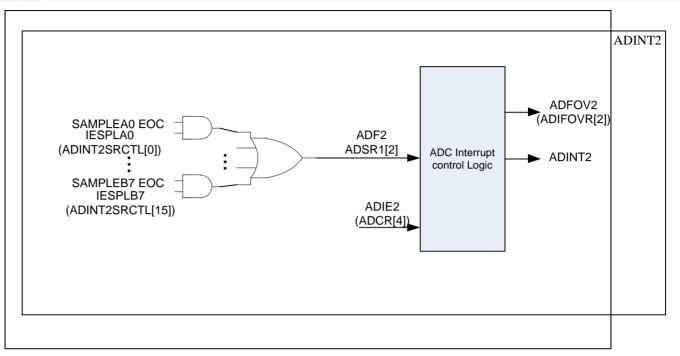


Figure 6-138 Specific SAMPLE A/D EOC Signal for ADINT2 Interrupt

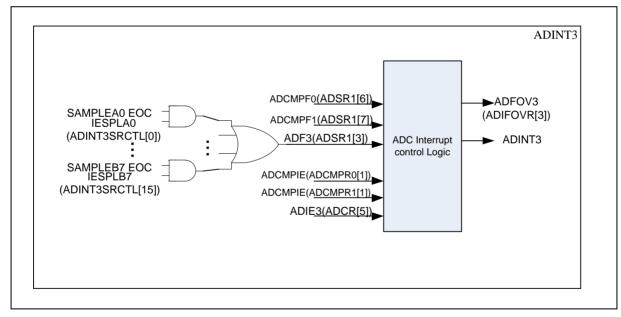


Figure 6-139 Specific SAMPLE A/D EOC Signal for ADINT3 Interrupt

6.16.4.8 Input Sampling and A/D Conversion Time

The A/D converter samples the analog input when A/D conversion start delay time (Td) has passed after ADST bit in ADSSTR is set to 1, and then starts conversion. Since the ADC clock is generated by HCLK divided by (EADC_N(CLKDIV[23:16])+1), the maximum delay time from user write ADST to A/D start sampling analog input time is two ADC clock cycles. The start delay time is in Figure 6-140.

nuvoton

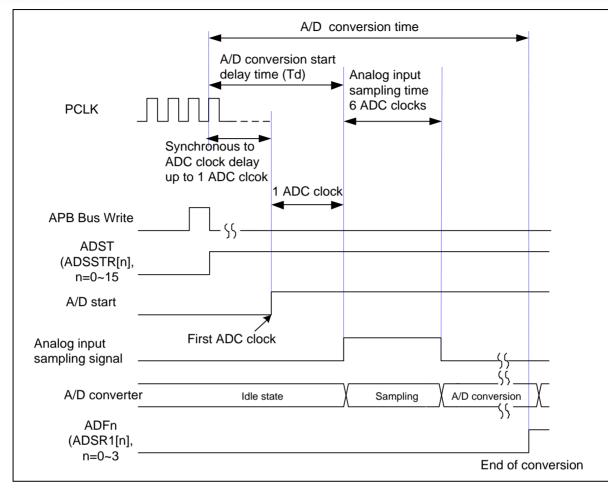


Figure 6-140 Conversion Start Delay Timing Diagram

A/D conversion can be triggered by external pin STADC request. Setting the TRGSEL(ADSPCRAm[7:4], ADSPCRBm[7:4], ADSPCRAn[6:4], ADSPCRBn[6:4], m=0~3, n=4~7) bits to 1 select external trigger input from the STADC pin. An 8-bit sampling counter is used to deglitch. If edge trigger condition is selected, the high and low state must be kept at least 4 HCLKs. The pulse that is shorter than this specification will be ignored.

6.16.4.9 A/D Extend Sampling Time

When A/D operation at high ADC clock rate, the sampling time of analog input voltage may not enough if the analog channel has heavy loading to cause fully charge time is longer. User can set A/D extend sampling time by writing ADAEST or ADBEST field in ADTCR register. The A/D extend sampling time is present between A/D controller judge which channel to be converting and A/D start to conversion. The range of extend sampling time is from 0 ~255 ADC clock. The extend sampling time is shown in Figure 6-141.

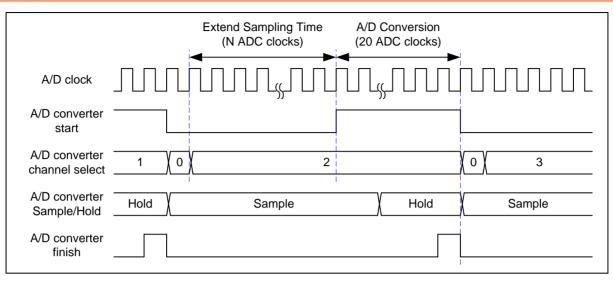


Figure 6-141 A/D Extend Sampling Timing Diagram

6.16.4.10 Conversion Result Monitored by Compare Mode

The NuMicro[®] M0519 controller provides two sets of compare register ADCMPR0/1 to monitor maximum two specified SAMPLEA0~3, SAMPLEB0~3 conversion results from A/D conversion module, refer to Figure below. Software can select which SAMPLE module result to be monitored by setting the CMPSMPL and CMPCOND bit in ADCMPR0/1 register used to check if the conversion result is less than the specified value or greater than (equal to) value specified in CMPD(ADCMPRn[27:16], n=0,1). When the conversion of the SAMPLE specified by CMPSMPL is completed, the comparing action will be triggered once automatically. When the compare result meets the setting, compare match counter will increase 1, when counter value reach the setting of (CMPMATCNT(ADCMPRn[11:8]+1n n=0, 1) then ADCMPFn(ADSR1[7:6], n=0, 1) bit will be set to 1, if ADCMPIE(ADCMPRn[1], n=0, 1) bit is set, an ADINT3 interrupt request is generated. User can use it to monitor the external analog input pin voltage transition. Detailed logics diagram is shown in Figure 6-142.

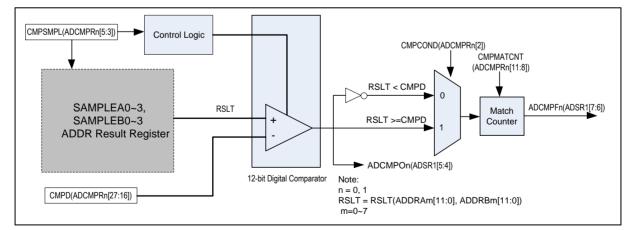


Figure 6-142 A/D Conversion Result Monitor Logics Diagram

6.16.4.11 Interrupt Sources

The A/D converter generates a conversion and ADFn(n=0~3) flag in the ADSR1 register upon the end of specific SAMPLE A/D conversion. If the ADIEn(n=0~3) bit in ADCR register is set, the conversion end interrupt request ADINTn(n=0~3) is generated.

If ADCMPIE(ADCMPRn[1], n=0, 1) bit is enabled, when A/D conversion result meets setting in

ADCMPRn(n=0, 1) register, monitor interrupt is generated, ADINT3 will be set also. User can clear ADCMPFn(ADSR1[7:6], n=0,1) and ADFn(ADSR1[3:0], n=0 \sim 3) flag to stop interrupt request.

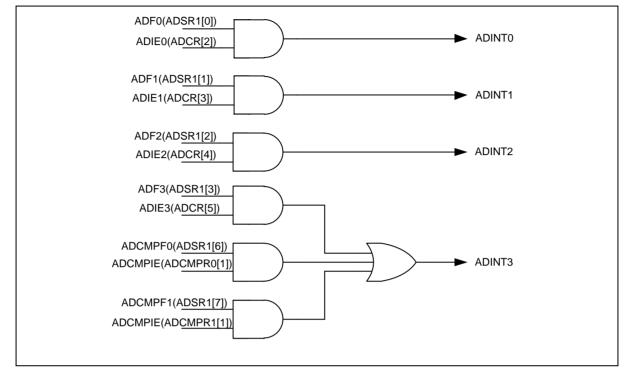


Figure 6-143 A/D Controller Interrupts

6.16.5 Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

			Description	Reset Value		
EADC Base Address: EADC_BA = 0x400E_0000						
ADDRA0	EADC_BA+0x00	R	A/D Data Register 0 for SAMPLEA0	0x0000_0000		
ADDRA1	EADC_BA+0x04	R	A/D Data Register 1 for SAMPLEA1	0x0000_0000		
ADDRA2	EADC_BA+0x08	R	A/D Data Register 2 for SAMPLEA2	0x0000_0000		
ADDRA3	EADC_BA+0x0C	R	A/D Data Register 3 for SAMPLEA3	0x0000_0000		
ADDRA4	EADC_BA+0x10	R	A/D Data Register 4 for SAMPLEA4	0x0000_0000		
ADDRA5	EADC_BA+0x14	R	A/D Data Register 5 for SAMPLEA5	0x0000_0000		
ADDRA6	EADC_BA+0x18	R	A/D Data Register 6 for SAMPLEA6	0x0000_0000		
ADDRA7	EADC_BA+0x1C	R	A/D Data Register 7 for SAMPLEA7	0x0000_0000		
ADDRB0	EADC_BA+0x20	R	A/D Data Register 8 for SAMPLEB0	0x0000_0000		
ADDRB1	EADC_BA+0x24	R	A/D Data Register 9 for SAMPLEB1	0x0000_0000		
ADDRB2	EADC_BA+0x28	R	A/D Data Register 10 for SAMPLEB2	0x0000_0000		
ADDRB3	EADC_BA+0x2C	R	A/D Data Register 11 for SAMPLEB3	0x0000_0000		
ADDRB4	EADC_BA+0x30	R	A/D Data Register 12 for SAMPLEB4	0x0000_0000		
ADDRB5	EADC_BA+0x34	R	A/D Data Register 13 for SAMPLEB5	0x0000_0000		
ADDRB6	EADC_BA+0x38	R	A/D Data Register 14 for SAMPLEB6	0x0000_0000		
ADDRB7	EADC_BA+0x3C	R	A/D Data Register 15 for SAMPLEB7	0x0000_0000		
ADCR	EADC_BA+0x40	R/W	A/D Control Register	0x0000_0000		
ADCHISELR	EADC_BA+0x44	R/W	A/D Channel Input Sources Select Register	0x0000_0000		
ADSSTR	EADC_BA+0x48	w	A/D SAMPLE Software Start Register	0x0000_0000		
ADSTPFR	EADC_BA+0x4C	R	A/D SAMPLE Start of Conversion Pending Flag Register	0x0000_0000		
ADIFOVR	EADC_BA+0x50	R/W	A/D ADINT3~0 Interrupt Flag Over Run Register	0x0000_0000		
ADSPOVFR	EADC_BA+0x54	R/W	A/D SAMPLE Start of Conversion Over Run Flag Register	0x0000_0000		
ADSPCRA0	EADC_BA+0x58	R/W	A/D SAMPLEA0 Control Register	0x0000_0000		
ADSPCRA1	EADC_BA+0x5C	R/W	A/D SAMPLEA1 Control Register	0x0000_0000		
ADSPCRA2	EADC_BA+0x60	R/W	A/D SAMPLEA2 Control Register	0x0000_0000		
ADSPCRA3	EADC_BA+0x64	R/W	A/D SAMPLEA3 Control Register	0x0000_0000		

Register	Offset	R/W	Description	Reset Value
EADC Base Add				
EADC_BA = 0x4		5 444		
ADSPCRA4	EADC_BA+0x68	R/W	A/D SAMPLEA4 Control Register	0x0000_0000
ADSPCRA5	EADC_BA+0x6C	R/W	A/D SAMPLEA5 Control Register	0x0000_0000
ADSPCRA6	EADC_BA+0x70	R/W	A/D SAMPLEA6 Control Register	0x0000_0000
ADSPCRA7	EADC_BA+0x74	R/W	A/D SAMPLEA7 Control Register	0x0000_0000
ADSPCRB0	EADC_BA+0x78	R/W	A/D SAMPLEB0 Control Register	0x0000_0000
ADSPCRB1	EADC_BA+0x7C	R/W	A/D SAMPLEB1 Control Register	0x0000_0000
ADSPCRB2	EADC_BA+0x80	R/W	A/D SAMPLEB2 Control Register	0x0000_0000
ADSPCRB3	EADC_BA+0x84	R/W	A/D SAMPLEB3 Control Register	0x0000_0000
ADSPCRB4	EADC_BA+0x88	R/W	A/D SAMPLEB4 Control Register	0x0000_0000
ADSPCRB5	EADC_BA+0x8C	R/W	A/D SAMPLEB5 Control Register	0x0000_0000
ADSPCRB6	EADC_BA+0x90	R/W	A/D SAMPLEB6 Control Register	0x0000_0000
ADSPCRB7	EADC_BA+0x94	R/W	A/D SAMPLEB7 Control Register	0x0000_0000
ADSMSELR	EADC_BA+0xA4	R/W	A/D SAMPLE Simultaneous Mode Select Register	0x0000_0000
ADCMPR0	EADC_BA+0xA8	R/W	A/D Result Compare Register 0	0x0000_0000
ADCMPR1	EADC_BA+0xAC	R/W	A/D Result Compare Register 1	0x0000_0000
ADSR0	EADC_BA+0xB0	R	A/D Status Register 0	0x0000_0000
ADSR1	EADC_BA+0xB4	R/W	A/D Status Register 1	0x0000_0000
ADTCR	EADC_BA+0xB8	R/W	A/D Timing Control Register	0x0000_0000
ADDRDBA0	EADC_BA+0x100	R	A/D Data Register double buffer for SAMPLEA0	0x0000_0000
ADDRDBA1	EADC_BA+0x104	R	A/D Data Register double buffer for SAMPLEA1	0x0000_0000
ADDRDBA2	EADC_BA+0x108	R	A/D Data Register double buffer for SAMPLEA2	0x0000_0000
ADDRDBA3	EADC_BA+0x10C	R	A/D Data Register double buffer for SAMPLEA3	0x0000_0000
ADDRDBB0	EADC_BA+0x120	R	A/D Data Register double buffer for SAMPLEB0	0x0000_0000
ADDRDBB1	EADC_BA+0x124	R	A/D Data Register double buffer for SAMPLEB1	0x0000_0000
ADDRDBB2	EADC_BA+0x128	R	A/D Data Register double buffer for SAMPLEB2	0x0000_0000
ADDRDBB3	EADC_BA+0x12C	R	A/D Data Register double buffer for SAMPLEB3	0x0000_0000
ADDBM	EADC_BA+0x130	R/W	A/D Double Buffer Mode select	0x0000_0000
ADINTOSRCTL	EADC_BA+0x134	R/W	A/D interrupt 0 Source Enable Control Register.	0x0000_0000

Register	Offset	R/W	Description	Reset Value
EADC Base Add EADC_BA = 0x4				
ADINT1SRCTL	EADC_BA+0x138	R/W	A/D interrupt 1 Source Enable Control Register.	0x0000_0000
ADINT2SRCTL	EADC_BA+0x13C	R/W	A/D interrupt 2 Source Enable Control Register.	0x0000_0000
ADINT3SRCTL	EADC_BA+0x140	R/W	A/D interrupt 3 Source Enable Control Register.	0x0000_0000
SMPTRGA0	EADC_BA+0x144	R/W	A/D trigger condition for SAMPLEA0	0x0000_0000
SMPTRGA1	EADC_BA+0x148	R/W	A/D trigger condition for SAMPLEA1	0x0000_0000
SMPTRGA2	EADC_BA+0x14C	R/W	A/D trigger condition for SAMPLEA2	0x0000_0000
SMPTRGA3	EADC_BA+0x150	R/W	A/D trigger condition for SAMPLEA3	0x0000_0000
SMPTRGB0	EADC_BA+0x154	R/W	A/D trigger condition for SAMPLEB0	0x0000_0000
SMPTRGB1	EADC_BA+0x158	R/W	A/D trigger condition for SAMPLEB1	0x0000_0000
SMPTRGB2	EADC_BA+0x15C	R/W	A/D trigger condition for SAMPLEB2	0x0000_0000
SMPTRGB3	EADC_BA+0x160	R/W	A/D trigger condition for SAMPLEB3	0x0000_0000

6.16.6 Register Description

A/D Data Registers (ADDRA0~7, ADDRB0~7)

Register	Offset	R/W	Description	Reset Value
ADDRA0	EADC_BA+0x00	R	A/D Data Register 0 for SAMPLEA0	0x0000_0000
ADDRA1	EADC_BA+0x04	R	A/D Data Register 1 for SAMPLEA1	0x0000_0000
ADDRA2	EADC_BA+0x08	R	A/D Data Register 2 for SAMPLEA2	0x0000_0000
ADDRA3	EADC_BA+0x0C	R	A/D Data Register 3 for SAMPLEA3	0x0000_0000
ADDRA4	EADC_BA+0x10	R	A/D Data Register 4 for SAMPLEA4	0x0000_0000
ADDRA5	EADC_BA+0x14	R	A/D Data Register 5 for SAMPLEA5	0x0000_0000
ADDRA6	EADC_BA+0x18	R	A/D Data Register 6 for SAMPLEA6	0x0000_0000
ADDRA7	EADC_BA+0x1C	R	A/D Data Register 7 for SAMPLEA7	0x0000_0000
ADDRB0	EADC_BA+0x20	R	A/D Data Register 8 for SAMPLEB0	0x0000_0000
ADDRB1	EADC_BA+0x24	R	A/D Data Register 9 for SAMPLEB1	0x0000_0000
ADDRB2	EADC_BA+0x28	R	A/D Data Register 10 for SAMPLEB2	0x0000_0000
ADDRB3	EADC_BA+0x2C	R	A/D Data Register 11 for SAMPLEB3	0x0000_0000
ADDRB4	EADC_BA+0x30	R	A/D Data Register 12 for SAMPLEB4	0x0000_0000
ADDRB5	EADC_BA+0x34	R	A/D Data Register 13 for SAMPLEB5	0x0000_0000
ADDRB6	EADC_BA+0x38	R	A/D Data Register 14 for SAMPLEB6	0x0000_0000
ADDRB7	EADC_BA+0x3C	R	A/D Data Register 15 for SAMPLEB7	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
		Rese	erved			VALID	OVERRUN
15	14	13	12	11	10	9	8
	Reserved				RS	iLT	
7	6	5	4	3	2	1	0
	RSLT						

Bits	Description	
[31:18]	Reserved	Reserved.
[17]	VALID	Valid Flag 0 = Data in RSLT[11:0] bits is not valid. 1 = Data in RSLT[11:0] bits is valid. This bit is set to 1 when corresponding SAMPLE channel analog input conversion is completed and cleared by hardware after ADDR register is read.
[16]	OVERRUN	 over Run Flag 0 = Data in RSLT[11:0] is the recent conversion result. 1 = Data in RSLT[11:0] is overwritten. If converted data in RSLT[11:0] has not been read before new conversion result is loaded to this register, OVERRUN is set to 1. It is cleared by hardware after ADDR register is read.
[15:12]	Reserved	Reserved.
[11:0]	RSLT	A/D Conversion Result This field contains 12-bit conversion result.

A/D Control Register (ADCR)

Register	Offset	R/W	Description	Reset Value
ADCR	EADC_BA+0x40	R/W	A/D Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved ADIE3			ADIE2	ADIE1	ADIE0	ADRESET	AD_EN	

Bits	Description	
[31:6]	Reserved	Reserved.
		Specific SAMPLE A/D ADINT3 Interrupt Enable Bit
		0 = Specific SAMPLE A/D ADINT3 interrupt function Disabled.
[5]	ADIE3	1 = Specific SAMPLE A/D ADINT3 interrupt function Enabled.
		The A/D converter generates a conversion end ADF3 flag in ADSR1 register upon the end of specific SAMPLE A/D conversion. If ADIE3 bit is set then conversion end interrupt request ADINT3 is generated.
		Specific SAMPLE A/D ADINT2 Interrupt Enable Bit
		0 = Specific SAMPLE A/D ADINT2 interrupt function Disabled.
[4]	ADIE2	1 = Specific SAMPLE A/D ADINT2 interrupt function Enabled.
L · J		The A/D converter generates a conversion end ADF2 flag in ADSR1 register upon the end of specific SAMPLE A/D conversion. If ADIE2 bit is set then conversion end interrupt request ADINT2 is generated.
		Specific SAMPLE A/D ADINT1 Interrupt Enable Bit
		0 = Specific SAMPLE A/D ADINT1 interrupt function Disabled.
[3]	ADIE1	1 = Specific SAMPLE A/D ADINT1 interrupt function Enabled.
		The A/D converter generates a conversion end ADF1 flag in ADSR1 register upon the end of specific SAMPLE A/D conversion. If ADIE1 bit is set then conversion end interrupt request ADINT1 is generated.
		Specific SAMPLE A/D ADINT0 Interrupt Enable Bit
		0 = Specific SAMPLE A/D ADINT0 interrupt function Disabled.
[2]	ADIE0	1 = Specific SAMPLE A/D ADINT0 interrupt function Enabled.
		The A/D converter generates a conversion end ADF0 flag in ADSR1 register upon the end of specific SAMPLE A/D conversion. If ADIE0 bit is set then conversion end interrupt request ADINT0 is generated.

Bits	Description	escription					
		ADCA, ADCB A/D Converter Control Circuits Reset 0 = Writing 0 has no effect.					
[1] AC	ADRESET	1 = Writing 1 will cause ADC control circuits reset to initial state, but not change the ADC registers value.					
		Note: This bit remains 1 during ADC reset, when ADC reset end, the ADRESET bit is automatically cleared to 0.					
		A/D Converter Enable Bit					
	AD_EN	0 = A/D converter Disabled.					
[0]		1 = A/D converter Enabled.					
		Note: Before starting the A/D conversion function, this bit should be set to 1. Clear it to 0 to disable A/D converter analog circuit power consumption.					

A/D Channel Input Select Register (ADCHISELR)

Register	Offset	R/W	Description	Reset Value
ADCHISELR	EADC_BA+0x44	R/W	A/D Channel Input Sources Select Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved				SEL	AINB0SEL	AINA0SEL	

Bits	Description	Description				
[31:4]	Reserved	Reserved.				
[3:2]	PRESEL	A/D Channel AINA[7] Analog Input Selection 00 = Analog Input Channel AINA7. 01 = Band-gap (VBG) Analog Input. 10 = VTEMP Internal Temperature Sensor Analog Input. 11 = Analog ground.				
[1]	AINBOSEL	A/D Channel AINB[0] Analog Input Selection 0 = AINB[0] pin P7.0E/EADC1_CH0 is selected as the A/D AINB[0] input signal. 1 = OP Amplifier 1 output is selected as the A/D AINB[0] input signal.				
[0]	AINA0SEL	 A/D Channel AINA[0] Analog Input Selection 0 = AINA[0] pin P6.0/EADC0_CH0is selected as the ADC AINA[0] input signal. 1 = OP Amplifier 0 output is selected as the ADC AINA[0] input signal. 				

A/D SAMPLE Software Start Register (ADSSTR)

Register	Offset	R/W	Description	Reset Value
ADSSTR	EADC_BA+0x48	W	A/D SAMPLE Software Start Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			AD	ST			
7	6	5	4	3	2	1	0
	ADST						

Bits	Description	Description				
[31:16]	Reserved	Reserved.				
[15:8]	ADST	 A/D SAMPLEB7~0 Software Force to Start ADC Conversion Register 0 = No effect. 1 = Cause an ADC conversion when the priority is given to SAMPLEB. 				
[7:0]	ADST	 A/D SAMPLEA7~0 Software Force to Start ADC Conversion Register 0 = No effect. 1 = Cause an ADC conversion when the priority is given to SAMPLEA. 				

A/D SAMPLE Start of Conversion Pending Flag Register (ADSTPFR)

Register	Offset	R/W	Description	Reset Value
ADSTPFR	EADC_BA+0x4C	R	A/D SAMPLE Start of Conversion Pending Flag Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	<u> </u>		ST	PF	<u> </u>		
7	6	5	4	3	2	1	0
	STPF						

Bits	Description	
[31:16]	Reserved	Reserved.
[15:8]	STPF	 A/D SAMPLEB7~0 Start Conversion Pending Flag 0 = No pending conversion for SAMPLEB. 1 = SAMPLEBn ADC start of conversion is pending. This bit remains 1 during pending state, when the respective ADC conversion is end, the corresponding STPF bit is automatically cleared to 0. Note: n=0~7.
[7:0]	STPF	 A/D SAMPLEA7~0 Start Conversion Pending Flag 0 = There is no pending conversion for SAMPLEA. 1 = SAMPLEAn ADC start of conversion is pending. This bit remains 1 during pending state, when the respective ADC conversion is end, the corresponding STPF bit is automatically cleared to 0. Note: n=0~7.

A/D Interrupt Flag Over Run Register (ADIFOVR)

Register	Offset	R/W	Description	Reset Value
ADIFOVR	EADC_BA+0x50	R/W	A/D ADINT3~0 Interrupt Flag Over Run Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved			ADFOV3	ADFOV2	ADFOV1	ADFOV0

Bits	Description				
[31:4]	Reserved	Reserved.			
[3]	ADFOV3	 A/D ADINT3 Interrupt Flag over Run Bit 0 = ADINT3 interrupt flag is not over run. 1 = ADINT3 interrupt pulse received when ADF3 is 1. Note: This bit is cleared by writing 1 to 1. 			
[2]	ADFOV2	 A/D ADINT2 Interrupt Flag over Run Bit 0 = ADINT2 interrupt flag is not over run. 1 = ADINT2 interrupt flag is overwrite to 1. Note: This bit is cleared by writing 1 to 1. 			
[1]	ADFOV1	 A/D ADINT1 Interrupt Flag over Run Bit 0 = ADINT1 interrupt flag is not over run. 1 = ADINT1 interrupt flag is overwrite to 1. Note: This bit is cleared by writing 1 to 1. 			
[0] ADFOV0		 A/D ADINT0 Interrupt Flag over Run Bit 0 = ADINT0 interrupt flag is not over run. 1 = ADINT0 interrupt flag is overwrite to 1. Note: This bit is cleared by writing 1 to 1. 			

A/D SAMPLE Over Run Flag Register (ADSPOVFR)

Register	Offset	R/W	Description	Reset Value
ADSPOVFR	EADC_BA+0x54	R/W	A/D SAMPLE Start of Conversion Over Run Flag Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			SPO	OVF			
7	6	5	4	3	2	1	0
	SPOVF						

Bits	Description	
[31:16]	Reserved	Reserved.
		A/D SAMPLEB7~SAMPLEB0 Start Conversion Overrun Flag
		0 = No SAMPLE event overrun.
		1 = Indicates new SAMPLEBn event is generated while an old one event is pending.
[15:8]	SPOVF	If there is a new trigger event comes when the SAMPLE is pending for the last trigger event, the overrun is happened and the SPOVF bit will be set as 1.
		Note1: It is cleared by writing 1.
		Note2: n = 0~7.
		A/D SAMPLEA7~SAMPLEA0 Start Conversion Overrun Flag
		0 = No SAMPLE event overrun.
		1 = Indicates new SAMPLEAn event is generated while an old one event is pending.
[7:0]	SPOVF	If there is a new trigger event comes when the SAMPLE is pending for the last trigger event, the overrun is happened and the SPOVF bit will be set as 1.
		Note1: It is cleared by writing 1.
		Note2: n = 0~7.

A/D SAMPLEA0~3, SAMPLEB0~3 Control Registers (ADSPCRx0 ~ ADSPCRx3)

Register	Offset	R/W	Description	Reset Value
ADSPCRA0	EADC_BA+0x58	R/W	A/D SAMPLEA0 Control Register	0x0000_0000
ADSPCRA1	EADC_BA+0x5C	R/W	A/D SAMPLEA1 Control Register 0x0000_0	
ADSPCRA2	EADC_BA+0x60	R/W	A/D SAMPLEA2 Control Register	0x0000_0000
ADSPCRA3	EADC_BA+0x64	R/W	A/D SAMPLEA3 Control Register	0x0000_0000
ADSPCRB0	EADC_BA+0x78	R/W	A/D SAMPLEB0 Control Register	0x0000_0000
ADSPCRB1	EADC_BA+0x7C	R/W	A/D SAMPLEB1 Control Register	0x0000_0000
ADSPCRB2	EADC_BA+0x80	R/W	A/D SAMPLEB2 Control Register 0x0000_00	
ADSPCRB3	EADC_BA+0x84	R/W	A/D SAMPLEB3 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Rese	erved	d EXTFEN EXTREN Reserved TRGDLY			LYDIV		
15	14	13	12	11	10	9	8
			TRGD	LYCNT			
7	6	5	4	3	2	1	0
TRGSEL Reserved CHSEL							

Bits	Description				
[31:20]	Reserved	Reserved.			
[21]	EXTFEN A/D External Trigger Falling Edge Enable Bit 0 = Falling edge Disabled when A/D selects STADC as trigger source. 1 = Falling edge Enabled when A/D selects STADC as trigger source.				
[20]	EXTREN	 A/D External Trigger Rising Edge Enable Bit 0 = Rising edge Disabled when A/D selects STADC as trigger source. 1 = Rising edge Enabled when A/D selects STADC as trigger source. 			
[19:18]	Reserved	Reserved.			
[17:16]	TRGDLYDIV	A/D SAMPLE Start Conversion Trigger Delay Clock Divider Selection Trigger delay clock frequency: 00 = ADC_CLK/1. 01 = ADC_CLK/2. 10 = ADC_CLK/4. 11 = ADC_CLK/16.			

Bits	Description	
[15:8]	TRGDLYCNT	A/D SAMPLE Start Conversion Trigger Delay Time Trigger delay time =TRGDLYCNT x ADC_CLK x n (n=1, 2, 4, 16 from TRGDLYDIV setting).
[7:4]	TRGSEL	A/D SAMPLE Start Conversion Trigger Source Selection 0000 = Disable hardware trigger. 0001 = External trigger from STADC pin input. 0010 = ADC ADINT0 interrupt EOC pulse trigger. 0011 = ADC ADINT1 interrupt EOC pulse trigger. 0100 = Timer0 overflow pulse trigger. 0101 = Timer1 overflow pulse trigger. 0110 = Timer2 overflow pulse trigger. 0111 = Timer3 overflow pulse trigger. 1000 = PWM00 trigger. 1001 = PWM02 trigger. 1011 = PWM04 trigger. 1011 = PWM10 trigger. 1100 = PWM12 trigger. 1101 = PWM14 trigger. 1111 = PWM20 trigger.
3	Reserved	Reserved.
[2:0]	CHSEL	A/D SAMPLEA,B Channel Selection 000 = AINx[0]. 001 = AINx[1]. 010 = AINx[2]. 011 = AINx[3]. 100 = AINx[4]. 101 = AINx[5]. 110 = AINx[6]. 111 = AINx[7].

A/D SAMPLEA4~7, SAMPLEB4~7 Control Registers (ADSPCRx4 ~ ADSPCRx7)

Register	Offset	R/W	Description	Reset Value
ADSPCRA4	EADC_BA+0x68	R/W	A/D SAMPLEA4 Control Register	0x0000_0000
ADSPCRA5	EADC_BA+0x6C	R/W	A/D SAMPLEA5 Control Register 0x0000_00	
ADSPCRA6	EADC_BA+0x70	R/W	A/D SAMPLEA6 Control Register	0x0000_0000
ADSPCRA7	EADC_BA+0x74	R/W	A/D SAMPLEA7 Control Register	0x0000_0000
ADSPCRB4	EADC_BA+0x88	R/W	A/D SAMPLEB4 Control Register	0x0000_0000
ADSPCRB5	EADC_BA+0x8C	R/W	A/D SAMPLEB5 Control Register	0x0000_0000
ADSPCRB6	EADC_BA+0x90	R/W	A/D SAMPLEB6 Control Register	0x0000_0000
ADSPCRB7	EADC_BA+0x94	R/W	A/D SAMPLEB7 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Rese	erved	EXTFEN	EXTREN	Reserved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	TRGSEL			Reserved		CHSEL	

Bits	Description	Description			
[31:22]	Reserved	Reserved.			
[21]	EXTFEN	 A/D External Trigger Falling Edge Enable Bit 0 = Falling edge Disabled when A/D selects STADC as trigger source. 1 = Falling edge Enabled when A/D selects STADC as trigger source. 			
[20]	EXTREN	 A/D External Trigger Rising Edge Enable Bit 0 = Rising edge Disabled when A/D selects STADC as trigger source. 1 = Rising edge Enabled when A/D selects STADC as trigger source. 			
[19:7]	Reserved	Reserved.			

Bits	Description				
[6:4]	A/D SAMPLE Start Conversion Trigger Source Selection 000 = Disable hardware trigger. 001 = External trigger from STADC pin input. 010 = ADC ADINT0 interrupt EOC pulse trigger. 011 = ADC ADINT1 interrupt EOC pulse trigger. 100 = Timer0 overflow pulse trigger. 101 = Timer1 overflow pulse trigger. 110 = Timer2 overflow pulse trigger. 111 = Timer3 overflow pulse trigger.				
[3]	Reserved	Reserved.			
[2:0]	CHSEL	A/D SAMPLEA,B Channel Selection 000 = AINx[0]. 001 = AINx[1]. 010 = AINx[2]. 011 = AINx[3]. 100 = AINx[4]. 101 = AINx[5]. 110 = AINx[6]. 111 = AINx[7].			

M0519

A/D Simultaneous Sampling Mode Select Register (ADSMSELR)

Register	Offset	R/W	Description	Reset Value
ADSMSELR	EADC_BA+0xA4	R/W	A/D SAMPLE Simultaneous Mode Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
SIMUSEL7	SIMUSEL6	SIMUSEL5	SIMUSEL4	SIMUSEL3	SIMUSEL2	SIMUSEL1	SIMUSEL0

Bits	Description	
[31:8]	Reserved	Reserved.
		A/D SAMPLEA7, SAMPLEB7 Simultaneous Sampling Mode Selection
		0 = SAMPLEA7, SAMPLEB7 are in single sampling mode, both SAMPLEA7 and SAMPLEB7's 3 bits of CHSEL define the ADC channels to be converted.
[7]	SIMUSEL7	1 = SAMPLEA7, SAMPLEB7 are in simultaneous sampling mode, Only SAMPLEA7 can trigger both the ADC conversions of SAMPLEA7 and SAMPLEB7, SAMPLEB7 trigger select TRGSEL is ignored. If SAMPLEA7's CHSEL = 1, SAMPLEB7's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.
		A/D SAMPLEA6, SAMPLEB6 Simultaneous Sampling Mode Selection
	SIMUSEL6	0 = SAMPLEA6, SAMPLEB6 are in single sampling mode, both SAMPLEA6 and SAMPLEB6's 3 bits of CHSEL define the ADC channels to be converted.
[6]		1 = SAMPLEA6, SAMPLEB6 are in simultaneous sampling mode, Only SAMPLEA6 can trigger both the ADC conversions of SAMPLEA6 and SAMPLEB6, SAMPLEB6 trigger select TRGSEL is ignored. If SAMPLEA6's CHSEL = 1, and SAMPLEB6's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.
		A/D SAMPLEA5, SAMPLEB5 Simultaneous Sampling Mode Selection
		0 = SAMPLEA5, SAMPLEB5 are in single sampling mode, both SAMPLEA5 and SAMPLEB5's 3 bits of CHSEL define the ADC channels to be converted.
[5]	SIMUSEL5	1 = SAMPLEA5, SAMPLEB5 are in simultaneous sampling mode, Only SAMPLEA5 can trigger both the ADC conversions of SAMPLEA5 and SAMPLEB5, SAMPLEB5 trigger select TRGSEL is ignored. If SAMPLEA5's CHSEL = 1, and SAMPLEB5's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.
		A/D SAMPLEA4, SAMPLEB4 Simultaneous Sampling Mode Select Ion
[4]	SIMUSEL4	0 = SAMPLEA4, SAMPLEB4 are in single sampling mode, both SAMPLEA4 and SAMPLEB4's 3 bits of CHSEL define the ADC channels to be converted.
		1 = SAMPLEA4, SAMPLEB4 are in simultaneous sampling mode, Only SAMPLEA4 can trigger both the ADC conversions of SAMPLEA4 and SAMPLEB4, SAMPLEB4 trigger select TRGSEL is ignored. If SAMPLEA4's CHSEL = 1, and SAMPLEB4's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.

Bits	Description	Description						
		A/D SAMPLEA3, SAMPLEB3 Simultaneous Sampling Mode Select Ion						
		0 = SAMPLEA3, SAMPLEB3 are in single sampling mode, both SAMPLEA3 and SAMPLEB3's 3 bits of CHSEL define the ADC channels to be converted.						
[3]	SIMUSEL3	1 = SAMPLEA3, SAMPLEB3 are in simultaneous sampling mode, Only SAMPLEA3 can trigger both the ADC conversions of SAMPLEA3 and SAMPLEB3, SAMPLEB3 trigger select TRGSEL is ignored. If SAMPLEA3's CHSEL = 1, and SAMPLEB3's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.						
		A/D SAMPLEA2, SAMPLEB2 Simultaneous Sampling Mode Selection						
		0 = SAMPLEA2, SAMPLEB2 are in single sampling mode, both SAMPLEA2 and SAMPLEB2's 3 bits of CHSEL define the ADC channels to be converted.						
[2]	SIMUSEL2	1 = SAMPLEA2, SAMPLEB2 are in simultaneous sampling mode, Only SAMPLEA2 can trigger both the ADC conversions of SAMPLEA2 and SAMPLEB2, SAMPLEB2 trigger select TRGSEL is ignored. If SAMPLEA2's CHSEL = 1, and SAMPLEB2's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.						
		A/D SAMPLEA1, SAMPLEB1 Simultaneous Sampling Mode Selection						
		0 = SAMPLEA1, SAMPLEB1 are in single sampling mode, both SAMPLEA1 and SAMPLEB1's 3 bits of CHSEL define the ADC channels to be converted.						
[1]	SIMUSEL1	1 = SAMPLEA1, SAMPLEB1 are in simultaneous sampling mode, Only SAMPLEA1 can trigger both the ADC conversions of SAMPLEA1 and SAMPLEB1, SAMPLEB1 trigger select TRGSEL is ignored. If SAMPLEA1's CHSEL = 1, and SAMPLEB1's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.						
		A/D SAMPLEA0, SAMPLEB0 Simultaneous Sampling Mode Selection						
		0 = SAMPLEA0, SAMPLEB0 are in single sampling mode, both SAMPLEA0 and SAMPLEB0's 3 bits of CHSEL define the ADC channels to be converted.						
[0]	SIMUSEL0	1 = SAMPLEA0, SAMPLEB0 are in simultaneous sampling mode, Only SAMPLEA0 can trigger both the ADC conversions of SAMPLEA0 and SAMPLEB0, SAMPLEB0 trigger select TRGSEL is ignored. If SAMPLEA0's CHSEL = 1, and SAMPLEB0's CHSEL = 3, the pair of channels are AINA[1], AINB[3], they will do the ADC conversion at the same time.						

A/D Result Compare Register 0/1 (ADCMPR0/1)

Register Offset R/W I		R/W	Description	Reset Value
ADCMPR0	EADC_BA+0xA8	R/W	A/D Result Compare Register 0	0x0000_0000
ADCMPR1	EADC_BA+0xAC	R/W	A/D Result Compare Register 1	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved				CMPD			
23	22	21	20	19	18	17	16	
			CM	IPD				
15	14	13	12	11	10	9	8	
	Reserved			CMPMATCNT				
7	6	5	4	3	2	1	0	
Reserved CMPSMPL				CMPCOND	ADCMPIE	ADCMP_EN		

Bits	Description	
[31:28]	Reserved	Reserved.
[27:16]	CMPD	Comparison Data The 12 bits data is used to compare with the conversion result of specified SAMPLE. Software can use it to monitor the external analog input pin voltage transition without imposing a load on software.
[15:12]	Reserved	Reserved.
[11:8]	CMPMATCNT	Compare Match Count When the specified A/D SAMPLE analog conversion result matches the compare condition defined by CMPCOND, the internal match counter will increase 1. When the internal counter reaches the value to (CMPMATCNT +1), the ADCMPFn(ADSR1[7:6], n=0, 1) bit will be set.
[7:6]	Reserved	Reserved.
[5:3]	CMPSMPL	Compare SAMPLE Selection 000 = SAMPLEA0 conversion result ADDRA0 is selected to be compared. 001 = SAMPLEA1 conversion result ADDRA1 is selected to be compared. 010 = SAMPLEA2 conversion result ADDRA2 is selected to be compared. 011 = SAMPLEA3 conversion result ADDRA3 is selected to be compared. 100 = SAMPLEB0 conversion result ADDRB0 is selected to be compared. 101 = SAMPLEB1 conversion result ADDRB1 is selected to be compared. 110 = SAMPLEB1 conversion result ADDRB1 is selected to be compared. 110 = SAMPLEB2 conversion result ADDRB1 is selected to be compared. 111 = SAMPLEB3 conversion result ADDRB2 is selected to be compared.

Bits	Description	
		Compare Condition
		0= Set the compare condition as that when a 12-bit A/D conversion result is less than the 12-bit CMPD(ADCMPRn[27:16], n=0, 1), the internal match counter will increase one.
[2]	CMPCOND	1= Set the compare condition as that when a 12-bit A/D conversion result is greater or equal to the 12-bit CMPD(ADCMPRn[27:16], n=0, 1), the internal match counter will increase one.
		Note: When the internal counter reaches the value to (CMPMATCNT +1), the ADCMPFn(ADSR1[7:6], n=0, 1) bit will be set.
		A/D Result Compare Interrupt Enable Bit
		0 = Compare function interrupt Disabled.
[1]	ADCMPIE	1 = Compare function interrupt Enabled.
		If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMATCNT, ADCMPFn(ADSR1[7:6], n=0, 1) bit will be asserted, in the meanwhile, if ADCMPIE is set to 1, a compare interrupt request is generated.
		A/D Result Compare Enable Bit
		0 = Compare Disabled.
[0]		1 = Compare Enabled.
		Set this bit to 1 to enable compare CMPD with specified SAMPLE conversion result when converted data is loaded into ADDRAn and ADDRBn($n=0-3$) register.

A/D Status Register 0 (ADSR0)

Register	Offset	R/W	Description	Reset Value
ADSR0	EADC_BA+0xB0	R	A/D Status Register 0	0x0000_0000

31	30	29	28	27	26	25	24
			OVE	RRUN			
23	22	21	20	19	18	17	16
			OVE	RRUN			
15	14	13	12	11	10	9	8
			VA	LID			
7	6	5	4	3	2	1	0
	VALID						

Bits	Description	Vescription					
[31:24]	OVERRUN	ADDRB7~0 over Run Flag It is a mirror to OVERRUN bit in SAMPLEB A/D result data register ADDRBn, n=0~7.					
[23:16]	OVERRUN	ADDRA7~0 over Run Flag It is a mirror to OVERRUN bit in SAMPLEA A/D result data register ADDRAn, n=0~7.					
[15:8]	VALID	ADDRB7~0 Data Valid Flag It is a mirror of VALID bit in SAMPLEB A/D result data register ADDRBn, n=0~7.					
[7:0]	VALID	ADDRA7~0 Data Valid Flag It is a mirror of VALID bit in SAMPLEA A/D result data register ADDRAn, n=0~7.					

A/D Status Register 1 (ADSR1)

Register	Offset	R/W	Description	Reset Value
ADSR1	EADC_BA+0xB4	R/W	A/D Status Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved				AVALID	ASPOVF	AADFOV
23	22	21	20	19	18	17	16
Reserved	CHANNELB			Reserved			BUSYB
15	14	13	12	11	10	9	8
Reserved	rved CHANNELA				Reserved		BUSYA
7	6	5	4	3	2	1	0
ADCMPF1	ADCMPF0	ADCMP01	ADCMP00	ADF3	ADF2	ADF1	ADF0

Bits	Description	
[31:28]	Reserved	Reserved.
[27]	AOVERRUN	All SAMPLE A/D Result Data Register over Run Flags Check 0 = None of SAMPLE data register over run flag OVERRUNn is set to 1. 1 = Any one of SAMPLE data register over run flag OVERRUNn is set to 1. This bit will keep 1 when any OVERRUNn Flag is equal to 1. OVERRUNn = OVERRUN(ADDRAn[16], ADDRBn[16], n=0~7).
[26]	AVALID	All SAMPLE A/D Result Data Register ADDR Data Valid Flag Check 0 = None of SAMPLE data register valid flag VALIDn is set to 1. 1 = Any one of SAMPLE data register valid flag VALIDn is set to 1. This bit will keep 1 when any VALIDn Flag is equal to 1. VALIDn = VALID(ADDRAn[17], ADDRBn[17], n=0~7).
[25]	ASPOVF	All A/D SAMPLE Start Conversion over Run Flags Check 0 = None of SAMPLE event over run flag SPOVFn is set to 1. 1 = Any one of SAMPLE event over run flag SPOVFn is set to 1. This bit will keep 1 when any SPOVFn Flag is equal to 1. SPOVFn = SPOVF(ADSPOVFR[n], n=0~15).
[24]	AADFOV	All A/D Interrupt Flag over Run Bits Check 0 = None of ADINT interrupt flag ADFOVn is overwritten to 1. 1 = Any one of ADINT interrupt flag ADFOVn is overwritten to 1. This bit will keep 1 when any ADFOVn Flag is equal to 1. ADFOVn = ADFOV(ADIFOVR[n], n=0~3).
[23]	Reserved	Reserved.

Bits	Description	
[22:20]	CHANNELB	Current Conversion Channel (Read Only)This filed reflects ADCB current conversion channel when BUSYB=1. When BUSYB=0, it shows the last converted channel.000 = AINB[0].001 = AINB[1].010 = AINB[2].011 = AINB[3].100 = AINB[4].101 = AINB[5].110 = AINB[6].111 = AINB[7].
[19:17]	Reserved	Reserved.
[16]	BUSYB	BUSY/IDLE (Read Only) 0 = A/D converter B (ADCB) is in idle state. 1 = A/D converter B (ADCB) is busy at conversion.
[14:12]	CHANNELA	Current Conversion Channel (Read Only)This filed reflects ADCA current conversion channel when BUSYA=1. When BUSYA=0, it shows the last converted channel.000 = AINA[0].001 = AINA[1].010 = AINA[2].011 = AINA[3].100 = AINA[4].101 = AINA[5].110 = AINA[6].111 = AINA[7].
[11:9]	Reserved	Reserved.
[8]	BUSYA	BUSY/IDLE (Read Only) 0 = A/D converter A (ADCA) is in idle state. 1 = A/D converter A (ADCA) is busy at conversion.
[7]	ADCMPF1	 ADC Compare 1 Flag When the specific SAMPLE A/D conversion result meets setting condition in ADCMPR1 register then this bit is set to 1. And it is cleared by write 1. 0 = Conversion result in ADDR does not meet ADCMPR1 register setting. 1 = Conversion result in ADDR meets ADCMPR1 register setting.
[6]	ADCMPF0	 ADC Compare 0 Flag When the specific SAMPLE A/D conversion result meets setting condition in ADCMPR0 then this bit is set to 1. And it is cleared by write 1. 0 = Conversion result in ADDR does not meet ADCMPR0 register setting. 1 = Conversion result in ADDR meets ADCMPR0 register setting.

Bits	Description	
[5]	ADCMPO1	 ADC Compare 1 Output Status Bit The 12 bits compare1 data CMPD(ADCMPR1[27:16]) is used to compare with conversion result of specified SAMPLE. Software can use it to monitor the external analog input pin voltage status. 0 = Conversion result in ADDR less than CMPD(ADCMPR1[27:16]) setting. 1 = Conversion result in ADDR great than or equal CMPD(ADCMPR1[27:16]) setting.
[4]	ADCMP00	 ADC Compare 0 Output Status Bit The 12 bits compare0 data CMPD(ADCMPR0[27:16]) is used to compare with conversion result of specified SAMPLE. Software can use it to monitor the external analog input pin voltage status. 0 = Conversion result in ADDR is less than CMPD(ADCMPR0[27:16]) setting. 1 = Conversion result in ADDR is great than or equal CMPD(ADCMPR0[27:16]) setting.
[3]	ADF3	 A/D ADINT3 Interrupt Flag 0 = No ADINT3 interrupt pulse received. 1 = ADINT3 interrupt pulse received. Note1: It is cleared by writing 1. Note2: This bit indicates whether an A/D conversion of specific SAMPLE has been completed
[2]	ADF2	 A/D ADINT2 Interrupt Flag 0 = No ADINT2 interrupt pulse received. 1 = ADINT2 interrupt pulse received. Note1: It is cleared by writing 1. Note2: This bit indicates whether an A/D conversion of specific SAMPLE has been completed.
[1]	ADF1	 A/D ADINT1 Interrupt Flag 0 = no ADINT1 interrupt pulse received. 1 = ADINT1 interrupt pulse has been received. Note1: It is cleared by writing 1. Note2: This bit indicates whether an A/D conversion of specific SAMPLE has been completed.
[0]	ADF0	 A/D ADINTO Interrupt Flag 0 = No ADINTO interrupt pulse received. 1 = ADINTO interrupt pulse received. Note1: It is cleared by writing 1. Note2: This bit indicates whether an A/D conversion of specific SAMPLE has been completed.

A/D Timing Control Register (ADTCR)

Register	Offset	R/W	Description	Reset Value
ADTCR	EADC_BA+0xB8	R/W	A/D Timing Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	ADBEST									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	ADAEST									

Bits	Description	Description						
[31:24]	Reserved	Reserved.						
[23:16]	ADBEST	ADCB Extend Sampling Time When A/D converting at high conversion rate, the sampling time of analog input voltage may not enough if input channel loading is heavy, User can extend A/D sampling time after trigger source is coming to get enough sampling time. The range of start delay time is from 0~255 ADC clock.						
[15:8]	Reserved	Reserved.						
[7:0]	ADAEST	ADCA Extend Sampling Time When A/D converting at high conversion rate, the sampling time of analog input voltage may not enough if input channel loading is heavy, User can extend A/D sampling time after trigger source is coming to get enough sampling time. The range of start delay time is from 0~255 ADC clock.						

A/D Data Registers double buffer for A/D Data Registers (ADDRDBA0~3, ADDRDBB0~3)

Register	Offset	R/W	Description	Reset Value
ADDRDBA0	EADC_BA+0x100	R	A/D Data Register double buffer for SAMPLEA0	0x0000_0000
ADDRDBA1	EADC_BA+0x104	R	A/D Data Register double buffer for SAMPLEA1	0x0000_0000
ADDRDBA2	EADC_BA+0x108	R	A/D Data Register double buffer for SAMPLEA2	0x0000_0000
ADDRDBA3	EADC_BA+0x10C	R	A/D Data Register double buffer for SAMPLEA3	0x0000_0000
ADDRDBB0	EADC_BA+0x120	R	A/D Data Register double buffer for SAMPLEB0	0x0000_0000
ADDRDBB1	EADC_BA+0x124	R	A/D Data Register double buffer for SAMPLEB1	0x0000_0000
ADDRDBB2	EADC_BA+0x128	R	A/D Data Register double buffer for SAMPLEB2	0x0000_0000
ADDRDBB3	EADC_BA+0x12C	R	A/D Data Register double buffer for SAMPLEB3	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Rese	erved		RSLTDB						
7	6	5	4	3	2	1	0			
	RSLTDB									

Bits	Description	Description						
[31:17]	Reserved	Reserved.						
[16]	VALID	 Valid Flag 0 = Double data in RSLTDB[11:0] bits is not valid. 1 = Double data in RSLTDB[11:0] bits is valid. This bit is set to 1 when corresponding SAMPLE channel analog input conversion is completed and cleared by hardware after ADDRDBAn and ADDRDBBn register is read.(n=0~3). 						
[15:12]	Reserved	Reserved.						
[11:0]	RSLTDB	A/D Conversion Result This field contains 12 bits conversion result if the corresponding DBMAn (n=0~3, ADDBM[3:0]) or DBMBn(n=0~3, ADDBM[11:8]) is set.						

A/D Double Buffer Mode select (ADDBM)

Register	Offset	R/W	Description	Reset Value
ADDBM	EADC_BA+0x130	R/W	A/D Double Buffer Mode select	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Rese	erved		DBMB3	DBMB2	DBMB1	DBMB0			
7	6	5	4	3	2	1	0			
	Rese	erved		DBMA3	DBMA2	DBMA1	DBMA0			

Bits	Description						
[31:12]	Reserved	Reserved.					
[11]	DBMB3	Double Buffer Mode for SAMPLE B3 0 = SampleB3 has one sample result register. (default) 1 = SampleB3 has two sample result registers.					
[10]	DBMB2	Double Buffer Mode for SAMPLE B2 0 = SampleB2 has one sample result register. (default). 1 = SampleB2 has two sample result registers.					
[9]	DBMB1	Double Buffer Mode for SAMPLE B1 0 = SampleB1 has one sample result register. (default). 1 = SampleB1 has two sample result registers.					
[8]	DBMB0	Double Buffer Mode for SAMPLE B0 0 = SampleB0 has one sample result register. (default) 1 = SampleB0 has two sample result registers.					
[7:4]	Reserved	Reserved.					
[3]	DBMA3	Double Buffer Mode for SAMPLE A3 0 = SampleA3 has one sample result register. (default). 1 = SampleA3 has two sample result registers.					
[2]	DBMA2	Double Buffer Mode for SAMPLE A2 0 = SampleA2 has one sample result register. (default). 1 = SampleA2 has two sample result registers.					
[1]	DBMA1	Double Buffer Mode for SAMPLE A1 0 = SampleA1 has one sample result register. (default). 1 = SampleA1 has two sample result registers.					

Bits	Description	
[0]		Double Buffer Mode for SAMPLE A0 0 = SampleA0 has one sample result register. (default). 1 = SampleA0 has two sample result registers.

A/D interrupt Source Enable Control Register (ADINT0SRCTL ~ ADINT3SRCTL)

Register	Offset	R/W	Description	Reset Value
ADINT0SRCTL	EADC_BA+0x134	R/W	A/D interrupt 0 Source Enable Control Register.	0x0000_0000
ADINT1SRCTL	EADC_BA+0x138	R/W	A/D interrupt 1 Source Enable Control Register.	0x0000_0000
ADINT2SRCTL	EADC_BA+0x13C	R/W	A/D interrupt 2 Source Enable Control Register.	0x0000_0000
ADINT3SRCTL	EADC_BA+0x140	R/W	A/D interrupt 3 Source Enable Control Register.	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
IESPLB7	IESPLB6	IESPLB5	IESPLB4	IESPLB3	IESPLB2	IESPLB1	IESPLB0			
7 6 5 4 3 2 1 0							0			
IESPLA7	IESPLA6	IESPLA5	IESPLA4	IESPLA3	IESPLA2	IESPLA1	IESPLA0			

Bits	Description		
[31:16]	Reserved	Reserved.	
[15]	IESPLB7	SAMPLE B7 Interrupt Mask Enable Bit 0 = SAMPLE B7 interrupt mask Disabled. 1 = SAMPLE B7 interrupt mask Enabled.	
[14]	IESPLB6	SAMPLE B6 Interrupt Mask Enable Bit 0 = SAMPLE B6 interrupt mask Disabled. 1 = SAMPLE B6 interrupt mask Enabled.	
[13]	IESPLB5	SAMPLE B5 Interrupt Mask Enable Bit 0 = SAMPLE B5 interrupt mask Disabled. 1 = SAMPLE B5 interrupt mask Enabled.	
[12]	IESPLB4	SAMPLE B4 Interrupt Mask Enable Bit 0 = SAMPLE B4 interrupt mask Disabled. 1 = SAMPLE B4 interrupt mask Enabled.	
[11]	IESPLB3	SAMPLE B3 Interrupt Mask Enable Bit 0 = SAMPLE B3 interrupt mask Disabled. 1 = SAMPLE B3 interrupt mask Enabled.	
[10]	IESPLB2	SAMPLE B2 Interrupt Mask Enable Bit 0 = SAMPLE B2 interrupt mask Disabled. 1 = SAMPLE B2 interrupt mask Enabled.	

M0519	
-------	--

Bits	Description			
[9]	IESPLB1	SAMPLE B1 Interrupt Mask Enable Bit 0 = SAMPLE B1 interrupt mask Disabled. 1 = SAMPLE B1 interrupt mask Enabled.		
[8]	IESPLB0	SAMPLE B0 Interrupt Mask Enable Bit 0 = SAMPLE B0 interrupt mask Disabled. 1 = SAMPLE B0 interrupt mask Enabled.		
[7]	IESPLA7	SAMPLE A7 Interrupt Mask Enable Bit 0 = SAMPLE A7 interrupt mask Disabled. 1 = SAMPLE A7 interrupt mask Enabled.		
[6]	IESPLA6	SAMPLE A6 Interrupt Mask Enable Bit 0 = SAMPLE A6 interrupt mask Disabled. 1 = SAMPLE A6 interrupt mask Enabled.		
[5]	IESPLA5	SAMPLE A5 Interrupt Mask Enable Bit 0 = SAMPLE A5 interrupt mask Disabled. 1 = SAMPLE A5 interrupt mask Enabled.		
[4]	IESPLA4	SAMPLE A4 Interrupt Mask Enable Bit 0 = SAMPLE A4 interrupt mask Disabled. 1 = SAMPLE A4 interrupt mask Enabled.		
[3]	IESPLA3	SAMPLE A3 Interrupt Mask Enable Bit 0 = SAMPLE A3 interrupt mask Disabled. 1 = SAMPLE A3 interrupt mask Enabled.		
[2]	IESPLA2	SAMPLE A2 Interrupt Mask Enable Bit 0 = SAMPLE A2 interrupt mask Disabled. 1 = SAMPLE A2 interrupt mask Enabled.		
[1]	IESPLA1	SAMPLE A1 Interrupt Mask Enable Bit 0 = SAMPLE A1 interrupt mask Disabled. 1 = SAMPLE A1 interrupt mask Enabled.		
[0]	IESPLA0	SAMPLE A0 Interrupt Mask Enable Bit 0 = SAMPLE A0 interrupt mask Disabled. 1 = SAMPLE A0 interrupt mask Enabled.		

A/D SAMPLE Trigger Condition Enable Control Register (SMPTRGA0~ SMPTRGA3, SMPTRGB0~ SMPTRGB3)

Register	Offset	R/W	Description	Reset Value
SMPTRGA0	EADC_BA+0x144	R/W	A/D trigger condition for SAMPLEA0	0x0000_0000
SMPTRGA1	EADC_BA+0x148	R/W	A/D trigger condition for SAMPLEA1	0x0000_0000
SMPTRGA2	EADC_BA+0x14C	R/W	A/D trigger condition for SAMPLEA2	0x0000_0000
SMPTRGA3	EADC_BA+0x150	R/W	A/D trigger condition for SAMPLEA3	0x0000_0000
SMPTRGB0	EADC_BA+0x154	R/W	A/D trigger condition for SAMPLEB0	0x0000_0000
SMPTRGB1	EADC_BA+0x158	R/W	A/D trigger condition for SAMPLEB1	0x0000_0000
SMPTRGB2	EADC_BA+0x15C	R/W	A/D trigger condition for SAMPLEB2	0x0000_0000
SMPTRGB3	EADC_BA+0x160	R/W	A/D trigger condition for SAMPLEB3	0x0000_0000

31	30	29	28	27	26	25	24
PWM21CEN	PWM21PEN	PWM21FEN	PWM21REN	PWM20CEN	PWM20PEN	PWM20FEN	PWM20REN
23	22	21	20	19	18	17	16
PWM14CEN	PWM14PEN	PWM14FEN	PWM14REN	PWM12CEN	PWM12PEN	PWM12FEN	PWM12REN
15	14	13	12	11	10	9	8
PWM10CEN	PWM10PEN	PWM10FEN	PWM10REN	PWM04CEN	PWM04PEN	PWM04FEN	PWM04REN
7	6	5	4	3	2	1	0
PWM02CEN	PWM02PEN	PWM02FEN	PWM02REN	PWM00CEN	PWM00PEN	PWM00FEN	PWM00REN

Bits	Description	Description		
[31]	PWM21CEN	BPWM0_CH1 Center Trigger Enable Bit 0 = BPWM0_CH1 center trigger Disabled. 1 = BPWM0_CH1 center trigger Enabled.		
[30]	PWM21PEN	BPWM0_CH1 Period Trigger Enable Bit 0 = BPWM0_CH1 period trigger Disabled. 1 = BPWM0_CH1 period trigger Enabled.		
[29]	PWM21FEN	BPWM0_CH1 Falling Edge Trigger Enable Bit 0 = BPWM0_CH1 falling edge trigger Disabled. 1 = BPWM0_CH1 falling edge trigger Enabled.		
[28]	PWM21REN	BPWM0_CH1 Rising Edge Trigger Enable Bit 0 = BPWM0_CH1 rising edge trigger Disabled. 1 = BPWM0_CH1 rising edge trigger Enabled.		
[27]	PWM20CEN	BPWM0_CH0 Center Trigger Enable Bit 0 = BPWM0_CH0 center trigger Disabled. 1 = BPWM0_CH0 center trigger Enabled.		

Bits	Description	Description			
[26]	PWM20PEN	BPWM0_CH0 Period Trigger Enable Bit 0 = BPWM0_CH0 period trigger Disabled. 1 = BPWM0_CH0 period trigger Enabled.			
[25]	PWM20FEN	BPWM0_CH0 Falling Edge Trigger Enable Bit 0 = BPWM0_CH0 falling edge trigger Disabled. 1 = BPWM0_CH0 falling edge trigger Enabled.			
[24]	PWM20REN	BPWM0_CH0 Rising Edge Trigger Enable Bit 0 = BPWM0_CH0 rising edge trigger Disabled. 1 = BPWM0_CH0 rising edge trigger Enabled.			
[23]	PWM14CEN	PWM1_CH4 Center Trigger Enable Bit 0 = PWM1_CH4 center trigger Disabled. 1 = PWM1_CH4 center trigger Enabled.			
[22]	PWM14PEN	PWM1_CH4 Period Trigger Enable Bit 0 = PWM1_CH4 period trigger Disabled. 1 = PWM1_CH4 period trigger Enabled.			
[21]	PWM14FEN	PWM1_CH4 Falling Edge Trigger Enable Bit 0 = PWM1_CH4 falling edge trigger Disabled. 1 = PWM1_CH4 falling edge trigger Enabled.			
[20]	PWM14REN	 PWM1_CH4 Rising Edge Trigger Enable Bit 0 = PWM1_CH4 rising edge trigger Disabled. 1 = PWM1_CH4 rising edge trigger Enabled. 			
[19]	PWM12CEN	PWM1_CH2 Center Trigger Enable Bit 12CEN 0 = PWM1_CH2 center trigger Disabled. 1 = PWM1_CH2 center trigger Enabled.			
[18]	PWM12PEN	PWM1_CH2 Period Trigger Enable Bit 0 = PWM1_CH2 period trigger Disabled. 1 = PWM1_CH2 period trigger Enabled.			
[17]	PWM12FEN	PWM1_CH2 Falling Edge Trigger Enable Bit 0 = PWM1_CH2 falling edge trigger Disabled. 1 = PWM1_CH2 falling edge trigger Enabled.			
[16]	PWM12REN	PWM1_CH2 Rising Edge Trigger Enable Bit 0 = PWM1_CH2 rising edge trigger Disabled. 1 = PWM1_CH2 rising edge trigger Enabled.			
[15]	PWM10CEN	PWM1_CH0 Center Trigger Enable Bit 0 = PWM1_CH0 center trigger Disabled. 1 = PWM1_CH0 center trigger Enabled.			
[14]	PWM10PEN	PWM1_CH0 Period Trigger Enable Bit 0 = PWM1_CH0 period trigger Disabled. 1 = PWM1_CH0 period trigger Enabled.			
[13]	PWM10FEN	PWM1_CH0 Falling Edge Trigger Enable Bit 0 = PWM1_CH0 falling edge trigger Disabled. 1 = PWM1_CH0 falling edge trigger Enabled.			

ΠυνοΤοη			
Ĩ	Bits	Description	
I	[12]	PWM10REN	PWM1_CH0 Rising Edge Trigger Enable Bit 0 = PWM1_CH0 rising edge trigger Disabled. 1 = PWM1_CH0 rising edge trigger Enabled.
	[11]	PWM04CEN	PWM0_CH4 Center Trigger Enable Bit 0 = PWM0_CH4 center trigger Disabled. 1 = PWM0_CH4 center trigger Enabled.
	[10]	PWM04PEN	PWM0_CH4 Period Trigger Enable Bit 0 = PWM0_CH4 period trigger Disabled. 1 = PWM0_CH4 period trigger Enabled.
	[9]	PWM04FEN	PWM0_CH4 Falling Rdge Trigger Enable Bit 0 = PWM0_CH4 falling edge trigger Disabled. 1 = PWM0_CH4 falling edge trigger Enabled.
	[8]	PWM04REN	PWM0_CH4 Rising Edge Trigger Enable Bit 0 = PWM0_CH4 rising edge trigger Disabled. 1 = PWM0_CH4 rising edge trigger Enabled.
	[7]	PWM02CEN	PWM0_CH2 Center Trigger Enable Bit 0 = PWM0_CH2 center trigger Disabled. 1 = PWM0_CH2 center trigger Enabled.
	[6]	PWM02PEN	PWM0_CH2 Period Trigger Enable Bit 0 = PWM0_CH2 period trigger Disabled. 1 = PWM0_CH2 period trigger Enabled.
	[5]	PWM02FEN	PWM0_CH2 Falling Edge Trigger Enable Bit 0 = PWM0_CH2 falling edge trigger Disabled. 1 = PWM0_CH2 falling edge trigger Enabled.

[7]	PWM02CEN	0 = PWM0_CH2 center trigger Disabled. 1 = PWM0_CH2 center trigger Enabled.
[6]	PWM02PEN	PWM0_CH2 Period Trigger Enable Bit 0 = PWM0_CH2 period trigger Disabled. 1 = PWM0_CH2 period trigger Enabled.
[5]	PWM02FEN	PWM0_CH2 Falling Edge Trigger Enable Bit 0 = PWM0_CH2 falling edge trigger Disabled. 1 = PWM0_CH2 falling edge trigger Enabled.
[4]	PWM02REN	PWM0_CH2 Rising Edge Trigger Enable Bit 0 = PWM0_CH2 rising edge trigger Disabled. 1 = PWM0_CH2 rising edge trigger Enabled.
[3]	PWM00CEN	PWM0_CH0 Center Trigger Enable Bit 0 = PWM0_CH0 center trigger Disabled. 1 = PWM0_CH0 center trigger Enabled.
[2]	PWM00PEN	PWM0_CH0 Period Trigger Enable Bit 0 = PWM0_CH0 period trigger Disabled. 1 = PWM0_CH0 period trigger Enabled.
[1]	PWM00FEN	PWM0_CH0 Falling Edge Trigger Enable Bit 0 = PWM0_CH0 falling edge trigger Disabled. 1 = PWM0_CH0 falling edge trigger Enabled.
[0]	PWM00REN	PWM0_CH0 Rising Edge Trigger Enable Bit 0 = PWM0_CH0 rising edge trigger Disabled. 1 = PWM0_CH0 rising edge trigger Enabled.

6.17 Analog Comparator (ACMP)

6.17.1 Overview

The NuMicro[®] M0519 Series contains three comparators. The comparator output is logic 1 when positive input voltage is greater than negative input voltage; otherwise the output is logic 0. Each comparator can be configured to cause an interrupt when the comparator output value changes. The block diagram is shown in Figure 6-144.

6.17.2 Features

- Analog input voltage range: 0~ AV_{DD}
- Supports hysteresis function
- Supports wake-up function
- Supports comparator output inverse function
- Supports the comparator output can be the brake source for EPWM function
- ACMP0 supports
 - 2 positive sources: ACMP0_P and OP0_O
 - 2 negative sources: ACMP0_N and Internal band-gap voltage (V_{BG})
- ACMP1 supports
 - 2 positive sources: ACMP1_P and OP1_O
 - 2 negative sources: ACMP1_N and Internal band-gap voltage (V_{BG})
- ACMP2 supports
 - 1 positive sources: ACMP2_P
 - 2 negative sources: ACMP2_N and Internal band-gap voltage (V_{BG})
- Shares one ACMP interrupt vector for all comparators

6.17.3 Block Diagram

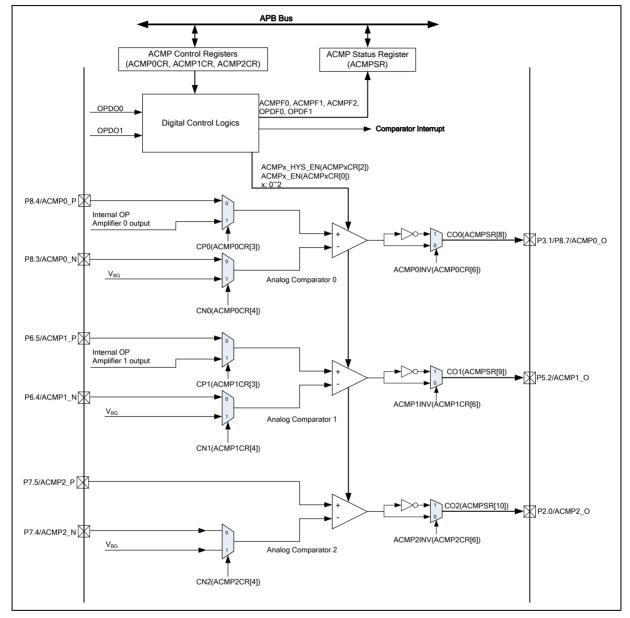


Figure 6-144 Analog Comparator Block Diagram

6.17.4 Basic Configuration

ACMP clock source is PCLK and can be enabled by setting ACMP_EN (APBCLK[22]). The ACMP pin functions are configured in P2_MFP, P3_MFP, P5_MFP, P6_MFP, P7_MFP and P8_MFP registers. It is recommended to disable the digital input path of the analog input pins to avoid the leakage current. The digital input path can be disabled by configuring P6_OFFD, P7_OFFD and P8_OFFD registers.

6.17.5 Functional Description

6.17.5.1 Interrupt Sources

The output of comparators are sampled by PCLK and reflected at CO0 (ACMPSR[8]), CO1 (ACMPSR[9]) and CO2 (ACMPSR[10]). If ACMPIEx (ACMPxCR[1]) is set to 1, the comparator interrupt will be enabled. As the output state of comparator is changed, the comparator interrupt will be asserted and the corresponding flag, ACMPFx (ACMPSR[x]), will be set. Software can clear the flag to 0 by writing 1 to it.

OPDF0 (ACMPSR[4]), OPDF1 (ACMPSR[5]) interrupt flags are set respectively by hardware whenever the OP0 and OP1 amplifier Schmitt trigger non-inverting buffer output change states. Software can clear the flag to 0 by writing 1 to it.

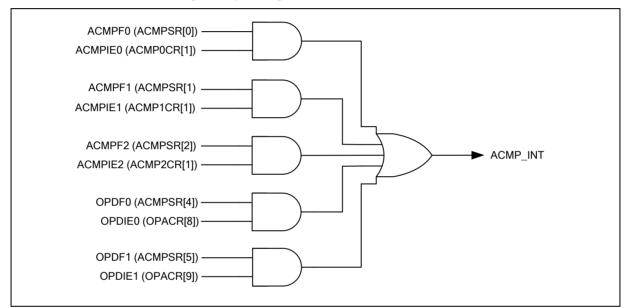


Figure 6-145 Analog Comparator Controller Interrupt

6.17.5.2 Hysteresis Function

The analog comparator provides hysteresis function to make the comparator output transition more stable. If comparator output is 0, it will not change to 1 until the positive input voltage exceeds the negative input voltage by a positive hysteresis voltage. Similarly, if comparator output is 1, it will not change to 0 until the positive input voltage drops below the negative input voltage by a negative hysteresis voltage.

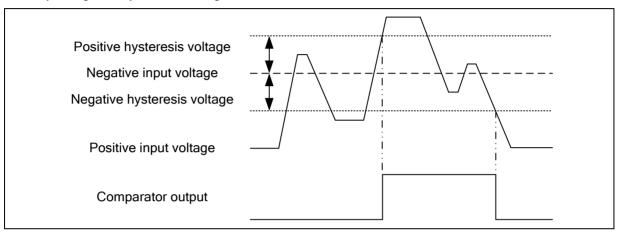


Figure 6-146 Comparator Hysteresis function

6.17.6 Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset	R/W	Description	Reset Value			
ACMP Base Address: ACMP_BA = 0x400D_0000							
ACMP0CR	ACMP_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000			
ACMP1CR	ACMP_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000			
ACMP2CR	ACMP_BA+0x08	R/W	Analog Comparator 2 Control Register	0x0000_0000			
ACMPSR	ACMP_BA+0x0C	R/W	Analog Comparator Status Register	0x0000_0000			

6.17.7 Register Description

Analog CMP 0 Control Register (ACMP0CR)

Register	Offset	R/W	Description	Reset Value
ACMP0CR	ACMP_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved	ACMPOINV	Reserved	CN0	CP0	ACMP0_HYS_ EN	ACMPIE0	ACMP0_EN		

Bits	Description						
[31:7]	Reserved	Reserved.					
[6]	ACMPOINV	 Analog Comparator 0 Output Inverse Select 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled. 					
[5]	Reserved	Reserved.					
[4]	CNO	 Analog Comparator 0 Negative Input Select 0 = The comparator reference pin P8.3/ACMP0_N is selected as the negative comparator input. 1 = The internal band-gap voltage (V_{BG}) is selected as the negative comparator input. 					
[3]	CP0	 Analog Comparator 0 Positive Input Select 0 = The comparator reference pin P8.4/ACMP0_P is selected as the positive comparator input. 1 = The internal OP amplifier 0 output is selected as the positive comparator input. 					
[2]	ACMP0_HYS_EN	CMP Hysteresis Enable Bit 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.					
[1]	ACMPIE0	Analog Comparator 0 Interrupt Enable Bit 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.					
[0]	ACMP0_EN	Analog Comparator 0 Enable Bit 0 = Analog comparator Disabled. 1 = Analog comparator Enabled.					

Analog CMP 1 Control Register (ACMP1CR)

Register	Offset	R/W	Description	Reset Value
ACMP1CR	ACMP_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	ACMP1INV	Reserved	CN1	CP1	ACMP1_HYS_ EN	ACMPIE1	ACMP1_EN			

Bits	Description						
[31:7]	Reserved	Reserved.					
[6]	ACMP1INV	 Analog Comparator 1 Output Inverse Select 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled. 					
[5]	Reserved	Reserved.					
[4]	CN1	 Analog Comparator 1 Negative Input Select 0 = The comparator reference pin P6.4/ACMP1_N is selected as the negative comparator input. 1 = The internal band-gap voltage (V_{BG}) is selected as the negative comparator input. 					
[3]	CP1	 Analog Comparator 1 Positive Input Select 0 = The comparator reference pin P6.5/ACMP1_P is selected as the positive comparator input. 1 = The internal OP amplifier 1 output is selected as the positive comparator input. 					
[2]	ACMP1_HYS_EN	CMP Hysteresis Enable Bit 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.					
[1]	ACMPIE1	Analog Comparator 1 Interrupt Enable Bit 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.					
[0]	ACMP1_EN	 Analog Comparator 1 Enable Bit 0 = Analog comparator Disabled. 1 = Analog comparator Enabled. 					

Analog CMP 2 Control Register (ACMP2CR)

Register	Offset	R/W	Description	Reset Value
ACMP2CR	ACMP_BA+0x08	R/W	Analog Comparator 2 Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved	ACMP2INV	Reserved	CN2	Reserved	ACMP2_HYS_ EN	ACMPIE2	ACMP2_EN		

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ACMP2INV	 Analog Comparator 2 Output Inverse Select 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled.
[5]	Reserved	Reserved.
[4]	CN2	Analog Comparator 2 Negative Input Select 0 = The comparator reference pin P7.4/ACMP2_N is selected as the negative comparator input. 1 = The internal band-gap voltage (V _{BG}) is selected as the negative comparator input.
[3]	Reserved	Reserved.
[2]	ACMP2_HYS_EN	CMP Hysteresis Enable Bit 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.
[1]	ACMPIE2	Analog Comparator 2 Interrupt Enable Bit 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.
[0]	ACMP2_EN	Analog Comparator 2 Enable Bit 0 = Analog comparator Disabled. 1 = Analog comparator Enabled.

Analog CMP Status Register (ACMPSR)

Register	Offset	R/W	Description	Reset Value
ACMPSR	ACMP_BA+0x0C	R/W	Analog Comparator Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Reserved			CO2	CO1	CO0			
7	6	5	4	3	2	1	0			
Rese	erved	OPDF1	OPDF0	Reserved	ACMPF2	ACMPF1	ACMPF0			

Bits	Description						
[31:11]	Reserved	Reserved.					
[10]	CO2	Compare 2 Output Synchronized to the PCLK clock to allow reading by software. Cleared when the comparator is disabled (ACMP2_EN = 0).					
[9]	CO1	Compare 1 Output Synchronized to the PCLK clock to allow reading by software. Cleared when the comparator is disabled (ACMP1_EN = 0).					
[8]	C00	Compare 0 Output Synchronized to the PCLK clock to allow reading by software. Cleared when the comparator is disabled (ACMP0_EN = 0).					
[7:6]	Reserved	Reserved.					
[5]	OPDF1	 OP Amplifier 1 Schmitt Trigger Digital Output Interrupt Flag OPDF1 interrupt flag is set by hardware whenever the OP amplifier 1 Schmitt trigger non-inverting buffer digital output changes state. Note: This bit is remapping from OPASR[5] and writing 1 to ACMPSR[5] or OPASR[5] can clear this bit. 					
[4]	OPDF0	OP Amplifier 0 Schmitt Trigger Digital Output Interrupt Flag OPDF0 interrupt flag is set by hardware whenever the OP amplifier 0 Schmitt trigger non-inverting buffer digital output changes state. Note: This bit is remapping from OPASR[4] and writing 1 to ACMPSR[4] or OPASR[4] can clear this bit.					
[3]	Reserved	Reserved.					
[2]	ACMPF2	Compare 2 Flag This bit is set by hardware whenever the comparator 2 output changes state. This will cause an interrupt if ACMP2CR[1] is set to 1. Write 1 to clear this bit to 0.					

[1]	ACMPF1	Compare 1 Flag This bit is set by hardware whenever the comparator 1 output changes state. This will cause an interrupt if ACMP1CR[1] is set to 1. Write 1 to clear this bit to 0.
[0]	ACMPF0	Compare 0 Flag This bit is set by hardware whenever the comparator 0 output changes state. This will cause an interrupt if ACMP0CR[1] is set to 1. Write 1 to clear this bit to 0.

6.18 OP Amplifier (OPA)

6.18.1 Overview

This device integrated two operational amplifiers. It can be enabled through OP0_EN (OPACR[0]) and OP1_EN (OPACR[1]) bit. User can measure the output of the OP amplifier through the integrated A/D converter.

6.18.2 Features

- Analog input voltage range: 0~AV_{DD}
- Supports two analog OP amplifiers
- Supports OP output voltage measurement by A/D converter
- Supports Schmitt trigger buffer outputs and generate interrupt
- OP amplifier 0 output can be an optional input source of integrated comparator 0 positive input
- OP amplifier 1 output can be an optional input source of integrated comparator 1 positive input

nuvoTon

6.18.3 Block Diagram

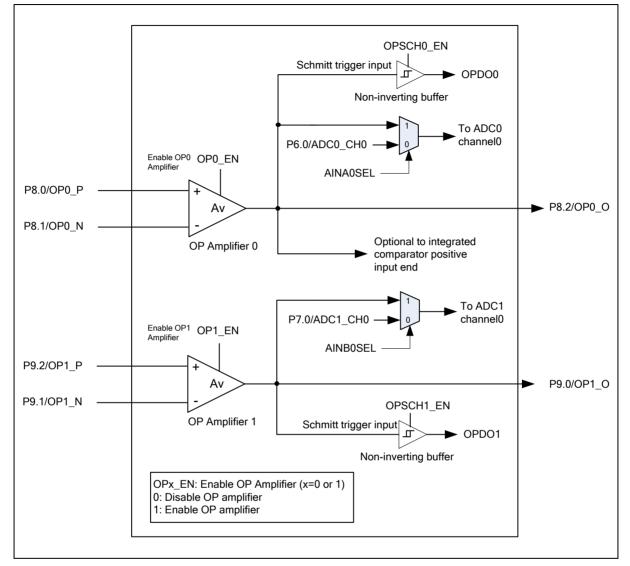


Figure 6-147 OP Amplifier Block Diagram

6.18.4 Basic Configuration

OPA clock source is PCLK and can be enabled by setting OPA_EN (APBCLK[29]). The OPA pin functions are configured in P8_MFP and P9_MFP registers. It is recommended to disable the digital input path of the analog input pins to avoid the leakage current. The digital input path can be disabled by configuring P8_OFFD and P9_OFFD registers.

6.18.5 Interrupt Sources

The OPDF0 (OPASR[4]), OPDF1 (OPASR[5]) interrupt flags are set respectively by hardware whenever the OP0, 1 amplifier Schmitt trigger non-inverting buffer output change states. The flag bit is cleared by writing 1 to itself. Schmitt trigger buffer outputs of the OP amplifier0, 1 can be one of the comparator interrupt sources.

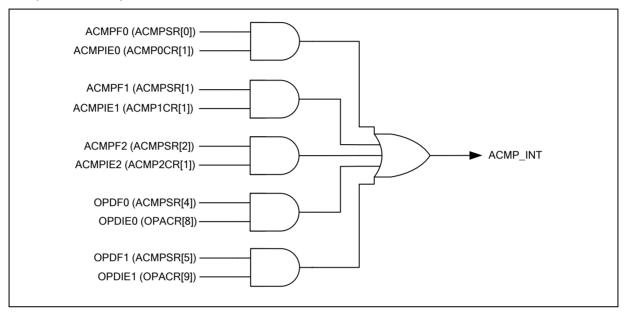


Figure 6-148 OP Amplifier Interrupt Flags for Analog Comparator Interrupt

6.18.6 Register Map

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register	Offset R/W		Description	Reset Value		
	OPA Base Address: OPA_BA = 0x400F_0000					
OPACR	OPA_BA+0x00 R/W		OP Amplifier Control Register	0x0000_0000		
OPASR	OPA_BA+0x04	R/W	OP Amplifier Status Register	0x0000_0000		

6.18.7 Register Description

OPA Control Register (OPACR)

Register	Offset	R/W	Description	Reset Value
OPACR	OPA_BA+0x00	R/W	OP Amplifier Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved					OPDIE1	OPDIE0
7	6	5	4	3	2	1	0
Reserved OPSCH1_EN			OPSCH0_EN	Rese	erved	OP1_EN	OP0_EN

Bits	Description	
[31:10]	Reserved	Reserved.
		OP Amplifier 1 Schmitt Trigger Digital Output Interrupt Enable Bit
		0 = OP Amplifier 1 digital output interrupt function Disabled.
[9]	OPDIE1	1 = OP Amplifier 1 digital output interrupt function Enabled.
		The OPDF1 interrupt flag is set by hardware whenever the OP amplifier 1 Schmitt trigger non- inverting buffer digital output changes state, in the meanwhile, if OPDIE1 is set to 1, a comparator interrupt request is generated.
		OP Amplifier 0 Schmitt Trigger Digital Output Interrupt Enable Bit
		0 = OP Amplifier 0 digital output interrupt function Disabled.
[8]	OPDIE0	1 = OP Amplifier 0 digital output interrupt function Enabled.
		The OPDF0 interrupt flag is set by hardware whenever the OP amplifier 0 Schmitt trigger non- inverting buffer digital output changes state, in the meanwhile, if OPDIE0 is set to 1, a comparator interrupt request is generated.
[7:6]	Reserved	Reserved.
		OP Amplifier 1 Schmitt Trigger Non-inverting Buffer Enable Bit
[5]	OPSCH1_EN	0 = OP Amplifier 1 Schmitt trigger Disabled.
		1 = OP Amplifier 1 Schmitt trigger Enabled.
		OP Amplifier 0 Schmitt Trigger Non-inverting Buffer Enable Bit
[4]	OPSCH0_EN	0 = OP Amplifier 0 Schmitt trigger Disabled.
		1 = OP Amplifier 0 Schmitt trigger Enabled.
[3:2]	Reserved	Reserved.
		OP Amplifier 1 Enable Bit
[1]	OP1_EN	0 = OP Amplifier 1 Disabled.
		1 = OP Amplifier 1 Enabled.

nuvoTon

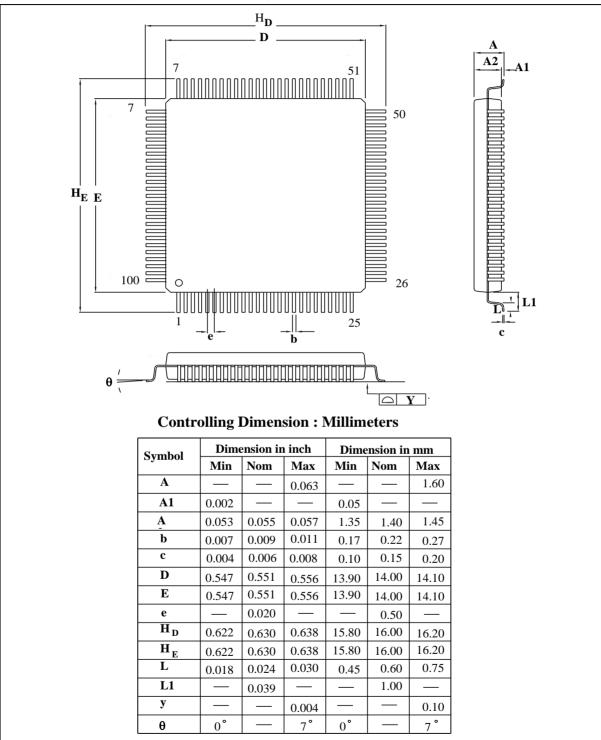
Bits	Description	
[0]	OP0_EN	OP Amplifier 0 Enable Bit 0 = OP Amplifier 0 Disabled. 1 = OP Amplifier 0 Enabled.

OPA Status Register (OPASR)

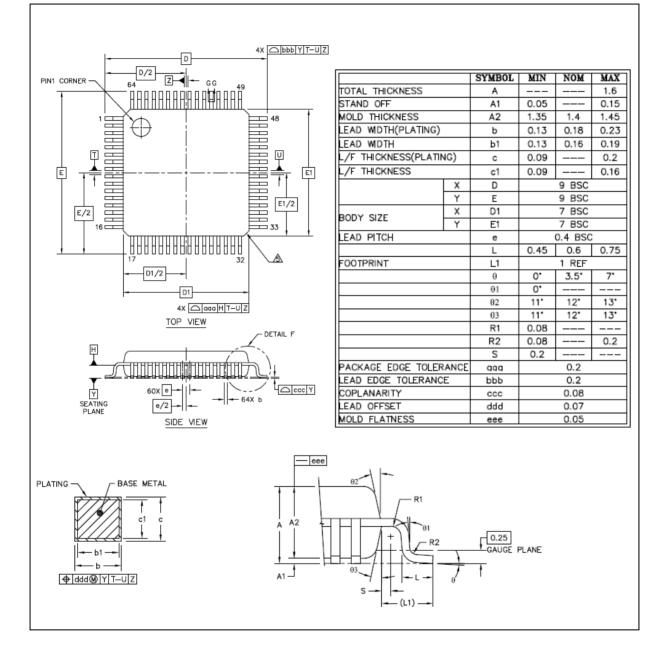
Register	Offset	R/W	Description	Reset Value
OPASR	OPA_BA+0x04	R/W	OP Amplifier Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	erved	OPDF1	OPDF0	Rese	erved	OPDO1	OPDO0

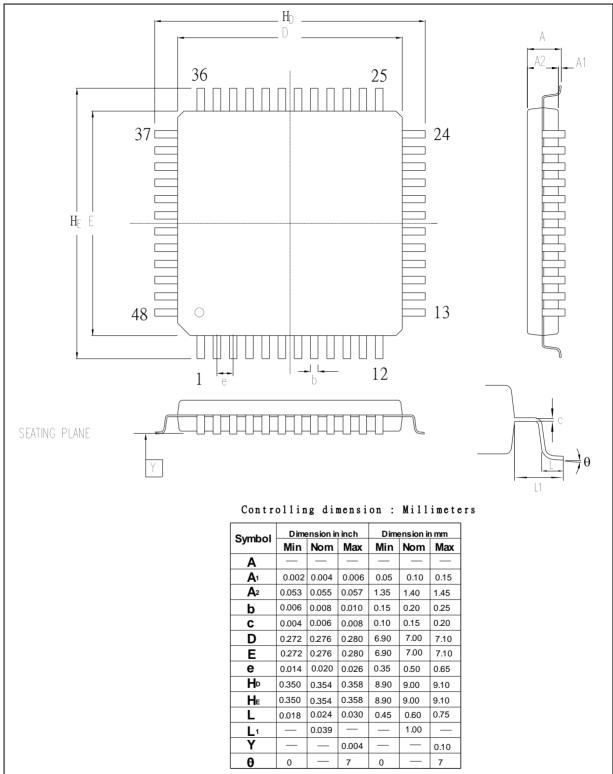
Bits	Description					
[31:6]	Reserved	Reserved.				
[5]	OPDF1	OP Amplifier 1 Schmitt Trigger Digital Output Interrupt Flag OPDF1 interrupt flag is set by hardware whenever the OP amplifier 1 Schmitt trigger non-inverting buffer digital output changes state. Note: This bit is cleared by writing 1 to it.				
[4]	OPDF0	OP Amplifier 0 Schmitt Trigger Digital Output Interrupt Flag OPDF0 interrupt flag is set by hardware whenever the OP amplifier 0 Schmitt trigger non-inverting buffer digital output changes state. Note: This bit is cleared by writing 1 to it.				
[3:2]	Reserved	Reserved.				
[1]	OP Amplifier 1 Digital Output OPDO1 Synchronized to the APB clock to allow reading by software. Cleared when the Schmitt trigger is disabled (OPSCH1_EN = 0).					
[0]	OP Amplifier 0 Digital Output OPDO0 Synchronized to the APB clock to allow reading by software. Cleared when the Schmitt trigging is disabled (OPSCH0_EN = 0).					


7 ELECTRICAL CHARACTERISTICS

For information on the M0519 series electrical characteristics, please refer to NuMicro[®] M0519 Series Datasheet.


nuvoTon

8 PACKAGE DIMENSIONS


8.1 LQFP 100L (14x14x1.4 mm footprint 2.0mm)

8.2 LQFP 64L (7x7x1.4 mm footprint 2.0 mm)

8.3 LQFP 48L (7x7x1.4mm footprint 2.0mm)

9 REVISION HISTORY

Date	Revision	Description					
2015.06.11	1.00	1. Preliminary version.					
2016.04.11	1.01	 Updated pin table in section 4.3. Added register protection table in REGWRPROT register. Added band-gap and Internal reference voltage descripton in section 6.16.4.5. 					
2016.11.02	1.02	 Added Figure 6-125 HDIV clock control diagram Updated OPA and ADC item in 4.1.1 NuMicro M0519 Selection Guide. 					

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective of

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners

