
XBee® Zigbee® Mesh Kit
Radio Frequency (RF) Module

User Guide

Revision history—90001942-13

Revision Date Description

B January
2016

Updated the documentation to include support for S2C SMT module.

C June 2016 Updated the document with new Digi branding.

D August
2017

Added information clarifying that the S2D module is international. Added a
graphic of the Worldwide kit and delineated the difference in the Kit
Contents table.

E February
2018

Added information for XBee3 product line and a few minor edits.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United States
and other countries worldwide. All other trademarks mentioned in this document are the property of
their respective owners.
© 2022 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name and model
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)
 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce

XBee® Zigbee® Mesh Kit 2

http://www.digi.com/howtobuy/terms

Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (XBee® Zigbee® Mesh Kit, 90001942-13 D) in the subject
line of your email.

XBee® Zigbee® Mesh Kit 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Change the firmware protocol 12

Kit contents

Introduction to XBee devices

Zigbee in a nutshell
Mesh networking 17
Zigbee stack layers 18
Device types 19

Get started with XBee Zigbee
Assemble the hardware 21

Plug in the XBee module 21
How to unplug an XBee device 22

Download and install XCTU 23
Example: basic communication 23

Step 1: Requirements 23
Step 2: Connect the components 23
Step 3: Add the XBee modules to XCTU 24
Step 4: Configure the XBee modules 25
Step 5: Check the network 27
Step 6: Send messages 27

How XBee devices work
How XBee devices communicate 31
Wireless communication 31

Addressing 31
PAN Addresses 32
Channels 33

Serial communication 33
Operating modes 34
Comparison of transparent and API modes 35

XBee® Zigbee® Mesh Kit 4

XBee® Zigbee® Mesh Kit 5

XBee transparent mode
XBee transparent mode in detail 38

What have you learned? 38
Extend the basic communication example 39

Command mode 39
AT commands 39
Use AT commands 40

API mode
API mode in detail 43

Advantages of API mode 43
API frame structure 45

Start delimiter 45
Length 45
Frame data 45
Checksum 46

Supported frames 48
Frame examples 49
Operating mode configuration 54

API escaped operating mode (API 2) 56
XBee frame exchange 58

AT Command: configure a local XBee device 58
Transmit Request/Receive Packet: Transmit and receive wireless data 58
Remote AT Command: Remotely configure an XBee module 59
Source routing: Create and obtain the route of a packet 60
Example: Configure your local XBee module 61
Example: Transmit and receive data 64
Libraries 69

Zigbee Mesh Network Setup
Configure the device type of an XBee module 70
Startup operations 70

Coordinator 70
Router 71
End device 71

Explore the network 72
Section summary 72

Wireless data transmission
Transmission methods 73

Broadcast transmission 73
Unicast transmission 74

Example: transmit data 75
Step 1: Requirements 76
Step 2: Connect the components 76
Step 3: Configure the Xbee modules 77
Step 4: Create a Java project 78
Step 5: Link libraries to the project 78
Step 6: Add the source code to the project 79

XBee® Zigbee® Mesh Kit 6

Step 7: Set the port names and launch applications 80
Step 8: Transmit data over the network 80
Step 9: Section summary of wireless data transmission 81
Step 10: Do more with wireless data transmission 81

Low power and battery life
Low power devices and battery life 83

A real world scenario 83
Design considerations for applications using sleep mode 83

Sleep modes 83
Pin sleep 84
Cyclic sleep 85
Example: enable sleep mode 85

Step 1: Requirements 85
Step 2: Connect the components 86
Step 3: Configure the XBee Modules 87
Step 4: Sleep 90
Step 5: What have you learned? 91
Step 6: Extend the example 92

Inputs and outputs
XBee I/O pins 94
Sensors 95

Setting pins for digital and analog sensors 96
Actuators 96
Set pins for digital and analog actuators 96
How XBee devices get sensor data 96

How to configure a pin as an input 97
How to obtain data from a sensor 97

Example: receive digital data 98
Step 1: Requirements 99
Step 2: Connect the components 99
Step 3: Configure the XBee modules 100
Step 4: Create a Java project 102
Step 5: Link libraries to the project 102
Step 6: Add the source code to the project 103
Step 7: Set the port name and launch the application 104
Step 8: Section summary of receiving digital data 105
Step 9: Do more with receiving digital data 105

Lab: receive analog data 106
Step 1: Requirements 106
Step 2: Connect the components 106
Step 3: Configure the XBee modules 108
Step 4: Create a Java project 111
Step 5: Link libraries to the project 111
Step 6: Add the source code to the project 112
Step 7: Set the port name and launch the application 113
Step 8: Section summary of receiving analog data 114
Step 9: Do more with receiving analog data 114

How XBee modules control devices 114
Configure a pin for digital output 115
How to send actuations 115

XBee® Zigbee® Mesh Kit 7

Example: send digital actuations 116
Step 1: Requirements 116
Step 2: Connect the components 116
Step 3: Configure the XBee modules 116
Step 4: Create a Java project 117
Step 5: Link libraries to the project 118
Step 6: Add the source code to the project 119
Step 7: Set the port name and launch the application 120
Step 8: Section summary of sending digital actuations 120
Step 9: Do more with sending digital actuations 120

Security and encryption
Zigbee security model 122

Network layer security 123
APS layer security 123
Network and APS layer encryption 124
Form or join a secure network 124

Security on the XBee
Enable security 125
Set the network security key 125
Set the APS trust center link key 125
Enable APS encryption 125
Use a trust center 126

How to update the network key with a trust center. 126
How to update the network key without a trust center. 126

Example: basic (but secure) communication
Understanding the example 128

Signal strength and radio frequency range
Distance and obstacles 130
Factors affecting wireless communication 131
Signal strength and the RSSI pin 132

Is RSSI the best indication of link quality? 134
Range test 135
Example: perform a range test 137

Step 1: Requirements 138
Step 2: Connect the components 138
Step 3: Configure the XBee Zigbee modules 138
Step 4: Perform a range test 139
Step 5: Section summary of signal strength 139

Zigbee communication in depth
Zigbee Application Framework 142

Application profiles 143
Clusters 146

XBee® Zigbee® Mesh Kit 8

Endpoints 147
Binding 149
Node descriptors 152
Zigbee Cluster Library 153

Zigbee Device Object (ZDO) 153
Explicit Addressing frames 155

Explicit Addressing Command frame 155
Explicit Rx Indicator frame 156
Data payload format 158
Receive Zigbee commands and responses 159

Examples: explicit data and ZDO 159
Example: obtain the neighbor table using the XBee Java Library 160
Example: obtain the neighbor table using the XBee Java Library 165

Large networks routing
Many-to-one routing 172

Enable many-to-one routing 173
Disable many-to-one routing 174

Source routing 174
Use source routing 175

Radio firmware
Firmware identification 178
Update radio firmware 178
Download new firmware 179

Troubleshooting
XCTU 180
Wireless data transmission 181
Enable sleep mode 182
XBee Java library 182
Receive digital data 184
Receive analog data 184
Send digital actuations 185
Range test 185

Check cables 186
Check that the XBee module is fully seated in the XBee Grove Development Board 186
Check the XBee module orientation 186
Check that the XBee modules are in the same network 186
Restore default settings 186
Check cables 186
Check that the XBee module is fully seated in the XBee Grove Development Board 186
Check the XBee module orientation 186

Additional resources
Buying considerations 189

Hardware footprint 189
XBee antennas 190
XBee vs. XBee-PRO 191

XBee® Zigbee® Mesh Kit 9

Frequency 191
Radio communication protocols 192

Where to buy XBee devices 194
Find products from Digi and Digi distributors 194
Find Digi products through resellers 195

XCTU walkthrough 195
XCTU overview 195
Application working modes 198
Add a module 198
Read settings 199
Change settings 200
Save settings 200

Real projects with XBee modules 200
Community 201
Industrial solutions 201

Related products 202

XBee Grove Development Board

Overview
Development board variants 205
XBee THT Grove Development Board 205
XBee SMT Grove Development Board 205
Mechanical 206

XBee THT Grove Development Board variant 206
XBee SMT Grove Development Board variant 206

Power supply 207
XBee THT Grove Development Board power supply 207
XBee SMT Grove Development Board power supply 207
Power supply battery connector 208

XBee connector 208
XBee THT Grove Development Board XBee connector 209
XBee SMT Grove Development Board XBee connector 211

USB 213
XBee THT Grove Development Board USB 213
XBee SMT Grove Development Board USB 214
USB VBUS line 214

Reset button 215
XBee THT Grove Development Board Reset button 215
XBee SMT Grove Development Board Reset button 215

Commissioning button 216
XBee THT Grove Development Board Commissioning button 216
XBee SMT Grove Development Board Commissioning button 216
Commissioning pin and Grove AD0 connection 217

Association led 218
XBee THT Grove Development Board Association LED 218
XBee SMT Grove Development Board Association LED 218

RSSI led 219
XBee THT Grove Development Board RSSI LED 219
XBee SMT Grove Development Board RSSI LED 219
PWM0 RSSI configuration 220

User LED and User button 221
XBee THT Grove Development Board User LED and User button 221

XBee® Zigbee® Mesh Kit 10

XBee SMT Grove Development Board User LED and User button 221
User LED and User Button connection to DIO4 221

On/sleep LED 223
XBee THT Grove Development Board On/Sleep LED 223
XBee SMT Grove Development Board On/Sleep LED 223
On/sleep LED connection to DIO9 224

Potentiometer 225
XBee THT Grove Development Board Potentiometer 225
XBee SMT Grove Development Board Potentiometer 226

I2C 227
XBee THT Grove Development Board I2C bus 227
XBee SMT Grove Development Board I2C bus 227
XBee/XBee-PRO connection to Grove sensor 227
Grove I2C connector pinout 228

Grove Connectors 229
THT board Grove connectors pinout 230
SMT board Grove connectors pinout 232

Loopback jumper 234
XBee THT Grove Development Board Loopback jumper 234
XBee SMT Grove Development Board Loopback jumper 234

Schematic and Gerber files
XBee THT Grove Development Board schematic 235

Gerber files 235
XBee SMT Grove Development Board schematic 236

Gerber files 236

XBee Zigbee Mesh Kit User Guide

Digi’s XBee Zigbee Mesh Kit is a great way to learn how to use XBee RF modules for device
connectivity and mesh networking. Starting with very simple examples, we provide step-by-step
guidance as you assemble the kit components to create reliable device communications, working
control systems, and sensing networks with incredible battery life and robust security.
Mesh networking is a powerful way to route data. Range is extended by allowing data to hop from
node to node, and reliability is increased by “self healing,” the ability to create alternate paths when
one node fails or a connection is lost. Zigbee is one of the most popular mesh networking protocols,
specifically designed for low-data rate and low-power applications. The main advantage of Zigbee is
that it is an open standard, so any manufacturer's device that fully supports it can communicate with
any other company's Zigbee device.
The kit is designed for anyone getting started in the world of Zigbee. Hardware and software
engineers, corporate technologists, or educators and students can quickly create wireless mesh
networks.

Each point of this guide explains a basic topic related to XBees through a short theoretical
introduction and examples that put into practice the concepts you have learned. The topics are
arranged according to their complexity, from the most basic to the more powerful features. We
recommend that new users work through them in the order they appear.

XBee® Zigbee® Mesh Kit 11

This guide provides step by step examples, and some use the Java programming language. These
examples are designed to be easy for anyone to use, and those with some programming background
can extend them.

Change the firmware protocol
Although the kit comes pre-loaded with Zigbee firmware, you can change the RF protocol used by the
XBee 3. To change protocols, use the Update firmware feature in XCTU and select the firmware. See
the XCTU User Guide.
The XBee 3 hardware can run any of the following protocols:

n DigiMesh
n Zigbee
n 802.15.4

For information on each of these firmwares and instructions for how to get started, see the user guide
for each protocol:

n DigiMesh
n Zigbee
n 802.15.4

XBee® Zigbee® Mesh Kit 12

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
https://www.digi.com/resources/documentation/Digidocs/90002277/
https://www.digi.com/resources/documentation/digidocs/90001539/
https://www.digi.com/resources/documentation/digidocs/90002273/

Kit contents

Verify that your kit contains the following components. Then get started by learning about the XBee
devices.

Note Some versions of the S2C kit contain three XBee Through-hole technology (THT) Grove
Development boards and three XBee THT devices instead of two THT and one Surface-mount
technology (SMT).

S2C
Zigbee Kit
Qty.

XBee3
Zigbee Kit
Qty. Part

2 - XBee Grove Development
Board

1 3 XBee Grove Development
Board

XBee® Zigbee® Mesh Kit 13

Kit contents

XBee® Zigbee® Mesh Kit 14

S2C
Zigbee Kit
Qty.

XBee3
Zigbee Kit
Qty. Part

2 - XBee Zigbee THT modules
(S2C)

1 - XBee Zigbee SMT module
(S2C)

- 3 XBee3 Zigbee SMT module

3 3 Micro USB cables

- 3 Antenna - 2.4 GHz, half-wave
dipole, 2.1 dBi, U.FL female,
articulating

Kit contents

XBee® Zigbee® Mesh Kit 15

S2C
Zigbee Kit
Qty.

XBee3
Zigbee Kit
Qty. Part

2 2 XBee stickers

XBee Meshkit devices come in two hardware footprints: through-hole and surface mount.

n Through-hole technology (THT) XBee devices include the 20-pin socket and require holes for
mounting the component on the printed circuit board (PCB), although it is common for the
carrier board to contain a female socket.

n Surface-mount technology (SMT) XBee devices include 37 pads and are placed directly on the
PCB. They do not require holes or sockets for mounting the component.

Introduction to XBee devices

XBee modules are small radio frequency (RF) devices that transmit and receive data over the air using
radio signals. Wireless capability is essential whenever you want to place sensors where no cables can
be installed, or where such tethering is undesirable.
XBee devices are highly configurable and support multiple protocols, which lets you choose the right
technology for your application—whether you want to set up a pair of radios to swap data or design a
large mesh network with multiple devices.

Here are some of the ways you can use XBee devices:

n Controlling a robot remotely or creating wearable electronics for people, pets, or wildlife,
without hindering movement.

n Making a building smarter and more responsive to human interaction.
n Using XBee technology in industrial solutions. For example, XBee devices are used as sensors

to monitor industrial tanks for liquid levels, temperature, and pressure, and to monitor and
control complex machines such as wind turbines.

XBee® Zigbee® Mesh Kit 16

Zigbee in a nutshell

Zigbee is an open global standard for low-power, low-cost, low-data-rate, wireless mesh networking
based on the IEEE 802.15.4 standard. It represents a network layer above the 802.15.4 layers to
support advanced mesh routing capabilities. The Zigbee specification is developed by a growing
consortium of companies that make up the Zigbee Alliance. The Alliance is made up of over 300
members, including semiconductor, module, stack, and software developers.
Through its mesh and routing capabilities, Zigbee allows the transmission of data over long distances
by passing the data through a mesh network of intermediate nodes to reach more distant nodes.
Transmission distance ranges from 1200 to 3200 line-of-sight meters (5280 to 10560 feet). Zigbee
supports multiple network topologies such as point-to-point, point-to-multipoint, and mesh networks
and allows up to 65,000 nodes per network.
Zigbee is designed to provide the following features:

n High reliability
n Low power consumption
n Low cost
n High security
n Simple protocol, global implementation

Mesh networking
A mesh network is a topology in which each node in the network is connected to other nodes around
it. Each node cooperates in the transmission of information. Mesh networking provides three
important benefits:

n Routing. With this technique, the message is propagated along a path by hopping from node
to node until it reaches its final destination.

n Ad-hoc network creation. This is an automated process that creates an entire network of
nodes on the fly, without any human intervention.

n Self-healing. This process automatically figures out if one or more nodes on the network is
missing and reconfigures the network to repair any broken routes.

XBee® Zigbee® Mesh Kit 17

Zigbee in a nutshell Zigbee stack layers

XBee® Zigbee® Mesh Kit 18

With mesh networking, the distance between two nodes does not matter as long as there are enough
nodes in between to pass the message along. When one node wants to communicate with another,
the network automatically calculates the best path.
A mesh network is also reliable and offers redundancy. If a node can no longer operate, for example
because it has been removed from the network or because a barrier blocks its ability to communicate,
the rest of the nodes can still communicate with each other, either directly or through intermediate
nodes.

Note Mesh networks use more bandwidth for administration and therefore have less available for
payloads. They can also be more complex to configure and debug in some cases.

Zigbee stack layers
Most network protocols use the concept of layers to separate different components and functions into
independent modules that can be assembled in different ways.
Zigbee is built on the Physical (PHY) layer and Medium Access Control (MAC) sub-layer defined in the
IEEE 802.15.4 standard. These layers handle low-level network operations such as addressing and
message transmission/reception.
The Zigbee specification defines the Network (NWK) layer and the framework for the application layer.
The Network layer takes care of the network structure, routing, and security. The application layer
framework consists of the Application Support sub-layer (APS), the Zigbee Device Objects (ZDO) and
user-defined applications that give the device its specific functionality.

Zigbee in a nutshell Device types

XBee® Zigbee® Mesh Kit 19

For more information about the Zigbee stack layers, read the Zigbee communication in depth section.

Device types
Zigbee defines three different device types: coordinator, router, and end device.

Coordinator
Zigbee networks always have a single coordinator device. This device:

n Starts the network, selecting the channel and PAN ID.
n Distributes addresses, allowing routers and end devices to join the network. Assists in routing

data.
n Buffers wireless data packets for sleeping end device children.
n Manages the other functions that define the network, secure it, and keep it healthy. This device

cannot sleep and must be powered on at all times.

Router
A router is a full-featured Zigbee node. This device:

n Can join existing networks and send, receive, and route information. Routing involves acting as
a messenger for communications between other devices that are too far apart to convey
information on their own.

n Can buffer wireless data packets for sleeping end device children. Can allow other routers and
end devices to join the network.

Zigbee in a nutshell Device types

XBee® Zigbee® Mesh Kit 20

n Cannot sleep and must be powered on at all times.
n May have multiple router devices in a network.

End device
An end device is essentially a reduced version of a router. This device:

n Can join existing networks and send and receive information, but cannot act as messenger
between any other devices.

n Cannot allow other devices to join the network.
n Uses less expensive hardware and can power itself down intermittently, saving energy by

temporarily entering a non responsive sleep mode.
n Always needs a router or the coordinator to be its parent device. The parent helps end devices

join the network, and stores messages for them when they are asleep.

Zigbee networks may have any number of end devices. In fact, a network can be composed of one
coordinator, multiple end devices, and zero routers.
An example of such a network is shown in the following diagram:

Note Each Zigbee network must be formed by one, and only one, coordinator and at least one other
device (router or end device).

Get started with XBee Zigbee

Use the following steps to set up your environment and assemble the hardware to perform your first
XBee application.

Assemble the hardware
This guide walks you through the steps required to assemble and disassemble the hardware
components of your kit.

n Plug in the XBee module
n How to unplug an XBee device

The kit includes several XBee Grove Development Boards. For more information about this hardware,
see the XBee Grove Development Board documentation.

Plug in the XBee module
This kit includes several XBee Grove Development Boards. For more information about this hardware,
visit the XBee Grove Development Board documentation.
Follow these steps to connect the XBee devices to the boards included in the kit:

1. Plug one XBee Zigbee Mesh Kit module into the XBee Grove Development Board.

Make sure the board is NOT powered (either by the micro USB or a battery) when
you plug in the XBee module.

XBee THT modules have a flat edge and a more angular/diagonal edge. Match that footprint
with the white lines on your board and carefully insert it, taking care not to bend any of the
pins.

XBee® Zigbee® Mesh Kit 21

https://docs.digi.com/display/XBeeHardware/XBee+Grove+Development+Board

Get started with XBee Zigbee Assemble the hardware

XBee® Zigbee® Mesh Kit 22

For XBee SMT modules, align all XBee pins with the spring header and carefully push the
module until it is hooked to the board.

2. Once the XBee module is plugged into the board (and not before), connect the board to your
computer using the micro USB cables provided.

3. Ensure the loopback jumper is in the UART position.

4. Connect an antenna (if applicable).

How to unplug an XBee device
To disconnect your XBee device from the XBee Grove Development board:

1. Disconnect the micro USB cable (or the battery) from the board so it is not powered.
2. Remove the XBee device from the board socket, taking care not to bend any of the pins.

CAUTION! Make sure the board is not powered when you remove the XBee device.

Get started with XBee Zigbee Download and install XCTU

XBee® Zigbee® Mesh Kit 23

Download and install XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to interact
with Digi radio frequency (RF) devices through a graphical interface. The application includes built-in
tools that make it easy to set up, configure, and test Digi RF devices.
For instructions on downloading and using XCTU, see the XCTU User Guide.
Once you have downloaded XCTU, run the installer and follow the steps to finish the installation
process.
After you load XCTU, a message about software updates appears. We recommend you always update
XCTU to the latest available version.

Example: basic communication
The goal of this first example is to learn how to set up a simple Zigbee network and transmit data
between the nodes. You will assemble the hardware and connect it to your computer, configure the
XBees for wireless communication, create a network, and start sending messages.
Use the steps in this section to set up the XBees and send messages using XCTU.

Note Several steps contain videos to help you successfully complete the example. If you get stuck, see
Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Three XBee Zigbee Mesh Kit modules
n Three XBee Grove Development Boards
n Three micro USB cables
n One computer

Software

n XCTU 6.3.1 or later

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. For more information, see Plug in the XBee
module.

2. After connecting the modules to your computer, open XCTU.

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
http://www.digi.com/xctu

Get started with XBee Zigbee Example: basic communication

XBee® Zigbee® Mesh Kit 24

3. Make sure you are in Configuration working mode.

Step 3: Add the XBee modules to XCTU
Use XCTU to find your XBee modules and add them to the tool.

1. Click Discover radio modules from the toolbar.

2. In the Discover radio modules dialog, select the serial port(s) in which you want to look for
radio modules. If you do not know the serial ports where your modules are attached, select all
ports. Click Next.

3. In the Set port parameters window, maintain the default values and click Finish.
4. As XCTU locates radio modules, they appear in the Discovering radio modules… dialog box.

Once the discovery process has finished, click Add selected devices.
5. At this point, assuming you have three modules connected to your computer, you should see

something like this in the Radio Modules section on the left:

Note The function, port number and the MAC address displayed for your modules need not match
those shown in the picture.

Getstarted
w
ith

XBee
Zigbee

Exam
ple:basic

com
m
unication

XBee®
Zigbee®

M
esh

Kit
25

Step 4: Configure the XBee modules
To transmit data wirelessly between your XBee modules, you must configure them to be in the same network. Remember that in Zigbee one device must
be the coordinator, and the rest can be routers or end devices. In this case, you will have one router and one end device configured to send data to the
coordinator.

1. Restore the default settings of all XBee modules with the Load default firmware settings button at the top of the Radio Configuration
section.

2. Use XCTU to configure the following parameters:

Param XBee A XBee B XBee C Effect

ID 2015 2015 2015 Defines the network that a radio will attach to. This must be the same for all radios in your network.

JV — Enabled
[1]

Enabled
[1]

Verifies if a coordinator exists on the same channel to join the network or to leave if it cannot be found.

CE Enabled
[1]

— — Sets the device as coordinator.

DH — 0 0 Defines the destination address (high part) to transmit the data to.

DL — 0 0 Defines the destination address (low part) to transmit the data to. The address 0000000000000000 can
be used to address the coordinator.

NI COORD ROUTER END_
DEVICE

Defines the node identifier, a human-friendly name for the module.

The default NI value is a blank space. Make sure to delete the space when you change the
value.

SP 1F4 1F4 1F4 Defines the duration of time spent sleeping. 1F4 (hexadecimal) = 500 (decimal) x 10 ms = 5 seconds.

SM — — Cyclic
sleep [4]

Enables cyclic sleep mode in the end device.

SO — — 2 Keeps the module awake during the entire period.

Getstarted
w
ith

XBee
Zigbee

Exam
ple:basic

com
m
unication

XBee®
Zigbee®

M
esh

Kit
26

Note The dash (—) in the table means to keep the default value. Do not change the default value.

3. Write the settings of all XBee modules with the Write radio settings button at the top of the Radio Configuration section.

Get started with XBee Zigbee Example: basic communication

XBee® Zigbee® Mesh Kit 27

Step 5: Check the network
Once you have configured your XBee modules, use XCTU to verify that they are in the same network
and can see each other.

1. Click the Discover radio nodes in the same network button of the first radio module.
The device searches for radio modules in the same network.

When the discovery process is finished, XCTU lists discovered devices found within the network
in the Discovering remote devices dialog. You do not need to add the remote device that has
been discovered.

2. Close the dialog by clicking Cancel.

Step 6: Send messages
In order to send messages to the coordinator, use the XCTU console or any serial port terminal
application such as CoolTerm or TeraTerm (for Windows only). In this case, we will use the XCTU
console.
To send messages to the coordinator:

Get started with XBee Zigbee Example: basic communication

XBee® Zigbee® Mesh Kit 28

1. If XCTU is not already running, open it.
2. Switch to the Consoles working mode.

This working mode of XCTU allows you to communicate with the radio modules in the
devices list. XCTU loads a list of consoles in the working area—one for each module of the
devices list, sorted in a tabbed format.

3. If it is not already there, add an XBee to XCTU so it is listed in the Radio Modules list.
4. Then, open the serial connection of the radio module: select the XBee in the Radio

Modules section, and click the Open serial connection button.

The background changes to green to indicate that the connection is open.
5. Repeat steps 3 and 4 for the others XBee modules.

6. You will see the consoles in three tabs. Click the Detach view button to see multiple tabs at
the same time.

7. Use the Console log section to type messages.
Type something like Hi, this is XXX! in the ROUTER or END_DEVICE console. The XBee sends
every character to COORD and XCTU displays those characters in the corresponding device
console.

Get started with XBee Zigbee Example: basic communication

XBee® Zigbee® Mesh Kit 29

To disconnect, click the Close serial connection button on for each console.

Note If an END_DEVICE is asleep when you type in its console, the message will not be sent to the
coordinator. To wake up the module, press the Commissioning button of the XBee Grove
Development Board the end device is plugged into.
To identify the END_DEVICE module, look for the board where the On/Sleep LED is ON for five seconds
and OFF for another five seconds.

How XBee devices work

This section describes how XBee devices communicate, and introduces two communication methods -
wireless and serial communication. Both communication types are important in the function of XBee
devices.

How XBee devices communicate 31
Wireless communication 31
Serial communication 33

XBee® Zigbee® Mesh Kit 30

How XBee devices work How XBee devices communicate

XBee® Zigbee® Mesh Kit 31

How XBee devices communicate
XBee devices communicate with each other over the air, sending and receiving wireless messages. The
devices only transfer those wireless messages; they cannot manage the received or sent data.
However, they can communicate with intelligent devices via the serial interface.
XBee devices transmit data coming from the serial input over the air, and they send anything received
wirelessly to the serial output. Whether for communication purposes or simply for configuring the
device, a combination of both processes makes XBee communication possible. In this way, intelligent
devices such as microcontrollers or PCs can control what the XBee device sends and manage
incoming wireless messages.
With this information, you can identify the two types of wireless data transmission in an XBee
communication process:

1. Wireless communication: This communication takes place between XBee modules. Modules
that are supposed to work together need to be part of the same network and they must use
the same radio frequency. All modules that meet these requirements can communicate
wirelessly with each other.

2. Serial communication: This communication takes place between the XBee module and the
intelligent device connected to it through the serial interface.

Wireless communication
XBee modules communicate with each other over the air, transmitting and receiving information via
modulation of waves in the electromagnetic spectrum. In other words, they act as radio frequency
(RF) devices. For data to transmit from one XBee module to another, both modules must be in the
same network.
This section describes the key concepts to understand as you learn how to manage a network and
transmit information between XBee modules.

Addressing
XBee device addresses are similar to postal and email addresses for people. Some addresses are
unique, like an email address, but others are not. For example, several people can live at the same
postal address.
Each XBee device is known by several different addresses, each of which serves a purpose.

Type Example Unique

64-bit 0013A20012345678 Always

16-bit 1234 Yes, but only within a network

Node identifier Bob's module Uniqueness not guaranteed

How XBee devices work Wireless communication

XBee® Zigbee® Mesh Kit 32

64-bit address
Every XBee device has a 64-bit address to distinguish it from others and prevent duplicate
information. That address (also called MAC) is assigned to Digi by the IEEE and is guaranteed to be
unique, so two devices cannot have the same address.
You can determine the value of the 64-bit address by reading the Serial Number High (SH) and Serial
Number Low (SL) parameters on any device. It is also printed on the back of the device.

Note The concatenation of SH + SL forms the 64-bit or MAC address of the device. It is stored in the
device's memory as two 32-bit values: the high part, SH, and the low part, SL. The high part is usually
the same for all XBee devices (0013A200), as this is the prefix that identifies Digi devices. The low part
is different for every device.

The 64-bit address of 000000000000FFFF is reserved for sending a broadcast message.

16-bit address
A device receives a random 16-bit address when it joins a Zigbee network, so this address is also
knows as "network address." This address can only change if an address conflict is detected or if a
device leaves the network and later joins (it can receive a different address).
The value of the 16-bit address can be read through the 16-bit Network Address (MY) parameter. The
16-bit address of 0000 is reserved to the coordinator, while a value of FFFE means the device has not
joined a PAN.

Node identifier
The node identifier is a short string of text that allows users to address the module with a more
human-friendly name. In this case, uniqueness is not guaranteed because you can assign the same
node identifier to several modules.
You can read or set the value of the node identifier through the Node Identifier (NI) parameter.

PAN Addresses
Zigbee networks are called personal area networks or PANs. A unique PAN identifier (PAN ID) defines
each network and the identifier is common among all devices of the same network. Zigbee devices are
either preconfigured with a PAN ID to join, or they can discover nearby networks and select a PAN ID
to join.
The value of the personal area network can be set through the PAN ID (ID) parameter. If this value is 0,
the XBee automatically selects the PAN ID, so you can read it using the Operating PAN ID (OP)
parameter.

How XBee devices work Serial communication

XBee® Zigbee® Mesh Kit 33

Channels
For the devices to be able to communicate, they must operate in the same frequency. XBee S2C/S2D
and XBee3 devices support all 16 channels defined in the 802.15.4 physical layer, with the following
exceptions:

n Channel 26 has reduced maximum output power on the S2C/S2D parts (~3dBm).
n S2C XBee-PRO device supports 15 of the 16 channels; it does not support channel 26.
n XBee3-PRO parts support channel 26, but at a reduced maximum output power (~8dBm).

To determine the specific channel where the device is operating, you must read the Operating
Channel (CH) parameter. Unlike 802.15.4, the CH parameter cannot be written in the Zigbee
application. However, you can select the operating channel by setting a single bit in the SC parameter.
That single bit forces a coordinator to operate on the channel specified by the single bit. It also
prevents routers and end devices from joining a network on any channel but the one specified in SC. If
the selected channel is not important, you can use the SC parameter to select multiple channels.

Serial communication
An XBee module can operate as a stand-alone device or it can be attached to an intelligent device. For
example, you can place several battery-powered XBee modules in remote locations to gather data
such as temperature, humidity, light, or liquid level.

n When operating as a stand-alone device, an XBee module simply sends sensor data to a central
node.

n When an XBee module is connected to an intelligent device (such as a computer, Arduino, or
Raspberry Pi), it uses serial communication:
l The intelligent device sends data through the serial interface to the XBee module to be

transmitted to other devices over the air.
l The XBee module receives wireless data from other devices, and then sends the data

through the serial interface to the intelligent device.

The XBee modules interface to a host device such as a microcontroller or computer through a logic-
level asynchronous serial port. They use a UART for serial communication with those devices.
For additional information about serial communication, go to the XBee/XBee-PRO Zigbee RF Module.
Microcontrollers attached to an XBee module can process the information received by the module and
thus monitor or even control remote devices by sending messages through their local XBee module.
For prototyping, you can use external microcontrollers such as Arduino or Raspberry Pi, sockets, and
breadboards.

The boards included in this kit allow you to use the XBee modules in either mode:

http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://ftp1.digi.com/support/documentation/90002002.pdf

How XBee devices work Serial communication

XBee® Zigbee® Mesh Kit 34

n If you plug the modules into the boards and connect them to a computer or microcontroller
using the micro USB cables, you can configure the XBee modules, test the connection, and
send/receive data to/from other modules.

n If you plug the modules into the boards and connect them to a battery, the XBee modules work
autonomously. For example, they can gather data from a sensor and send it to a central node.

Operating modes
XBee devices can use their local serial connection in very different ways. The "operating mode"
establishes the way the host device communicates with an XBee module through the serial interface.
XBee modules support two different operating modes:

n Application Transparent ("transparent mode")
n Application Programming Interface ("API mode")

Application Transparent operating mode
This mode is called "transparent" because the radio passes information along exactly as it receives it.
All serial data received by the radio module is sent wirelessly to a remote destination XBee module.
When the other module receives the data, it is sent out through the serial port exactly as it was
received. Transparent mode has limited functionality but is an easy way to get started with XBee
devices.

To learn more about transparent mode, see XBee transparent mode.

API operating mode
Application Programming Interface (API) operating mode is an alternative to transparent mode. In API
mode, a protocol determines the way information is exchanged. Data is communicated in packets
(commonly called API frames). This mode allows you to form larger networks and is more appropriate
for creating sensor networks to perform tasks such as collecting data from multiple locations,
controlling devices remotely, or automating your home.

How XBee devices work Serial communication

XBee® Zigbee® Mesh Kit 35

To learn more about API mode, see API mode.

Comparison of transparent and API modes
XBee devices can use transparent or API operating mode to transmit data over the serial interface. You
can use a mixture of devices running API mode and transparent mode in a network. The following
table provides a comparison of the two modes.

Transparent operating mode API operating mode

When to use:

n Conditions for using API mode do
not apply.

When to use:

n Sends wireless data to multiple destinations.
n Configures remote XBee devices in the network.
n Receives wireless data packets from multiple XBee

devices, and the application needs to identify
which devices send each packet.

n Receives I/O samples from remote XBee devices.
n Must support multiple endpoints, clusters, and/or

profiles (for Zigbee modules).
n Uses Zigbee Device Object (ZDO) services (for

Zigbee modules).

Advantages:

n Provides a simple interface that
makes it easy to get started with
XBee devices.

n Easy for an application to
support; what you send is exactly
what other modules get, and vice
versa.

n Works very well for two-way
communication between XBee
devices.

Advantages:

n Can set or read the configuration of remote XBee
devices in the network.

n Can transmit data to one or multiple destinations;
this is much faster than transparent mode where
the configuration must be updated to establish a
new destination.

n Received data includes the sender's address.
n Received data includes transmission details and

reasons for success or failure.
n Several advanced features, such as advanced

networking diagnostics, and firmware upgrades.

How XBee devices work Serial communication

XBee® Zigbee® Mesh Kit 36

Transparent operating mode API operating mode

Disadvantages:

n Cannot set or read the
configuration of remote XBee
devices in the network.

n Must first update the
configuration to establish a new
destination and transmit data.

n Cannot identify the source of
received data, as it does not
include the sender's address.

n Received data does not include
transmission details or the
reasons for success or failure.

n Does not offer the advanced
features of API mode, including
advanced networking
diagnostics, and firmware
upgrades.

Disadvantages:

n Interface is more complex; data is structured in
packets with a specific format.

n More difficult to support; transmissions are
structured in packets that need to be parsed (to
get data) or created (to transmit data).

n Sent data and received data are not identical;
received packets include some control data and
extra information.

XBee transparent mode

This section provides additional detail about XBee transparent mode. For a comparison of transparent
and API modes, see Serial communication.

XBee transparent mode in detail 38
Command mode 39

XBee® Zigbee® Mesh Kit 37

XBee transparent mode XBee transparent mode in detail

XBee® Zigbee® Mesh Kit 38

XBee transparent mode in detail
When operating in transparent mode, an XBee module acts as a serial line replacement. All data
received through the serial input is immediately transmitted over the air. When the XBee module
receives wireless data, it is sent out through the serial interface exactly at it is received. In fact,
communication in transparent mode yields the same result as if the two modules were connected by
a wire, but wireless communication makes that physical wire unnecessary.

For two XBee modules to communicate, the sending module needs the address of the recipient. When
working in transparent mode, you must configure this address in the module that is communicating.
XBee modules can store the complete 64-bit address of the destination module. This address must be
programmed in two parameters: Destination Address High (DH) and Destination Address Low (DL).
If you want modules A and B to communicate, configure the destination address (DH + DL) of XBee A
as the MAC address (SH + SL) of XBee B, and vice versa.

Transparent mode has some limitations. For example, when you are working with several modules,
you must configure the destination before sending each message. However, transparent mode
provides an easy way to get started with XBee devices for the following reasons:

n Operation is very simple.
n What you send is exactly what the other modules get.
n Compatible with any device that can communicate over a serial interface.
n Works very well when facilitating communication between two XBee modules.

What have you learned?
n An XBee communicates remotely with other XBees via wireless and locally with the intelligent

device (microcontroller, computer) connected to it via the serial interface.
n To communicate wirelessly, your modules must be part of the same network, so the ID and CH

parameters must have identical values for all XBees in the network.
n Every XBee module has a unique 64-bit address called MAC that distinguishes it from the rest of

the devices. This address is formed by the concatenation of the parameters SH (Serial Number
High) and SL (Serial Number Low).

n The operating mode of an XBee establishes the way to communicate with the module through
the serial interface.

XBee transparent mode Command mode

XBee® Zigbee® Mesh Kit 39

n There are two different operating modes: Transparent and API (Application Programming
Interface).

n Transparent mode can be used as a serial cable replacement. What is sent through an XBee
serial input is wirelessly received by the destination module and then sent out to its serial
output exactly as it was transmitted from the first XBee (and vice versa).

n In order to communicate using transparent mode, you must pre-configure each of your devices
by setting the parameters DH and DL on the first module with the SH and SL values of the
other one respectively, and vice versa.

Extend the basic communication example
If you're ready to move beyond this exercise and extend the example, try the following:

n Use Arduino or Raspberry Pi instead of a computer to transmit data wirelessly.
n Use your XBees as a cable replacement for your serially communicating applications. For

example, if you have an Arduino application that controls room lighting via the serial port,
replace the serial cable with XBees and move your Arduino around the house.

n Try using XBees to send wireless messages to your friends and neighbors.

Command mode
An XBee device in Transparent mode simply passes information along exactly as it receives it. So,
what you send is what other devices get. But sometimes you want to talk directly to the local device
without sending data. For example, you may need to modify its configuration or alter the way it
behaves. In that case, the XBee device needs to know that this communication should not be
transmitted wirelessly.
Command mode is a state in which incoming characters are interpreted as commands. To get a device
to switch into this mode, you must issue a unique string of text in a special way: +++. When the device
sees a full second of silence in the data stream followed by the string +++ (without Enter or Return)
and another full second of silence, it knows to stop sending data through and start accepting
commands locally.

Guard time silence Command sequence Guard time silence

One second before +++ One second after

Do not press Return or Enter after typing the +++ because it will interrupt the guard time
silence and prevent the module from entering Command mode.

Once the device is in Command mode, it listens for user input for a while. If 10 seconds go by without
any user input, the device automatically drops out of Command mode and returns to Transparent
mode.

AT commands
The purpose of command mode is to read or change the configuration of the local XBee device. Every
module has a number of settings, like channel or network ID, that define its behavior. These settings
are identified by two characters, for example, CH for channel, and ID for network ID.

XBee transparent mode Command mode

XBee® Zigbee® Mesh Kit 40

When you want to read or set any setting of the XBee module, you must send it an AT command.
Every AT command starts with the letters "AT" followed by the two characters that identify the
command being issued and then by some optional configuration values.

For example, to read and set the network ID setting:

// Enter command mode
+++OK

// Read the ID setting
ATID <Enter>
0

// Change the ID setting
ATID 2015 <Enter>
OK

Basic AT commands

n AT
This command checks the connection with the module. This is like asking "Are you there?" and
the device replying "Yes." When you send this command, the module simply replies OK. If you
don't see an OK in response, you have probably timed out of command mode. Type the +++ to
go back into it.

n ATCN
This command explicitly exits the module from command mode. Remember that if you don't
type anything for 10 seconds, the device automatically drops out of Command mode.

n ATWR
This command writes the current configuration to non-volatile memory so that it persists the
next time the device powers up. Otherwise, parameters are restored to previously saved values
after the device is reset.

Use AT commands
In the first example in this kit, you used XCTU to configure some settings of each of your modules,
such as the network ID. XCTU uses AT commands in the background to read and set the settings. For
example, when you changed the value of that parameter and clicked the Write button, XCTU went into
command mode using +++, changed the value of the setting with the ATID command, wrote the
setting with the ATWRcommand, and finally exited command mode with the ATCN command.

XBee transparent mode Command mode

XBee® Zigbee® Mesh Kit 41

XCTU simplifies the configuration of the XBee modules so you don't have to use command mode or AT
commands to configure them. However, you can always configure an XBee module through any serial
port terminal application or the XCTU console.
The following example demonstrates how you can perform some of the configuration steps outlined
in the first lab but via command mode and using AT commands:

1. In the Consoles working mode of XCTU, click the Open the serial connection with the radio

module button.
2. Use +++ to enter into command mode and wait for an OK response.
3. To set a register, type an AT command followed by the value you want to set; for example,

ATID 2015; followed by a Return.
4. To read a register, type an AT command; for example, ATID; followed by a Return.
5. Use the ATWR command to write the new configuration to the module's memory.
6. Exit command mode with the ATCN command.

Note You should get an OK response after issuing each command to set parameters, write the
changes, or exit from command mode. If not, you most likely took more than 10 seconds to issue the
command and you have dropped out of command mode.

API mode

This section provides additional detail about API mode and lets you put your knowledge into practice.
For a comparison of transparent and API modes, see Serial communication.

API mode in detail 43
API frame structure 45
Supported frames 48
Frame examples 49
Operating mode configuration 54
XBee frame exchange 58

XBee® Zigbee® Mesh Kit 42

API mode API mode in detail

XBee® Zigbee® Mesh Kit 43

API mode in detail
API mode provides a structured interface where data is communicated through the serial interface in
organized packets and in a determined order. This enables you to establish complex communication
between devices without having to define your own protocol.
By default, XBee devices are configured to work in transparent mode: all data received through the
serial input is queued up for radio transmission and data received wirelessly is sent to the serial
output exactly as it is received, with no additional information.
Because of this behavior, devices working in Transparent mode have some limitations:

1. To read or write the configuration of an device in Transparent mode, you must first transition
the device into Command mode.

2. If a device needs to transmit messages to different devices, you must update its configuration
to establish a new destination. The device must enter Command mode to set up the
destination.

3. A device operating in Transparent mode cannot identify the source of a wireless message it
receives. If it needs to distinguish between data coming from different devices, the sending
devices must include extra information known by all the devices so it can be extracted later. To
do this, you must define a robust protocol that includes all the information you think you need
in your transmissions.

To minimize the limitations of the transparent mode, devices provide an alternative mode called
Application Programming Interface (API). API mode provides a structured interface where data is
communicated through the serial interface in organized packets and in a determined order. This
enables you to establish complex communication between modules without having to define your
own protocol.

API mode provides a much easier way to perform the actions listed above:

1. Since there are different frames for different purposes (such as configuration and
communication), you can configure a device without entering Command mode.

2. Since the data destination is included as part of the API frame structure, you can use API mode
to transmit messages to multiple devices.

3. The API frame includes the source of the message so it is easy to identify where data is coming
from.

Advantages of API mode
n Configure local and remote XBee devices in the network.
n Manage wireless data transmission to one or multiple destinations.
n Identify the source address of each received packet.
n Receive success/failure status of each transmitted packet.

API mode API mode in detail

XBee® Zigbee® Mesh Kit 44

n Obtain the signal strength of any received packet.
n Perform advanced network management and diagnosis.
n Perform advanced functions such as remote firmware update, ZDO, ZCL and so on.

APIm
ode

APIfram
e
structure

XBee®
Zigbee®

M
esh

Kit
45

API frame structure
The structured data packets in API mode are called frames. They are sent and received through the serial interface of the device and contain the wireless
message itself as well as some extra information such as the destination/source of the data or the signal quality.
When a device is in API mode, all data entering and leaving the module through the serial interface is contained in frames that define operations or
events within the device.
An API frame has the following structure:

Start
delimiter Length Frame data Checksum

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API-specific structure Single byte

Note MSB represents the most significant byte, and LSB represents the least significant byte.

Any data received through the serial interface prior to the start delimiter is silently discarded by the XBee. If the frame is not received correctly, or if the
checksum fails, the data is also discarded and the module indicates the nature of the failure by replying with another frame.

Start delimiter
The start delimiter is the first byte of a frame consisting of a special sequence of bits that indicate the beginning of a data frame. Its value is always 0x7E.
This allows for easy detection of a new incoming frame.

Length
The length field specifies the total number of bytes included in the frame data field. Its two-byte value excludes the start delimiter, the length, and the
checksum.

Frame data
This field contains the information received or to be transmitted. Frame data is structured based on the purpose of the API frame:

APIm
ode

APIfram
e
structure

XBee®
Zigbee®

M
esh

Kit
46

Start
delimiter Length

Frame data

Checksum
Frame
type Data

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API
frame
type

Frame-type-specific data Single
byte

Note MSB represents the most significant byte, and LSB represents the least significant byte.

n Frame type is the API frame type identifier. It determines the type of API frame and indicates how the information is organized in the Data field.
n Data contains the data itself. The information included here and its order depends on the type of frame defined in the Frame type field.

Checksum
Checksum is the last byte of the frame and helps test data integrity. It is calculated by taking the hash sum of all the API frame bytes that came before it,
excluding the first three bytes (start delimiter and length).

Note Frames sent through the serial interface with incorrect checksums will never be processed by the module and the data will be ignored.

Calculate the checksum of an API frame

1. Add all bytes of the packet, excluding the start delimiter 0x7E and the length (the second and third bytes).
2. From the result, keep only the lowest 8 bits.
3. Subtract this quantity from 0xFF.

Example: Checksum calculation
To calculate the checksum for the given frame:

Start Delimiter Length

Frame Data

ChecksumFrame type Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 44 42 -

APIm
ode

APIfram
e
structure

XBee®
Zigbee®

M
esh

Kit
47

1. Add all bytes excluding the start delimiter and the length: 17 + 01 + 00 + 13 + A2 + 00 + 40 + AD + 14 + 2E + FF + FE+ 02 + 44 + 42 = 481
2. From the result, keep only the lowest 8 bits: 81.
3. Subtract that result from 0xFF: FF - 81 = 7E

In this example, 0x7E is the checksum of the frame.

Verify the checksum of a given API frame

1. Add all bytes including the checksum (do not include the delimiter and length).
2. If the checksum is correct, the last two digits on the far right of the sum will equal FF.

Example: Checksum verification
In our example above, we want to verify the checksum is 7E.

Start Delimiter Length

Frame Data

ChecksumFrame type Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 44 42 7E

1. Add all data bytes and the checksum: 17 + 01 + 00 + 13 + A2 + 00 + 40 + AD + 14 + 2E + FF + FE + 02 + 44 + 42 + 7E = 4FF
2. Since the last two far right digits of 4FF are FF, the checksum is correct.

API mode Supported frames

XBee® Zigbee® Mesh Kit 48

Supported frames
Support for API frame types depends on the type of XBee you are using. The 802.15.4 XBee modules
included in this kit support the following API frames:
Transmit data frames are sent through the serial input, with data to be transmitted wirelessly to
remote XBees:

API ID Frame name Description

0x08 AT Command Queries or sets parameters on the local XBee

0x09 AT Command Queue
Parameter Value

Queries or sets parameters on the local XBee without applying
changes

0x10 Transmit Request Transmits wireless data to the specified destination

0x11 Explicit Addressing
Command Frame

Allows Zigbee application layer fields (endpoint and cluster ID) to
be specified for a wireless data transmission

0x17 Remote AT Command
Request

Queries or sets parameters on the specified remote XBee module

0x21 Create Source Route Creates a source route in the module

0x24 Register Joining
Device

Registers a module with the Trust Center

Receive data frames are received through the serial output, with data received wirelessly from remote
XBees:

API ID Frame name Description

0x88 AT Command Response Displays the response to previous AT command frame

0x8A Modem Status Displays event notifications such as reset, association,
disassociation, and so on.

0x8B Transmit Status Indicates wireless data transmission success or failure

0x90 Receive Packet Sends wirelessly received data out the serial interface (AO = 0)

0x91 Explicit Rx Indicator Sends wirelessly received data out the serial interface when
explicit mode is enabled (AO 0)

0x92 IO Data Sample Rx
Indicator

Sends wirelessly received IO data out the serial interface

0x94 XBee Sensor Read
Indicator

Sends wirelessly received sensor sample (from a Digi 1-wire
sensor adapter) out the serial interface

0x95 Node Identification
Indicator

Displays received node identification message when explicit
mode is disabled (AO = 0)

API mode Frame examples

XBee® Zigbee® Mesh Kit 49

API ID Frame name Description

0x97 Remote AT Command
Response

Displays the response to previous remote AT command requests

0x98 Extended Modem Status Displays what is happening during the association when Verbose
Join is enabled (DC10)

0xA0 Over-the-Air Firmware
Update Status

Provides a status indication of a firmware update transmission
attempt

0xA1 Router Record Indicator Displays the multiple route hopes after a Zigbee route record
command

0xA3 Many-to-One Route
Request Indicator

Indicates a many-to-one route request is received

0xA5 Join Notification Status Indicates a module attempts to join, rejoin, or leave the network

For more information about the structure of some of these frames, see the XBee/XBee-PRO Zigbee RF
Module User Guide.

Frame examples
The following examples of sent and received API frames are expressed in hexadecimal format.
Example: 0x10 - Transmit Request
The following frame is a Transmit Request frame with the following characteristics:
7E 00 13 10 01 00 13 A2 00 40 DA 9D 23 A6 B9 00 00 48 65 6C 6C 6F 0C

n The frame ID is 0x01, so the sender will receive a Transmit Status frame with the result of the
transmission.

n The destination XBee has a 64-bit address of 00 13 A2 00 40 DA 9D 23 and 16-bit address of A6
B9.

n It does not specify any option.
n The data to transmit is 'Hello' (48 65 6C 6C 6F).

Frame fields Offset Example Description

Start
delimeter

0 0x7E

Length MSB 1 0x00 Number of bytes between the length
and the checksum

LSB 2 0x13

https://www.digi.com/resources/documentation/DigiDocs/90002002/Default.htm
https://www.digi.com/resources/documentation/DigiDocs/90002002/Default.htm

API mode Frame examples

XBee® Zigbee® Mesh Kit 50

Frame fields Offset Example Description

Frame data Frame type 3 0x10 0x10 - Indicates this is a Transmit
Request frame

Frame ID 4 0x01 Identifies the data frame for the host
to correlate with a subsequent
Transmit Status (0x8B) frame.

Setting Frame ID to '0' will disable
response frame.

64-bit
Destination
address

MSB 5 0x00 Set to the 64-bit address of the
destination XBee
The following addresses are also
supported:

n 0x0000000000000000 -
Coordinator address

n 0x000000000000FFFF -
Broadcast address

n 0xFFFFFFFFFFFFFFFF -
Unknown address if the
destination's 64-bit address is
unknown

6 0x13

7 0xA2

8 0x00

9 0x40

10 0xDA

11 0x9D

LSB 12 0x23

16-bit
Destination
address

MSB 13 0xA6 Set to the 16-bit address of the
destination XBee, if known.
The following addresses are also
supported:

n 0x0000 - Coordinator address
n 0xFFFE - Unknown address if

the destination's 16-bit
address is unknown, or if
sending a broadcast

LSB 14 0xB9

Broadcast
Radius

15 0x00 Sets the maximum number of hops a
broadcast transmission can occur. If
set to '0', the broadcast radius will
be set to the maximum hops value.

API mode Frame examples

XBee® Zigbee® Mesh Kit 51

Frame fields Offset Example Description

Options 16 0x00 Bitfield of supported transmission
options

Supported values include the
following:

n 0x01 - Disable retries
n 0x20 - Enable APS encryption

(if EE = 1)
n 0x40 - Use the extended

transmission timeout for this
destination

All other bits must be set to 0.

Enabling APS encryption decreases
the maximum number of RF payload
bytes by 4 (below the value reported
by NP).

Setting the extended timeout bit
causes the stack to set the extended
transmission timeout for the
destination address.

RF Data MSB 14 0x48 Up to 255 bytes of data that is sent
to the destination XBee

15 0x65

... 0x6C

17 0x6C

LSB 18 0x6F

Checksum 22 0x6E Hash sum of frame data bytes

Example: 0x91 - Explicit Rx Indicator
The following frame is an Explicit Rx Indicator frame with the following characteristics:
7E 00 17 91 00 13 A2 00 40 DA 9D 05 00 00 E8 E8 00 11 C1 05 01 48 65 6C 6C 6F 61

n The XBee module that sent this data has a 64-bit address of 00 13 A2 00 40 DA 9D 05 and 16-
bit address of 00 00.

n The endpoint of the source that initiated the transmission is E8 and the destination endpoint is
E8.

n The Cluster ID the data is addressed to is 00 11.
n The Profile ID the data is addressed to is C1 05.

API mode Frame examples

XBee® Zigbee® Mesh Kit 52

n The packet was acknowledged because the Receive options value is 01.
n The received data 'Hello' is (48 65 6C 6C 6F).

Frame fields Offset Example Description

Start
delimiter

0 0x7E

Length MSB 1 0x00 Number of bytes between the
length and the checksum

LSB 2 0x17

API mode Frame examples

XBee® Zigbee® Mesh Kit 53

Frame fields Offset Example Description

Frame data Frame type 3 0x91 0x91 - Indicates this is a
Explicit Rx Indicator frame

64-bit Source
Address

MSB 4 0x00 64-bit address of sender

Set to 0xFFFFFFFFFFFFFFFF
(unknown 64-bit address) if
the sender's 64-bit address is
unknown

5 0x13

6 0xA2

7 0x00

8 0x40

9 0xDA

10 0x9D

LSB 11 0x05

16-bit Source
Network
Address

MSB 12 0x00 16-bit address of sender

LSB 13 0x00

Source
Endpoint

14 0xE8 Endpoint of the source that
initiated the transmission

Destination
Endpoint

15 0xE8 Endpoint of the destination
the message is addressed to

Cluster ID 16 0x00 Cluster ID the message was
addressed to

17 0x11

Profile ID 18 0xC1 Profile ID the message was
addressed to

19 0x05

API mode Operating mode configuration

XBee® Zigbee® Mesh Kit 54

Frame fields Offset Example Description

Receive
Options

20 0x01 Bitfield of supported
transmission options
Supported values include the
following:

n 0x01 - Packet
Acknowledged

n 0x02 - Packet was a
broadcast packet

n 0x20 - Packet
encrypted with APS
encryption

n 0x40 - Packet sent
with extended timeout
enabled

Received Data MSB 21 0x48 Up to 255 bytes data received
from the source XBee

22 0x65

... 0x6C

24 0x6C

LSB 25 0x6F

Checksum 26 0x61 Hash sum of frame data bytes

Operating mode configuration
The API Enable (AP) parameter configures the XBee module to operate using a frame-based API
instead of the default Transparent mode. It allows you to select between the two supported API
modes and the default transparent operation.

Mode AP value Description

Transparent 0 API modes are disabled and the module operates in transparent mode

API 1 1 API mode without escaped characters

API 2 2 API mode with escaped characters

The only difference between API 1 and API 2 is that API 2 operating mode requires that frames use
escape characters (bytes).
Configuration of the serial XBee communication—whether it is transparent, API non-escaped (API 1),
or API escaped (API 2)—does not prevent wireless communication between XBee modules. Since only
the payload portion of the API frame is transmitted over the air, the receiving XBee modules will alter

API mode Operating mode configuration

XBee® Zigbee® Mesh Kit 55

the packet information based on their AP setting, allowing an API non-escaped module to successfully
communicate with others working in API escaped or Transparent mode.

Note Devices working in Transparent mode and modules set to API non-escaped (API 1) operation can
communicate with devices configured to work in API escaped mode (API 2).

APIm
ode

O
perating

m
ode

configuration

XBee®
Zigbee®

M
esh

Kit
56

API escaped operating mode (API 2)
API non-escaped (API 1) operation relies solely on the start delimiter and length bytes to differentiate API frames. If bytes in a packet are lost, the length
count will be off, and the next API frame (packet) will also be lost. API escaped (API 2) operation involves escaping character sequences in an API frame in
order to improve reliability, especially in noisy RF environments.
The basic frame structure of both API modes is the same, but in API escaped (API 2) mode, all bytes except for the start delimiter must be escaped if
needed. The following data bytes must be escaped in API 2 mode:

n 0x7E: Start delimiter
n 0x7D: Escape character
n 0x11: XON
n 0x13: XOFF

API 2 mode guarantees all the 0x7E bytes received are start delimiters: this character cannot be part of any of the other frame fields (length, data, or
checksum) since it must be escaped.
To escape a character:

1. Insert 0x7D, the escape character.
2. Append it with the byte to be escaped, XORed with 0x20.

In API 2 mode, the length field does not include any escape character in the frame and the checksum is calculated with non-escaped data.

Example: Escape an API frame
To express the following API non-escaped frame in API 2 mode:

Start Delimiter Length

Frame Data

ChecksumFrame type Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The 0x13 byte must be escaped:

APIm
ode

O
perating

m
ode

configuration

XBee®
Zigbee®

M
esh

Kit
57

1. Insert a 0x7D.
2. XOR the byte 0x13 with 0x20: 13⊕20 = 33.

This is the resulting frame. Note that the length and checksum are the same as the non-escaped frame.

Start Delimiter Length

Frame Data

ChecksumFrame type Data

7E 00 0F 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 58

XBee frame exchange
Now that you understand how API mode works and how API frames are structured, the next step is to
learn about how frames are exchanged when you perform certain common operations such as
configuring an XBee module or transmitting wireless data.
The following section provides examples using XCTU. You can use the Frames interpreter tool of the
XCTU console to view detailed API frame structure.

AT Command: configure a local XBee device
To query or set the value of the local XBee—that is, the device directly connected to an intelligent
device such as a microcontroller or PC via the serial interface—you must use AT parameters and
commands. These are the same AT parameters and commands that are available in
Transparent/Command mode, but included in an AT Command (0x08) frame. The response containing
the result of the operation is sent back in an AT Command Response (0x88) frame.
The following image shows the API frame exchange that takes place at the serial interface when
sending either an AT Command (0x08) or an AT Command Queue Parameter Value (0x09) request.

During an API frame exchange, the following process occurs:

1. An AT Command (0x08) frame is sent to the device through the serial input. This frame contains
configuration instructions or queries parameters on the local XBee device.

2. The XBee device processes the command and returns an AT Command Response (0x88)
through its serial output. If the frame ID of the AT Command frame is 0, this response is not
sent.

Transmit Request/Receive Packet: Transmit and receive wireless
data
A Transmit Request frame encapsulates data with its remote destination and some transmission
options. The wireless data received by an XBee module is included in a Receive Packet frame along
with the remote transmitter and options for receipt.
Two more frames use Explicit addressing. They require that you specify application layer addressing
fields (endpoints, cluster ID, profile ID).
For more information about Explicit addressing, see the Zigbee communication in depth chapter.
The following image shows the API exchanges that take place at the serial interface when transmitting
wireless data to another XBee module.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 59

1. The intelligent device (host) sends a Transmit Request (0x10) or an Explicit Addressing
Command Frame (0x11) to XBee A through the serial input to transmit data to XBee B.

2. XBee A wirelessly transmits the data in the frame to the module configured as destination in
the same frame; in this case, the destination is XBee B.

3. The remote XBee B module receives the wireless data and sends out through the serial output
a Receive Packet (0x90) or an Explicit Rx Indicator (0x91), depending on the value of API
Options (AO) setting. These frames contain the data received over the air and the source
address of the XBee module that transmitted it, in this case XBee A.

4. The remote XBee B module transmits a wireless acknowledge packet with the status to the
sender, XBee A.

5. The sender XBee A module sends out a Transmit Status (0x8B) through its serial output with
the status of the transmission to XBee B.

The Transmit Status (0x8B) frame is always sent at the end of a wireless data transmission unless the
frame ID is set to '0' in the transmit request. If the packet cannot be delivered to the destination, the
transmit status frame will indicate the cause of failure.
To send data using an explicit frame:

n The source and destination endpoints must be E8.
n The cluster ID must be 0011.
n The profile ID must be C105.

To receive an explicit frame, the API Options (AO) parameter must be configured to API Explicit Rx
Indicator - 0x91 [1]. If this setting is API Rx Indicator - 0x90 [0], a Receive Packet (0x90) will be received
instead of an Explicit Rx Indicator (0x91).

Remote AT Command: Remotely configure an XBee module
Working in API mode also allows you to configure remote XBee modules wirelessly. Any AT command
or parameter that can be issued locally can also be sent wirelessly for execution on a remote XBee
module.
The following image shows the API frame exchanges that take place at the serial interface when
sending a Remote AT Command Request (0x17) to remotely read or set an XBee parameter.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 60

1. The intelligent device (host) sends a Remote AT Command Request (0x17) to XBee A through
the serial input to configure the remote XBee B.

2. XBee A wirelessly transmits the AT Command in the frame to the module configured as
destination in the same frame; in this case, the destination is XBee B.

3. XBee B receives the AT command and processes the command to wirelessly return the result to
the sender, XBee A.

4. XBee A sends out a Remote AT Command Response (0x97) through its serial output with the
result of the AT command processed by XBee B. If the frame ID of the Remote AT Command
frame is '0', this response is not sent.

Source routing: Create and obtain the route of a packet
XBee modules also allow you to create and obtain a source route in the module. A source route
specifies the complete route a packet travels to get from source to destination. In this case, before
sending the data (a Transmit Request or a Explicit Addressing Command Frame), you must send a a
Create Source Route (0x21) with the route of the following packet.
Use source routing with many-to-one routing for best results, so you should set the Many-to-One
Route Broadcast Time (AR) parameter to a value other than FF in the sender module.
The following image shows the API exchanges at the serial interface when you are sending a Create
Source Route (0x21) frame.

1. The intelligent device (host) sends a Create Source Route (0x21) to XBee A through the
serial input to specify the route of the following data to XBee B.

2. The intelligent device (host) sends a Transmit Request (0x10) or an Explicit Addressing
Command Frame (0x11) to XBee A through the serial input to transmit data to XBee B.

3. The remote XBee B receives the wireless data and sends out through the serial output a
Receive Packet (0x90) or an Explicit Rx Indicator (0x91). This frame contains the data

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 61

received over the air and the source address of the XBee that transmitted it, in this case
XBee A.

4. The remote XBee B transmit a route record to the sender, XBee A, with the route the
transmitted data followed.

5. The sender XBee A sends out a Route Record Indicator (0xA1) through its serial output with
the 16-bit addresses of the nodes the received route record traversed.

6. The sender XBee A sends out a Transmit Status (0x8B) through its serial output with the
status of the transmission to XBee B.

Example: Configure your local XBee module
This section demonstrates how to read the Node Identifier (NI) of your local XBee module configured
in API mode. To do this, you create an AT command frame to read the NI parameter, send it to the
XBee module, and analyze the response.
If you get stuck, see Troubleshooting.

Step 1: Configure the XBee module
Before creating and sending the frame, configure the XBee module as follows:

Param Value Effect

NI XBEE_A Defines the node identifier, a human-friendly name for the module.

The default NI value is a blank space. Make sure to delete the space
when you change the value.

AP AP Enabled
[1]

Enables API mode.

Step 2: Open the XCTU console

1. Switch to the Consoles working mode .

2. Open the serial connection with the radio module .

Step 3: Generate the AT command frame
These instructions describe how to generate an AT command frame using the XCTU Frame Generator
tool.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 62

1. Click Add new frame to the list .
2. Open the Frames Generator tool.

3. In the Frame type section, select 0x08 - AT Command.
4. In the AT command section, select the ASCII tab and type NI.
5. Click OK.
6. Click Add frame.

Step 4: Send the AT command frame
After you have created an AT command frame, you must send it to the local XBee module to receive a
response containing the configured NI value.

1. Select the frame in the XCTU Send frames section.
2. Click Send selected packet.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 63

The Frames log indicates that one frame has been sent (blue) and another has been received
(red).

Step 5: Analyze the response
Once you have sent the frame, you can analyze the responses on the receiving end.

1. Select the frame received (AT Command Response) to see its details in the Frame details
section.

2. Analyze its details and verify that it contains the NI value of your module.
n Frame type: The received frame is an AT Command Response.
n Frame ID: This AT Command Response frame is the answer to the sent AT Command

request because both have the same value (1).
n Status: The value was successfully read because the status is OK.
n Response: This received frame contains the value of the NI parameter previously

requested in the AT Command frame, XBEE_A

3. Disconnect the console by clicking Close the serial connection .

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 64

Example: Transmit and receive data
This section describes how to transmit data to another XBee module using the XCTU console. The
steps include creating a Transmit Request frame with the message you want to transmit to the other
module and sending the frame serially to the local XBee module. You can then analyze the responses,
both in the local and the remote module.
If you get stuck, see Troubleshooting.

Step 1: Configure the XBee modules
Before creating and sending the frame, configure the XBee modules as follows:

Param XBee A XBee B Effect

ID 2015 2015 Defines the network that a radio will attach to. This must
be the same for all radios on your network.

JV — Enabled[1] Verifies if a coordinator exists on the same channel to join
the network or to leave if it cannot be found.

CE Enabled[1] — Sets the device as coordinator.

NI SENDER RECEIVER Defines the node identifier, a human-friendly name for the
module.

The default NI value is a blank space. Make sure to
delete the space when you change the value.

AP API Enabled
[1]

API Enabled
[1]

Enables API mode.

Step 2: Open the XCTU console

1. Switch to the Consoles working mode .

2. Open the serial connection with the radio module .
3. Change to the console of the other XBee module.

4. Open the serial connection with the radio module .

5.

Step 3: Generate the Transmit Request frame
This topic describes how to generate a Transmit Request frame using the XCTU SENDER console.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 65

1. Go to the SENDER console and detach it to see two consoles at the same time.

2. In the SENDER console, click Add new packet to the list .
3. Open the Frames Generator tool.

4. In the Protocol control, select Zigbee.
5. In the Frame type control, select 0x10 - Transmit Request.
6. In the 64-bit dest. address box, type the 64-bit address of the RECEIVER module.
7. In the RF data box, click the ASCII tab and type the message "Hello, this is SENDER!"
8. Click OK.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 66

9. Click Add frame.

Step 4: Send the Transmit Request frame
After you have created a Transmit Request frame, you must send it.

1. Select the frame in the XCTU Send frames section.
2. Click Send selected packet.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 67

The Frames log indicates that one frame has been sent (blue) and another has been received
(red).

Additionally, the RECEIVER console indicates that another packet has been received.

Step 5: Analyze the responses
Once you have sent the frames, you can analyze the responses on the receiving end.

1. Select the received frame (Transmit Status) in the SENDER console to view the frame details on
the right panel. Verify that the message was sent successfully.

n Frame type: The received frame is a Transmit Status.
n Frame ID: Since both frames have the same Frame ID, this is the response for the

Transmit Request frame.
n Status: The Success status indicates that the message was sent successfully.

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 68

2. Analyze the details of the Receive Packet for RECEIVER. Verify that the message is the one you
typed and the sender's address belongs to SENDER.

n Frame type: The received frame is a Receive Packet
n 64-bit source address: This field displays the 64-bit address of the sender module,

SENDER.
n Receive options:

l The packet was acknowledge (0xC1 = 1100 0001).
n RF data: The message of the packet is "Hello, this is SENDER!".

API mode XBee frame exchange

XBee® Zigbee® Mesh Kit 69

3. Disconnect both consoles by clicking Close the serial connection .

Libraries
Let's say you want to write an application to enable an intelligent device to monitor and manage an
XBee network. You can write your own code to work with API mode, and you can also take advantage
of existing software libraries that already parse the API frames. Depending on your preferred
programming language and the intelligent device connected to the serial interface of the XBee, you
can choose from a variety of available libraries:

n XBee mbed Library is a ready-to-import mbed extension to develop XBee projects on the
mbed platforms. For more information, go to https://developer.mbed.org/teams/Digi-
International-Inc/code/XBeeLib/.

n Digi XBee Ansi C Library is a collection of portable ANSI C code for communicating with XBee
modules in API mode. For more information, go to https://github.com/digidotcom/xbee_ansic_
library/.

n XBee-arduino is an Arduino library for communicating with XBees in API mode. For more
information, go to https://code.google.com/p/xbee-ard uino/.

n XBee Java Library is an easy-to-use library developed in Java that allows you to interact with
XBee modules working in API mode. For more information, visit the XBee Java Library
documentation.

In this kit, you use the XBee Java Library to learn about the XBee features and capabilities offered in
API operating mode. You can create several Java applications to control and monitor XBees connected
to your computer via the XBee Grove Development Board.

https://developer.mbed.org/teams/Digi-International-Inc/code/XBeeLib/
https://developer.mbed.org/teams/Digi-International-Inc/code/XBeeLib/
https://github.com/digidotcom/xbee_ansic_library/
https://github.com/digidotcom/xbee_ansic_library/
https://code.google.com/p/xbee-arduino/
https://code.google.com/p/xbee-arduino/

Zigbee Mesh Network Setup

A Zigbee mesh network is created by a coordinator. Once the network has been created, other nodes
can join it. The default device type of the XBee modules is router, so you must configure an XBee to be
the coordinator. Note that the rest of the modules should be switched on (or reset) once the network
is created so that they can join it properly.

Configure the device type of an XBee module
The device type of an XBee is determined by the value of two parameters: Coordinator Enable (CE)
and Sleep Mode (SM). The first setting determines if an XBee module is coordinator or not, and the
second one determines if the module is router or end device. Coordinators and routers cannot sleep,
so the value for that setting must be always 0 (disabled).

Configuration Description

Coordinator CE = 1
SM = 0

An XBee module is a coordinator
if the CE setting is set to 1. When
CE = 1, the value of the SM
setting cannot be different than
0.

Router CE = 0
SM = 0

An XBee module is a router if the
CE setting is set to 0 and the
sleep mode is disabled.

End device CE = 0
SM = 1

An XBee module is an end device
if it has any sleep mode enabled.

Startup operations
When you power on an XBee module, it performs several operations depending on the role assigned.
The following sections explain the operations and commands performed by coordinators, routers, and
end devices to form or join a network.

Coordinator
The coordinator is the only device that can start a network, so each Zigbee network must have one
coordinator. It is responsible for selecting an unused operating channel, PAN ID, security policy, and
stack profile for a network. To ensure the coordinator starts on a good channel and unused PAN ID, it
performs a series of scans to discover any RF activity on different channels (energy scan) and to
discover any nearby operating PANs (active scan).

XBee® Zigbee® Mesh Kit 70

Zigbee Mesh Network Setup Startup operations

XBee® Zigbee® Mesh Kit 71

The following commands control the coordinator network formation process:

n PAN ID (ID). Determines the PAN ID. If set to 0 (default), the device selects a random PAN ID.
n Scan Channels (SC). Determines the scan channels bitmask the coordinator uses to form a

network. The coordinator performs an energy scan on all enabled SC channels.
n Scan Duration (SD). Sets the scan duration, which determines how long the coordinator

performs an energy or active scan on a given channel.

After the coordinator has started the network, it can allow new devices to join it (up to 20 devices).
The permit joining attribute is configurable with the Node Join Time (NJ) command. The coordinator
can also route data packets and communicate with other devices on the network.

Note You can configure it to always allow joining (FF) for up to 254 seconds. However, Digi
discourages this due to the security risk.

Router
Routers must discover and join a valid Zigbee network before they can participate in it. To discover
nearby networks, the router performs an active scan, just like the coordinator does when it starts the
network. When a router joins a network, it receives a randomly selected 16-bit address from the
device that allowed the join .
Once a router joins a Zigbee network, it remains connected to the network on the same channel and
PAN ID as long as it is not forced to leave. If the scan channels, PAN ID, and security settings do not
change after a power cycle, it remains connected to the network after a power cycle. There are two
provisions to automatically detect the presence of a network and leave if the check fails:

n Join Verification (JV). If enabled, the XBee attempts to discover the address of the coordinator
when it first joins a network.

n Network Watchdog Timeout (NW). Used for a powered router to periodically check for the
presence of a coordinator to verify network connectivity.

After a router has joined a network, it can allow new devices to join the network (up to 20 devices
each router) with the Node Join Time (NJ) setting. It can also route data packets and communicate
with other devices on the network.

End device
Similar to routers, end devices must also discover and join a valid Zigbee network before they can
participate in it. End devices also discover networks by issuing an active scan, and when they join a
network they receive a randomly selected 16-bit address from the device that allowed the join.
Since an end device may enter low power sleep modes and not be immediately responsive, it relies on
the device that allowed the join to receive and buffer incoming messages on its behalf until it is able
to wake and receive those messages. The device that allowed an end device to join becomes the
parent, and the end device becomes the child. The end device polls its parent when it is awake to
query for any new received data packets.
Coordinators and routers maintain a table of all child devices that have joined. This table has a finite
size and determines how many end devices can join. You can use the Number of Remaining Children
(NC) setting to determine how many additional end devices can join a coordinator or router.
After an end device has joined a network, it can communicate with other devices on that network.
Since end devices are intended to be battery powered and therefore support low power (sleep)
modes, they cannot allow other devices to join, nor can they route data packets.

Zigbee Mesh Network Setup Explore the network

XBee® Zigbee® Mesh Kit 72

Explore the network
To better understand how a Zigbee mesh network is formed, you can use XCTU's Network view to
discover and visualize the topology and interconnections of the network.

To learn more about the Network View, see How-to: Visualize your network.

Section summary
To form a Zigbee mesh network, you must configure at least the following settings:

n PAN ID (ID). Every node should have the same value.
n Scan Channels (SC). Every node should have the same value.
n Channel Verification (JV). Enable this setting to ensure there is a coordinator in the network.
n Coordinator Enable (CE). Enable this setting in one module.
n Sleep Mode (SM). If you want to have end devices, set their sleep mode to some other value

than 0.

Note There are other less critical settings under the Networking group in XCTU that also influence
network creation.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_visualize_network.htm

Wireless data transmission

This section explains data transmission and guides you through an example to illustrate how it works.
If you get stuck, see Troubleshooting.

Transmission methods
An XBee module can communicate with multiple devices or with just one device:

n Broadcast transmissions are sent to many or all modules in the network.
n Unicast transmissions route wireless data from one XBee to one destination module.

Broadcast transmission
Broadcast means to transmit the same data to all nodes on a network. These transmissions are
propagated throughout the entire network so that all possible nodes receive the transmission.
To accomplish this, the coordinator and all routers that receive a broadcast transmission re-transmit
the data three times. When a router or coordinator delivers a broadcast transmission to an end device
child, it sends the transmission only once, immediately after the end device wakes and polls the
parent for new data.
You can address broadcast transmissions using either the 64-bit broadcast address or the 16-bit
broadcast address:

n If the 64-bit broadcast address (000000000000FFFF) is used, set the 16-bit address to
unknown address (FFFE).

n If the 16-bit broadcast address (FFFF) form is used, set the 64-bit address to unknown address
(FFFFFFFFFFFFFFFF).

Note Broadcast transmissions do not use ACKs, so there is no guarantee that every node will hear a
particular broadcast. Because the XBee devices re-transmit broadcast transmissions by every device in
the network, use broadcast messages sparingly.

XBee® Zigbee® Mesh Kit 73

Wireless data transmission Transmission methods

XBee® Zigbee® Mesh Kit 74

Unicast transmission
A unicast transmission consists of sending messages to a single node on the network identified by a
unique address. The destination XBee can be an immediate neighbor of the sender, or be several hops
away.
Wireless data may be addressed using either the 64-bit address or the 16-bit address (network
address):

n If you use the 64-bit address, set the network address to unknown address (FFFE).
n If you use the 16-bit address, set the 64-bit address must be set to unknown address

(FFFFFFFFFFFFFFFF).
n The 16-bit address 0000 and the 64-bit address 0000000000000000 are reserved for the

coordinator.

The Zigbee network layer uses the 16-bit address of the destination on each hop to route the data.
If you use an invalid 16-bit address as a destination address, and the 64-bit address is unknown
(FFFFFFFFFFFFFFFF), the Transmit Status (0x8B) message shows a delivery status code of 0x21
(network ACK failure) and a discovery status of 0x00 (no discovery overhead).
If you use a non-existent 64-bit address as a destination address, and the 16-bit address is unknown
(FFFE), the device attempts address discovery and the Transmit Status (0x8B) message shows a
delivery status code of 0x24 (address not found) and a discovery status code of 0x01 (address
discovery attempted).

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 75

Address table
XBee devices use the destination network address to send data in a unicast transmission. Since data
can only be sent using the destination's 64-bit address, all Zigbee devices maintain an address table
to map 64-bit address to the corresponding 16-bit address. XBee modules can store up to 10 address
table entries.
If the destination's 16-bit address is unknown:

1. The Zigbee stack uses its address table to look for an entry with a matching 64-bit address
which determines the destination's 16-bit address.

2. If it is not found, the XBee automatically initiates a discovery process to find that address
before transmitting the data:

a. First, the sending device broadcasts an address discovery message. This message
includes the 64-bit address of the remote XBee module whose 16-bit address is
being requested.

b. All nodes that receive this transmission compare their own 64-bit address to the one
included in the message.

c. If the addresses match, the remote XBee sends a response back to the requester
module. This response includes the remote device's 16-bit address.

d. When the requesting module receives this discovery response with the destination's
16-bit address, it transmits the data.

Example: transmit data
In the first example of this kit, you transmitted data to other nodes using transparent mode. An XBee
module in transparent mode simply passes information along exactly as it receives it. This mode is an
easy way to get started with XBees, but it has several limitations:

n You have to configure the address of the receiver in the transmitter module. If you want to
transmit data to other XBees, you must re-configure the sender.

n The receiver module does not know who sent the message.

You can use API mode to avoid these limitations and have more flexibility and reliability in your data
transmissions. In API mode, you still send the message to the module. But, you also send other

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 76

necessary information, such as the destination address or checksum value, all wrapped in a packet
with a defined structure called an API frame. This means that in API mode you don't need to set the
destination address (DH + DL) in the module. Similarly, the receiver module receives more information
than the message itself, such as the source address, signal strength, or checksum value.
In this example, you will create an application in the Java programming language to transmit data
between the nodes of the network. To simplify that application, you will use the XBee Java Library, an
easy-to-use API that allows you to interact with XBee modules.
Once you have everything set up, send a message to a specific device (unicast) or to all devices of the
network (broadcast).
Several steps contain videos to help you successfully complete the example.
If you get stuck, see Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Three XBee Zigbee Mesh Kit modules
n Three XBee Grove Development Boards
n Three micro USB cables
n One computer

Software

n XCTU 6.3.1 or later
n XBee Java Library (XBJL-X.Y.Z.zip release file)
n Java Virtual Machine 6 or later
n A Java IDE (such as Eclipse or NetBeans)

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. You can find more specific steps in Plug in the
XBee module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

http://www.digi.com/xctu
https://github.com/digidotcom/XBeeJavaLibrary/releases
https://www.java.com/en/download/

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 77

Step 3: Configure the Xbee modules
Configure each of the three XBee modules to work in API mode and assign each a different role. As
mentioned before, in this case you don't need to configure the destination address (DH + DL) of the
modules.

1. Restore the default settings of all XBees with the Load default firmware settings button
at the top of the Radio Configuration section.

2. Use XCTU to configure the following parameters:

Param XBee A XBee B XBee C Effect

ID 2015 2015 2015 Defines the network a radio will connect to.
This parameter must be the same for all radios
on your network.

JV — Enabled
[1]

Enabled
[1]

Verifies if a coordinator exists on the same
channel to join the network or to leave if it
cannot be found.

CE Enabled
[1]

— — Sets the device as coordinator.

NI COORD ROUTER END_
DEVICE

Defines the node identifier, a human-friendly
name for the module.

The default NI value is a blank
space. Make sure to delete the
space when you change the value.

AP API
enabled
[1]

API
enabled
[1]

API
enabled
[1]

Enables API mode.

SP 1F4 1F4 1F4 Defines the duration of time spent sleeping.
1F4 (hexadecimal) = 500 (decimal) x 10 ms = 5
seconds.

SM — — Cyclic
sleep [4]

Enables the cyclic sleep mode in the end
device.

SO — — 2 Keeps the module awake during the entire
period.

3. Write the settings of all XBees with the Write radio settings button at the top of the Radio
Configuration section.

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 78

Step 4: Create a Java project
Create an empty Java project using Eclipse or NetBeans with the following project name:
XBeeTransmitDataCoord.
Option 1: Eclipse

a. Select File > New, and click the Java Project.
b. The New Java Project window appears. Enter the Project name.
c. Click Next.

or
Option 2: NetBeans

a. Select File > New project....
b. The New Project window appears. In the Categories frame, select Java > Java Application

from the panel on the right, and click Next.
c. Enter the Project name and the Project Location. Clear the Create Main Class option; you will

create this later.
d. Click Finish to create the project. The window closes and the project appears in the Projects

view list on the left side of the IDE.

Step 5: Link libraries to the project
This topic describes how to link the XBee Java Library, the RXTX library (including the native one),
and the logger library to the project.

1. Download the XBJL_X.Y.Z.zip library.
2. Unzip the XBJL_X.Y.Z.zip library.
3. Link the libraries using Eclipse or NetBeans:

Option 1: Eclipse

a. Go to the Libraries tab of the New Java Project window.
b. Click Add External JARs....
c. In the JAR Selection window, search the folder where you unzipped the XBee Java Library and

open the xbee-java-library-X.Y.Z.jar file.
d. Click Add External JARs... again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api-x.y.z.jar
n slf4j-nop-x.y.z.jar

f. Expand the rxtx-2.2.jar file of the Libraries tab list, select Native library location, and click
Edit….

g. Click External folder... to navigate to the extra-libs\native\Windows\win32 folder of the
directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip).

n Replace Windows\win32 with the directory that matches your operating system and
the Java Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual
Machine is installed in your computer, open a terminal or command prompt and

https://github.com/digidotcom/XBeeJavaLibrary/releases

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 79

execute:

java -version

a. Click OK to add the path to the native libraries.
b. Click Finish.

or
Option 2: NetBeans

a. From Projects view, right-click your project and go to Properties.
b. In the categories list on the left, go to Libraries and click Add JAR/Folder.
c. In the Add JAR/Folder window, search the folder where you unzipped the XBee Java Library

and open the xbjlib-X.Y.X.jar file.
d. Click Add JAR/Folder again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api- x.y.z .jar
n slf4j-nop- x.y.z .jar

f. Select Run in the left tree of the Properties dialog.
g. In the VM Options field, add the following option:

-Djava.library.path=<path_where_the_XBee_Java_Library_is_unzipped>\extra-
libs\native\Windows\win32

where:
n <path_where_the_XBee_Java_Library_is_unzipped> is the absolute path of the

directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip)
n Windows\win32 is the directory that matches your operating system and the Java

Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual Machine is
installed in your computer, open a terminal or command prompt and execute:

java -version

h. Click OK.

Step 6: Add the source code to the project
Follow these steps to add the source to the project.

1. Open the following source code, select all, and copy it to the clipboard: MainApp.
2. Add the Java source file with Eclipse or NetBeans.

Option 1: Eclipse

a. In the Package Explorer view, select the project and right-click.
b. From the context menu, select New > Class. The New Java Class wizard opens.
c. Type the Name of the class: MainApp.
d. Click Finish.

http://www.digi.com/resources/documentation/Digidocs/90001942-13/resources/code/xbee900hpkit/transmit_data/mainapp.txt

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 80

e. The MainApp.java file is automatically opened in the editor. Replace its contents with the
source code you copied in the previous step.

f. A line at the top of the pasted code is underlined in red. Click on that line; a pop-up appears.
Select the first option (Move 'MainApp.java' to package '...') to resolve the error.

Option 2: NetBeans

a. In the Projects view, select the project and right-click.
b. From the context menu, select New > Java Class... The New Java Class wizard opens.
c. Modify the Class Name to be MainApp.
d. Click Finish.
e. The MainApp.java file automatically opens in the editor. Replace its contents with the source

code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on the light bulb next to that

line; a pop-up appears. Select the first option (Move class to correct folder) to resolve the
error.

Step 7: Set the port names and launch applications
For this step, set the port names for all three XBee modules, duplicate the project for the other XBee
modules, then launch the applications.

1. Change the port name in the Java source code to match the port COORD is connected to.

// TODO: Replace with the port where your module is connected
private static final String PORT = "COM1";
// TODO: Replace with the baud rate of your module.
private static final int BAUD_RATE = 9600

2. Duplicate the Java project for the other XBee module and rename it to
XBeeTransmitDataRouter.

3. Change the port name in the second project's source code to match the port ROUTER is
connected to.

4. Duplicate the Java project for the last XBee module and rename it to
XBeeTransmitDataEndDevice.

5. Change the port name in the third project's source code to match the port END_DEVICE is
connected to.

6. Before launching each of the three applications, press the Commissioning button of the board
the END_DEVICE is attached to wake it up. To identify the END_DEVICE module, look for the
board where the On/Sleep LED is ON for 5 seconds and OFF for another 5 seconds.

7. Launch the three applications.

Step 8: Transmit data over the network
Follow these steps to transmit data to other XBee modules in your network with the unicast or
broadcast method.

1. Send messages to a specific XBee module (unicast) or to all (broadcast) using the following
pattern:

Wireless data transmission Example: transmit data

XBee® Zigbee® Mesh Kit 81

n Unicast: NODE_IDENTIFIER: message
For example, to send the message "Hi XBee" to END_DEVICE:

END_DEVICE: Hi XBee

n Broadcast: ALL: message
For example, to send the message "Hi XBee nodes" to all nodes of the network:

ALL: Hi XBee nodes

Step 9: Section summary of wireless data transmission
In this section, you have learned the following:

n An XBee sending a transmission in API mode not only transmits a raw message but also some
extra information—such as the address of the source XBee module—packaged in what is called
an API frame.

n In API mode, you don't need to set the DH and DL parameters of the receiver device because
the destination address is already included in the API frame.

n API mode allows you to easily work with multiple destinations without needing to re-configure
the sender module to establish a new destination module before sending the data.

n You can use the XBee Java Library to simplify and improve the use of the API operating mode.
n Depending on the number of devices that will receive the message, there are two types of

transmissions:
l Unicast sends a message to one node identified by a unique address.
l Broadcast sends the same message to all possible nodes on the network.

Step 10: Do more with wireless data transmission
If you're ready to work more extensively with data transmission, try the following:

n Extend the network by adding more XBee Zigbee Mesh Kit modules so you can chat with other
devices.

Note To find the best channel to acquire more modules, see Where to buy XBee devices.

n Use Arduino or Raspberry Pi instead of a computer to transmit data wirelessly.

Low power and battery life

This section introduces the key concepts you need to know to take advantage of the power saving
capabilities of XBee devices. It also provides a lab that lets you put the concepts to work and see the
results.

Low power devices and battery life 83
Sleep modes 83
Pin sleep 84
Cyclic sleep 85
Example: enable sleep mode 85

XBee® Zigbee® Mesh Kit 82

Low power and battery life Low power devices and battery life

XBee® Zigbee® Mesh Kit 83

Low power devices and battery life
The advantage of a wireless connection is that devices do not require physical wires to communicate,
and they also use batteries instead of mains AC power. However, battery life can also be a major
limitation. Depending on the location of the device, it can be difficult or expensive to replace the
battery.
XBee modules are low-power devices. They can put themselves into a temporary sleep state in which
they consume virtually no current. During sleep, the device is almost completely turned off and is
sometimes incapable of sending or receiving data until it wakes up.

A real world scenario
Extending battery life is important in many real world scenarios. For example, if you had several
greenhouses, each with a temperature sensor connected to an XBee device, battery life would be
critical. Fully charged batteries would only power the modules for one day.
There are several ways to maximize battery life. For example:

n Putting the modules into a cycle where they sleep for one second and then wake for one
second before sleeping again can double the battery life to two days.

n Cyclically sleep for 59 seconds and then waking for one second can keep the same batteries
going for 60 days. Taking this further, you can potentially extend the battery life for years.

Design considerations for applications using sleep mode
Before using sleep mode you must take into consideration the structure of your project and your XBee
network. Some applications, like the greenhouse example, are particularly suited to sleep mode. In
that scenario, the modules only send data periodically and are not expected to receive data. The
modules can therefore be sleeping most of the time and wake up only to send the temperature value.

Sleep modes
XBee ZB end devices support three different sleep modes:

Low power and battery life Pin sleep

XBee® Zigbee® Mesh Kit 84

n Pin sleep (SM = 1)
n Cyclic sleep (SM = 4)
n Cyclic sleep with pin wake-up (SM = 5)

An end device in one of these sleep modes polls its parent every 100 milliseconds while it is awake to
retrieve buffered data. When the module enters sleep mode:

n The module de-asserts (low) the On/Sleep pin (pin 13) to indicate the module is entering sleep
mode.

n If CTS hardware flow control is enabled, the module de-asserts (high) the CTS pin (pin 12) to
indicate that serial data should not be sent to the module.

n If the Associate pin (pin 15) is configured, it is driven low to avoid using power to light the LED.
n The Sleep_RQ pin (pin 9) is configured as a pulled-down input so that an external device can

drive it high to wake the module (only applies to SM = 1 or SM = 5).
n The module leaves all other pins unmodified during sleep so they can operate as previously

configured by the user.

When the XBee wakes from sleep:

n The device asserts (high) On/Sleep pin to indicate the it is awake.
n If you enable CTS hardware flow control, the CTS pin is asserted (low) indicating that serial

data can be sent to the module.
n The Associate pin resumes its former configured operation.
n All other pins are left unmodified so they can operate as previously configured by the user.

Pin sleep
Pin sleep allows an external microcontroller to determine when the XBee should sleep and when it
should wake by controlling the Sleep_RQ pin (pin 9). When Sleep_RQ is asserted (high) by connecting
it to 3.3 volts, the module finishes any operation and enters a low power state. The module wakes
when the Sleep_RQ pin is de-asserted (low).
Enable pin sleep mode by setting the Sleep Mode (SM) parameter to Pin Hibernate [1].

Low power and battery life Cyclic sleep

XBee® Zigbee® Mesh Kit 85

Cyclic sleep
Cyclic sleep allows the module to sleep for a specified time and wake for a short time to poll its parent
for any buffered data messages before returning to sleep again.
Enable cyclic sleep mode by setting the Sleep Mode (SM) parameter to 4 or 5. The cyclic sleep with pin
wake up (SM = 5) is a slight variation of the cyclic sleep mode (SM = 4) that allows the module to be
woken prematurely by de-asserting the Sleep_RQ pin.
The following parameters control cyclic sleep:

Parameter Name Description

SP Cyclic
Sleep
Period

Configures the sleep period of the module.

SN Number of
Cyclic
Sleep
Periods

Configures the number of sleep periods multiplier.

ST Time
before
Sleep

Defines the period of inactivity of the module (during which no data is
sent or received) before returning to cyclic sleep. If the XBee is
transmitting or receiving a message, it will not go to sleep.

SO Sleep
Options

Defines options for sleep mode behavior:

0x02: Always wake for full ST time.
0x04: Enable extended sleep (sleep for full SP * SN time).

Press the Commissioning button to wake a sleeping device for 30 seconds.

Example: enable sleep mode
This example shows you how to extend the battery life of an XBee Zigbee module. The example uses
all three modules included in the kit to demonstrate how a Zigbee network handles messages when
some modules are sleeping.
Configure one of the modules as coordinator and the other two as end devices with different sleep
modes. An end device periodically sends the value of an ADC to the other end device. Since the
receiver is asleep, the coordinator stores all of its messages and forwards them to the destination
module once it wakes up.

Tip If you get stuck, see Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Three XBee Zigbee Mesh Kit modules
n Three XBee Grove Development Boards

Low power and battery life Example: enable sleep mode

XBee® Zigbee® Mesh Kit 86

n Three micro USB cables
n One computer

Software

n XCTU 6.3.1 or later

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. You can find more specific steps in Plug in the
XBee module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

http://www.digi.com/xctu

Low
pow

erand
battery

life
Exam

ple:enable
sleep

m
ode

XBee®
Zigbee®

M
esh

Kit
87

Step 3: Configure the XBee Modules
To transmit data wirelessly between your XBees, you must configure them to be in the same network. Remember that in the Zigbee protocol, one device
must be the coordinator and the rest can be routers or end devices. In this case, you will have two end devices configured to sleep using different sleep
modes: one with cyclic sleep (XBee B) and the other with pin hibernate sleep (XBee C).
The coordinator is responsible for storing messages sent from XBee B to XBee C while XBee C is asleep. It forwards the messages once it wakes up.

1. Restore the default settings of all XBee modules with the Load default firmware settings button at the top of the Radio Configuration
section.

2. Use XCTU to configure the following parameters:

Param XBee A XBee B XBee C Effect

ID 2015 2015 2015 Defines the network for a radio to attach to. This
must be the same for all radios on your network.

JV — Enabled [1] Enabled [1] Verifies if a coordinator exists on the same channel
to join the network or to leave if it cannot be found.

CE Enabled [1] — — Sets the device as coordinator.

DH — 0013A200 — Defines the destination address (high part) to
transmit the data to.

DL — SL of XBee C — Defines the destination address (low part) to
transmit the data to. Use the address
0000000000000000 to address the coordinator.

Low
pow

erand
battery

life
Exam

ple:enable
sleep

m
ode

XBee®
Zigbee®

M
esh

Kit
88

Param XBee A XBee B XBee C Effect

NI COORD ED_CYCLIC ED_PIN Defines the node identifier, a human-friendly name
for the module.

The default NI value is a blank space.
Make sure to delete the space when you
change the value.

AP API enabled [1] API enabled [1] API enabled [1] Enables API operating mode.

SP 384 384 — Defines the duration of time spent sleeping. 384
(hexadecimal) = 900 (decimal) x 10 ms = 9 seconds.

SM — Cyclic sleep [4] Pin Hibernate [1] Enables cyclic sleep mode on XBee B and pin
hibernate sleep mode on XBee C (both end devices).

ST — 7D0 — Defines the period of inactivity (no serial or RF data
received) before going to sleep.
7D0 (hexadecimal) = 2000 (decimal) x 1 ms = 2
seconds.

SO — 2 — Keeps the module awake during the entire period.

Low
pow

erand
battery

life
Exam

ple:enable
sleep

m
ode

XBee®
Zigbee®

M
esh

Kit
89

Param XBee A XBee B XBee C Effect

D2/D3 — ADC [2] — Sets the DIO2/AD2 or DIO3/AD3 pin as ADC in XBee
B, depending on if the XBee module is THT or SMT.
This pin is connected to a potentiometer.

Configure the D2 parameter as ADC [2]
only if XBee B is surface-mount (SMT).
However, if XBee B is through-hole (THT),
you have to configure the D3 par ameter
as ADC [2] instead of the D2.

IR — 3E8 — Configures XBee B to send an IO sample every
second (1000 ms = 3E8 in hexadecimal).

Note The dash (—) in the table means to keep the default value. Do not change the default value.

3. Write the settings of all XBee modules with the Write radio settings button at the top of the Radio Configuration section.

Low power and battery life Example: enable sleep mode

XBee® Zigbee® Mesh Kit 90

Step 4: Sleep
With this configuration, ED_CYCLIC sends the value of the potentiometer to ED_PIN every time it
wakes up. The coordinator stores all the D_CYCLIC samples sent to ED_PIN until it wakes up. To verify,
perform the following steps in XCTU:

1. Select ED_PIN module (receiver).
2. Switch to the Consoles working mode.

3. Open the serial connection with the module.

4. To request the module to sleep, click the DTR radio button from the top of the console to
deactivate it (notice that the CTS indicator is also deactivated).

The DTR pin is the same as the Sleep_RQ pin. When the DTR option is deactivated,
the module goes to sleep; when DTR is activated, the module wakes up.

5. After 20 seconds or so, activate the DTR button.

6. Check that the module receives a series of IO Samples (IO Data Sample RX Indicator).

Low power and battery life Example: enable sleep mode

XBee® Zigbee® Mesh Kit 91

When the module wakes up, it immediately receives several IO samples instead of
receiving one every second (IR parameter). This happens because the coordinator
stores the samples that ED_PIN is not able to receive while it is asleep. Once ED_PIN
wakes up, the coordinator sends all IO samples at once.

7. Select one frame and check its details in the right panel. The value of the potentiometer (DIO3_
AD3) and other details related to the frame appear.

8. Repeat step 4 and rotate the potentiometer of the board where ED_CYCLIC is attached. Wait for
another 20 seconds and check that the new packets that arrive contain a different value for the
DIO3_AD3 pin.

9. If you leave the receiver module (ED_PIN) awake, ED_PIN receives an IO sample every second
while the ED_CYCLIC is awake (ST val ue is two seconds). After that, ED_CYCLIC goes to sleep
for nine seconds (SP parameter). The cycle then starts over again.

Note Make sure to close the serial connection with the module when you finish the example.

Step 5: What have you learned?
In this section, you have learned that:

n Modules with Zigbee protocol, as well as others, can go into a temporary sleep state in which
they consume virtually no current. In Zigbee, only the modules configured as End Devices can
go to sleep.

n When an end device is asleep its parent (the router or coordinator that allows the end device
to join the network) buffers its data until a timeout expires (SP), or until the end device sends a
poll request to retrieve the data.

Low power and battery life Example: enable sleep mode

XBee® Zigbee® Mesh Kit 92

n Pins 9 and 13 are related to the sleep modes. You can use pin 9 to put the module to sleep, and
pin 13 to determine the sleep state of the device.

n While an XBee is in sleep mode, there is no data transmission or reception. If you try to
communicate with the module when it is asleep, XCTU displays a warning message saying that
the module must be reset to wake up.

n To configure your module to go to sleep, you must configure the following parameters:
l Sleep Mode (SM):

o Pin sleep mode (SM = 1) pull high pin 9 by connecting it to 3.3 volts to put the module to
sleep. The module will wake up when pin 9 is de-asserted (low).

o Cyclic sleep modes (SM = 4 and SM = 5) enable the module to sleep and wake up on a
fixed schedule. These modes need the ST and SP parameters to be configured.

l Time before Sleep (ST) is the period of time during which no data is sent or received (while
the module is awake) before returning to cyclic sleep. This parameter is only applicable for
cyclic sleep modes.

l Cyclic Sleep Period (SP) is the length of time an XBee remains asleep. This parameter is
only applicable for cyclic sleep modes.

Step 6: Extend the example
If you are ready to move beyond this exercise and extend the example, try the following:

n Connect a battery to ED_CYCLIC (XBee B), ED_PIN (XBee C), or both and move the modules
away from COORD (XBee A).

n Combine this feature with a real sensor to create a low-power sensor network.

https://docs.digi.com/display/XBeeHardware/Overview#Overview-power_supplyPowersupply

Inputs and outputs

All XBee modules have a set of pins that can be used to connect sensors or actuators and configure
them for specific behavior. Each XBee radio has the capability to directly gather sensor data and
transmit it without the use of an external microcontroller.
With these pins you can, for example, turn on a light by sending information to an XBee module
connected to an actuator, or measure the outside temperature by obtaining data from a temperature
sensor attached to your XBee module.
Learn about I/O pins, sensors, actuators in this section, then put your knowledge to work by using
sensors.

XBee I/O pins 94
Sensors 95
Actuators 96
Set pins for digital and analog actuators 96
How XBee devices get sensor data 96
Example: receive digital data 98
Lab: receive analog data 106
How XBee modules control devices 114
Example: send digital actuations 116

XBee® Zigbee® Mesh Kit 93

Inputs and outputs XBee I/O pins

XBee® Zigbee® Mesh Kit 94

XBee I/O pins
The following table shows the I/O pins of the XBee THT and XBee SMT modules:
XBee THT Model

XBee SMT model

Inputs and outputs Sensors

XBee® Zigbee® Mesh Kit 95

Pin name Physical pin# Parameter

THT SMT

DIO0, AD0 20 33 D0

DIO1, AD1 19 32 D1

DIO2, AD2 18 31 D2

DIO3, AD3 17 30 D3

DIO4 11 24 D4

DIO5 15 28 D5

DIO6 16 29 D6

DIO7 12 25 D7

DIO8 9 10 D8

DIO9 13 26 D9

DIO10, PWM RSSI 6 7 P0

PWM1, DIO11 7 8 P1

DIO12, PWM2 4 21 P2

DIO13 2 3 P3

DIO14 3 4 P4

DIO15 — 17 P5

DIO16 — 16 P6

DIO17 — 15 P7

DIO18 — 14 P8

DIO19 — 12 P9

(D = digital, I = input, O = output, AD = analog input, PWM = pulse-width modulation, — not available)

Note The number and type of IOs available can vary between different module variants.

Sensors
A sensor is a device that detects events or changes and provides a corresponding output, generally as
an electrical signal.
There are two types of sensors: digital and analog. A motion sensor is a digital sensor because it can
return two discrete values: movement detected or movement not detected. Other digital sensors
might provide a binary value. A digital compass, for example, may provide your current heading by
sending a 9-bit value with a range from 0 to 359. On the other hand, a thermometer is an analog
sensor because the voltage output changes gradually as the temperature changes.

Inputs and outputs Actuators

XBee® Zigbee® Mesh Kit 96

Setting pins for digital and analog sensors
Configure the pin of your XBee module according to the sensor that is connected to it:

n If you connect a digital sensor, configure the pin as Digital Input.
n If you connect an analog sensor, configure the pin as Analog to Digital Converter (ADC).

Note For more information about sensors, see the How XBee devices get sensor data section.

Actuators
An actuator is a device that is responsible for controlling a mechanism or system. The XBee device
offers some simple output functions so that basic actuations can take place. For example, you can
send digital information directly to an XBee device and direct it to turn on a light or start up a motor.

Set pins for digital and analog actuators
Configure the pin of your XBee device according to the actuator that is connected to it:

n If you connect a digital actuator, configure the pin as Digital Output.
n If you connect an analog actuator, configure the pin as PWM (analog output).

For more information about sensors, see How XBee modules control devices.

How XBee devices get sensor data
XBee devices are often used to form sensor networks. In a sensor network, the main device—also
called the local XBee device—receives data from the sensors attached to the remote XBee devices.

To receive that data, you must configure the remote XBee devices to "listen" on the particular pin
where the sensor is connected and to send the data to the main XBee device.

Inputs and outputs How XBee devices get sensor data

XBee® Zigbee® Mesh Kit 97

How to configure a pin as an input

Configure a pin for digital input
You can configure a pin through XCTU. If your sensor reads digital values (like a doorbell) and is
connected to the DIO1/AD1 pin, configure the D1 parameter as Digital Input [3]:

Configure a pin for analog input
If your sensor reads analog values (like a temperature sensor) and is connected to the DIO1/AD1 pin,
configure the D1 parameter as ADC [2]:

How to obtain data from a sensor
There are two ways to obtain sensor information:

n Queried sampling to immediately read all enabled digital and analog input pins.
n Automatic sampling to transmit the sensor data periodically or whenever a digital pin changes.

In both cases, the information is sent to the other module is called IO sample. It contains which
inputs (DIO lines or ADC channels) have sampling enabled and the value of all the enabled digital and
analog inputs.

Queried sampling (IS)
The Force Sample (IS) command forces a read of all enabled digital and analog input pins. You can
send it locally or to a remote device.
Use the XCTU console or any serial port terminal application to send this command.
When the module sends the IS command, the receiving device reads all enabled digital IO and analog
input channels and returns their value. If the module transmits the IS command locally, it sends the
IO data out the serial interface. If the module transmits the IS command to a remote XBee module, it
sends the remote IO data over the air to the requester module.

Automatic sampling
Once you have set up the pin, the remote module must be configured to automatically transmit the
sensor information to the main XBee module. The remote XBee module needs to know:

1. Where to transmit the sensor data: define this information for the module receiving this
information by the destination address (DH + DL) parameters.

2. When to transmit the sensor data:
n Periodically: The XBee can send the information read from the sensor at a specified

interval.
n By change detection: When a pin or several pins change status.

Configure parameters IO Sampling Rate (IR) and Digital IO Change Detection (IC) to
automatically transmit the sensor data.

Inputs and outputs Example: receive digital data

XBee® Zigbee® Mesh Kit 98

Note These two features can work in combination with each other, depending on your requirements.
For example, you could choose to receive an IO sample every minute (IR) but also when a certain pin
changes state (IC).

IO Sampling Rate (IR)
The IR parameter sets the I/O sample rate: that is, how frequently to report the current pin state and
transmit it to the destination address. The rate is set in milliseconds using hexadecimal notation. The
value 0 disables the feature.

For example, if you want to transmit the sensor info every minute, set this parameter to EA60 (1
minute = 60 seconds = 60000 ms = EA60 hex).
Use XCTU to configure the sample rate interval.

Note Sleeping devices, configured to send samples periodically, transmit the first sample immediately
after waking up, and then continue sending periodic IO samples at the IR rate, until the Time Before
Sleep (ST) timer expires and the device can resume sleeping.

Digital IO Change Detection (IC)
The IC parameter allows you to set which pins to monitor for change detection. When the state of the
monitored pin(s) changes, a sample is immediately sent to the destination address.

Use XCTU to set the value of IC parameter.
To select which pins monitor, assign a binary value to IC parameter based on the following pattern:

DIO12 DIO11 DIO10 DIO9 DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1 DIO0

0 0 0 0 0 0 0 0 0 0 0 0 0

For example, if you want to monitor DIO1, the value would be 0000000000010, which is 2 in
hexadecimal notation. If you want to monitor DIO12, DIO8, DIO3 and DIO1, the value would be
1000100001010 (binary) = 110A (hexadecimal). The value 0 disables the feature.

The Digital IO Change Detection (IC) feature only works for digital pins, so you will not
receive anything if the value of an analog pin changes.
If an XBee module is sleeping, changes in any of the monitored pins will not wake the
module.

Example: receive digital data
This section teaches you how to create an XBee digital sensor network. Since the kit does not contain
a real sensor, you simulate a digital sensor with the user button of the XBee Grove Development
Board.

Inputs and outputs Example: receive digital data

XBee® Zigbee® Mesh Kit 99

Note If you have a Grove sensor, you can connect it to the board for a more realistic example of a
sensor network.

You will configure one of the modules as coordinator and the others as router. The routers (where the
sensors are connected) will be the senders and will transmit the status of the user button to the
coordinator every time the button is pressed or released.
If you get stuck, see Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Three XBee Zigbee Mesh Kit modules
n Three XBee Grove Development Boards
n Three micro USB cables
n One computer

Software

n XCTU 6.3.1 or later
n XBee Java Library (XBJL-X.Y.Z.zip release file)
n Java Virtual Machine 6 or later
n A Java IDE (such as Eclipse or NetBeans)

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
If you have a Grove sensor (not included in the kit), plug it into the Grove DIO4 connector of the
sender XBee's board. Follow the steps to connect your modules:

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. You can find more specific steps in Plug in the
XBee module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

http://www.seeedstudio.com/depot/s/grove%2520sensor.html
http://www.digi.com/xctu
https://github.com/digidotcom/XBeeJavaLibrary/releases
https://www.java.com/en/download/

Inputs
and

outputs
Exam

ple:receive
digitaldata

XBee®
Zigbee®

M
esh

Kit
100

Step 3: Configure the XBee modules
XBee B and XBee C, the routers, send the digital value from the user button to XBee A, the coordinator, every time the value changes (that is, when you
press or release the button).
Set the destination address (DH + DL) of the senders (XBee B and XBee C) to the MAC address (SH + SL) of the receiver (XBee A). Additionally, configure
the pin where the button is connected (DIO4/AD4) as a digital input, and set the DIO change detect (IC) to monitor the same pin.

1. Restore the default settings of all XBee modules with the Load default firmware settings button at the top of the Radio Configuration
section.

2. Use XCTU to configure the following parameters:

Param XBee A XBee B XBee C Effect

ID 2015 2015 2015 Defines the network that a radio will attach to. This must be the same for all radios in your
network.

JV — Enabled [1] Enabled [1] Verifies if a coordinator exists on the same channel to join the network or to leave if it cannot
be found.

CE Enabled
[1]

— — Sets the device as coordinator.

DH — 0 0 Defines the destination address (high part) to transmit the data to. The address
0000000000000000 can be used to address the coordinator.

DL — 0 0 Defines the destination address (low part) to transmit the data to. The address
0000000000000000 can be used to address the coordinator.

NI COORD ROUTER_1 ROUTER_2 Defines the node identifier, a human-friendly name for the module.

The default NI value is a blank space. Make sure to delete the space when you
change the value.

Inputs
and

outputs
Exam

ple:receive
digitaldata

XBee®
Zigbee®

M
esh

Kit
101

Param XBee A XBee B XBee C Effect

AP API
enabled
[1]

API
enabled [1]

API
enabled [1]

Enables the API operating mode.

D4 — Digital
Input [3]

Digital
Input [3]

Sets the DIO4/AD4 pin as digital input in the senders. This pin is connected to a button.

IC — 10 10 Configures the senders to transmit an IO sample when pin DIO4 (where the button is
connected) changes.
00010000 (binary) = 10 (hexadecimal).

For more information on how to configure this parameter to monitor the pins, see How to
obtain data from a sensor.

Note The dash (—) in the table means to keep the default value. Do not change the default value.

3. Write the settings of all XBee modules with the Write radio settings button at the top of the Radio Configuration section.

Inputs and outputs Example: receive digital data

XBee® Zigbee® Mesh Kit 102

Step 4: Create a Java project
Create an empty Java project named using Eclipse or NetBeans, with the following project name:
ReceiveDigitalData.
Option 1: Eclipse

a. Select File > New, and click the Java Project.
b. The New Java Project window appears. Enter the Project name.
c. Click Next.

or
Option 2: NetBeans

a. Select File > New project....
b. The New Project window appears. In the Categories frame, select Java > Java Application

from the panel on the right, and click Next.
c. Enter the Project name and the Project Location. Clear the Create Main Class option; you will

create this later.
d. Click Finish to create the project. The window closes and the project appears in the Projects

view list on the left side of the IDE.

Step 5: Link libraries to the project
This topic describes how to link the XBee Java Library, the RXTX library (including the native one),
and the logger library to the project.

1. Download the XBJL_X.Y.Z.zip library.
2. Unzip the XBJL_X.Y.Z.zip library.
3. Link the libraries using Eclipse or NetBeans:

Option 1: Eclipse

a. Go to the Libraries tab of the New Java Project window.
b. Click Add External JARs....
c. In the JAR Selection window, search the folder where you unzipped the XBee Java Library and

open the xbee-java-library-X.Y.Z.jar file.
d. Click Add External JARs... again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api-x.y.z.jar
n slf4j-nop-x.y.z.jar

f. Expand the rxtx-2.2.jar file of the Libraries tab list, select Native library location, and click
Edit….

g. Click External folder... to navigate to the extra-libs\native\Windows\win32 folder of the
directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip).

n Replace Windows\win32 with the directory that matches your operating system and
the Java Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual

https://github.com/digidotcom/XBeeJavaLibrary/releases

Inputs and outputs Example: receive digital data

XBee® Zigbee® Mesh Kit 103

Machine is installed in your computer, open a terminal or command prompt and
execute:

java -version

h. Click OK to add the path to the native libraries.
i. Click Finish.

or
Option 2: NetBeans

a. From Projects view, right-click your project and go to Properties.
b. In the categories list on the left, go to Libraries and click Add JAR/Folder.
c. In the Add JAR/Folder window, search the folder where you unzipped the XBee Java Library

and open the xbjlib-X.Y.X.jar file.
d. Click Add JAR/Folder again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api- x.y.z .jar
n slf4j-nop- x.y.z .jar

f. Select Run in the left tree of the Properties dialog.
g. In the VM Options field, add the following option:

-Djava.library.path=<path_where_the_XBee_Java_Library_is_unzipped>\extra-
libs\native\Windows\win32

where:
n <path_where_the_XBee_Java_Library_is_unzipped> is the absolute path of the

directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip)
n Windows\win32 is the directory that matches your operating system and the Java

Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual Machine is
installed in your computer, open a terminal or command prompt and execute:

java -version

h. Click OK.

Step 6: Add the source code to the project
Follow these steps to add the source to the project.

1. Open the following source code, select all, and copy it to the clipboard: MainApp.java.
2. Add the Java source file with Eclipse or NetBeans.

Option 1: Eclipse

a. In the Package Explorer view, select the project and right-click.
b. From the context menu, select New > Class. The New Java Class wizard opens.
c. Type the Name of the class: MainApp.
d. Click Finish.

MainApp.txt

Inputs and outputs Example: receive digital data

XBee® Zigbee® Mesh Kit 104

e. The MainApp.java file is automatically opened in the editor. Replace its contents with the
source code you copied in the previous step.

f. A line at the top of the pasted code is underlined in red. Click on that line; a pop-up appears.
Select the first option (Move 'MainApp.java' to package '...') to resolve the error.

Option 2: NetBeans

a. In the Projects view, select the project and right-click.
b. From the context menu, select New > Java Class... The New Java Class wizard opens.
c. Modify the Class Name to be MainApp.
d. Click Finish.
e. The MainApp.java file automatically opens in the editor. Replace its contents with the source

code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on the light bulb next to that

line; a pop-up appears. Select the first option (Move class to correct folder) to resolve the
error.

Option 1: Eclipse

a. In the Package Explorer view, select the project and right-click.
b. From the context menu, select New > Class. The New Java Class wizard opens.
c. Type the Name of the class: MainApp.
d. Click Finish.
e. The MainApp.java file is automatically opened in the editor. Replace its contents with the

source code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on that line; a pop-up appears.

Select the first option (Move 'MainApp.java' to package '...') to resolve the error.

Option 2: NetBeans

a. In the Projects view, select the project and right-click.
b. From the context menu, select New > Java Class... The New Java Class wizard opens.
c. Modify the Class Name to be MainApp.
d. Click Finish.
e. The MainApp.java file automatically opens in the editor. Replace its contents with the source

code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on the light bulb next to that

line; a pop-up appears. Select the first option (Move class to correct folder) to resolve the
error.

Step 7: Set the port name and launch the application
For this step, set the port name and launch the application.

1. Change the port name in the Java source code to match the port that the COORD module
(receiver) is connected to.

// TODO: Replace with the port where your coordinator module is connected
private static final String PORT = "COM1";

Inputs and outputs Example: receive digital data

XBee® Zigbee® Mesh Kit 105

// TODO: Replace with the baud rate of your coordinator module.
private static final int BAUD_RATE = 9600

2. Launch the application on your computer. Every time you press or release the ROUTER_1 (XBee
B) or ROUTER_2 (XBee C) user button, COORD (XBee A) receives its status.

3. Press the button and check the received status. The output of the application is similar to the
following:
+---------------------------------------+
| Receive Digital Data Sample |
+---------------------------------------+

WARNING: RXTX Version mismatch
Jar version = RXTX-2.2pre1
native lib Version = RXTX-2.2pre2

Listening for IO samples... Press the user button of any remote device.

Digital data from '0013A20012345678': Low (button pressed)
Digital data from '0013A20012345678': High (button released)
Digital data from '0013A20012345678': Low (button pressed)
Digital data from '0013A20012345678': High (button released)

Step 8: Section summary of receiving digital data
In this section, you have learned that:

n All XBee modules have a set of pins you can use to connect and configure sensors or actuators.
n A sensor is a device that provides a corresponding output as a response to events or changes

in quantities. There are two types:
l Digital sensors return discrete values such as on/off.
l Analog sensors can return a wide variety of values such as the temperature of a room.

n If, as in this example, you want to read data from a digital sensor, you must configure the
selected IO as Digital Input.

n You can obtain digital data from a sensor by configuring the remote XBee to transmit the IO
data:
l To the local device by setting the DH and DL parameters to the MAC of the receiver

module.
l When a digital pin changes (using the IC or Digital IO Change Detection parameter) as you

did in this example, or periodically (using the IR or IO Sampling Rate parameter).
n Although the Digital IO Change Detection (IC) parameter is configured to monitor one or more

pins, changes in these pins do not wake an end device while it is sleeping.
n The data sent from one module to the other is called IO Sample. It contains the inputs (DIO

lines or ADC channels) for which sampling has been enabled. It also contains the value of all
enabled digital and analog inputs.

Step 9: Do more with receiving digital data
If you are ready to work more extensively with receiving digital data, try the following:

Inputs and outputs Lab: receive analog data

XBee® Zigbee® Mesh Kit 106

n Modify the example and configure as end devices one or both modules connected to the
button (ROUTER_1, ROUTER_2). They can sleep for three seconds and then wake for one
second and send the button status.

n Instead of using the button on the board, connect a digital Grove sensor (for example, a
motion sensor) to the board.

n Form a larger sensor network by adding more XBee modules and configuring them to send
digital data to COORD.

Lab: receive analog data
This section demonstrates how to create an XBee sensor network. Since the kit does not contain a real
sensor, you will simulate an analog sensor with the potentiometer of the XBee Grove Development
Board.

Note If you have a Grove sensor, you can connect it to the board for a more realistic example of a
sensor network.

For this example, configure one module as coordinator, another as router, and another as end device.
The router and end device, where the sensor is connected, will be the senders. The end device will
sleep for five seconds, and then wake for the minimum time required to transmit the value of the
potentiometer to the coordinator (the receiver).
If you get stuck, see Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Three XBee Zigbee Mesh Kit modules
n Three XBee Grove Development Boards
n Three micro USB cables
n One computer

Software

n XCTU 6.3.1 or later
n XBee Java Library (XBJL-X.Y.Z.zip release file)
n Java Virtual Machine 6 or later
n A Java IDE (such as Eclipse or NetBeans)

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
If you have a Grove sensor (not included in the kit), plug it into the Grove AD2 connector of the XBee B
or XBee C (senders) board. Follow the steps to connect your modules:

http://www.seeedstudio.com/depot/s/grove%2520sensor.html
http://www.digi.com/xctu
https://github.com/digidotcom/XBeeJavaLibrary/releases
https://www.java.com/en/download/

Inputs and outputs Lab: receive analog data

XBee® Zigbee® Mesh Kit 107

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. You can find more specific steps in Plug in the
XBee module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

Inputs
and

outputs
Lab:receive

analog
data

XBee®
Zigbee®

M
esh

Kit
108

Step 3: Configure the XBee modules
XBee B sends the analog value read from the potentiometer to XBee A, the coordinator, every five seconds. XBee C, the end device, sleeps for five
seconds. After this sleep period, it sends the analog value read from the potentiometer to XBee A, then immediately enters low-power mode for another
five seconds.
Set the destination address (DH + DL) of the senders (XBee B and XBee C) to the MAC address (SH + SL) of the receiver (XBee A). Additionally, configure
the pin where the potentiometer connects (DIO3/AD3) as an analog input, and set the sample rate parameter (IR) to five seconds.

1. Restore the default settings of all XBee modules with the Load default firmware settings button at the top of the Radio Configuration
section.

Inputs
and

outputs
Lab:receive

analog
data

XBee®
Zigbee®

M
esh

Kit
109

2. Use XCTU to configure the following parameters:

Param XBee A XBee B XBee C Effect

ID 2015 2015 2015 Defines the network that a radio will attach to. This must be the same for all radios on your
network.

JV — Enabled
[1]

Enabled
[1]

Verifies if a coordinator exists on the same channel to join the network or to leave if it cannot be
found.

CE Enabled
[1]

— — Sets the device as coordinator.

DH — 0 0 Defines the destination address (high part) to transmit the data to. Use the address
0000000000000000 to address the coordinator.

DL — 0 0 Defines the destination address (low part) to transmit the data to. Use the address
0000000000000000 to address the coordinator.

NI COORD ROUTER END_
DEVICE

Defines the node identifier, a human-friendly name for the module.

The default NI value is a blank space. Make sure to delete the space. when you change
the value.

AP API
enabled
[1]

API
enabled
[1]

API
enabled
[1]

Enables API operating mode.

SP 1F4 1F4 1F4 Defines the duration of time spent sleeping. 1F4 (hexadecimal) = 500 (decimal) x 10 ms = 5
seconds.

SM — — Cyclic
sleep [4]

Enables the cyclic sleep mode.

Inputs
and

outputs
Lab:receive

analog
data

XBee®
Zigbee®

M
esh

Kit
110

Param XBee A XBee B XBee C Effect

ST — — A Defines the period of inactivity (no serial or RF data received) before going to sleep.
A (hexadecimal) = 10 (decimal) x 1 ms = 10 milliseconds.

D2/D3 — ADC [2] ADC [2] Sets the DIO2/AD2 or DIO3/AD3 pin as ADC in XBee B and XBee C, depending on if the XBee
modules are THT or SMT. This pin is connected to a potentiometer.

Configure the D2 parameter as ADC [2] only if the XBee module is surface-mount (SMT).
However, if the module is through-hole (THT), you have to configure the D3 parameter
as ADC [2] instead of the D2.

IR — 1388 1388 Configures XBee B and XBee C to send IO samples every five seconds (5000 ms = 1388 in
hexadecimal).

Note The dash (—) in the table means to keep the default value. Do not change the default value.

Note If you are using a Grove sensor and have connected it to the Grove AD2 connector, you must configure the D2 parameter as ADC [2] instead of the
D3.

3. Write the settings of all XBee modules with the Write radio settings button at the top of the Radio Configuration section.

Inputs and outputs Lab: receive analog data

XBee® Zigbee® Mesh Kit 111

Step 4: Create a Java project
Create an empty Java project named using Eclipse or NetBeans, with the following project name:
ReceiveAnalogData.
Option 1: Eclipse

a. Select File > New, and click the Java Project.
b. The New Java Project window appears. Enter the Project name.
c. Click Next.

or
Option 2: NetBeans

a. Select File > New project....
b. The New Project window appears. In the Categories frame, select Java > Java Application

from the panel on the right, and click Next.
c. Enter the Project name and the Project Location. Clear the Create Main Class option; you will

create this later.
d. Click Finish to create the project. The window closes and the project appears in the Projects

view list on the left side of the IDE.

Step 5: Link libraries to the project
This topic describes how to link the XBee Java Library, the RXTX library (including the native one),
and the logger library to the project.

1. Download the XBJL_X.Y.Z.zip library.
2. Unzip the XBJL_X.Y.Z.zip library.
3. Link the libraries using Eclipse or NetBeans:

Option 1: Eclipse

a. Go to the Libraries tab of the New Java Project window.
b. Click Add External JARs....
c. In the JAR Selection window, search the folder where you unzipped the XBee Java Library and

open the xbee-java-library-X.Y.Z.jar file.
d. Click Add External JARs... again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api-x.y.z.jar
n slf4j-nop-x.y.z.jar

f. Expand the rxtx-2.2.jar file of the Libraries tab list, select Native library location, and click
Edit….

g. Click External folder... to navigate to the extra-libs\native\Windows\win32 folder of the
directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip).

h. Replace Windows\win32 with the directory that matches your operating system and the Java
Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual Machine is

https://github.com/digidotcom/XBeeJavaLibrary/releases

Inputs and outputs Lab: receive analog data

XBee® Zigbee® Mesh Kit 112

installed in your computer, open a terminal or command prompt and execute:

java -version

i. Click OK to add the path to the native libraries.
j. Click Finish.

or
Option 2: NetBeans

a. From Projects view, right-click your project and go to Properties.
b. In the categories list on the left, go to Libraries and click Add JAR/Folder.
c. In the Add JAR/Folder window, search the folder where you unzipped the XBee Java Library

and open the xbjlib-X.Y.X.jar file.
d. Click Add JAR/Folder again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api- x.y.z .jar
n slf4j-nop- x.y.z .jar

f. Select Run in the left tree of the Properties dialog.
g. In the VM Options field, add the following option:

-Djava.library.path=<path_where_the_XBee_Java_Library_is_unzipped>\extra-
libs\native\Windows\win32

where:
n <path_where_the_XBee_Java_Library_is_unzipped> is the absolute path of the

directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip)
n Windows\win32 is the directory that matches your operating system and the Java

Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual Machine is
installed in your computer, open a terminal or command prompt and execute:

java -version

h. Click OK.

Step 6: Add the source code to the project
Follow these steps to add the source to the project.

1. Open the following source code, select all, and copy it to the clipboard: MainApp.java.
2. Add the Java source file with Eclipse or NetBeans.

Option 1: Eclipse

a. In the Package Explorer view, select the project and right-click.
b. From the context menu, select New > Class. The New Java Class wizard opens.
c. Type the Name of the class: MainApp.
d. Click Finish.

https://www-qa.digi.com/resources/documentation/digidocs/90001942-13/resources/code/xbeezigbeemeshkit/receive_analog_data/mainapp.txt

Inputs and outputs Lab: receive analog data

XBee® Zigbee® Mesh Kit 113

e. The MainApp.java file is automatically opened in the editor. Replace its contents with the
source code you copied in the previous step.

f. A line at the top of the pasted code is underlined in red. Click on that line; a pop-up appears.
Select the first option (Move 'MainApp.java' to package '...') to resolve the error.

Option 2: NetBeans

a. In the Projects view, select the project and right-click.
b. From the context menu, select New > Java Class... The New Java Class wizard opens.
c. Modify the Class Name to be MainApp.
d. Click Finish.
e. The MainApp.java file automatically opens in the editor. Replace its contents with the source

code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on the light bulb next to that

line; a pop-up appears. Select the first option (Move class to correct folder) to resolve the
error.

Step 7: Set the port name and launch the application
For this step, set the port name and launch the application.

1. Change the port name in the Java source code to match the port that the receiver (COORD) is
connected to.

// TODO: Replace with the port where your coordinator module is connected
private static final String PORT = "COM1";
// TODO: Replace with the baud rate of your coordinator module.
private static final int BAUD_RATE = 9600

Note If you are using a Grove sensor connected to AD2, make this additional code change to
select the correct IO Line:

2. Launch the application on your computer. Every five seconds, you will receive the value of the
potentiometer connected to ROUTER and END_DEVICE (senders). Rotate them and see that the
values change.

3. The output of the application should be similar to the following:

4.
+---------------------------------------+
| Receive Analog Data Sample |
+---------------------------------------+

WARNING: RXTX Version mismatch
Jar version = RXTX-2.2pre1
native lib Version = RXTX-2.2pre2

Analog data from '0013A20011111111': 227
Analog data from '0013A20022222222': 0
Analog data from '0013A20011111111': 113
Analog data from '0013A20022222222': 1023

Inputs and outputs How XBee modules control devices

XBee® Zigbee® Mesh Kit 114

Step 8: Section summary of receiving analog data
In this section, you have learned that:

n All XBee modules have a set of pins that you can use to connect and configure sensors or
actuators.

n A sensor is a device that provides a corresponding output as a response to events or changes
in quantities. There are two types:
l Digital sensors return discrete values such as on/off.
l Analog sensors can return a wide variety of values such as the temperature of a room.

n If, as in this example, you want to read data from an analog sensor, you must configure the
selected IO as Analog to Digital Converter (ADC).

n You can obtain analog data from a sensor by configuring the remote XBee module to transmit
the IO data:
l To the local device, by setting the DH and DL parameters to the MAC of the receiver

module.
l Periodically, as you did in this example (using the IR or IO Sampling Rate parameter).

Note Remember that the Digital IO Change Detection (IC) feature only works for digital pins, so in this
case you would not receive any data.

n In this case, the data sent from one module to the other is called IO Sample. It contains the
inputs (DIO lines or ADC channels) for which sampling has been enabled. It also contains the
value of all enabled digital and analog inputs.

n A sleeping end device will transmit periodic IO samples at the IR rate until the Time Before
Sleep (ST) timer expires and the device can resume sleeping.

Step 9: Do more with receiving analog data
If you are ready to work more extensively with receiving analog data, try the following:

n Instead of using the potentiometer on the board, connect an analog Grove sensor to the board
to create a home automation system. You can monitor a number of factors, such as:
l Temperature
l Humidity
l Luminance
l CO2
l UV
l Gas

You can find more analog sensors at SeeedStudio.

n Form a larger sensor network by adding more XBee modules and configuring them to send
analog data to COORD (XBee A).

How XBee modules control devices
There are many reasons to create a sensor network—that is, to collect data from multiple nodes and
bring it to a central location. There are also many reasons you may want to take remote commands

http://www.seeedstudio.com/depot/s/grove%2520sensor.html?search_in_description=0

Inputs and outputs How XBee modules control devices

XBee® Zigbee® Mesh Kit 115

from a central location and create real events in multiple physical locations.
An XBee module is capable of receiving commands that set its digital and analog output pins to
trigger real-world events without the use of an external microcontroller. By itself, an XBee device can
power an LED, sound a small buzzer, or even operate a tiny motor. If you use a relay, you can operate
many more devices directly from the XBee module.

Configure a pin for digital output
If you want to control a digital device, for example to switch a street lamp on or off, connect the
device to a pin that supports digital output. XBee Zigbee devices have 15 digital outputs (from D0 to
D9 and P0 to P4). In addition, configure that pin as Digital Output Low (Digital Out, Low [4]) or Digital
Output High (Digital Out, High [5]), depending on the desired default state.

How to send actuations
Once you configure the pin of a remote device, you can send any actuation to that XBee device. You
can use XCTU or the XBee Java Library.
To send an actuation in XCTU, create a Remote AT Command frame in the API console, configuring the
following parameters:

n 64-bit destination address: the remote module's MAC address.
n AT command (ASCII): the AT command corresponding to the IO line you want to change (D0-D9

or P0-P4). For example, if you want to send an actuation to DIO3, type D3.
n Parameter value (HEX): the new value for the selected IO line is 04 for off, 05 for on.

Inputs and outputs Example: send digital actuations

XBee® Zigbee® Mesh Kit 116

Example: send digital actuations
In this example, you will create a Java application that blink the LED of a remote XBee module.
Configure one of the modules as a coordinator and the other as router. The coordinator is the sender
and transmits the digital actuation to the router, which is connected to the LED.
If you get stuck, see Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Two XBee Zigbee Mesh Kit modules
n Two XBee Grove Development Boards
n Two micro USB cables
n One computer

Software

n XCTU 6.3.1 or later
n XBee Java Library (XBJL-X.Y.Z.zip release file)
n Java Virtual Machine 6 or later
n A Java IDE (such as Eclipse or NetBeans)

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. You can find more specific steps in Plug in the
XBee module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

Step 3: Configure the XBee modules
Follow these steps to configure XBee A, the coordinator, to send digital actuations to XBee B, the
router, every second. The LED of the receiver dims with each signal received.

http://www.digi.com/xctu
https://github.com/digidotcom/XBeeJavaLibrary/releases
https://www.java.com/en/download/

Inputs and outputs Example: send digital actuations

XBee® Zigbee® Mesh Kit 117

1. Restore the default settings of all XBee modules with the Load default firmware settings
button at the top of the Radio Configuration section.

2. Use XCTU to configure the following parameters:

Param XBee A XBee B Effect

ID 2015 2015 Defines the network that a radio will attach to. This must
be the same for all radios in your network.

JV — Enabled
[1]

Verifies if a coordinator exists on the same channel to join
the network or to leave if it cannot be found.

CE Enabled
[1]

— Sets the device as coordinator.

NI COORD ROUTER Defines the node identifier, a human-friendly name for the
module.

The default NI value is a blank space. Make sure to
delete the space when you change the value.

AP API
Enabled
[1]

API
Enabled
[1]

Enables API mode.

D4 — Digital
Out, High
[5]

Sets the DIO4/AD4 pin as Digial Output High in XBee B.
The LED is connected to this pin.

Note The dash (—) in the table means to keep the default value. Do not change the default
value.

3. Write the settings of all XBee modules with the Write radio settings button at the top of
the Radio Configuration section.

Step 4: Create a Java project
Option 1: Eclipse

a. Select File > New, and click the Java Project.
b. The New Java Project window appears. Enter the Project name.
c. Click Next.

or
Option 2: NetBeans

a. Select File > New project....
b. The New Project window appears. In the Categories frame, select Java > Java Application

from the panel on the right, and click Next.

Inputs and outputs Example: send digital actuations

XBee® Zigbee® Mesh Kit 118

c. Enter the Project name and the Project Location. Clear the Create Main Class option; you will
create this later.

d. Click Finish to create the project. The window closes and the project appears in the Projects
view list on the left side of the IDE.

Step 5: Link libraries to the project
This topic describes how to link the XBee Java Library, the RXTX library (including the native one),
and the logger library to the project.

1. Download the XBJL_X.Y.Z.zip library.
2. Unzip the XBJL_X.Y.Z.zip library.
3. Link the libraries using Eclipse or NetBeans:

Option 1: Eclipse

a. Go to the Libraries tab of the New Java Project window.
b. Click Add External JARs....
c. In the JAR Selection window, search the folder where you unzipped the XBee Java Library and

open the xbee-java-library-X.Y.Z.jar file.
d. Click Add External JARs... again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api-x.y.z.jar
n slf4j-nop-x.y.z.jar

f. Expand the rxtx-2.2.jar file of the Libraries tab list, select Native library location, and click
Edit….

g. Click External folder... to navigate to the extra-libs\native\Windows\win32 folder of the
directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip).

n Replace Windows\win32 with the directory that matches your operating system and
the Java Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual
Machine is installed in your computer, open a terminal or command prompt and
execute:

java -version

h. Click OK to add the path to the native libraries.
i. Click Finish.

or
Option 2: NetBeans

a. From Projects view, right-click your project and go to Properties.
b. In the categories list on the left, go to Libraries and click Add JAR/Folder.
c. In the Add JAR/Folder window, search the folder where you unzipped the XBee Java Library

and open the xbjlib-X.Y.X.jar file.
d. Click Add JAR/Folder again.

https://github.com/digidotcom/XBeeJavaLibrary/releases

Inputs and outputs Example: send digital actuations

XBee® Zigbee® Mesh Kit 119

e. Go to the extra-libs folder and select the following files:
n rxtx-2.2.jar
n slf4j-api- x.y.z .jar
n slf4j-nop- x.y.z .jar

f. Select Run in the left tree of the Properties dialog.
g. In the VM Options field, add the following option:

-Djava.library.path=<path_where_the_XBee_Java_Library_is_unzipped>\extra-
libs\native\Windows\win32

where:
n <path_where_the_XBee_Java_Library_is_unzipped> is the absolute path of the

directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip)
n Windows\win32 is the directory that matches your operating system and the Java

Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual Machine is
installed in your computer, open a terminal or command prompt and execute:

java -version

h. Click OK.

Step 6: Add the source code to the project
Follow these steps to add the source to the project.

1. Open the following source code, select all, and copy it to the clipboard: MainApp.java
2. Add the Java source file with Eclipse or NetBeans.

Option 1: Eclipse

a. In the Package Explorer view, select the project and right-click.
b. From the context menu, select New > Class. The New Java Class wizard opens.
c. Type the Name of the class: MainApp.
d. Click Finish.
e. The MainApp.java file is automatically opened in the editor. Replace its contents with the

source code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on that line; a pop-up appears.

Select the first option (Move 'MainApp.java' to package '...') to resolve the error.

Option 2: NetBeans

a. In the Projects view, select the project and right-click.
b. From the context menu, select New > Java Class... The New Java Class wizard opens.
c. Modify the Class Name to be MainApp.
d. Click Finish.
e. The MainApp.java file automatically opens in the editor. Replace its contents with the source

code you copied in the previous step.
f. A line at the top of the pasted code is underlined in red. Click on the light bulb next to that

https://www.digi.com/resources/documentation/Digidocs/90001942-13/resources/code/xbeezigbeemeshkit/send_digital_actuations/mainapp.txt

Inputs and outputs Example: send digital actuations

XBee® Zigbee® Mesh Kit 120

line; a pop-up appears. Select the first option (Move class to correct folder) to resolve the
error.

Step 7: Set the port name and launch the application
For this step, set the port name and launch the application.

1. Change the port name in the Java source code to match the port that the COORD module
(sender) is connected to.

// TODO: Replace with the port where your coordinator module is
connected.
private static final String PORT = "COM1";
// TODO: Replace with the baud rate of your coordinator module.
private static final int BAUD_RATE = 9600

2. Launch the application in your computer. Every second, you will see that the LED of the
ROUTER module (receiver) changes state.

Step 8: Section summary of sending digital actuations
In this section, you have learned that:

n All XBee modules have a set of pins you can use to connect and configure sensors or actuators.
n An actuator is a device that controls a mechanism or system. For instance, you can use an XBee

module connected to an actuator to send digital information to another XBee module so that it
raises or lowers your window blinds.

n You can create a network with a central node that sends orders to remote nodes. This network
allows you to trigger real-world events wirelessly, such as switching on all the lights at home,
via actuators connected to remote node(s).

n The default state of a pin that supports digital output depends on the values of the DIO setting:
l Digital Output, Low [4]: the output is set by default to low.
l Digital Output, High [5]: the output is set by default to high.

Step 9: Do more with sending digital actuations
If you are ready to work more extensively with actuations, try the following:

n Add sensors to your network, as explained in Example: receive digital data and Lab: receive
analog data. Then control your actuators depending on the value returned. For example,
switch the router's LED on when a button connected to coordinator is pressed, or when the
value of the coordinator's potentiometer exceeds a defined threshold.

n Instead of controlling an LED, connect a relay to one of the digital output pins to create a home
automation system. You can:
l Switch lights on/off.
l Switch the irrigation system of your garden on/off.
l Raise/lower the blinds.
l Control your garage door.

n Extend the network by adding more XBee devices connected to different devices.

Inputs and outputs Example: send digital actuations

XBee® Zigbee® Mesh Kit 121

n Control all your devices remotely with a smartphone application connected to an XBee
Gateway. See Related products.

Security and encryption

Zigbee supports various levels of security that you can configure depending on the needs of the
application. Security provisions include:

n 128-bit AES encryption
n Two security keys that can be preconfigured or obtained during joining
n Trust center support
n Provisions to ensure message integrity, confidentiality, and authentication

Zigbee security model
The Zigbee standard supports three security modes:

n Residential security was first supported in the Zigbee 2006 standard. This level of security
requires that a network key be shared among devices.

n Standard security adds a number of optional security enhancements over residential security,
including an APS layer link key.

n High security adds entity authentication, and a number of other features not widely
supported.

XBee Zigbee modules primarily support standard security, so we focus on this mode.

Note If you want to learn more about Zigbee security, see Chapter 4 - Security Services Specification of
the Zigbee specification.

XBee® Zigbee® Mesh Kit 122

Security and encryption Zigbee security model

XBee® Zigbee® Mesh Kit 123

Zigbee security is applied to the Network and APS layers, and packets are encrypted with 128-bit AES
encryption. A network key and optional link key can be used to encrypt data. Only devices with the
same keys are able to communicate together in a network.

Network layer security
The XBee device uses the network key to encrypt the APS layer and application data. If security is
enabled in a network, all data packets will be encrypted with the network key using 128-bit AES.

The network header, APS header, and application data are all authenticated with 128-bit AES. A hash
is performed on these fields and is appended as a four-byte message integrity code (MIC) to the end of
the packet. The MIC allows receiving devices to ensure the message has not been changed.
Packets with network layer encryption are encrypted and decrypted by each hop in a route. When a
device receives a packet with network encryption, it decrypts the packet and authenticates the
packet. If the device is not the destination, it then encrypts and authenticates the packet. Since
network encryption is performed at each hop, packet latency is slightly longer in an encrypted
network than in a non-encrypted network.

APS layer security
APS layer security can be used to encrypt application data using a key that is shared between source
and destination devices. Where network layer security is applied to all data transmissions and is
decrypted and reencrypted on a hop-by-hop basis, APS security is optional and provides end-to-end
security using an APS link key known by only the source and destination device. APS security cannot
be applied to broadcast transmissions.

If APS security is enabled, the APS header and data payload are authenticated with 128-bit AES. A
hash is performed on these fields and appended as a four-byte message integrity code (MIC) to the

Security and encryption Zigbee security model

XBee® Zigbee® Mesh Kit 124

end of the packet. This MIC is different than the MIC appended by the network layer. The MIC allows
the destination device to ensure the message has not been changed.
There are two kinds of APS link keys – trust center link keys and application link keys. A trust center
link key is established between a device and the trust center, and an application link key is
established between a device and another device in the network where neither device is the trust
center.

Note Zigbee defines a trust center device that is responsible for authenticating devices that join the
network. The trust center also manages link key distribution in the network.

Network and APS layer encryption
Network and APS layer encryption can both be applied to data. The following figure demonstrates the
authentication and encryption performed on the final Zigbee packet when both are applied.

Form or join a secure network
The coordinator is responsible for selecting a network encryption key. This key can either be
preconfigured or randomly selected. In addition, the coordinator generally operates as a trust center
and must select the trust center link key. The trust center link key can also be preconfigured or
randomly selected.
Devices that join the network must obtain the network key when they join. When a device joins a
secure network, the network and link keys can be sent to the joining device. If the joining device has a
preconfigured trust center link key, the network key will be sent to the joining device encrypted by the
link key. Otherwise, if the joining device is not preconfigured with the link key, the device could only
join the network if the network key is sent unencrypted—"in the clear".
The trust center must decide whether or not to send the network key unencrypted to joining devices
that are not preconfigured with the link key. We do not recommend sending the network key
unencrypted as it can open a security hole in the network. To maximize security, preconfigure devices
with the correct link key.

Security on the XBee Enable security

XBee® Zigbee® Mesh Kit 125

Security on the XBee

If you enable security in the XBee Zigbee firmware, devices acquire the network key when they join a
network. Data transmissions are always encrypted with the network key, and can optionally be end-
to-end encrypted with the APS link key.

Enable security
To enable security on a device, the Encryption Enable (EE) parameter must be set to 1. When the
parameter value changes, the XBee module leaves the network (PAN ID and channel) it was operating
on and attempt to form or join a new network. If you set EE to 1, all data transmissions are encrypted
with the network key.

Note The EE parameter must be set the same on all devices in a network.

Set the network security key
The coordinator selects the network security key for the network using the Network Encryption Key
(NK) parameter (write-only). If NK=0 (default), the coordinator will selects a random network key.
Otherwise, you set NK to a non-zero value, it uses this value as network security key.
NK is only supported on the coordinator. Routers and end devices with security enabled (EE=1)
acquire the network key when they join a network. They receive the network key encrypted with the
link key if they share a preconfigured link key with the coordinator.

Set the APS trust center link key
The coordinator must also select the trust center link key, using the Encryption Key (KY) parameter
(write-only). If KY=0 (default), the coordinator select a random trust center link key (not
recommended). Otherwise, if you set KY greater than 0, the module uses this value as the
preconfigured trust center link key.
If the coordinator selects a random trust center link key (KY=0, default), then it allows devices to join
the network without having a preconfigured link key. However, sends the network key unencrypted
over-the-air to joining devices and is not recommended.
If the coordinator uses a preconfigured link key (KY > 0), then the coordinator will not send the
network key unencrypted to joining devices. Only devices with the correct preconfigured link key can
able to join and communicate on the network.

Enable APS encryption
APS encryption is an optional layer of security that uses the link key to encrypt the data payload.
Unlike network encryption that is decrypted and encrypted on a hop-by-hop basis, APS encryption is
only decrypted by the destination device. The XBee must be configured with security enabled (EE set
to 1) to use APS encryption.
APS encryption can be enabled in API firmware on a per-packet basis. To enable APS encryption for a
given transmission, set the "enable APS encryption" transmit options bit in the API transmit frame.
Enabling APS encryption decreases the maximum payload size by nine bytes.

Security on the XBee Use a trust center

XBee® Zigbee® Mesh Kit 126

Use a trust center
Use the Encryption Options (EO) parameter define the coordinator as a trust center. If the coordinator
is a trust center, it received alerts to all new join attempts in the network. The trust center also has
the ability to update or change the network key on the network.

How to update the network key with a trust center.
If the trust center has started a network and the NK value changes, the coordinator updates the
network key on all devices in the network. Changes to NK will not force the device to leave the
network. The network continues to operate on the same channel and PAN ID, but the devices in the
network update their network key, increment their network key sequence number, and restore their
frame counters to 0.

How to update the network key without a trust center.
If the coordinator is not running as a trust center, the Network Reset (NR1) command can be used to
force all devices in the network to leave the current network and rejoin the network on another
channel. When devices leave and reform then network, the frame counters are reset to 0. This
approach causes the coordinator to form a new network that the remaining devices should join.
Resetting the network in this manner brings the coordinator and routers in the network down for
about ten seconds, and causes the 16-bit PAN ID and 16-bit addresses of the devices to change.
In Zigbee firmware, a secure network can be established with or without a trust center. Network and
APS layer encryption are supported regardless of whether a trust center is used.

Example: basic (but secure) communication

In this example, add security to the Example: basic communication by encrypting communication
between the three XBee modules. Note that this feature is applicable for both AT and API operating
modes.
First, follow the steps explained in the Basic Communication example. When you have added the
modules to XCTU and changed the value of the corresponding settings, enable security on each
module. To do so, set the EE, KY, and NK parameters as follows and write the new values:

Param XBee A XBee B XBee C Effect

EE Enabled [1] Enabled [1] Enabled [1] Enables Zigbee encryption.

KY 1234567890 1234567890 1234567890 Sets the APS trust center link key. You can
use any 32 hexadecimal string.

NK 0 — — Sets the network security key. In this case,
the coordinator selects a random key and
sends it to the other modules encrypted
with the preconfigured link key when they
join the network.

Note The dash (—) in the table means to keep the default value. Do not change the default value.

Once you have done this, all communications between the XBee modules are encrypted with ther
andom network key selected by the coordinator.

XBee® Zigbee® Mesh Kit 127

Example: basic (but secure) communication Understanding the example

XBee® Zigbee® Mesh Kit 128

Understanding the example
Once you have completed the steps outlined in the Basic (but secure) communication example, send a
message from ROUTER or END_DEVICE to COORD. You will see that the message was received
correctly but you will not detect the encryption/decryption process or notice a difference in the way
the XBees display the information. Now try disabling the encryption on ROUTER or END_DEVICE. Or,
change the Encryption Key (KY) on one of them. In both of these instances, the receiver module
(COORD) will not receive the messages.

Signal strength and radio frequency range

This section describes how obstacles and other factors can impact how well the devices in your
network communicate. Once you learn about the factors that can impact your signal and wireless
communications, you can try performing a range test.

Distance and obstacles 130
Factors affecting wireless communication 131
Signal strength and the RSSI pin 132
Range test 135
Example: perform a range test 137

XBee® Zigbee® Mesh Kit 129

Signal strength and radio frequency range Distance and obstacles

XBee® Zigbee® Mesh Kit 130

Distance and obstacles
Basic communication systems involve the following components:

n Transmitting element
n Receiving device
n Environment through which communication is occurring
n Antennas or other focusing elements

RF communication can be compared to simple audio communication: our vocal cords transmit sound
waves that may be received by someone's eardrum. We can use a megaphone to focus and direct the
sound waves in order to make the communication more efficient.
The transmitter's role in wireless communication is to feed a signal to an antenna for transmission. A
radio transmitter encodes data in RF waves with a certain signal strength (power output) to project
the signal to a receiver.
The receiver gets and decodes data that comes through the receiving antenna. The receiver performs
the task of accepting and decoding designated RF signals while rejecting unwanted ones.
Antennas are devices that focus energy in a particular direction, similar to the way the megaphone
focuses voice energy. Antennas can provide different radiation patterns depending on the design and
application. How much the energy is focused in a given direction is referred to as antenna gain.
The space between the transmitter and receiver is the system's environment. Attaining RF line-of-
sight (LOS) between sending and receiving antennas is essential to achieving long range in wireless
communication. There are two types of LOS that are generally used to describe an environment:

n Visual LOS is the ability to see from one site to the other. It requires only a straight linear path
between two points.

n RF LOS requires not only visual LOS, but also a football-shaped path called a Fresnel zone
that is free of obstacles so data can travel optimally from one point to another. The Fresnel

Signal strength and radio frequency range Factors affecting wireless communication

XBee® Zigbee® Mesh Kit 131

zone can be thought of as a tunnel between two sites that provides a path for RF signals.

Factors affecting wireless communication
Although the communication distance specified for some XBee devices can be up to 25 miles or more,
this value may be affected by factors that may decrease the quality of the signal:

n Some materials can reflect the radio frequency waves, causing interference with other
waves and loss of signal strength. In particular, metallic or conductive materials are great
reflectors, although almost any surface can reflect the waves and interfere with other radio
frequency waves.

n Radio waves can be absorbed by objects in their path, causing loss of power and limiting
transmission distance.

n Antennas can be adjusted to increase the distance that data can travel in a wireless
communication system. The more focus the antenna can apply, the more range the system
will yield. High-gain antennas can achieve greater range than low-gain antennas, although they
cover less area.

A flashlight can help illustrate the principle. Some flashlights allow the user to adjust the beam
of light by twisting the lens to focus or spread the beam of light. When the lens spreads—or
diffuses—the beam of light, that beam of light travels a shorter distance than when the lens is
twisted to focus the beam of light.

n Line-of-sight can help increase reliability of the signal.

To achieve the greatest range, the football-shaped path in which radio waves travel (Fresnel
zone) must be free of obstructions. Buildings, trees, or any other obstacles in the path will
decrease the communication range. If the antennas are mounted just off the ground, over half

Signal strength and radio frequency range Signal strength and the RSSI pin

XBee® Zigbee® Mesh Kit 132

of the Fresnel zone ends up being obstructed by the curvature of the earth, resulting in
significant reduction in range. To avoid this problem, mount the antennas high enough off the
ground that the earth does not interfere with the central diameter of the Fresnel zone.

Signal strength and the RSSI pin
The Received Signal Strength Indicator (RSSI) measures the amount of power present in a radio signal.
It is an approximate value for signal strength received on an antenna.
Measuring the signal strength at the receiving antenna is one way to determine the quality of a
communication link. If a distant transmitter is moved closer to a receiver, the strength of the
transmitted signal at the receiving antenna increases. Likewise, if a transmitter is moved farther away,
signal strength at the receiving antenna decreases.
The RSSI is measured in dBm. A greater negative value (in dBm) indicates a weaker signal. Therefore, -
50 dBm is better than -60 dBm.

Signal strength and radio frequency range Signal strength and the RSSI pin

XBee® Zigbee® Mesh Kit 133

XBee module's pin 6 can be configured as an RSSI pin that outputs a PWM (pulse-width modulation)
signal representing this value. To do so, configure P0 as RSSI [1]:

The XBee Grove Development Board includes an LED connected to the XBee module's pin 6. When this
pin is configured as the RSSI pin, the LED lights every time the connected XBee module receives data.
Its intensity represents the RSSI value of the last-received data: a brighter light means a higher RSSI
value and better signal quality.

Signal strength and radio frequency range Signal strength and the RSSI pin

XBee® Zigbee® Mesh Kit 134

Configure the amount of time the RSSI pin is active, and therefore the amount of time the LED will
remain lit, by modifying the RSSI PWM Timer (RP) setting:

RP value is expressed in hexadecimal notation. For example, a configured value of 0x1E is equivalent
to 30 in decimal and means that the pin will be active for three seconds (30*100=3000ms.) So the LED
will light for a total of three seconds, representing the last RSSI value.
After the RP time has elapsed and no data has been received, the pin will be set to low and the LED
will not light until more data is received. The pin will also be set to low at power-up until the first data
packet is received. A value of 0xFF permanently enables the pin; when configured in this way, it will
always reflect the RSSI value of the last-received data packet.

Although the luminosity variations of the RSSI LED may be difficult to distinguish, the LED
can be used to verify successful receipt of data packets. Each time the XBee module
receives data, the LED is solid during the configured time.

Note Received Signal Strength (DB) parameter
The RSSI value can also be obtained by reading the XBee DB parameter value. It represents the RSSI
absolute value of the last received data packet expressed in hexadecimal notation.

Is RSSI the best indication of link quality?
One thing to keep in mind is that the RSSI is only an indication of the RF energy detected at the
antenna port. The power level reported could be artificially high because it may include energy from
background noise and interference as well as the energy from the desired signal. This situation is
worse in an interference-prone environment where it is possible to get consistently high RSSI
readings, yet still have communication errors.
If the application is attempting to measure "link reliability" and not just "signal strength," it may be
helpful to factor in "% packets received" or similar data.

Signal strength and radio frequency range Range test

XBee® Zigbee® Mesh Kit 135

Tip A range test is always a good idea, as it allows you to measure link performance in terms of signal
strength and packet success rate. This will help you determine the reliability of your RF system. For
more information, see Example: perform a range test.

Range test
Since the communication between XBee modules takes place over the air, the quality of the wireless
signal can be affected by many factors: absorption, reflection of waves, line-of-sight issues, antenna
style and location, etc.
A range test demonstrates the real-world RF range and link quality between two XBee modules in the
same network. Performing a range test will give an initial indication of the expected communication
performance of the kit components.
When deploying an actual network, multiple range tests are recommended to analyze varying
conditions in your application.
XCTU allows you to perform a range test with at least one XBee module connected to your computer
(local) and another remote XBee module, both in the same network. The range test involves sending
data packets from the local XBee module to the remote and waiting for the echo to be sent from the
remote to the local. During this process, XCTU counts the number of packets sent and received by the
local module and measures the signal strength of both sides (RSSI):

n RSSI is the Received Signal Strength Indicator value.
n Every sent packet from the local XBee module should be received again as an echo by the

same local XBee module.

There are two types of range tests:

n Loopback cluster (0x12): The range test is performed using explicit addressing frames/packets
directed to the Cluster ID 0x12 on the data endpoint (0xE8) which returns the received data to
the sender. Not all XBee variants support the Loopback Cluster. XCTU Range Test tool displays
an error when this method is selected and the XBee module does not support it.

n Hardware loopback: The range test is performed using the serial port/USB hardware loopback
capabilities. To use this type, the remote module must be configured to work in transparent
mode and the loopback jumper must be closed before starting. This causes any received data
to be transmitted back to the sender.

Signal strength and radio frequency range Range test

XBee® Zigbee® Mesh Kit 136

Note The local XBee module (the one attached to your computer) can be configured to use API or
transparent mode. The RSSI value of the remote device can only be read when the local XBee module
is working in API mode.

Once the range test process has started, XCTU represents the retrieved data in three ways:

Signal strength and radio frequency range Example: perform a range test

XBee® Zigbee® Mesh Kit 137

n RSSI Chart represents the RSSI values of the local and remote devices during the range test
session. The chart also contains the percentage of success for the total packets sent.

n Local and Remote instant RSSI value display the instant RSSI value of the local and remote
devices. This value is retrieved for the last packet sent/received.

n Packet summary displays the total number of packets sent, packets received, transmission
errors, and packets lost. It also displays the percentage of success sending and receiving
packets during the range test session.

Note For more information about the range test tool, read the XCTU documentation.

Example: perform a range test
Follow the steps in this section to perform a range test with XCTU using the loopback cluster of your
XBee modules.
The steps show you how to review the RSSI of both local and remote modules and the number of
packets successfully sent and received by the local module during the range test session.
If you get stuck, see Troubleshooting.

https://docs.digi.com/display/XCTU/Range+test+tool

Signal strength and radio frequency range Example: perform a range test

XBee® Zigbee® Mesh Kit 138

Step 1: Requirements

Hardware

n Two XBee Zigbee modules
n Two XBee Grove Development Boards
n Two micro USB cables
n One computer, although you may also use two

Software

n XCTU 6.3.1 or later

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. You can find more specific steps in Plug in the
XBee module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

Step 3: Configure the XBee Zigbee modules
To perform a range test, configure one device as coordinator (XBee A, local) and the other as router
(XBee B, remote).
The XBee Zigbee modules support the loopback cluster (0x12). Using this type of range test is
advantageous because you do not have to close the loopback jumper of the remote module and the it
can work in any operating mode.
To configure your modules to perform the range test, follow these steps:

1. Restore the default settings of all XBee modules with the Load default firmware settings
button at the top of the Radio Configuration section.

2. Use XCTU to configure the following parameters:

Param
XBee A
(local)

XBee B
(remote) Effect

ID 2015 2015 Defines the network a radio will connect to. This
parameter must be the same for all radios on your
network.

http://www.digi.com/xctu

Signal strength and radio frequency range Example: perform a range test

XBee® Zigbee® Mesh Kit 139

Param
XBee A
(local)

XBee B
(remote) Effect

JV — Enabled
[1]

Verifies if a coordinator exists on the same channel to
join the network or to leave if it cannot be found.

CE Enabled
[1]

— Sets the device as coordinator.

NI COORD ROUTER Defines the node identifier, a human-friendly name for
the module.

The default NI value is a blank space. Make
sure to delete the space when you change the
value.

AP API
enabled
[1]

API
enabled
[1]

Enables API mode.

3. Write the settings of all XBee modules with the Write radio settings button at the top of
the Radio Configuration section.

Step 4: Perform a range test
Follow these steps to perform the range test.

1. Open the Tools menu within XCTU and select the Range Test option.
2. Your local devices are listed on the left side of the Devices Selection section. Select the COORD

module and click the Discover remote devices button .
3. When the discovery process finishes, the other device (ROUTER) is displayed in the Discovering

remote devices... dialog. Click Add selected devices.
4. Select the ROUTER module from the Discovered device list located on the right panel inside.
5. Click Start Range Test.
6. Range test data is represented in the chart. By default, 100 packets are being sent for the test.

The instant local and remote RSSI are also displayed in two separate controls, as well as the
number of packets sent and received.

7. Test the signal interference by doing one of the following: place your hands over one of the
modules, block line-of-sight with your body, place a metal box over an XBee module, or move
the remote XBee module to a further location like a different room or floor of the building. The
RSSI value will decrease and some packets may even be lost.

8. Click Stop Range Test to stop the process at any time.

Step 5: Section summary of signal strength
In this section, you have learned the following:

Signal strength and radio frequency range Example: perform a range test

XBee® Zigbee® Mesh Kit 140

n There are two types of line-of-site (LOS) that describe an environment:
l Visual LOS describes the ability to see from one place to the other. It requires only a

straight linear path.
l RF LOS requires visual LOS and a Fresnel zone free of obstacles for data to travel optimally.

n Almost any surface, especially metallic or conductive materials, can cause interference and a
resulting loss of quality in transmitted data.

n Adjust antennas to increase the distance data can travel. Place them high up off the ground to
help increase their range.

n The RSSI or Received Signal Strength Indicator measures the amount of power present in a
radio signal. It is measured in dBm, and its depends on the protocol.

n XBee pin 6 (P0) can be configured as RSSI. The Grove board includes an LED connected to it
which visually represents the RSSI value of the last-received data by varying its light intensity.

n The RSSI PWM Timer (RP) parameter helps you configure the amount of time the RSSI pin is
active.

n The Received Signal Strength (DB) parameter represents the absolute RSSI value, in
hexadecimal notation, of the last data packet received.

n A range test determines the real-world RF range and link quality between two XBee modules in
the same network by sending data packets from the local device to the remote device and
waiting for an echo.

n There are two types of range tests: loopback cluster and hardware loopback. The loopback
cluster test is preferable, as it doesn't require you to change the loopback jumper of the
remote module's board; however, this type of test is not supported by all XBee variants.

Zigbee communication in depth

Zigbee is a global wireless standard that enables simple and smart objects to work together. This
interoperability—multiple devices from different vendors working together to achieve a common
goal—is one of the biggest advantages of using the Zigbee protocol.

Imagine that you want to automate your home to control the heating and cooling systems, lights,
doors, blinds, irrigation system, etc. For these devices to interoperate, they need to "speak" the same
language. Even if the light bulb was manufactured by Company A and the switch was manufactured
by Company B, if they are Zigbee-certified products they can work together.

To achieve this interoperability among devices, the Zigbee protocol is organized in layers which
separate the components and functions into independent modules. Each layer performs a specific set
of services for the layer above.

XBee® Zigbee® Mesh Kit 141

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 142

As mentioned in the first topics of this guide, Zigbee is built on top of the IEEE 802.15.4 standard, so
the bottom two layers (Physical Layer (PHY) and Medium Access Control Layer (MAC)) are from that
specification. The Network Layer (NWK) from the Zigbee specification, which handles network
structure, routing, and security, is just above the MAC layer.
Each layer plays an important role in the transmission of wireless data, but it is the Application Layer
that enables interoperability. This layer consists of the Application Support Sublayer (APS), the Zigbee
Device Object (ZDO), and the Application Framework.

n Application Support Sublayer: provides an interface between the network layer and the
application layer. It defines standardized messaging for specific tasks which support
communication between devices from different manufacturers.

n Application Framework: environment in which application objects are hosted on Zigbee
devices. In further discussions, this layer will be grouped with the APS sublayer.

n Zigbee Device Object (ZDO): application object that provides device and service discovery
features as well as advanced network management capabilities.

Zigbee Application Framework
A node in a Zigbee network is a radio device that controls and monitors multiple activities. Vendors
can develop applications to manage these activities in the Application layer located on top of the
Zigbee stack.
Each of the acitivites controlling or monitoring within the node is called an application object. This
means a single physical device with a single Zigbee radio (node) may have several application objects
with different purposes that are capable of controlling or monitoring different variables.

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 143

For example, think of a thermostat. This product allows you to set the desired temperature, has a
display, and can be turned on or off.
This thermostat is a single node on a Zigbee mesh with three application objects, each to perform a
specific task:

n Heat or cool the room
n Display current temperature and other information
n Switch the unit on or off

Thermostats are manufactured by many different vendors. However, there is no guarantee that a
thermostat from, for example, Acme Corp. will work with a heating/cooling unit from Stark Industries.
What makes the difference in Zigbee is the standardized technology and the interoperability. In fact, a
Zigbee network is expected to have products from many vendors that all interoperate. This is
probably one of the most important reasons to use Zigbee in a product.

Note The Zigbee Alliance certifies the stack and application profiles' compatibility to allow further
interoperability between products developed by different vendors for a specific application.

The following concepts are explained in the next sections:

n Application profiles
n Clusters
n Endpoints
n Binding
n Node descriptors
n Zigbee Cluster Library

Application profiles
Zigbee defines application-level compatibility with application profiles. They describe how various
application objects connect and work together, such as lights and switches, thermostats and heating
units.

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 144

Application profiles specify a list of specific supported devices, device descriptions, and their features
in terms of clusters. They contain an agreed-upon set of specific messages to allow applications from
different vendors to interact.
For example, the Home Automation profile provides standard interfaces and device definitions to
allow interoperability among Zigbee Home Automation devices produced by various manufacturers.

Note The use of an application profile allows further interoperability between the products developed
by different vendors for a specific application.

Application profiles can be public or private:

n Public profiles are developed publicly by the Zigbee Alliance for use by manufacturers
implementing products that need to work with products from other manufacturers.

n Private profiles, officially called Manufacturer Specific Profiles (MSP), are proprietary profiles
developed privately by manufacturers. Applications that do not need to interact with other
vendors' products use these profiles.

A 16-bit application profile ID identifies each application. Only the Zigbee Alliance can issue profile
identifiers. If you want to build a custom profile, you must request a private profile ID from Zigbee
Alliance.
Public profiles include:

n Home Automation (HA)
n Commercial Building Automation (CBA)
n Smart Energy (SE)
n Light Link (LL)
n Telecommunications Applications (TA)
n Personal Home and Health Care (PHHC)

Public profile specifications are available at http://www.Zigbee.org.

For our thermostat product, we can use public profiles to ensure compatibility between Acme and
Stark Industries products and private profiles to define specific functionality that does not need to
work with other vendors' products:

http://www.zigbee.org/

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 145

n Home Automation (HA) profile to control the temperature and enable it switching it on or off
n Smart Energy (SE) profile for the implementation of an In-Home display
n Proprietary profile or Manufacturer Specific Profiles (MSP) to implement custom functionality

that checks the proper operation of the product

Device descriptions
Each Zigbee profile contains a specific list of device descriptions that describe the types of devices
the profile supports. Each device description is identified by a unique 16-bit value called a device ID.
These devices have their own capabilities regarding what they can do, what kind of properties they
have, and what kind of messages they send and receive. For example, the Home Automation profile
describes devices such as an on/off switch, a light sensor, a thermostat, or a dimmable light that can
be part of a HA network.

Note Device descriptions detail the behavior of each device in the application profile specification.

The thermostat to implement four different device descriptions:

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 146

n An HA Thermostat with device ID 0x0301 allows to control the temperature.
n The HA On/Off Output (0x0002) is capable of being switched on and off.
n The SE In-Premise display device description, device ID 0x0502, shows information about

energy consumption or price.
n Our proprietary profile defines a device to check the product operation, such as

communication status, display functionality, and so on.

Clusters
Each application object is associated with an application profile and contains clusters identified by a
unique 16-bit cluster ID. Clusters consist of a set of properties and message types related to a certain
function that define communication between application objects, like interfaces for features and
domains.
Application profiles describe mandatory clusters and optional clusters for each device included in the
profile.
For example, we need to implement the HA thermostat (device ID: 0x0301) to develop our product.
This device description includes:

n Mandatory cluster: Thermostat cluster (cluster ID: 0x0201).
n More optional clusters, such as Groups (0x0004) for group addressing, Fan Control (0x0202) to

control the speed of a fan, or Temperature Measurement (0x0402) to receive temperature
reports.

So, we must implement the Thermostat cluster (0x0201), and other optional clusters can be included
as well depending on the features of the final product, such as Fan Control (0x0202) or Temperature
Measurement (0x0402).

Each cluster has a collection of properties, called attributes, which is maintained on the device. This
collection is also identified by a 16-bit value called an attribute identifier. The cluster also contains a
set of commands that the device is responsible for sending or receiving.

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 147

For example, the Thermostat cluster (0x0201) supports several attributes to represent information,
such as the LocalTemperature attribute (0x0000) to display the temperature in degrees Celsius. This
cluster also includes the Setpoint Raise/Lower command (0x00) to increase or decrease the
temperature by the specified amount.

Note A cluster is a set of commands and attributes. The Zigbee Cluster Library specifies common
clusters that can be used by public or private profiles.

Clusters implement a client/server model and are directional:

n Outbound: The client is the side that initiates the transaction and sends the message to the
server. For example, a switch that sends an on/off command.

n Inbound: The server is the side that actually contains the attributes and performs the work.
For example, a light that knows if it is on or off and completes the transaction by turning on/off
when a command from the switch (the client) arrives.

Endpoints
We know a Zigbee node may have several application objects running on it. That is, our thermostat
product, which is a node in the Zigbee network, is controlling the temperature and showing some
information in its display, each of which is an application. But, how do we send some information to
be shown to the display application object within the node? How do we route messages arriving at the
node to the appropriate application?
Each application on the node must be uniquely identified. We do this with endpoints. Endpoints are
service points and define each application object running in the Zigbee node.

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 148

Note Endpoints describe different applications that are supported by a single radio. An endpoint is
the "address" of a single application object within a node in the network.

The endpoint address is a user-defined 8-bit value, so there can be up to 255 endpoints defined within
a node. However some endpoints are reserved:

Endpoints Description

0 Built-in by the stack and reserved for Zigbee Device Object (ZDO) for network
configuration and administration

1-240 Can be used for user applications

241-254 Reserved for special functions and can only be used for Zigbee Alliance-
approved applications

255 Broadcast endpoint. The same data can be sent to all applications
(endpoints) on a node by sending the message to this endpoint address

Note Each endpoint implements a single device description from a single application profile.
Endpoints 1-240 can be allocated by users for any required application object. Different endpoints on
a single node may represent devices from different application profiles.

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 149

As an example, our thermostat product defines four user-defined endpoints besides ZDO and
broadcast:

n Endpoint 0: ZDO endpoint
n Endpoint 1: Home Automation endpoint acting as a thermostat device (0x0301)
n Endpoint 2: Home Automation endpoint acting as an On/Off output (0x0002)
n Endpoint 3: Smart Energy endpoint acting as an In-Premise display (0x0502)
n Endpoint 4: Proprietary endpoint under a MSP (Manufacturer Specific Profile)
n Endpoint 255: Broadcast endpoint

Binding
At a high level, binding is the process of creating logical links between application objects that are
related and can communicate. For example, a temperature sensor sends its data to a thermostat.
Devices (application objects) logically related in this way are called bound devices.
Binding is unidirectional. The sender (the temperature sensor) is "bound" to the receiving device (the
thermostat), but the thermostat is not bound to the temperature sensor. Binding can also allow an
endpoint on a node to be connected to one or more endpoints on one or more nodes.

Note Binding is a mechanism to establish virtual connections between endpoints on different nodes.

At a more detailed level, the binding mechanism associates information-generating applications with
applications that can use the information.
The information is exchanged as clusters: two applications must have compatible clusters to be
bound. For example, to create a binding between two applications on different nodes for controlling
the temperature, one of those applications must be able to generate an output cluster related to
temperature (the temperature sensor), and the other must be able to consume it as an input cluster
(the thermostat).

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 150

The information regarding these logical links is stored in a binding table. Each entry contains the
following information:

n Source endpoint of the sender application.
In the example, the application object that measures the temperature is located at endpoint
10.

n Cluster ID of the information being transmitted between the applications. In the table, the
Temperature Measurement (0x0402) cluster is the one that generates the data, a temperature
value, to be transmitted.

Example: Temperature sensor binding table

Source endpoint Cluster ID Destination address Destination endpoint

10 0x0402 0x1234 1

...

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 151

n Destination network address and endpoint of the receiving application. Temperature data
(source endpoint 10, cluster ID 0x0402) is going to be transmitted to the endpoint 1 of the
network node 0x1234.

Depending on where the binding information (the entries of the binding table) is stored, binding is
direct or indirect.

Direct binding
Direct binding, also called local binding, happens when the sending node stores the binding table
locally (the temperature sensor).

For instance, the temperature sensor node generates a new temperature value. The application object
that measures the temperature is located at endpoint 10 and the cluster ID in charge of this is 0x0402.
So, the sensor node looks for the entries in its binding table that match source endpoint 10 and
cluster ID 0x0402 and generates a message for each one. In the example, there is only one match, so
the sending node generates and transmits a single message with destination 0x1234 (the thermostat
node) and destination endpoint 1.

Indirect binding
Indirect binding, also known as coordination binding, occurs when the binding table is stored on the
coordinator node. This means all the messages must be sent via the coordinator.
When sending application data, the node transmits this data to the coordinator along with the source
endpoint and cluster ID where it was generated and its own network address. The coordinator looks
in the binding table for the entries that match the received source endpoint and cluster ID to create a
message for each entry found, replicating the received data. Adding the destination address and
destination endpoint stored in the binding entries completes the message. Finally, the coordinator
transmits the messages directly to the right application in the destination node.

Zigbee communication in depth Zigbee Application Framework

XBee® Zigbee® Mesh Kit 152

For instance, the temperature sensor node with address 0x4567 generates a new temperature value.
The application object that measures the temperature is located at endpoint 10 and the cluster ID in
charge of this is 0x0402. So, the sensor node transmits to the coordinator the new temperature, the
source endpoint (10) and the cluster ID (0x0402) generating the value along with its own network
address (0x4567). The coordinator looks for the entries in its binding table that match source endpoint
10 and cluster ID 0x0402 and generates a message for each one. In the example, there is only one
match so the sending node generates and transmits to 0x1234 (the thermostat node), destination
endpoint 1, a single message with the temperature value, source endpoint, and cluster ID.

Binding types
Binding is possible between a single output and input cluster but it can also be destined for groups of
nodes or even multiple destinations by having multiple entries for the same source endpoint and
cluster ID in the binding table. The types of bindings are:

n One-to-one: An endpoint binds to one (and only one) other endpoint.
n One-to-many: A source endpoint binds to more than one destination endpoint.
n Many-to-one: More than one source endpoint binds to a single destination endpoint.

Node descriptors
Other than the reserved endpoints, endpoint numbers are not standardized. Different manufactures
may choose different endpoints for their applications. In other words, our product implements an
on/off output on endpoint 2, but Acme Corp. uses endpoint 55 for the same on/off output on their
products.
This means that when a node enters a network, it needs to query the rest of nodes to find out what
endpoints they have and what services are implemented on those endpoints. Each endpoint returns
some information when it is queried, such as which profile is implementing, which device description
within that profile is being implemented, and the list of inbound (server) and outbound (client)
clusters this endpoint has.
Every Zigbee node in the network defines several descriptors to identify itself and its endpoints:

n Node descriptor contains information about the capabilities of the Zigbee node and is
mandatory for each node. There is only one node descriptor in a node.

n Power descriptor gives a dynamic indication of the power status of the node and is
mandatory for each node. There is only one node power descriptor in a node.

n Simple descriptor contains information specific to each endpoint contained in this node. The
simple descriptor is mandatory for each endpoint present in the node.

Zigbee communication in depth Zigbee Device Object (ZDO)

XBee® Zigbee® Mesh Kit 153

n Complex descriptor contains extended information for each of the device descriptions
contained in this node. The use of the complex descriptor is optional.

n User descriptor contains information that allows the user to identify the device using a user-
friendly string. The use of the user descriptor is optional.

Zigbee Cluster Library
The Zigbee Cluster Library (ZCL) is a set of common clusters and cross-cluster commands used in
application profiles.
The Zigbee Cluster Library groups the clusters in functional domains, such as General, Measurement
and sensing, and Lighting. Clusters from these functional domains are used in the Zigbee Public
Profiles to produce device descriptions, such as an on/off switch, a thermostat, or a dimmable light.
Each Public Profile may also define its own specialized clusters, such as the Smart Energy Price
Cluster.

The Zigbee Cluster Library is released under its own specification, separate from the Zigbee
specification. Go to http://www.Zigbee.org to download the ZCL specification.

Zigbee Device Object (ZDO)
The Zigbee Device Object (ZDO) is an application object responsible for initializing the Application
Support Sublayer (APS), Network Layer (NWK), and Security Service Provider (SSP). It runs on the
reserved endpoint 0 in every Zigbee device.
ZDO is typically required when developing a Zigbee product that interoperates in a public profile such
as Home Automation or Smart Energy, or when communicating with Zigbee devices from other
vendors. The ZDO can also be used to perform several management functions such as frequency
agility, discovering routes and neighbors, and managing device connectivity.
The application profile defined for ZDO is the Zigbee Device Profile (ZDP), which has an application
profile identifier of 0x0000. ZDP is a management and discovery service layer supported on all Zigbee
devices. Like all other profiles, it defines a set of services that perform a variety of advanced network
management and device and service discovery options.

http://www.zigbee.org/

Zigbee communication in depth Zigbee Device Object (ZDO)

XBee® Zigbee® Mesh Kit 154

ZDP services include the following features:

n View the neighbor table on any device in the network
n View the routing table on any device in the network
n View the end device children of any device in the network
n Obtain a list of supported endpoints on any device in the network
n Force a device to leave the network
n Enable or disable the permit-joining attribute on one or more devices

Each service has an assigned cluster ID, and most service requests have an associated response. In
those cases, the client device makes a request, and then the server device sends the response back to
the client device. The cluster ID for the response is exactly the same as the cluster ID for the request,
but with the high bit set. For example, the Network Address Request is cluster 0x0000, and the
Network Address Response is 0x8000.
The following table describes some ZDP services:

Cluster Name
Cluster
ID Description

Network Address
Request

0x0000 Request a 16-bit address of the radio with a matching 64-bit
address

Network Address
Response

0x8000 Response that includes the 16-bit address of a device

LQI Request 0x0031 Request data from a neighbor table of a remote device

LQI Response 0x8031 Response that includes neighbor table data from a remote
device

Zigbee communication in depth Explicit Addressing frames

XBee® Zigbee® Mesh Kit 155

Cluster Name
Cluster
ID Description

Routing Table Request 0x0032 Request to retrieve routing table entries from a remote device

Routing Table Response 0x8032 Response that includes routing table entry data from a remote
device

Active Endpoints
Request

0x0005 Request a list of endpoints from a remote device

Active Endpoints
Response

0x8005 Response that includes a list of endpoints from a remote
device

For a detailed description of these and other ZDP services, read Supporting ZDOs with the XBee API or
refer to the Zigbee specification.

Explicit Addressing frames
XBee devices support communication between Zigbee application objects running on the same node
or among objects running on different nodes in a network.
This wireless data transmission is only possible if the modules are working in API operating mode and
use the frames that include application addressing (endpoints, cluster ID, profile ID):

n Explicit Addressing Command (0x11)
n Explicit Rx Indicator (0x91)

Explicit Addressing Command frame
The Explicit Addressing Command (0x11) frame allows Zigbee application layer fields (endpoint,
profile, and cluster ID) to be specified for a wireless data transmission.
In other words, an Explicit Addressing frame causes the module to send data wirelessly to the
specified remote node, and to its proper application object specified by the destination endpoint,
cluster ID, and profile ID. These frames allow you to send Zigbee Device Profile (ZDP), Zigbee Cluster
Library (ZCL), and application profile commands to devices in the network.
This frame type includes specific fields for:

n Node addressing: 64-bit and 16-bit destination address.
n Service addressing: Source and destination endpoints, cluster ID, and profile ID.
n ZDP, ZCL, or application profile command in its data payload.

Frame
parameter Description

Frame ID Identifies the data frame for the host to correlate with a subsequent Transmit
Status (0x8B) frame.

Setting Frame ID to '0' disables the response frame.

http://ftp1.digi.com/support/images/APP_NOTE_XBee_ZigBee_Device_Profile.pdf
http://www.zigbee.org/zigbee-for-developers/zigbee3-0/

Zigbee communication in depth Explicit Addressing frames

XBee® Zigbee® Mesh Kit 156

Frame
parameter Description

64-bit
destination
address

Set to the 64-bit address of the destination XBee module. The following
addresses are also supported:

0x0000000000000000 - Coordinator address. 0x000000000000FFFF - Broadcast
address.

0xFFFFFFFFFFFFFFFF - Unknown address if the destination's 64-bit address is
unknown.

16-bit
destination
address

Set to the 16-bit address of the destination XBee module, if known.

The following addresses are also supported:

0x0000 - Coordinator address.
0xFFFE - Unknown address if the destination's 16-bit address is unknown, or if
sending a broadcast.

Source endpoint Endpoint of the source that initiated the transmission.

Destination
endpoint

Endpoint of the destination where the message is addressed.

Cluster ID Cluster ID where the message was addressed.

Profile ID Profile ID where the message was addressed.

Broadcast radius 0x00 – Maximum hops value.

Transmit options Bitfield of supported transmission options.

Supported values include the following:

0x01 - Disable retries. 0x04 - Indirect Addressing.
0x08 - Multicast Addressing.
0x20 - Enable APS encryption (if EE = 1).
0x40 - Use the extended transmission timeout for this destination.

All unused and unsupported bits must be set to 0.

Data payload Up to 255 bytes of data sent to the destination XBee moduleand the configured
destination endpoint and cluster ID.

For ZDP, ZCL, or application profile commands, all multi-byte parameter values
must be sent in little endian byte order.

Explicit Rx Indicator frame
The Explicit Rx Indicator (0x91) frame contains the data wirelessly received and the application object
addressing: source and destination endpoints, cluster ID and profile ID.
This frame helps when working with ZDP, ZCL, or application profile commands, since it indicates the
application object information that generated the data inside, and the destination.
This frame type includes specific fields for:

Zigbee communication in depth Explicit Addressing frames

XBee® Zigbee® Mesh Kit 157

n Node addressing: 64-bit and 16-bit source address
n Service addressing: Source and destination endpoints, cluster ID, and profile ID.
n ZDP, ZCL, or application profile response in its data payload.

Frame
parameter Description

64-bit source
address

64-bit address of sender.
Set to 0xFFFFFFFFFFFFFFFF (unknown 64-bit address) if the sender's 64-bit
address is unknown.

16-bit source
address

16-bit address of sender.

Source
endpoint

Endpoint of the source that initiated the transmission.

Destination
endpoint

Endpoint of the destination where the message is addressed.

Cluster ID Cluster ID where the message was addressed.

Profile ID Profile ID where the message was addressed.

Received
options

Bitfield of supported transmission options.
Supported values include the following:
0x01 - Packet Acknowledged.
0x02 - Packet was a broadcast packet.
0x20 - Packet encrypted with APS encryption. 0x40 - Packet sent with extended
timeout enabled.

Data payload Up to 255 bytes data received from the source XBee.
For ZDP, ZCL, or application profile commands, all multi-byte parameter values
are in little endian byte order.

Zigbee
com

m
unication

in
depth

ExplicitAddressing
fram

es

XBee®
Zigbee®

M
esh

Kit
158

Data payload format
The data payload field of the Explicit Addressing and Explicit Rx Indicator frames must follow the frame structure defined for ZDP and ZCL frames.

Note All multi-byte values must be sent/received in little endian byte order.

ZDP frame structure

Transaction sequence number Transaction data
Transaction sequence
number Transaction data

1 2 ... n

A single byte to identify the ZDP transaction so a response
frame can be related to the request frame.

A variable length field containing data for the individual ZDP transaction. Its format
and length depends on the command being transmitted.

ZCL frame structure

ZCL Header ZCL Payload ZCL Header ZCL Payload ZCL Header ZCL Payload ZCL Header

Frame control Manufacturer code Transaction sequence number Command ID
Frame
payload

Frame
control

Manufacturer
code

1 2 3 4 5 ... 6

Byte to define the
command type and
other flags.

Two bytes field
specifying the Zigbee
manufacturer code.

Byte to identifying the transaction
so a response frame can be related
to the request frame.

Byte to specify
the cluster
command.

A variable length field with data specific to
individual command types.

For more information about the frames structure, refer to the Zigbee specification and the Zigbee Cluster Library available at http://www.Zigbee.org.

http://www.zigbee.org/
http://www.zigbee.org/

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 159

Receive Zigbee commands and responses
To receive ZDP, ZCL, and application profile commands and responses:

n XBees modules must work in API mode, that is AP must be set to API enabled [1] or API
enabled with escaping [2].

n The API Output Mode (AO) setting must be set to Explicit [1] or Explicit with ZDO Passthru [3].

The Explicit [1] output mode (AO = 1) enables the explicit receive API frame (0x91) which indicates the
source and destination endpoints, cluster ID, and profile ID.
The Explicit with ZDO Passthru [3] mode (AO = 3) is similar to the Explicit [1] mode, but it also outputs
some ZDO packets received by the XBee module through the serial interface as explicit data to be
responded by external processors:

n ZDO requests that are not supported by the stack.
n ZDO Simple descriptor request (Cluster ID: 0x0004).
n ZDO Active endpoints request (Cluster ID: 0x0005).
n ZDO Match descriptor request (Cluster ID: 0x0006).

For an XBee to received ZDP, ZCL, or application profile responses:

n API mode (AP) must be enabled (AP = 1 or AP = 2).
n AO parameter must be set to Explicit [1] or Explicit with ZDO Passthru [3] to enable the explicit

receive API frame.

Examples: explicit data and ZDO
These examples illustrate how to use the Explicit Addressing Command Frame (0x11) to work with
profiles, clusters, and endpoints. Both examples request the neighbor table of a remote node, but the
procedure is different. First, you use the XCTU console to create the packet and analyze the response.
Then you use a Java application and the XBee Java Library to abstract the process of sending and
receiving the packets.
Use the Zigbee Device Object (ZDO) to obtain the neighbors of a remote node. You can use a similar
approach for other profiles and cluster IDs by adjusting the request to send, the parse of the received
data, and the actions to perform depending on what is received.
In the remote node, the ZDO is the application object that manages the neighbor list. It is located at
endpoint 0 and under the Zigbee Device Profile (ZDP). The request must be addressed to the cluster of
this object that is able to return a neighbor's table, the LQI Request (cluster ID: 0x0031).
On receipt, the remote node's ZDO generates an answer from the 0x8031 cluster (LQI Response)
addressed to the same application object, ZDO at endpoint 0, of the requester node.

Request to remote node Response from remote node

Source endpoint ZDO 0 ZDO 0

Destination endpoint ZDO 0 ZDO 0

Profile ID ZDP 0x0000 ZDP 0x0000

Cluster ID LQI Request 0x0031 LQI Response 0x8031

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 160

Example: obtain the neighbor table using the XBee Java Library
In this example, you use XCTU to send an LQI (neighbor table) Request from the coordinator to the
router.
Looking at the Zigbee specification, the cluster ID for a LQI Request is 0x0031, and the payload only
requires that you specify the start index in the neighbor table. The response cannot include more that
2-3 entries, so multiple LQI requests may be required to read the entire table.
If you get stuck, see Troubleshooting.

Step 1: Requirements

Hardware

n Two XBee Zigbee modules
n Two XBee Grove Development Boards
n Two micro USB cables
n One computer, although you may also use two

Software

n XCTU 6.3.1 or later

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. For more information, see Plug in the XBee
module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

Step 3: Configure the XBee devices
For this example, two modules are sufficient. The coordinator send the request to read the neighbor
table of the router. Before creating and sending the frame, configure the XBees as follows:

Param XBee A XBee B Effect

ID 2015 2015 Defines the network that a radio will attach to. This must be the
same for all radios on your network.

JV — Enabled
[1]

Verifies if a coordinator exists on the same channel to join the
network or to leave if it cannot be found.

CE Enabled
[1]

— Sets the device as coordinator.

http://www.digi.com/xctu

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 161

Param XBee A XBee B Effect

NI COORD ROUTER Defines the node identifier, a human-friendly name for the
module.

The default NI value is a blank space. Make sure to
delete the space when you change the value.

AP API
enabled
[1]

API
enabled
[1]

Enables API mode.

AO Explicit
[1]

— Enables the explicit receive API frame.

Note The dash (—) in the table means to keep the default value. Do not change the default value.

Step 4: Open the XCTU console

1. Switch to the Consoles working mode .

2. Open the serial connection with the COORD module .

Step 5: Generate the frame
Next, generate the Explicit Addressing Command Frame in the COORD console. To create it, follow
these steps:

1. Click Add new frame to the list .
2. Open the Frames Generator tool.

3. In the Frame type section, select 0x11 - Explicit Addressing Command Frame.
4. In the 64-bit dest. address box, type 0013A200XXXXXXXX, the 64-bit address of ROUTER.

In the Source endpoint box, type 00.
5. In the Destination endpoint box, type 00.

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 162

6. In the Cluster ID box, type 0031.
7. In the Profile ID box, type 0000.
8. In the Data payload, click the HEX tab and type 0100.

01 00

Sequence number Start index

9. Click OK.
10. Click Add frame.

Step 6: Send the command frame
After you have created an Explicit Addressing Command Frame, you must send it to the local XBee
module.

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 163

1. Select the frame in the XCTU Send frames section.
2. Click Send selected packet.

The Frames log indicates that one frame has been sent (blue) and another has been received
(red).

Step 7: Analyze the responses
Select the Explicit RX Indicator frame in the frames log to view the frame details on the right panel.
Analyze each field, and check each of the following:

n Frame type: the received frame is an Explicit RX Indicator.
n Source and Destination endpoints: 00, the ZDO endpoint.
n Cluster ID: the same as the cluster ID for the request, but with the high bit set.
n Profile ID: the ID of the Zigbee Device Profile.
n RF data: the response that contains the list of neighbor table entries.

01 00 01 00 01 ...

Sequence
number

Status
(OK)

Total number of
entries

Start
index

Number of entries in the
response

List of
entries

In this case, there is only one neighbor table entry:

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 164

Name
Size
(bits) Value Description

Extended PAN
ID

64 14 20 00 00 00 00 00 00 The 64-bit extended PAN ID of the neighboring
device.

Extended
Address

64 15 9D DA 40 00 A2 13 00 The 64-bit address of the neighboring device.

Network
Address

16 00 00 The 16-bit address of the neighboring device.

Device Type 2 04 The type of neighbor:

0x0 – Zigbee coordinator
0x1 – Zigbee router
0x2 – Zigbee end device
0x3 – Unknown

Receiver On
When Idle

2 Indicates if the neighbor's receiver is enabled
during idle times:

0x0 – Receiver is off
0x1 – Receiver is on
0x2 – Unknown

Relationship 3 The relationship of the neighbor with the
remote device:

0x0 – Neighbor is the parent
0x1 – Neighbor is a child
0x2 – Neighbor is a sibling
0x3 – None of the above
0x4 – Previous child

Reserved 1 Set to 0.

Permit
Joining

2 02 Indicates if the neighbor is accepting join
requests:

0x0 – Neighbor not accepting joins
0x1 – Neighbor is accepting joins
0x2 – Unknown

Reserved 6 Set to 0

Depth 8 00 The tree depth of the neighbor device. A value
of 0x00 indicates the device is the Zigbee
coordinator of the network.

LQI 8 FF The estimated link quality of data
transmissions from this neighboring device.

The entry in the router's neighbor table corresponds to the coordinator of the network.

Once you have finished, click the Close the serial connection to disconnect the console.

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 165

Example: obtain the neighbor table using the XBee Java Library
Now that you have learned how to request the neighbor table by creating the packet and sending it
with XCTU, you complete the same task, but with the help of the XBee Java Library.
The Java application creates the packet to request the neighbor table, send it to the other module,
receive the response, parse it, and display the details of each neighbor.
If you get stuck, see Troubleshooting.

Step 1: Requirements
For this setup you need the following hardware and software.

Hardware

n Three XBee Zigbee Mesh Kit modules
n Three XBee Grove Development Boards
n Three micro USB cables
n One computer

Software

n XCTU 6.3.1 or later
n XBee Java Library (XBJL-X.Y.Z.zip release file)
n Java Virtual Machine 6 or later
n A Java IDE (such as Eclipse or NetBeans)

Tip For more information about XCTU, see the XCTU walkthrough.

Step 2: Connect the components
To get started, connect the components and start XCTU.

1. Plug the XBee modules into the XBee Grove Development Boards and connect them to your
computer using the micro USB cables provided. For more information, see Plug in the XBee
module.

2. After connecting the modules to your computer, open XCTU.
3. Make sure you are in Configuration working mode.

Step 3: Configure the XBee devices

Every XBee module has a different role and work in API mode.

1. Restore the default settings of all XBees with the Load default firmware settings.
2. Use XCTU to configure the following parameters:

http://www.digi.com/xctu
https://github.com/digidotcom/XBeeJavaLibrary/releases
https://www.java.com/en/download/

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 166

Param XBee A XBee B XBee C Effect

ID 2015 2015 2015 Defines the network a radio will connect to. This
parameter must be the same for all radios on your
network.

JV — Enabled [1] Enabled [1] Verifies if a coordinator exists on the same channel
to join the network or to leave if it cannot be
found.

CE Enabled
[1]

— — Sets the device as coordinator.

NI COORD ROUTER_1 ROUTER_2 Defines the node identifier, a human-friendly name
for the module.

The default NI value is a blank space.
Make sure to delete the space when you
change the value.

AP API
enabled
[1]

API
enabled [1]

API
enabled [1]

Enables API mode.

Note The dash (—) in the table means to keep the default value. Do not change the default value.

3. Write the settings of all XBees with the Write radio settings button at the top of the Radio

Configuration section.

To get the neighbors of a remote node, go to Step 4: Create a Java project project.

Step 4: Get neighbors: create a Java project
Create an empty Java project named using Eclipse or NetBeans with the following project
name:XBeeExplicitData.
Option 1: Eclipse

a. Select File > New, and click the Java Project.
b. The New Java Project window appears. Enter the Project name.
c. Click Next.

or
Option 2: NetBeans

a. Select File > New project....
b. The New Project window appears. In the Categories frame, select Java > Java Application

from the panel on the right, and click Next.
c. Enter the Project name and the Project Location. Clear the Create Main Class option; you will

create this later.

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 167

d. Click Finish to create the project. The window closes and the project appears in the Projects
view list on the left side of the IDE.

Step 5: Link libraries to the project
This topic describes how to link the XBee Java Library, the RXTX library (including the native one),
and the logger library to the project.

1. Download the XBJL_X.Y.Z.zip library.
2. Unzip the XBJL_X.Y.Z.zip library.
3. Link the libraries using Eclipse or NetBeans:

Option 1: Eclipse

a. Go to the Libraries tab of the New Java Project window.
b. Click Add External JARs....
c. In the JAR Selection window, search the folder where you unzipped the XBee Java Library and

open the xbee-java-library-X.Y.Z.jar file.
d. Click Add External JARs... again.
e. Go to the extra-libs folder and select the following files:

n rxtx-2.2.jar
n slf4j-api-x.y.z.jar
n slf4j-nop-x.y.z.jar

f. Expand the rxtx-2.2.jar file of the Libraries tab list, select Native library location, and click
Edit….

g. Click External folder... to navigate to the extra-libs\native\Windows\win32 folder of the
directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip).

n Replace Windows\win32 with the directory that matches your operating system and
the Java Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual
Machine is installed in your computer, open a terminal or command prompt and
execute:

java -version

h. Click OK to add the path to the native libraries.
i. Click Finish.

or
Option 2: NetBeans

a. From Projects view, right-click your project and go to Properties.
b. In the categories list on the left, go to Libraries and click Add JAR/Folder.
c. In the Add JAR/Folder window, search the folder where you unzipped the XBee Java Library

and open the xbjlib-X.Y.X.jar file.
d. Click Add JAR/Folder again.
e. Go to the extra-libs folder and select the following files:

https://github.com/digidotcom/XBeeJavaLibrary/releases

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 168

n rxtx-2.2.jar
n slf4j-api- x.y.z .jar
n slf4j-nop- x.y.z .jar

f. Select Run in the left tree of the Properties dialog.
g. In the VM Options field, add the following option:

-Djava.library.path=<path_where_the_XBee_Java_Library_is_unzipped>\extra-
libs\native\Windows\win32

where:
n <path_where_the_XBee_Java_Library_is_unzipped> is the absolute path of the

directory where you unzipped the XBee Java Library file (XBJL_X.Y.Z.zip)
n Windows\win32 is the directory that matches your operating system and the Java

Virtual Machine installed (32 or 64 bits). If you don't know which Java Virtual Machine is
installed in your computer, open a terminal or command prompt and execute:

java -version

h. Click OK.

Step 6: Add the source code to the project
Follow these steps to add the source to the project.

1. Download and unzip the ExplicitDataSample-src.zip file.
2. Add the Java source file with Eclipse or NetBeans.

Option 1: Eclipse

a. Copy the files inside the zip file.
b. In the Package Explorer view, src folder inside the project and right-click.
c. From the context menu, select Paste.
d. Double-click each copied file to open in the editor.
e. A line at the top of the pasted files is underlined in red. Click on that line; a pop-up appears.

Select the first option (Move 'MainApp.java' to package '...') to resolve the error.

or
Option 2: NetBeans

a. Copy the files inside the zip file.
b. In the Projects view, select the Source Packages folder inside the project and right-click.
c. From the context menu, select Paste.
d. Double-click each copied file to open in the editor.
e. A line at the top of the pasted files is underlined in red. Click on that line; a pop-up appears.

Select the first option (Move class to correct folder) to resolve the error.

Step 7: Set the port name and launch the application
For this step, set the port name and launch the application.

ExplicitDataSample-src.zip

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 169

1. Change the port name in the Java source code to match the port that the COORD module is
connected to.

// TODO: Replace with the port where your coordinator module is connected
private static final String PORT = "COM1";
// TODO: Replace with the baud rate of your coordinator module.
private static final int BAUD_RATE = 9600

2. Launch the application on your computer.
3. When the prompt (>>) displayed after scanning the network, write the name of the remote

node to get its neighbors. The output of the application should be similar to the following:

+--+
| Explicit Data Sample |
+--+
WARNING: RXTX Version mismatch
Jar version = RXTX-2.2pre1
native lib Version = RXTX-2.2pre2
Local XBee: COORD
Scanning the network, please wait... Devices found.
Type the node name to retrieve its neighbor table and press <ENTER> (only
<ENTER> to finish):
- ROUTER_1
- ROUTER_2
>> ROUTER_1
Total number of neighbors: 2

Neighbor: 1

PAN ID: 0000000000002015
64-bit address: 0013A20040DA9D05
16-bit address: 0000
Device type: Coordinator (0)
Relationship: Parent (0)
Join requests: Unknown (2)
Tree depth: 0
LQI: 255 / 255

Neighbor: 2

PAN ID: 0000000000002015
64-bit address: 0013A20040DA9D2B
16-bit address: 7EF4
Device type: Router (1)
Relationship: None of parent, child, sibling (3)
Join requests: Unknown (2)
Tree depth: 15
LQI: 255 / 255

###

Type the node name to retrieve its neighbor table and press <ENTER> (only

Zigbee communication in depth Examples: explicit data and ZDO

XBee® Zigbee® Mesh Kit 170

<ENTER> to finish):
- ROUTER_1
- ROUTER_2
>>

Step 8: Section summary of explicit data and ZDO
In this section, you learned the following:

n Zigbee offers a standardized technology and interoperability between products from many
vendors. The Zigbee Alliance certifies the stack and application compatibility.

n A single physical Zigbee node may have several application objects with different purposes
running on top of the Zigbee stack. Each application object running in a Zigbee node is
"addressed" by an endpoint:
l Each endpoint implements a single device description from a single application profile.
l Endpoint 0 is reserved for Zigbee Device Object (ZDO).
l Endpoints 1-240 can be allocated by users for any required application object.

n The Zigbee Device Object (ZDO) is the application responsible for network configuration and
administration:
l The application profile defined for ZDO is the Zigbee Device Profile (ZDP), which has an

application profile identifier of 0x0000.
l ZDP defines a set of services for advanced network management, device discovery, and

service discovery options.
l ZDP services are detailed in the Zigbee specification.

n The Explicit Addressing Command Frame (0x11) allows you to send commands to application
objects including ZDO, ZCL and application profiles.

n To receive application objects requests or responses the API Output Mode (AO) setting must be
set to Explicit [1] or Explicit with ZDO Passthru [3].

Step 9: Do more with explicit data and ZDO
If you are ready to move beyond this exercise and extend the example, try the following:

n Use different ZDO clusters to get the 16-bit or 64-bit address of a remote node, its routing
table, or the descriptor of a specific endpoint.

n Extend the network by adding more XBee modules so you can request to more remote nodes
and obtain bigger neighbor lists.

n Implement two different application objects from a public profile in different nodes and
communicate between them. For example, from the Home Automation profile, develop an
On/Off Light Switch on one node and a On/Off Light on the other so an LED of the light device
is turned on when a button of the light switch device is pressed.

n Try to communicate with a Zigbee-certified product. For example, control a Zigbee light bulb
using your XBees modules.

Large networks routing

The basic function of a network is to transfer data from one node to another. In the simplest data
communication, the data is transmitted directly from the source node to the destination node.
However, direct communication may not be possible if the two nodes are far apart or in a difficult
environment.
In this case, it is necessary to send the data to another node within the radio range, which then passes
it on to another node, and so on until the data reaches the desired destination node.
Routing is the process of receiving data destined for another node and passing it on. Each of the
intermediary nodes between source and destination is called hop.

Note Routing allows the range of a network to be extended beyond the distances supported by direct
radio communication.

A message is normally routed along an already discovered route. But if this route does not exist, the
nodes involved in transmitting the data initiates a route discovery. Once completed, the message will
be sent along the calculated route.

XBee® Zigbee® Mesh Kit 171

Large networks routing Many-to-one routing

XBee® Zigbee® Mesh Kit 172

Note The route discovery process finds the best available route to the destination when sending a
message.

The route discovery process is based on the Ad-hoc On demand Distance Vector routing (AODV)
protocol. The AODV protocol uses tables in each node to store the next hop for a destination node.
When a source node A must discover a route to a destination node B, route discovery involves the
following steps:

1. Source node A sends a route request broadcast. The route request contains the source and
destination network addresses and a path cost field to measure the route quality.

2. All routing nodes (coordinator and routers) eventually receives the broadcast. When a node
receives this message:

n It updates the path cost field.
n It creates a temporary entry in its route discovery table.
n It forwards the message.

3. As the reply travels back through the network, the hop count and a signal quality measure
for each hop are recorded as described. Each routing node in the path can build a routing
table entry containing the best path to the destination node B.

4. When the destination node B receives the route request:

a. It compares the "path cost" field against previously received route requests.
b. If the cost stored in the request is better than any previously received, the

destination node, B, will transmit a route reply to the node that originated the
request, A.

5. Eventually each routing node in the path will have a routing table entry and the route from
source A to destination B is established. Note that the discovered route is unidirectional,
the corresponding route from destination B to source A is not known.

In large networks where an XBee transmits data to many remote modules, AODV routing would
require performing one route discovery for each destination node to establish a route. If there are
more destinations than available routing table entries, established routes would be overwritten with
new routes, causing route discoveries to occur more regularly. This could result in larger delays and
decreased network performance.
Many-to-one and source routing features address limitations in mesh network routing where table size
requirements are large in certain wireless data transmission scenarios.

Many-to-one routing
A common scenario in a wireless network is when most of the nodes need to communicate with a
single node that performs some centralized function. This node is often referred to as a collector or
concentrator.
If every XBee in this kind of network had to discover a route before sending data to the collector, the
network could easily become inundated with broadcast route discovery messages.
Many-to-one routing is an optimization for this scenario. Rather than require each XBee to perform its
own route discovery, the data collector sends a single many-to-one broadcast transmission to
establish reverse routes on all devices. Since no responses are generated, network traffic congestion is
minimized.

#_bookmark178
#_bookmark179

Large networks routing Many-to-one routing

XBee® Zigbee® Mesh Kit 173

Note Many-to-one routing establishes routing paths from many XBees to one data collector and
allows any node in the network to route data to a well known concentrator through a single routing
table entry in every device.

In a single many-to-one route discovery operation, the route to the data collector is established in all
devices:

1. The data collector broadcasts a many-to-one route request message with the target
discovery address set to the address of the data collector.

2. XBee modules receiving this request store a reverse many-to-one routing table entry to
create a path back to the data collector.

3. The Zigbee stack on a device uses historical link quality information about each neighbor
to select a reliable neighbor for the reverse route.

4. The many-to-one route request should be sent periodically to update and refresh the
reverse routes in the network.

You can also use Many-to-one routing if there are multiple data collectors in the network. If more than
one collector sends a many-to-one broadcast, XBee modules create one reverse routing table entry for
each collector.

Enable many-to-one routing
Using many-to-one routing with an XBee-based central collector node is easy: the Many-to-one Route
Broadcast Timeout (AR) parameter enables many-to-one broadcasting on an XBee module.

The AR parameter sets a time interval (measured in 10 second units) for sending the many-to-one
broadcast transmission. Setting AR to 0xFF di sables many-to-one broadcasting on the device. Setting
AR to 0 causes an XBee to immediately send a single a many-to-one broadcast.

Large networks routing Source routing

XBee® Zigbee® Mesh Kit 174

Disable many-to-one routing
To disable many-to-one routing in a network:

1. Set AR parameter on the central data collector node to 0xFF and save the configuration.
This ends the many-to-one broadcast sent by the data collector.

2. Broadcast a Software Reset (FR) command to the network and wait for the network to
reform. This removes the data collector status as an aggregator from the routing tables.

Source routing
When a data collector node needs to communicate with the rest of nodes in the network and not just
receive data from them, problems arise. The data collector, and even other nodes, would need
enough routing table entries for every node in the network. Or, each node has to discover the route
before sending data to the destination.
The maximum number of routing table entries in an XBee module is 40. This means networks
containing more than 40 XBee modules could easily become inundated with broadcast route
discovery messages.
Source routing allows the collector to store and specify routes for many remotes. The collector
remembers the route taken by a message to the data collector so it can be retrieved later to indicate
the route of a message from the collector to a certain remote:

1. The data collector must send periodic many-to-one route request broadcasts, so many-to-
one routes to the central collector are created on all remotes.

2. Every time a remote XBee module transmits data using a many-to-one route, it first sends a
route record transmission.

3. The route record transmission is unicast along the many-to-one route until it reaches the
data collector.

Large networks routing Source routing

XBee® Zigbee® Mesh Kit 175

4. As the route record traverses the many-to-one route, each node in the route appends its
own 16-bit address into the payload of the route record.

5. When the route record reaches the data collector, it contains the address of the sender and
the 16-bit address of each hop in the route.

6. The data collector can store the routing information and retrieve it later to send a source
routed packet to the remote module.

Note Source routing allows a data collector to route responses back to each device, supplying a
many-to-one data request without additional route table entries.

Use source routing
To use source routing:

1. The data collector must work in API mode.
2. The collector must send periodic many-to-one route request (AR parameter value must be

different from 0xFF).
3. You need a microcontroller or a PC connected to the data collector to automatically

capture and store the routes to the rest of network nodes.

These routes are used when transmitting a message to a remote node.
Acquire source routes
Acquiring source routes requires the remote nodes to send a unicast to the data collector (device that
sends many-to-one route request broadcasts). There are several ways to force remotes to send route
record transmissions:

n The data collector can issue a network discovery command (ND) to force all XBees to send a
network discovery response. Each network discovery response will be prefaced by a route
record.

n Periodic IO sampling can be enabled on remotes to force them to send data at a regular rate.
Each IO sample would be prefaced by a route record.

n If the node identifier (NI) of the remote XBee is known, the DN command can be issued with
the NI of the remote in the payload. The remote node with a matching NI would send a route
record and a DN response.

n If the application on remote nodes periodically sends data to the data collector, each
transmission forces a route record to occur.

Store source routes
To store source routes for remote nodes:

1. Remote nodes must first send a unicast transmission to the central collector.
2. Upon receipt of a unicast, the XBee emits a Route Record Indicator (0xA1) frame through

the serial interface.
3. The information from the route record frame must be interpreted and stored by the

application on the microcontroller for later use.

Transmit data
To transmit data using source routing:

Large networks routing Source routing

XBee® Zigbee® Mesh Kit 176

1. The microcontroller application must force the XBee to create a source route in its internal
source route table by sending a Create Source Route (0x21) frame through the serial
interface.

2. After setting up the source route, the application can send data to be wirelessly transmitted
(Transmit Request (0x10), Explicit Addressing Command Frame (0x11), or Remote
Command Request (0x17) frames) as needed, to the same destination, or any destination in
the established source route.

3. If new data must be sent to a destination not included in the last source route, the
application must first send a new Create Source Route API frame.

Note If a Create Source Route API frame (0x21) does not precede data frames, data loss may occur.

XBee modules can buffer one source route that includes up to 30 hops (excluding source and
destination).
When source routing is used, the 16-bit addresses in the source route are inserted into the RF payload
space. This means the payload will be reduced by two bytes per intermediate hop. The user must
account for the payload size reduction when using source routing.

Radio firmware

Radio firmware is the program code stored in the radio module's persistent memory that provides the
control program for the device. The firmware programmed may determine the protocol of the radio
(802.15.4, Zigbee, DigiMesh, or Wi-Fi) if several are compatible, or, in some cases, the role of the
module or its operating mode.
Update the firmware of an XBee module locally by connecting the module to your computer or over
the air if the module is remotely located. Both methods are supported by XCTU.

Firmware identification 178
Update radio firmware 178
Download new firmware 179

XBee® Zigbee® Mesh Kit 177

Radio firmware Firmware identification

XBee® Zigbee® Mesh Kit 178

Firmware identification
Identify the firmware of an XBee module using three elements:

n Product family indicates the XBee type. The product family of the XBee module is printed on
the back of the module.

n Function set determines the available functionality. For some modules this may include
choose transparent or API mode; or whether the device is an end device, router, or
coordinator. There are also function selections that allow you to choose firmware for several of
Digi's special sensor and adapter modules.

n Version is a unique number used to identify the firmware release. The firmware version of an
XBee module is reported by the Firmware Version (VR) parameter.

XBee firmware version numbers have five hexadecimal digits using "ABCDE" convention. "A" is
an optional digit and if it is not present, it assumes a 0.

Update radio firmware
Upgrading the radio firmware of an XBee device can be a common task. For example, you need to
update firmware regularly if you want to keep your modules up-to-date and take advantage of
improvements and new features implemented in the latest version. You can also change the firmware
when you need to use a different function set.
XCTU allows you to upgrade or change the firmware of XBee devices physically attached to your
computer or located in remote places over the air using the Update firmware tool.

Radio firmware Download new firmware

XBee® Zigbee® Mesh Kit 179

XCTU includes a set of radio firmware files that you can use to update your modules. The Update
firmware tool filters these available firmware versions to only list those that are compatible with the
selected XBee module.
The complete firmware update process is described in the XCTU User Guide (Help > Help Contents).
For more information about using the Update firmware tool, see How-to: Update the firmware.

Download new firmware
Digi periodically releases new versions of radio firmware that fix issues, improve functionality, or add
new features. Digi also launches new XBee modules in the market that require new radio firmware to
be configured with XCTU. These firmware files might not be included with XCTU and need to be
downloaded.
XCTU has the ability to download and install the radio firmwares library from the application itself.
By default, XCTU is configured to automatically look for new radio firmware inside Digi's update site
when XCTU is started. You can manually launch this process and install firmware previously
downloaded or provided by Digi.

1. In XCTU, select Help > Update the Radio Firmware Library.
n To look for new firmware inside Digi's update site, select Remote server.
n To add a local XBee firmware file to the XCTU library, select Local file and specify the

path where the file is located.
2. Click OK to start. A dialog displays the status of the download process.

When the process finishes, a new dialog displays the list of downloaded firmware.

Note Downloading the firmware does not automatically update attached modules.

https://docs.digi.com/display/XCTU/How-to:+Update+the+firmware+of+your+modules

Troubleshooting XCTU

XBee® Zigbee® Mesh Kit 180

Troubleshooting

If you encounter problems while working on your XBee Zigbee Mesh Kit, try the following
troubleshooting tips.

XCTU
Error upon installation of XCTU
XCTU requires Administrator permissions. Check that you have Administrator access on the machine
where you are installing XCTU. You may need to request permission to install or run applications as
administrator from your network manager.
On Windows systems, a User Account Control dialog may appear when you install XCTU or try to run
the XCTU program. You must answer yes when prompted to allow the program to make changes to
your computer, or XCTU will not work properly.
Discovery process either does not find devices, or XCTU does not list serial ports
Try the following troubleshooting methods:

n Check cables: Double check all cables. Make sure the USB cable is firmly and fully attached to
both the computer and the XBee Grove Development Board. When attached properly, the
association LED on the adapter is lit.

n Check that the XBee is fully seated in the XBee Grove Development Board: When the XBee
module is properly installed, it should be pushed fully into the board and no air or metal
should be visible between the plastic of the adapter socket and the XBee headers. Also, double
check that all ten pins on each side of the XBee module made it into a matching hole in the
socket.

n Check the XBee orientation: The angled "nose" of the XBee should match the lines on the silk
screening of the board and point away from the USB socket on the XBee Grove Development
Board.

n Check driver installation: Drivers are installed the first time the XBee Grove Development
Board is plugged in. If this process is not complete or has failed, try the following steps:
l Remove and re-insert the board into your computer. This may cause driver installation to

re-occur.
l Remove and re-insert the board into another USB port.
l (Windows) Open Computer management, find the failing device in the Device Manager

section and remove it.
l You can download drivers for all major operating systems from FTDI for manual

installation.
n Check whether the modules are sleeping: The On/Sleep LED of the XBee Grove Development

Board indicates if the module is awake (LED on) or asleep (LED off). When a module is sleeping,
it cannot be discovered in XCTU. Press the Commissioning button to wake a module for 30
seconds.

XCTU reports errors for KY and DD settings after resetting to factory defaults
This is a known issue with XCTU version 6.1.2 and earlier. When the Invalid settings dialog appears, it
is safe to continue writing settings.

Troubleshooting Wireless data transmission

XBee® Zigbee® Mesh Kit 181

n AES Encryption Key (KY) is a setting that must be set by the user when encryption is in use and
does not apply with factory settings.

n Device Type Identifier (DD) is a diagnostic parameter which is not used in the operation of the
radio and can safely be set to any value.

Basic communication example
The modules are not found in the 'Check the network' step.
Check the Associate LED of ROUTER and END_DEVICE. If it is not blinking, it means that the module is
not joined to the network yet. Wait a few seconds and try again.
If the module that is not found is END_DEVICE, it may be asleep. Press the Commissioning button of
the board where it is plugged in to wake it up and try again.
The text typed in the end device's console is not sent to the coordinator.
END_DEVICE is configured to cyclically sleep for five seconds and be awake for five seconds. It may
have been asleep when you typed in its console, so press the Commissioning button of the XBee
Grove Development Board where it is plugged in to wake it up and try again.
To identify the END_DEVICE module, look for the board where the On/Sleep LED is ON for five seconds
and OFF for another five seconds.

Wireless data transmission
The application does not find the END_DEVICE module in the network.
This usually occurs when the end device is asleep. Press the Commissioning button of the board
where it is attached to wake it up and launch the application again.
To identify the END_DEVICE module, look for the board where the On/Sleep LED is ON for 5 seconds
and OFF for another 5 seconds.
Error: Parsing text error message
If you see the "Error parsing the text..." error when sending a message, this indicates that you typed
the message incorrectly. Remember to follow this pattern when sending a message:

n Unicast: NODE_IDENTIFIER: message
For example, to send the message "Hi XBee" to XBEE_C:

XBEE_C: Hi XBee

n Broadcast: ALL: message
For example, to send the message "Hi XBees" to all nodes in the network:

ALL: Hi XBees

Error: Could not find the module in the network
This message indicates that the module attached to your computer could not send the message to the
device whose node identifier is <XXXX>.
Ensure that you typed the node identifier correctly and that it is in the list of devices found by the
application. If it is not there, launch the application again.
When I send a message from END_DEVICE, I get the "Error transmitting message..." message.
This happens when the end device is asleep. Wait until it wakes up or press the Commissioning button
and send the message again.
To identify the END_DEVICE module, look for the board where the On/Sleep LED is ON for 5 seconds
and OFF for another 5 seconds.

Troubleshooting Enable sleep mode

XBee® Zigbee® Mesh Kit 182

The end device receives the messages with some delay.
When the end device is asleep, it cannot receive any message. Its parent stores the message until it
wakes up.

Enable sleep mode
ED_PIN does not receive any message.
Ensure that the module is joined to the network. To verify this, check that the Associate LED of ED_PIN
is blinking when the DTR button is activated. If not, reset the module and wait a few seconds.

XBee Java library
Warning message: RXTX version mismatch
If you launch an application and see the message "WARNING: RXTX version mismatch", this indicates
that the versions of the JAR file and the native library are not the same. You can safely ignore this
message.
Invalid operating mode exception message
If you launch an application and you see the "com.digi.xbee.api.exceptions.InvalidOperatingMode"
exception, review the following solutions.

n Could not determine operating mode:

com.digi.xbee.api.exceptions.InvalidOperatingModeException: Could not determine
operating mode.

at com.digi.xbee.api.XBeeDevice.open(XBeeDevice.java:211)
at com.digi.xbee.sendreceivedatasample,MainApp.main(MainApp.java:43)

In this case, the library cannot access the module. Check that the PORT constant is correct.

n Unsupported operating mode:

com.digi.xbee.api.exceptions.InvalidOperatingModeException: Unsupported
operating mode: AT mode

at com.digi.xbee.api.XBeeDevice.open(XBeeDevice.java:214)
at com.digi.xbee.sendreceivedatasample.MainApp.main(MainApp.java:43)

This indicates the module is in transparent mode. Change the AP parameter through XCTU to be API
enabled [1].
Java lang unsatisfied exception message
If you experience the "java.lang.UnsatisfiedLinkError" exception, there are several possibilities.

n "no rxtxSerial in java.library.path thrown while loading gnu.io.RXTXCommDriver":

java.lang.UnsatisfiedLinkError: no rxtxSerial in java.library.path thrown while
loading gnu.io.RXTXCommDriver

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1878)
at java.lang.Runtime.loadLibrary0(Runtime.java:849)
at java.lang.System.loadLibrary(System.java:1087)
at gnu.io.CommPortIdentifier.<clinit>(CommPortIdentifier.java:123)
at com.digi.xbee.api.connection.serial.SerialPortRxTx.open

(SerialPortRxTx.java:161)
at com.digi.xbee.api.XBeeDevice.open(XBeeDevice.java:189)
at com.digi.xbee.sendreceivedatasample.MainApp.main(MainApp.java:43)

This exception indicates that the RXTX native library is not linked to the rxtx-2.2.jar file. See the
second step of the Link the libraries to the project section.

Troubleshooting XBee Java library

XBee® Zigbee® Mesh Kit 183

n "Can't load AMD 64-bit .dll on a IA 32-bit platform thrown while loading
gnu.io.RXTXCommDriver" (or similar message):

java.lang.UnsatisfiedLinkError:
C:\Users\user\workspace\SendReceiveDataSample\libs\native\Windows\win64\rxtxSer
ial.dll: Can't load AMD 64-bit .dll on a IA 32-bit platform thrown while
loading gnu.io.RXTXCommDriver

Exception in thread "main" java.lang.UnsatisfiedLinkError:
C:\Users\user\workspace\SendReceiveDataSample\libs\native\Windows\win64\rxtxSer
ial.dll: Can't load AMD 64-bit .dll on a IA 32-bit platform

at java.lang.ClassLoader$NativeLibrary.load(Native Method)
at java.lang.ClassLoader.loadLibrary1(ClassLoader.java:1957)
at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1882)
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1872)
at java.lang.Runtime.loadLibrary0(Runtime.java:849)
at java.lang.System.loadLibrary(System.java:1087)
at gnu.io.CommPortIdentifier.<clinit>(CommPortIdentifier.java:123)
at com.digi.xbee.api.connection.serial.SerialPortRxTx.open

(SerialPortRxTx.java:161)
at com.digi.xbee.api.XBeeDevice.open(XBeeDevice.java:189)
at com.digi.xbee.sendreceivedatasample.MainApp.main(MainApp.java:43)

This exception indicates that the RXTX native library you have linked is not the correct one. Check to
be sure you are not using a 32-bit JVM linked the 64-bit library, or vice versa.
Interface in use exception message
If you experience the "com.digi.xbee.api.exceptions.InterfaceInUseException" exception, it indicates
that the port you are trying to open is already in use. Ensure that you do not have any applications
running and that the XCTU console of that port is not connected.

com.digi.xbee.api.exceptions.InterfaceInUseException: Port COM5 is already in
use by other application(s)

at com.digi.xbee.api.connection.serial.SerialPortRxTx.open
(SerialPortRxTx.java:189)

at com.digi.xbee.api.XBeeDevice.open(XBeeDevice.java:189)
at com.digi.xbee.sendreceivedatasample.MainApp.main(MainApp.java:43)

Caused by: gnu.io.PortInUseException: Unknown Application
at at gnu.io.CommPortIdentifier.open(CommPortIdentifier.java:467)
at at com.digi.xbee.api.connection.serial.SerialPortRxTx.open

(SerialPortRxTx.java:167)
... 2 more

Error 0x5 at ..\src\termios.c(892): Access is denied.

Java lang no class definition exception message
If you experience the "java.lang.NoClassDefFoundError" exception, it indicates that the logger library
(slf4j-api-1.7.7.jar) is not linked to the project. See the Link the libraries to the project section to
know which libraries you have to link.

Exception in thread "main" java.lang.NoClassDefFoundError:
org/slf4j/LoggerFactory

at com.digi.xbee.api.connection.serial.AbstractSerialPort.<init>
(AbstractSerialPort.java:170)

at com.digi.xbee.api.connection.serial.AbstractSerialPort.<init>
(AbstractSerialPort.java:136)

at com.digi.xbee.api.connection.serial.SerialPortRxTx.<init>
(SerialPortRxTx.java:149)

at com.digi.xbee.api.connection.serial.SerialPortRxTx.<init>
(SerialPortRxTx.java:124)

Troubleshooting Receive digital data

XBee® Zigbee® Mesh Kit 184

at com.digi.xbee.api.XBee.createConnectiontionInterface(XBee.java:38)
at com.digi.xbee.api.AbstractXBeeDevice.<init>(AbstractXBeeDevice.java:164)
at com.digi.xbee.api.XBeeDevice.<init>(XBeeDevice.java:90)
at com.digi.xbee.sendreceivedatasample.MainApp.main(MainApp.java:40)

SLF4J class path contains multiple bindings message
If you receive the "SLF4J: Class path contains multiple SLF4J bindings" message, it indicates that you
linked several logger libraries. Ensure that only the following four libraries are added to your project:

n xbee-java-library-X.Y.Z.jar
n rxtx-2.2.jar
n slf4j-api-x.y.z.jar
n slf4j-nop-x.y.z.jar

XBee Java Library and transparent mode
The XBee Java Library only supports API and API escaped operating modes. You cannot use it with
modules in transparent mode.

Receive digital data
No data appears when receiving digital data
Check the following in XBee A (receiver):

1. The value of ID is 2015 (the same as the ID value of XBee B and XBee C).
2. The value of CE is Enabled[1]. The module is a coordinator.

Check the following in XBee B and XBee C (senders):

1. The value of ID is 2015 (the same as the ID value of XBee A).
2. Channel Verification (JV) is enabled.
3. The value of DH is 0.
4. The value of DL is 0.
5. The value of D4 is Digital Input [3].
6. The value of IC is 10 to changes in DIO4 pin (00010000 binary = 10 hexadecimal).

Note To learn how to configure IC parameter to monitor the pins, see How to obtain data from a
sensor.

7. If the data is not received yet, restore the default settings of both XBees and reconfigure them.

Check the following in the Java code:

n The LINE constant that appears on the Java source code is IOLine.DIO4_AD4.

Receive analog data
No data appears when receiving analog data
Check the following in XBee A (receiver):

1. The value of ID is 2015 (the same as the ID value of XBee B and XBee C).
2. The value of CE is Enabled[1] (the module is a coordinator).

Troubleshooting Send digital actuations

XBee® Zigbee® Mesh Kit 185

Check the following in XBee B and XBee C (senders):

1. The value of ID is 2015 (the same as the ID value of XBee A).
2. Channel Verification (JV) is enabled
3. The value of DH is 0.
4. The value of DL is 0.
5. The value of D3 is ADC [2] if the XBee module is through-hole (THT). If the module is surface-

mount (SMT), configure D2 as ADC [2] instead.
6. The value of IR is 1388 (5 seconds).

Note To learn how to configure IR parameter to monitor the pins, see How to obtain data from a
sensor.

7. If the data is not received yet, restore the default settings of both XBee modules and
reconfigure them.

Check the following in the Java code:

n The LINES constant that appears on the Java source code contains IOLine.DIO2_AD2 and
IOLine.DIO3_AD3.

Send digital actuations
Message: Could not find the module <XXXX> in the network
This message indicates that the module attached to your computer could not establish the
connection with the device whose node identifier is the value REMOTE_NODE_ID constant. Check the
following:

1. Both modules are in the same network.
2. The Node Identifier (NI) of the XBee B (receiver) is ROUTER.

The default NI value is a blank space. Make sure to delete the space when you change the
value.

In addition, the value of the REMOTE_NODE_ID constant that appears in the Java source code should
be ROUTER.
The LED does not blink
Check the following:

1. In the XBee B (RECEIVER), the value of the D4 setting is Digital Out, High [5].
2. The LINE constant that appears on the Java source code is IOLine.DIO4_AD4.

Range test
Error: There are not remote devices discovered for the selected local device
The local device you have selected has no remote devices. Click the Discover remote devices button

and XCTU discovers devices on the local device's network.
There are no remote devices to select
If there are no remote XBee modules to select in the Radio Range Test dialog, try one of the following
resolutions.

Troubleshooting Range test

XBee® Zigbee® Mesh Kit 186

Check cables
The USB cables should be firmly and fully attached to both the computer and the XBee development
board. When attached correctly, the association LED on the adapter is lit.

Check that the XBee module is fully seated in the XBee Grove
Development Board
When the XBee module is properly installed, it is pushed fully into the board and no air or metal is
visible between the plastic of the adapter socket and the XBee module headers. Also, check that all
ten pins on each side of the XBee module are in a matching hole in the socket.

Check the XBee module orientation
The angled "nose" of the XBee module should match the lines on the silk screening of the board and
point away from the USB socket on the XBee Grove Development board.

Check that the XBee modules are in the same network
Check that the Network ID (ID), Preamble ID (HP), and Channel Mask (CM) settings have the same
value for both XBee modules.

Restore default settings
If the XBee modules are properly connected and in the same network, restore default settings and
configure them again.
The local RSSI and the number of packets received are always 0

Check cables
The USB cables should be firmly and fully attached to both the computer and the XBee development
board. When attached properly, the association LED on the adapter is lit.

Check that the XBee module is fully seated in the XBee Grove
Development Board
When the XBee module is properly installed, it is pushed fully into the board and no air or metal is
visible between the plastic of the adapter socket and the XBee module headers. Also, check that all
ten pins on each side of the XBee module are in a matching hole in the socket.

Check the XBee module orientation
The angled "nose" of the XBee module should match the lines on the silk screening of the board and
point away from the USB socket on the XBee Grove Development board.
Remote RSSI is not included in the chart and the Remote RSSI control is disabled
The local device (the one attached to your computer) can be configured to use API or transparent
mode. The remote device RSSI value can only be read when the local XBee is working in API mode.
To display the remote RSSI value, reconfigure the local module to work in API mode.

Troubleshooting Range test

XBee® Zigbee® Mesh Kit 187

Parameter Value Effect

AP API enabled [1] Enables API mode.

Explicit data
After scanning the network, I get the "NO devices found" message.
This message indicates that no devices were found in the network. Ensure you have properly
configured all your devices as it is described in the Configure the XBees step.
When I send a message, I get the "Could not find the module '<XXXX>' in the network" message.
This message indicates that the module attached to your computer could not send the message to the
device whose node identifier is <XXXX>.
Ensure that you typed the node identifier correctly and that it is in the list of devices found by the
application. If it is not there, launch the application again.

Additional resources

Wireless connectivity offers almost unlimited options for making our surroundings smarter, more
efficient, and more connected. Now that you have completed the activities in this kit, here are some
additional resources to help you explore XBee modules.

Buying considerations 189
Where to buy XBee devices 194
XCTU walkthrough 195
Real projects with XBee modules 200
Related products 202

XBee® Zigbee® Mesh Kit 188

Additional resources Buying considerations

XBee® Zigbee® Mesh Kit 189

Buying considerations
You have become familiar with the XBee modules included in the kit, but Digi makes a large variety of
modules with different features and for different functions. So, which module is best suited for your
applications? Why are there different types of antennas? Should you use a "PRO" version, or is a
regular XBee module enough? In this guide, we look over the different XBee options to help you
answer these questions.
Note that the XBee module you select affect the parameters of your application:

n The location of your application affects the operating frequency of the XBee modules.
n To get greater range, you may select an external antenna, a different operating frequency, or

even an XBee-PRO.
n Power consumption is an important factor to consider.
n The required network topology also impacts the type of module you need.

To help you select an XBee module based on your requirements, see the XBee Buying Guide.
The following sections review the different options available for XBee radios and how they affect
wireless communication.

Note Not all options are available for every XBee device.

Hardware footprint
XBee modules come in three hardware footprints: through-hole, surface mount, and micro mount.

n Through-hole technology (THT) XBee modules include the 20-pin socket and require holes for
mounting the component on the printed circuit board (PCB), although it is common for the
carrier board to contain a female socket.

n Surface-mount technology (SMT) XBees include 37 pads. They are placed directly on the PCB,
which means they do not require holes or sockets for mounting the component.

n Micro-mount technology (MMT) XBees include 34 pads. They are placed directly on the PCB,
which means they do not require holes or sockets for mounting the component.

Through-hole technology is typically used in prototyping and production. MMT/SMT is recommended
for high-volume applications, as the component can be placed automatically by a pick-and-place
machine and you save the cost of a socket on each board.

Note Not all XBees are available in all form factors.

https://www.digi.com/blog/post/xbee-buying-guide

Additional resources Buying considerations

XBee® Zigbee® Mesh Kit 190

XBee antennas
Antennas are devices that focus energy in a particular direction. The attributes of a given antenna
affect not only the range of a module but also its price. The following are some potential antenna
options available on XBee modules.

Note Not all XBee modules are available in all antenna options:

A Chip antenna is mounted directly onto the
module and works in conjunction with GND planes
on the host PCB.

A PCB antenna is formed directly on the module
with conductive traces. A PCB antenna performs
about the same as a wire antenna and within 5%
of the whip antenna.

An integrated wire antenna consists of a small
wire (about 80 mm) sticking up perpendicular to
the PCB. It utilizes a 1/4-wave wire soldered
directly to the PCB of the OEM module.

A whip antenna is a solid but flexible wire antenna
that protrudes about 25 mm above the surface of
the XBee PCB. It can be moved around to
maximize signal strength, or to stick out of an
enclosure. Because it can be moved, it can also be
broken off if care is not taken or if the solder
connection becomes stressed. It has a range
advantage over the chip antenna but only when
used outdoors.

Note Folding this antenna parallel with the
module will greatly reduce range as the module
serves as a ground plane.

A U.FL antenna is a tiny connector for your own
external antenna. Typical connection is either a
dipole antenna with U.FL connection, or a U.FL to
RP-SMA adapter cable. This is a good option if your
XBee is in a box and you want your antenna
outside the box.

Additional resources Buying considerations

XBee® Zigbee® Mesh Kit 191

A RP-SMA antenna (reverse-polarity SMA) is a
bigger connector for your external antenna. XBee
radios are equipped with an RP-SMA female plug,
and the antenna is an RP-SMA male jack. This is
another good option if your XBee is in a box and
you want your antenna outside the box.

XBee vs. XBee-PRO
Both XBee and XBee-PRO modules are small, high-performance, low-cost, wireless data radios. They
are pin-compatible with one another and you can mix and match them on the same network.
However, there are a few differences between them:

n XBee-PRO TH modules are slightly longer than regular XBees (except for TH XBee3 modules).
n XBee-PRO modules typically use more power.
n The XBee-PRO has a longer range than the XBee.
n The XBee-PRO typically has a higher MSRP.

Frequency
XBee modules are available in a wide variety of RF frequencies used around the world. XBee frequency
affects range, and it also affects the location where you can deploy your application due to regulation
differences between countries. Modules with different frequencies cannot be mixed on the same
network. Developers can support frequencies including:

n 2.4 GHz
n 902 - 928 MHz
n 865 - 868 MHz

To determine the frequency that is best for your application, you need to answer two questions:

1. Where is your application going to be deployed?
Since some frequencies are not allowed for unlicensed use in certain countries, it is important
to consider the location of your application when you select the frequency of your XBees.

Note XBee devices have been certified for use in certain countries. See the specific product
manual for the latest details.

Additional resources Buying considerations

XBee® Zigbee® Mesh Kit 192

n 900 MHz radio frequency band is for unlicensed use only in North America and Australia.
n 868 MHz radio frequency band is for unlicensed use only in Europe.
n 865 MHz radio frequency band is for unlicensed use only in India.
n 2.4 GHz is an unlicensed radio frequency band used worldwide.

2. What is the maximum range your application needs to communicate?
900 MHz, 868 MHz, and 865 MHz XBee modules offer much greater range than 2.4 GHz XBee
modules.

Radio communication protocols
XBee modules support multiple wireless protocols which are suitable for many different network
topologies. Open standards include Zigbee, 802.15.4, and Wi-Fi. Digi has also developed proprietary
protocols such as Multipoint and DigiMesh. The following list includes the supported protocols:

IEEE 802.15.4
IEEE 802.15.4 is a standard which specifies the physical layer and media access control for low-rate
wireless personal area networks. It is the basis for the Zigbee, ISA100.11a, WirelessHART, and MiWi
specifications, each of which further extends the standard by developing the upper layers which are
not defined in IEEE 802.15.4. The modules included in this kit are IEEE 802.15.4. The standard is
designed specifically for energy efficient communications in a point-to-point or a point-to-multipoint
configuration and includes sleeping and security.

Use:

n Single point communications.
n Fast connections between two devices.

Use:

n Non-expandible networks that need low power or intermittent
functioning.

Zigbee / Zigbee SE (Smart Energy)
Zigbee is a specification for a suite of high-level communication protocols. Its main purpose is to
create a meshed network topology (hierarchy) to allow a number of devices to communicate among
them.

Additional resources Buying considerations

XBee® Zigbee® Mesh Kit 193

Use:

n Large systems that need to expand without a loss of function.
n Systems that need extended communications.
n Systems using non-directional communications patterns.
n Systems with intermittent function of the individual modules due to

power loss or cyclical functioning.
n Large-scale networks with low power functioning on end devices.
n Linked embedded devices or devices that move.
n Systems that require interoperability between devices made by

different vendors.

DigiMesh (Digi proprietary)
DigiMesh is a proprietary peer-to-peer wireless networking protocol developed by Digi International
Inc. DigiMesh forms a meshed network. The protocol allows for time-synchronized sleeping
nodes/routers and low-power battery powered operation. The protocol is currently supported by
several 900 MHz, 868 MHz, 865 MHz, and 2.4 GHz Digi radio modules.

Use:

n Systems that require the ability to
sleep on all nodes.

n Systems that require simplified
network setup and expansion.

n More robust mesh networks (no
parent/child dependencies).

n Systems that require longer range
options for each hop.

n Systems with larger frame payloads.
n Environments where increased

reliability is important due to routers
that come and go due to interference
or damage.

Multipoint (Digi proprietary)
XBee multipoint RF modules are ideal for applications requiring low latency and predictable
communication timing. They provide quick, robust communication in point-to-point, peer-to-peer,
and multipoint/star configurations. Multipoint modules can be deployed as a pure cable replacement
for simple serial communication or as part of a more complex hub-and-spoke network of sensors.
Many DigiMesh XBee devices also support Multipoint as a transmit option.

Use:

n Multipoint networks with longer range options.
n Systems that do not require fast communication.

Additional resources Where to buy XBee devices

XBee® Zigbee® Mesh Kit 194

IEEE 802.11 (Wi-Fi)
XBee Wi-Fi RF modules provide wireless connectivity to end-point devices in 802.11 bgn networks.
Using the 802.11 feature set, these modules are interoperable with other 802.11 bgn devices, including
devices from other vendors.
Use:

n Cloud-connected Wi-Fi products.
n Ideal for industrial applications that require fast time to market.
n Easily connect to a smartphone or tablet for configuration or data transfer.

Cellular
Cellular technology is ideal for wireless connectivity to end-point devices in remote locations or where
signal penetration is an issue. Easily send data to AWS/MQTT or your own server application using
TCP, UDP and SSL/TLS communication protocols.
Use:

n Cloud-connected cellular products.
n Ideal for remote applications that require fast time to market.
n Easily able to connect to AWS services.

Note Not all XBee devices can run all communication protocols. The combination of XBee hardware
and radio firmware determines the protocol that an XBee device can execute. Refer to the Digi XBee
Family Features Comparison for more information about the available XBee RF modules and the
protocols they support.

Where to buy XBee devices
We are committed to providing our customers with local sales and support across the globe. With our
reach extending to more than 70 countries worldwide, we work with a number of channel partners in
local countries to provide you with excellent sales and support.
Advantages of working with our network of international channel partners include:

n Local language contacts within the organization.
n In-country and local language technical support and customer service.
n In-country RMA support.
n In-country product delivery.
n Understanding of local businesses and industry segments.

Contact us online or by phone at 1-952-912-3444 for more information about which channel partner is
best suited to your individual needs.

Find products from Digi and Digi distributors
Digi products are available from many sources worldwide.

https://www.digi.com/pdf/chart_xbee_rf_features.pdf
https://www.digi.com/pdf/chart_xbee_rf_features.pdf
http://www.digi.com/contactus

Additional resources XCTU walkthrough

XBee® Zigbee® Mesh Kit 195

n You can find Digi products through distributors. Find a distributor now.
n You can also find Digi products in our official Digi online store:

l Americas online store (U.S., Canada, and Latin America)
l EMEA online store (Europe, Middle East, and Africa)
l Japan online store
l U.S. Government Sales

Find Digi products through resellers
You can purchase XBees and other Digi networking products from online retailers:

n Adafruit
n Fry's
n Maker Shed
n Microcenter
n Parallax
n RobotShop
n Seeed Studio
n Solarbotics
n Sparkfun
n TrossenRobotics

XCTU walkthrough
This walkthrough describes the layout and basic concepts of the XCTU tool.

XCTU overview
XCTU is divided into five main sections: the menu bar, main toolbar, devices list, working area, and
status bar.

http://www.digi.com/howtobuy/find-a-distributor
http://store.digi.com/
http://www.digistoreeurope.com/
http://digi-intl.co.jp/scb/shop/
http://www.digi.com/government/gsa_schedule
http://www.adafruit.com/search?q=xbee&b=1
http://www.frys.com/search?search_type=regular&sqxts=1&cat=&query_string=xbee
http://www.makershed.com/pages/search-results?q=xbee&p=1
http://www.microcenter.com/search/search_results.aspx?Ntt=xbee
https://www.parallax.com/search?search_api_views_fulltext=xbee
http://www.robotshop.com/en/catalogsearch/result?q=xbee&order=stats_sales_order_count&dir=desc
http://www.seeedstudio.com/depot/s/xbee.html?search_in_description=0
https://solarbotics.com/search/xbee/
https://www.sparkfun.com/search/results?term=xbee
http://www.trossenrobotics.com/store/Search.aspx?SearchTerms=xbee

Additional resources XCTU walkthrough

XBee® Zigbee® Mesh Kit 196

Menu bar
The menu bar is located at the top of the application. You can use the menu bar to access all
XCTU features, tools, and working modes.

Main toolbar
The main toolbar is located at the top of the application and is divided into three sections.

n The first section contains two icons used to add radio modules to the radio modules list. See
Add radio modules to XCTU.

n The second section contains the static XCTU functionality that does not require a radio
module. This section includes the XCTU tools, the XCTU configuration, the feedback form, and

http://www.digi.com/resources/documentation/digidocs/90001458-13/Default.htm#concept/c_populate_device_list.htm

Additional resources XCTU walkthrough

XBee® Zigbee® Mesh Kit 197

the help and updates functions. See XCTU tools and Configure XCTU.

n The third section contains tabs corresponding to the three XCTU working modes. To use this
functionality, you must have added one or more radio modules to the list. See XCTU working
modes.

Devices list
The radio modules list, or devices list, is located on the left side of the tool and displays the radio
modules that are connected to your computer. If you know the serial port configuration of a radio
module, you can add it to the list directly. You can also use the discovery feature of XCTU to find radio
modules connected to your PC and add them to the list. See Add radio modules to XCTU.
Depending on the protocol of the local radio modules added, you can also add remote radio modules
to the list using the module's search feature.

Working area
The working area is the largest section and is located at the right side of the application. The contents
of the working area depend on the working mode selected in the toolbar. To interact with the controls
displayed in the working area, you must have added one or more radio modules to the list and one of
the modules must be selected.

http://www.digi.com/resources/documentation/digidocs/90001458-13/Default.htm#concept/c_xctu_tools.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/Default.htm#concept/c_configure_xctu.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/Default.htm#concept/c_xctu_working_modes.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/Default.htm#concept/c_xctu_working_modes.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/Default.htm#concept/c_populate_device_list.htm

Additional resources XCTU walkthrough

XBee® Zigbee® Mesh Kit 198

Status bar
The status bar is located at the bottom of the application and displays the status of specific tasks,
such as the firmware download process.

Application working modes
A working mode represents a layout which displays operations you can perform with a radio module.
Typically, the working mode functionality appears in the working area. The tool has 4 working modes:

n Configuration mode: Allows you to configure the selected radio module from the list.
n Consoles mode: Allows you to interact or communicate with the selected radio module.
n Network mode: Allows you to discover and see the network topology of 802.15.4, Zigbee and

DigiMesh protocols.
n Remote Manager mode: Allows you to learn about the Digi Remote Manager platform, create

an account, and access your personal Digi Remote Manager page.

You can only select one working mode at a time. The Configuration mode is the default selection
when you start XCTU.

Add a module
To work and interact with a radio module, you must plug it into a USB adapter and plug that adapter
into one of your computer's USB ports. Once you have connected the module, you must add it to the
list of devices. There are two different methods:

Additional resources XCTU walkthrough

XBee® Zigbee® Mesh Kit 199

1. If you know the serial configuration of your radio module, click the Add radio module button
to add it directly.

When the dialog opens, you must select the serial port the radio module is connected to and
configure the serial settings of the port.

2. If you don't kno the serial configuration of your radio module, or which port is connected to, or
if you want to add more than one module, click the the Discover radio modules button to use
the discovery utility.

In the Discover radio devices dialog, select the serial port in which you want to look for radio modules.
If you do not know the serial port where your module is attached, select all ports. Click Next, and then
click Finish.
As radio modules are found, they appear in the Discovering radio modules… dialog box. Once the
discovery process has finished, click Add selected devices.

Read settings
If you are in the Configuration working mode, when you select a radio module from the list of devices
XCTU displays the settings of that module in the working area. XCTU automatically reads the values
and completes all the fields.

At any time, you can read the settings of the selected radio module. To do so, click the Read module
settings button and XCTU reads the firmware settings and refreshes the values.

The previous button reads all the settings, but if you want to read only a specific setting you can click
the Refresh button that appears on the right side of the setting control.

Additional resources Real projects with XBee modules

XBee® Zigbee® Mesh Kit 200

Change settings
When you change the value of a setting, the background color of the control changes depending on
the status of its value. The color legend appears next to the firmware information panel and reads the
following:

n Gray: The value of the setting is written in the radio module and matches the default value.
n Blue: The value of the setting is written in the radio module but is different than the default

value.
n Green: The value of the setting has changed but it has not been written in the radio module

yet.
n Red: The value of the setting is not valid.

Whenever you change the value of a setting, you must save the changes in the module.

Save settings
If you have changed the value of any firmware setting, click the Write module settings button to
write the new values to the radio module.

As with the reading process, the previous button writes all the settings that have been modified. If you
want to write only a specific setting, click the Write button that appears on the right side of the
setting control.

Real projects with XBee modules
Explore the links below for real-world projects made with XBee technology.

Additional resources Real projects with XBee modules

XBee® Zigbee® Mesh Kit 201

Community

XBee Projects

The largest collection of XBee projects on the web.

Digi XBee examples and guides

Learn more about wirelessly connecting XBees to sensors, outputs,
motors, lights, and the Internet.

Industrial solutions

Wireless Tank Monitoring with 1844myfuels
Wireless ultrasonic sensors connected to XBee modules enable up-to-the-
minute monitoring of farm silo levels.

Devergy Expands Solar Power Possibilities in Africa
Devergy uses XBee technology for the communication network, where
hundreds of nodes are connected with XBee modules—making the solar
micro-grids smart, cost effective and manageable.

Tracking Hand Washing Decreases the Spread of Infection at Hospitals
Hand washing is one of the most important daily routines to avoid the
spreading of bacteria and disease, especially in hospitals and healthcare
centers.

http://www.digi.com/blog/category/xbee-projects/
http://www.digi.com/blog/category/examples-guides/
http://www.digi.com/customersuccesses/wireless-tank-monitoring-with-1844myfuels
http://www.digi.com/customersuccesses/devergy-expands-solar-power-possibilities-in-afric
http://www.digi.com/customersuccesses/tracking-hand-washing-decreases-the-spread

Additional resources Related products

XBee® Zigbee® Mesh Kit 202

XBee helps Libelium monitor harsh environments
Embedded XBee and XBee-PRO modules enable low-cost, low-power
remote monitoring of isolated and difficult-to-access sensors.

For more industrial solutions, visit www.digi.com/industries.

Related products
See the following products from Digi International.

XBee Gateway

The low-cost XBee-to-IP solution enables remote connectivity,
configuration, and management of XBee networks with Digi
Remote Manager. All XBee data sent to the gateway is
automatically available to online applications via Digi Remote
Manager. Additionally, this gateway can run custom Python
applications that communicate and manage your XBee network.

XBee RF Modems

XBee RF Modems are small, low-power devices using XBee RF
modules to communicate with systems using RS-232, RS-485,
and USB interfaces. You can easily make existing wired systems
wireless with this out-of-box solution. XBee RF modems are ideal
for extended-range applications with a high data throughput.

http://www.digi.com/customersuccesses/xbee-enables-street-light-management-system
http://www.digi.com/industries
http://www.digi.com/products/wireless-routers-gateways/gateways/xbee-gateway
http://www.digi.com/products/wireless-modems-peripherals/wireless-range-extenders-peripherals/xbee-pro-900hp-rf-modems

XBee Grove Development Board

The XBee Grove Development Board is a simple-to-use base unit. You can use it to evaluate XBee
modules, as it connects any XBee/XBee-PRO module to a PC or microcontroller. One of the main
features of the board is that it has several Grove connectors where you can plug in a Grove Module.
You can learn more about the Grove module on the Seeed Studio wiki.
The THT and SMT are the two variants of the board.
XBee THT Grove Development Board XBee SMT Grove Development Board

XBee® Zigbee® Mesh Kit 203

Overview

This section provides an overview of the XBee Grove Development Board.

XBee® Zigbee® Mesh Kit 204

Overview Development board variants

XBee® Zigbee® Mesh Kit 205

Development board variants
The THT and SMT are the two variants of the board.

XBee THT Grove Development Board

XBee SMT Grove Development Board

Overview Mechanical

XBee® Zigbee® Mesh Kit 206

Mechanical
There are two variants of the XBee Grove Development Board:

n THT variant is 48.8 mm x 66 mm
n SMT variant is 53.68 mm x 72.60 mm with a shape similar to a regular XBee module.

The board provides four 3.2 mm assembly drills.

XBee THT Grove Development Board variant

XBee SMT Grove Development Board variant

Overview Power supply

XBee® Zigbee® Mesh Kit 207

Power supply
You can power the XBee Grove Development Board from the 5 V supply available on the USB
connector or from an external battery connected to a 2-pin, 2 mm pitch, PH-type connector from JST.
When you power the board from both supplies, it uses the USB.
The board has a 3.3 V regulator that generates 500 mA supply.

Note The power supply battery connector is not mounted in the board.

XBee THT Grove Development Board power supply

XBee SMT Grove Development Board power supply

Overview XBee connector

XBee® Zigbee® Mesh Kit 208

Power supply battery connector
The following table shows the pinout of the battery connector:

Battery connector Signal Comments

2 GND

1 VBAT Battery supply input

Note The power supply battery connector is not mounted in the board.

XBee connector
The XBee THT Grove Development Board provides two 10-pin, THT, 2 mm pitch sockets to connect a
THT XBee module. It is compatible with the XBee/XBee-PRO and the programmable XBee.

O
verview

XBee
connector

XBee®
Zigbee®

M
esh

Kit
209

XBee THT Grove Development Board XBee connector
The board provides footprints for two 10-pin, THT, 2.54 mm pitch connectors. You can use these footprints to solder a pin header on the top or bottom to
access the XBee signals or to connect the XBee Grove Development Board to a bread board.

Left Right

Pin Signal Comments Pin Signal Comments

1 3.3V XBee supply 1 DIO4 To GROVE_DIO4 and user LED/button

2 XBEE_TX To serial to USB device 2 XBEE_CTS_N To serial to USB device

O
verview

XBee
connector

XBee®
Zigbee®

M
esh

Kit
210

Left Right

3 XBEE_RX To serial to USB device 3 DIO9 To On/Sleep LED

4 DIO12 To GROVE_DIO12 4 VREF

5 RESET_N To reset button 5 ASSOC_LED To association LED

6 RSSI/PWM0 To RSSI LED and GROVE_PWM 6 XBEE_RTS_N To serial to USB device

7 DIO11/I2C_SDA To GROVE_I2C 7 AD3 To potentiometer

8 XBEE_PIN8 Connected to breadboard header 8 AD2 To GROVE_AD2

9 XBEE_DTR_N To serial to USB device 9 DIO1/ISC_SCL To GROVE_I2C

10 GND 10 AD0/CB To commissioning button and GROVE_AD0

O
verview

XBee
connector

XBee®
Zigbee®

M
esh

Kit
211

XBee SMT Grove Development Board XBee connector
The XBee SMT Grove Development Board provides three spring sockets. A spring header is a custom Digi header that provides a reliable connection to
SMT XBee modules without soldering the module in place.

Left Bottom Right

Pin Signal Comments Pin Signal Comments Pin Signal Comments

1 GND 1 DIO18 To GROVE_
DIO18

1

2 3.3V XBee supply 2 2 AD0/CB To commissioning button and GROVE_
AD0

O
verview

XBee
connector

XBee®
Zigbee®

M
esh

Kit
212

Left Bottom Right

3 XBEE_TX To serial to USB device 3 3 DIO1/I2C_
SCL

To GROVE_I2C

4 XBEE_RX To serial to USB device 4 4 AD2 To potentiometer

5 DIO12 To GROVE_DIO12 5 5 AD3 To GROVE_AD3

6 RESET_N To reset button 6 6 XBEE_RTS_N To serial to USB device

7 RSSI/PWM0 To RSSI LED and GROVE_
PWM0

7 7 ASSOC_LED To association LED

8 DIO11/I2C_
SDA

To GROVE_I2C 8 8 VREF

9 - 9 9 DIO9 To On/Sleep LED

10 XBEE_DTR_N To serial to USB device 10 10 XBEE_CTS_N To serial to USB device

11 GND 11 11 DIO4 To GROVE_DIO4 and user LED/button

12 DIO19 To GROVE_DIO19 12 12

13 GND 13 13

Overview USB

XBee® Zigbee® Mesh Kit 213

USB
The XBee Grove Development Board includes a micro USB connector and an FT232RL USB to RS-232
converter to communicate with the serial port of the XBee.
A green LED and a yellow LED show the status of the TX and RX lines.
The hardware flow control signals of the XBee (XBee_RTS and XBee_CTS) connect to the FT232RL
device. Two serial or resistors disconnect the flow control of the chip if this functionality is not
needed.
The XBEE_DTR_N signal is also connected to the FT232 chip. XCTU uses this signal to enter in the boot
loader and recover the module from incorrect firmware. A configurable OR resistor disconnects this
signal if the functionality is not needed.
A three-pin jumper configures the serial port in a loopback mode, connecting the RX and TX lines
together. When you close positions 1 and 2, the serial port is configured in normal mode and the serial
port of the XBee is connected to the micro USB connector. If you close positions 2 and 3, the serial
port works in loopback mode and the data transmitted by the XBee connects to the RX pin.
The USB connector also powers the board through the VBUS line.

XBee THT Grove Development Board USB

Overview USB

XBee® Zigbee® Mesh Kit 214

XBee SMT Grove Development Board USB

USB VBUS line
The following graphic illustrates how the USB powers the board through the VBUS line.

Overview Reset button

XBee® Zigbee® Mesh Kit 215

Reset button
The XBee Grove Development Board has a reset button to reboot the XBee module.

XBee THT Grove Development Board Reset button

XBee SMT Grove Development Board Reset button

Overview Commissioning button

XBee® Zigbee® Mesh Kit 216

Commissioning button
The XBee Grove Development Board has a push button connected to the commissioning pin of the
XBee module. The commissioning pin of the XBee is also connected to the Grove AD0 connector. You
can use the commissioning push button in Zigbee or DigiMesh to help deploy devices in a network.

XBee THT Grove Development Board Commissioning button

XBee SMT Grove Development Board Commissioning button

Overview Commissioning button

XBee® Zigbee® Mesh Kit 217

Commissioning pin and Grove AD0 connection

Overview Association led

XBee® Zigbee® Mesh Kit 218

Association led
The XBee Grove Development Board provides an LED connected to the association pin of the XBee
module.

XBee THT Grove Development Board Association LED

XBee SMT Grove Development Board Association LED

Overview RSSI led

XBee® Zigbee® Mesh Kit 219

RSSI led
The XBee Grove Development Board provides an LED connected to the RSSI/PWM0 pin of the XBee
module. The RSSI/PWM signal is also connected to the PWM Grove connector.
If the PWM0 pin (P0) is configured as RSSI, the brightness of this LED displays the signal strength of
the last packet received.

XBee THT Grove Development Board RSSI LED

XBee SMT Grove Development Board RSSI LED

Overview RSSI led

XBee® Zigbee® Mesh Kit 220

PWM0 RSSI configuration

Overview User LED and User button

XBee® Zigbee® Mesh Kit 221

User LED and User button
The XBee Grove Development Board provides a user LED and a user button. Both share the same XBee
I/O pin, DIO4.

Although the user LED and user button share the same pin, you can use only one at a time.

XBee THT Grove Development Board User LED and User button

XBee SMT Grove Development Board User LED and User button

User LED and User Button connection to DIO4
The following graphic illustrates the connection between the User LED and User button to the I/O pin,
DIO4.

Overview User LED and User button

XBee® Zigbee® Mesh Kit 222

Overview On/sleep LED

XBee® Zigbee® Mesh Kit 223

On/sleep LED
The XBee Grove Development Board provides an LED connected to the On/Sleep pin (DIO9). This LED
is on when the XBee module is awake, and off when it is asleep.

XBee THT Grove Development Board On/Sleep LED

XBee SMT Grove Development Board On/Sleep LED

Overview On/sleep LED

XBee® Zigbee® Mesh Kit 224

On/sleep LED connection to DIO9
The following graphic illustrates the connection between the on/sleep LED and the On/sleep pin,
DIO9.

Overview Potentiometer

XBee® Zigbee® Mesh Kit 225

Potentiometer
The XBee Grove Development Board provides a 10K potentiometer to generate analog signal between
3.3V and 0V.
You can use the jumper to disconnect the 3.3V supply from the potentiometer to save power when not
in use.

XBee THT Grove Development Board Potentiometer
The output of the potentiometer is connected to the AD3 pin (D3) of the XBee in the THT board.

Overview Potentiometer

XBee® Zigbee® Mesh Kit 226

XBee SMT Grove Development Board Potentiometer
The output of the potentiometer is connected to AD2 pin (D2) of the XBee in the SMT board.

Overview I2C

XBee® Zigbee® Mesh Kit 227

I2C
The XBee Grove Development Board provides an I2C bus that you can use with XBee programmable
modules.

XBee THT Grove Development Board I2C bus

XBee SMT Grove Development Board I2C bus

XBee/XBee-PRO connection to Grove sensor
Regular XBee/XBee-PRO modules do not provide an I2C bus, but you can connect a digital Grove
sensor.

Overview I2C

XBee® Zigbee® Mesh Kit 228

Grove I2C connector pinout
The following table shows the pinout of the Grove I2C connector:

Grove I2C Signal

1 DIO1/I2C_SCL

2 DIO11/I2C_SDA

3 3.3V

4 GND

Overview Grove Connectors

XBee® Zigbee® Mesh Kit 229

Grove Connectors
The XBee Grove Development Board provides several Grove connectors connected to the XBee pins:

n THT boards include six Grove connectors:
l Two connectors to digital I/O pins
l Two connectors to two digital/analog I/O pins
l One connector to the RSSI/PWM0 pin
l One connector to the I2C bus of the microcontroller placed in the socket (programmable

XBee)
n SMT boards include eight Grove connectors:

l Four connectors to digital I/O pins
l Two connectors to two digital/analog I/O pins
l One connector to the RSSI/PWM0 pin
l One connector to the I2C bus of the microcontroller placed in the socket (programmable

XBee)

For more information about Grove sensors and actuators for use with these connectors see the Seed
Studio wiki.

http://www.seeedstudio.com/wiki/GROVE_System
http://www.seeedstudio.com/wiki/GROVE_System

Overview Grove Connectors

XBee® Zigbee® Mesh Kit 230

THT board Grove connectors pinout
The following tables show the pinout for the THT board Grove connectors:

Grove DIO12 Signal Comments

1 DIO12

2 -

3 3.3V

4 GND

Grove DIO4 Signal Comments

1 DIO4 Signal connected to the user LED/button

2 -

3 3.3V

4 GND

Grove AD0 Signal Comments

1 AD0/CB Signal connected to the commissioning button

2 -

3 3.3V

4 GND

Grove I2C Signal Comments

1 DIO1/I2C_SCL

2 DIO11/I2C_SDA

3 3.3V

4 GND

Grove PWM0 Signal Comments

1 RSSI/PWM0 Signal connected to the RSSI LED

2 -

3 3.3V

4 GND

Overview Grove Connectors

XBee® Zigbee® Mesh Kit 231

Grove AD2 Signal Comments

1 AD2

2 -

3 3.3V

4 GND

Overview Grove Connectors

XBee® Zigbee® Mesh Kit 232

SMT board Grove connectors pinout
The following tables show the pinout for the SMT board Grove connectors:

Grove DIO12 Signal Comments

1 DIO12

2 -

3 3.3V

4 GND

Grove DIO4 Signal Comments

1 DIO4 Signal connected to the LED/button

2 -

3 3.3V

4 GND

Grove AD0 Signal Comments

1 AD0/CB Signal connected to the commissioning button

2 -

3 3.3V

4 GND

Grove AD3 Signal Comments

1 AD3

2 -

3 3.3V

4 GND

Grove I2C Signal Comments

1 DIO1/I2C_SCL

2 DIO11/I2C_SDA

3 3.3V

4 GND

Overview Grove Connectors

XBee® Zigbee® Mesh Kit 233

Grove PWM0 Signal Comments

1 RSSI/PWM0 Signal connected to the RSSI LED

2 -

3 3.3V

4 GND

Grove DIO19 Signal Comments

1 DIO19

2 -

3 3.3V

4 GND

Grove DIO18 Signal Comments

1 DIO18

2 -

3 3.3V

4 GND

Overview Loopback jumper

XBee® Zigbee® Mesh Kit 234

Loopback jumper
The XBee Grove Development Board provides a three-pin jumper to connect the UART to the USB
(normal mode) or to make a loopback connection between the RX and TX signals of the UART.
In loopback mode, connect the RX line to the TX line, which transmits back any data received. You can
use loopback in transparent mode to check the signal strength and perform a range test.

XBee THT Grove Development Board Loopback jumper

XBee SMT Grove Development Board Loopback jumper

Schematic and Gerber files

This section shows the schematics for the THT Grove Development Board and the SMT Grove
Development board and provides links to download the Gerber files.

n XBee THT Grove Development Board
n XBee SMT Grove Development Board

XBee THT Grove Development Board schematic

You can dowload a copy of the schematic for the XBee THT Grove Development Board.

Gerber files
You can download the Gerber files for the XBee THT Grove Development Board.

XBee® Zigbee® Mesh Kit 235

XBee_THT_Grove_schematics.pdf
XBee_SMT_Grove_schematics.pdf
XBee_THT_Grove_schematics.pdf
XBee_THT Grove_gerbers.zip

Schematic and Gerber files XBee SMT Grove Development Board schematic

XBee® Zigbee® Mesh Kit 236

XBee SMT Grove Development Board schematic

You can download a copy of the schematic for the XBee SMT Development Board.

Gerber files
You can download the Gerber files for the XBee SMT Grove Development Board.

XBee_SMT_Grove_schematics.pdf
XBee_SMT_Grove-gerbers.zip

	Change the firmware protocol
	Kit contents
	Introduction to XBee devices
	Zigbee in a nutshell
	Mesh networking
	Zigbee stack layers
	Device types

	Get started with XBee Zigbee
	Assemble the hardware
	Plug in the XBee module
	How to unplug an XBee device

	Download and install XCTU
	Example: basic communication
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Add the XBee modules to XCTU
	Step 4: Configure the XBee modules
	Step 5: Check the network
	Step 6: Send messages

	How XBee devices work
	How XBee devices communicate
	Wireless communication
	Addressing
	PAN Addresses
	Channels

	Serial communication
	Operating modes
	Comparison of transparent and API modes

	XBee transparent mode
	XBee transparent mode in detail
	What have you learned?
	Extend the basic communication example

	Command mode
	AT commands
	Use AT commands

	API mode
	API mode in detail
	Advantages of API mode

	API frame structure
	Start delimiter
	Length
	Frame data
	Checksum

	Supported frames
	Frame examples
	Operating mode configuration
	API escaped operating mode (API 2)

	XBee frame exchange
	AT Command: configure a local XBee device
	Transmit Request/Receive Packet: Transmit and receive wireless data
	Remote AT Command: Remotely configure an XBee module
	Source routing: Create and obtain the route of a packet
	Example: Configure your local XBee module
	Example: Transmit and receive data
	Libraries

	Zigbee Mesh Network Setup
	Configure the device type of an XBee module
	Startup operations
	Coordinator
	Router
	End device

	Explore the network
	Section summary

	Wireless data transmission
	Transmission methods
	Broadcast transmission
	Unicast transmission

	Example: transmit data
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Configure the Xbee modules
	Step 4: Create a Java project
	Step 5: Link libraries to the project
	Step 6: Add the source code to the project
	Step 7: Set the port names and launch applications
	Step 8: Transmit data over the network
	Step 9: Section summary of wireless data transmission
	Step 10: Do more with wireless data transmission

	Low power and battery life
	Low power devices and battery life
	A real world scenario
	Design considerations for applications using sleep mode

	Sleep modes
	Pin sleep
	Cyclic sleep
	Example: enable sleep mode
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Configure the XBee Modules
	Step 4: Sleep
	Step 5: What have you learned?
	Step 6: Extend the example

	Inputs and outputs
	XBee I/O pins
	Sensors
	Setting pins for digital and analog sensors

	Actuators
	Set pins for digital and analog actuators
	How XBee devices get sensor data
	How to configure a pin as an input
	How to obtain data from a sensor

	Example: receive digital data
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Configure the XBee modules
	Step 4: Create a Java project
	Step 5: Link libraries to the project
	Step 6: Add the source code to the project
	Step 7: Set the port name and launch the application
	Step 8: Section summary of receiving digital data
	Step 9: Do more with receiving digital data

	Lab: receive analog data
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Configure the XBee modules
	Step 4: Create a Java project
	Step 5: Link libraries to the project
	Step 6: Add the source code to the project
	Step 7: Set the port name and launch the application
	Step 8: Section summary of receiving analog data
	Step 9: Do more with receiving analog data

	How XBee modules control devices
	Configure a pin for digital output
	How to send actuations

	Example: send digital actuations
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Configure the XBee modules
	Step 4: Create a Java project
	Step 5: Link libraries to the project
	Step 6: Add the source code to the project
	Step 7: Set the port name and launch the application
	Step 8: Section summary of sending digital actuations
	Step 9: Do more with sending digital actuations

	Security and encryption
	Zigbee security model
	Network layer security
	APS layer security
	Network and APS layer encryption
	Form or join a secure network

	Security on the XBee
	Enable security
	Set the network security key
	Set the APS trust center link key
	Enable APS encryption
	Use a trust center
	How to update the network key with a trust center.
	How to update the network key without a trust center.

	Example: basic (but secure) communication
	Understanding the example

	Signal strength and radio frequency range
	Distance and obstacles
	Factors affecting wireless communication
	Signal strength and the RSSI pin
	Is RSSI the best indication of link quality?

	Range test
	Example: perform a range test
	Step 1: Requirements
	Step 2: Connect the components
	Step 3: Configure the XBee Zigbee modules
	Step 4: Perform a range test
	Step 5: Section summary of signal strength

	Zigbee communication in depth
	Zigbee Application Framework
	Application profiles
	Clusters
	Endpoints
	Binding
	Node descriptors
	Zigbee Cluster Library

	Zigbee Device Object (ZDO)
	Explicit Addressing frames
	Explicit Addressing Command frame
	Explicit Rx Indicator frame
	Data payload format
	Receive Zigbee commands and responses

	Examples: explicit data and ZDO
	Example: obtain the neighbor table using the XBee Java Library
	Example: obtain the neighbor table using the XBee Java Library

	Large networks routing
	Many-to-one routing
	Enable many-to-one routing
	Disable many-to-one routing

	Source routing
	Use source routing

	Radio firmware
	Firmware identification
	Update radio firmware
	Download new firmware

	Troubleshooting
	XCTU
	Wireless data transmission
	Enable sleep mode
	XBee Java library
	Receive digital data
	Receive analog data
	Send digital actuations
	Range test
	Check cables
	Check that the XBee module is fully seated in the XBee Grove Development Board
	Check the XBee module orientation
	Check that the XBee modules are in the same network
	Restore default settings
	Check cables
	Check that the XBee module is fully seated in the XBee Grove Development Board
	Check the XBee module orientation

	Additional resources
	Buying considerations
	Hardware footprint
	XBee antennas
	XBee vs. XBee-PRO
	Frequency
	Radio communication protocols

	Where to buy XBee devices
	Find products from Digi and Digi distributors
	Find Digi products through resellers

	XCTU walkthrough
	XCTU overview
	Application working modes
	Add a module
	Read settings
	Change settings
	Save settings

	Real projects with XBee modules
	Community
	Industrial solutions

	Related products

	XBee Grove Development Board
	Overview
	Development board variants
	XBee THT Grove Development Board
	XBee SMT Grove Development Board
	Mechanical
	XBee THT Grove Development Board variant
	XBee SMT Grove Development Board variant

	Power supply
	XBee THT Grove Development Board power supply
	XBee SMT Grove Development Board power supply
	Power supply battery connector

	XBee connector
	XBee THT Grove Development Board XBee connector
	XBee SMT Grove Development Board XBee connector

	USB
	XBee THT Grove Development Board USB
	XBee SMT Grove Development Board USB
	USB VBUS line

	Reset button
	XBee THT Grove Development Board Reset button
	XBee SMT Grove Development Board Reset button

	Commissioning button
	XBee THT Grove Development Board Commissioning button
	XBee SMT Grove Development Board Commissioning button
	Commissioning pin and Grove AD0 connection

	Association led
	XBee THT Grove Development Board Association LED
	XBee SMT Grove Development Board Association LED

	RSSI led
	XBee THT Grove Development Board RSSI LED
	XBee SMT Grove Development Board RSSI LED
	PWM0 RSSI configuration

	User LED and User button
	XBee THT Grove Development Board User LED and User button
	XBee SMT Grove Development Board User LED and User button
	User LED and User Button connection to DIO4

	On/sleep LED
	XBee THT Grove Development Board On/Sleep LED
	XBee SMT Grove Development Board On/Sleep LED
	On/sleep LED connection to DIO9

	Potentiometer
	XBee THT Grove Development Board Potentiometer
	XBee SMT Grove Development Board Potentiometer

	I2C
	XBee THT Grove Development Board I2C bus
	XBee SMT Grove Development Board I2C bus
	XBee/XBee-PRO connection to Grove sensor
	Grove I2C connector pinout

	Grove Connectors
	THT board Grove connectors pinout
	SMT board Grove connectors pinout

	Loopback jumper
	XBee THT Grove Development Board Loopback jumper
	XBee SMT Grove Development Board Loopback jumper

	Schematic and Gerber files
	XBee THT Grove Development Board schematic
	Gerber files

	XBee SMT Grove Development Board schematic
	Gerber files

