

30 W, DC - 6.0 GHz, 28 V, GaN HEMT

Description

Wolfspeed's CGH27030S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH27030S ideal for LTE, 4G Telecom and BWA amplifier applications. The CGH27030S operates from a 28 volt rail. The transistor is available in a 3mm x 4mm, surface mount, dual-flat-no-lead (DFN) package.

Package Type: 3x4 DFN PN: CGH27030S

Typical Performance 1.8-2.7 GHz ($T_c = 25^{\circ}$ C), 28 V

Parameter	1.8 GHz ¹	2.0 GHz ¹	2.2 GHz ¹	2.3 GHz ²	2.5 GHz ²	2.7 GHz ²	Units
Small Signal Gain	20.0	20.4	19.5	21.1	20.6	20.0	dB
Adjacent Channel Power @ P _{AVE} = 5 W	-39.5	-42.1	-39.1	-32.0	-36.4	-33.6	dBc
Drain Efficiency @ P _{AVE} = 5 W	31.8	32.8	33.8	37.8	36.2	35.0	%
Input Return Loss	-4.2	-6.4	-7.7	-7.3	-7.9	-7.2	dB

Notes:

- 1 Measured in the CGH27030S-AMP1 amplifier circuit, under 7.5 dB PAR single carrier WCDMA signal test model 1 with 64 DPCH
- ² Measured in the CGH27030S-AMP2 amplifier circuit, under 7.5 dB PAR single carrier WCDMA signal test model 1 with 64 DPCH

Features for 28 V in CGH27030S-AMP1

- 1.8 2.2 GHz Operation
- 30 W Typical Output Power
- 18 dB Gain at 5 W P_{AVE}
- -39 dBc ACLR at 5 W P_{AVE}
- 33% efficiency at 5 W P_{AVE}
- High degree of APD and DPD correction can be applied

Features for 28 V in CGH27030S-AMP2

- 2.3 2.7 GHz Operation
- 30 W Typical Output Power
- 18.5 dB Gain at 5 W P_{AVE}
- -39 dBc ACLR at 5 W P_{AVE}
- 36% efficiency at 5 W P_{AVE}
- High degree of APD and DPD correction can be applied

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	$V_{ extsf{DSS}}$	120	V	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	7.2	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	3.0	Α	25°C
Soldering Temperature ²	Ts	245	°C	
Case Operating Temperature ³	T _C	-40, +150		
Thermal Resistance, Junction to Case ^{4,5}	$R_{\theta JC}$	3.65	°C/W	85°C

Notes:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,	$V_{DS} = 10 \text{ V}, I_D = 7.2 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DS} = 28 \text{ V}, I_{D} = 0.20 \text{ mA}$	
Saturated Drain Current	I _{DS}	5.0	7.0	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	84	_	_	V_{DC}	$V_{GS} = -8 \text{ V}, I_D = 7.2 \text{ mA}$	
RF Characteristics 3 ($T_c = 25^{\circ}C$, $F_0 = 2.65$ GHz unless otherwise noted)							
Gain	G	_	19.1	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{IN} = 10 \text{ dBm}$	
Output Power	Роит	_	44.9	_	dBm	V - 20 V I - 0 20 A D - 20 dB	
Drain Efficiency³	η	_	72	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{IN} = 30 \text{ dBm}$	
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0.20 \text{ A}$, $P_{IN} = 30 \text{ dBm}$	
Dynamic Characteristics	Dynamic Characteristics						
Input Capacitance⁴	C _{GS}	_	8.6	_			
Output Capacitance ⁴	C _{DS}	_	2.0	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	$C_{\sf GD}$	_	0.4	_			

Notes:

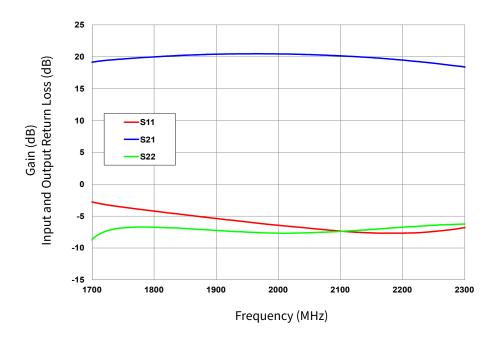
¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

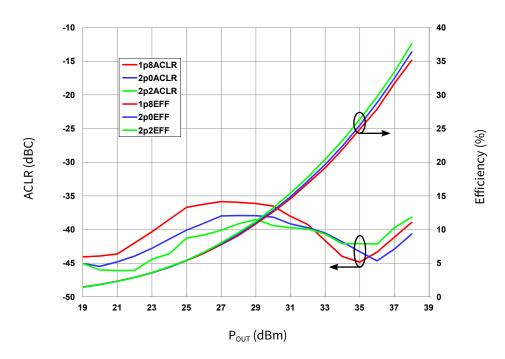
 $^{^3}$ T_{c} = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance

 $^{^4}$ Simulated for the CGH27030S at $\rm P_{\scriptsize DISS}$ = 21.6 W

 $^{^5}$ The R_{TH} for Wolfspeed's demonstration amplifier, CGH27030S-AMP1, with 33 x 0.011 via holes designed on a 20 mil thick Rogers 4350 PCB, is 3.51°C. The total R_{TH} from the heat sink to the junction is 3.62°C + 3.51°C = 7.13 °C/W


¹ Measured on wafer prior to packaging

² Measured in Wolfspeed's production test fixture. This fixture is designed for high volume test at 2.65 GHz


³ Un-modulated Pulsed Signal, 100μs, 10% duty cycle

⁴ Includes package and internal matching components

Typical Performance in CGH27030S-AMP1

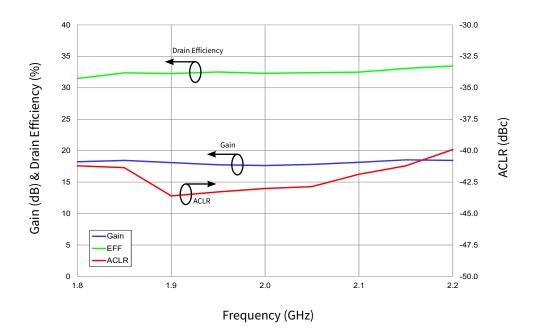
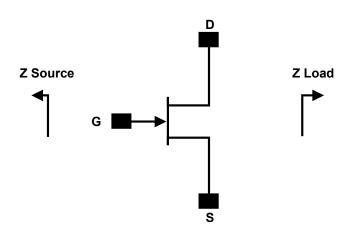


Figure 1. Small Signal Gain and Return Losses vs Frequency V_{DD} = 28 V, I_{DQ} = 0.20 A


Figure 2. Typical Drain Efficiency and ACLR vs Output Power $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0.20 \text{ A}$, 1c WCDMA, PAR = 7.5 dB

Typical Performance in CGH27030S-AMP1

Figure 3. Typical Gain, Drain Efficiency and ACLR vs Frequency $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0.20 \text{ A}$, $P_{AVE} = 5 \text{ W}$, 1c WCDMA, PAR = 7.5 dB

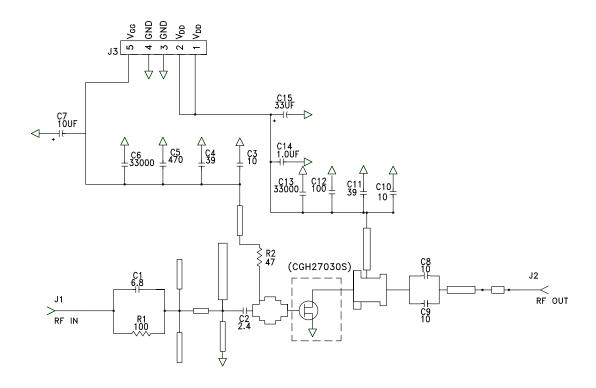
Source and Load Impedances for Application Circuit CGH27030S-AMP1

11 + j0.2
10.5 – j1.8
11+j3.3

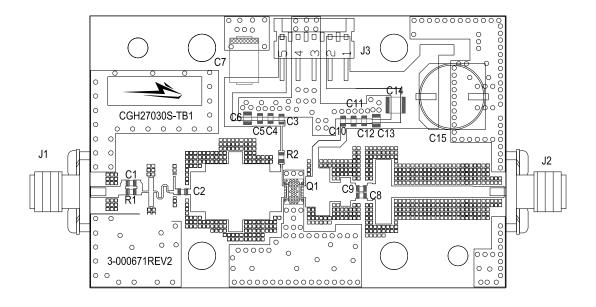
Notes


 $^{^{1}}$ V_{DD} = 28 V, I_{DQ} = 0.20 A in the DFN package

² Impedances are extracted from the CGH27030S-AMP1 application circuit and are not source and load pull data derived from the transistor


CGH27030S-AMP1 Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 1/16 W, 0603, 1%, 100 OHMS	1
R2	RES, 1/16 W, 0603, 1%, 5.1 OHMS	1
C1	CAP, 6.8pF, ±0.25pF, 0603, ATC	1
C2	CAP, 2.4pF, ±0.01pF, 0603, ATC	1
C3, C8, C9, C10	CAP, 10.0pF, ±0.5pF, 0603, ATC	3
C12	CAP, 100.0pF, 5%, 0603, ATC	1
C5	CAP, 470pF, 5%, 100 V, 0603	1
C6, C13	CAP, 33000pF, 0805, 10%, 100 V, X7R	2
C14	CAP, 1.0μF, 100 V, 10%, X7R, 1210	1
C7	CAP, 10µF, 16 V, TANTALUM	1
C15	CAP, 33µF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
Q1	CGH27030S, QFN	1


CGH27030S-AMP1 Application Circuit, 28 V, 1.8 - 2.2 GHz

CGH27030S-AMP1 Application Circuit Schematic, 28 V, 1.8 - 2.2 GHz

CGH27030S-AMP1 Application Circuit, 28 V, 1.8 - 2.2 GHz

Typical Performance in Application Circuit CGH27030S-AMP2

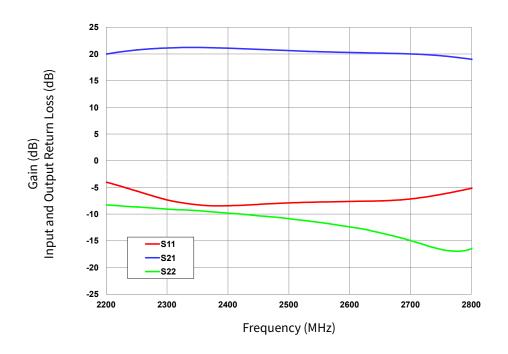
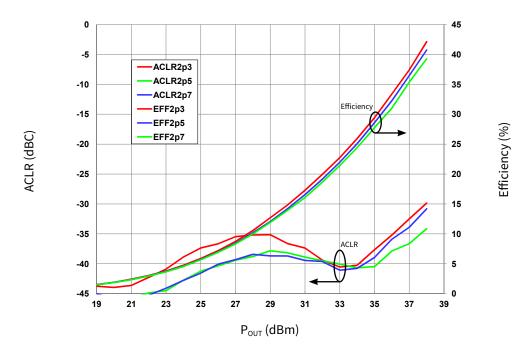
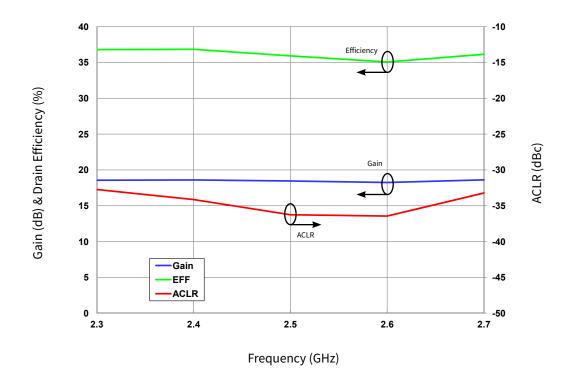
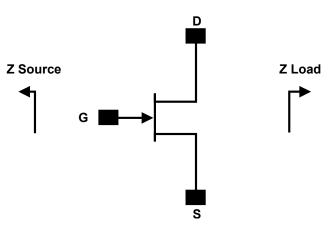




Figure 4. Small Signal Gain and Return Losses vs Frequency $V_{DD} = 28 \text{ V}, I_{DO} = 0.20 \text{ A}$

Figure 5. Typical Drain Efficiency and ACLR vs Output Power $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0.20 \text{ A}$, 1c WCDMA, PAR = 7.5 dB

Typical Performance in Application Circuit CGH27030S-AMP2

Figure 6. Typical Gain, Drain Efficiency and ACLR vs Frequency $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0.20 \text{ A}$, $P_{AVE} = 5 \text{ W}$, 1c WCDMA, PAR = 7.5 dB


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

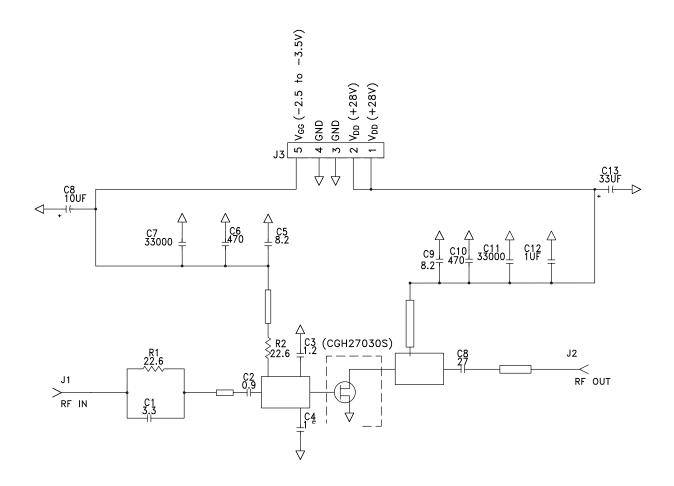
Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Frequency	Z Source	Z Lead
2300	1.7 – j0.5	7.7 + j7.7
2500	2.2 – j0.2	8.0 + j6.8
2700	1.5 – j0.1	6.6 + j6.3

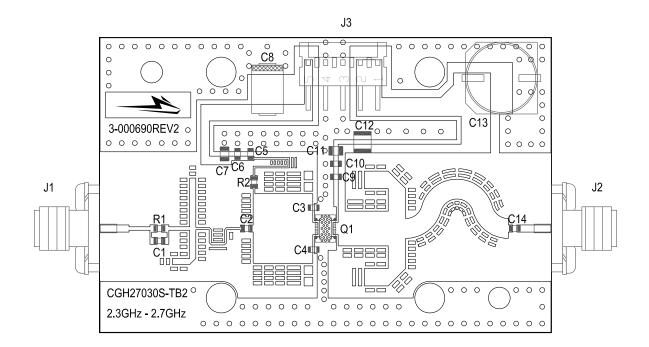
Notes:

CGH27030S-AMP1 Application Circuit Bill of Materials

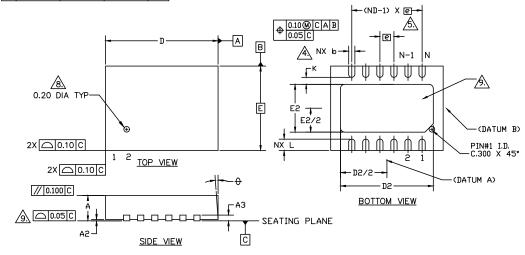
Designator	Description	Qty
R1, R2	RES, 22.6, OHM, +/-1%, 1/16W, 0603	2
C1	CAP, 3.3pF, ±0.1pF, 0603, ATC	1
C2	CAP, 0.9pF, ±0.1pF, 0603, ATC	1
С3	CAP, 1.2pF, ±0.1pF, 0603, ATC	1
C4	CAP, 1.5pF, ±0.1pF, 0603, ATC	1
C5, C9	CAP, 8.2pF, ±0.25pF, 0603, ATC	2
C6, C10	CAP, 470pF, 5%, 100 V, 0603, X	2
C7, C11	CAP, 33000pF, 0805, 100 V, X7R	2
C12	CAP, 1.0μF, 100 V, 10%, X7R, 1210	1
C8	CAP, 10μF 16 V TANTALUM	1
C14	CAP, 27pF, ±5%, 0603, ATC	1
C13	CAP, 33μF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	1
Q1	CGH27030S, QFN	2


 $^{^1\,\}mathrm{V}_\mathrm{DD}$ = 28 V, I_DO = 0.20 A in the DFN package

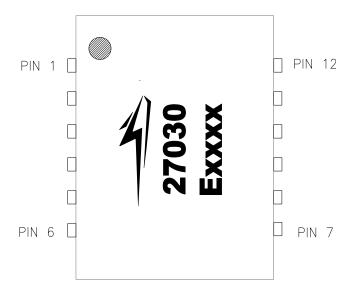
² Impedances are extracted from the CGH27030S-AMP2 application circuit and are not source and load pull data derived from the transistor


CGH27030S-AMP2 Application Circuit, 28 V, 2.3 - 2.7 GHz

CGH27030S-AMP2 Application Circuit Schematic, 28 V, 2.3 - 2.7 GHz



CGH27030S-AMP2 Application Circuit, 28 V, 2.3 - 2.7 GHz



Product Dimensions CGH27030S (Package 3 x 4 DFN)

SYMBOL	COMMON DIMENSIONS				
B	COMINO	COMMON DIMENSIONS			
ို	MIN.	NOM.	MAX.	NO _{TE}	
Α	0.80	0.90	1.0		
A1	0.00	0.02	0.05		
А3	(0.203 REF			
0	0		12	2	
D	4.00 BSC				
Ε	3.00 BSC				
е	0.50 BSC				
N	12				
ND		6			
L	0.35	0.40	0.45		
b	0.18	0.25	0.30	A	
D2	3.20	3.30	3.40		
E2	1.60	1.7	1.80		
К	0.20				

Pin	Input/Output
1	GND
2	RF IN
3	RF IN
4	RF IN
5	RF IN
6	GND
7	GND
8	RF OUT
9	RF OUT
10	RF OUT
11	RF OUT
12	GND

Note: Leadframe finish for 3x4 DFN package is Nickel/Palladium/Gold. Gold is the outer layer.

Part Number System

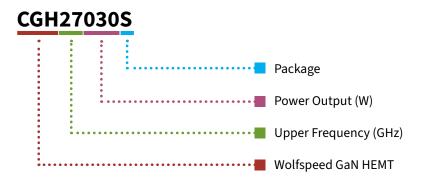


Table 1.

Parameter	Value	Units
Upper Frequency ¹	2.7	GHz
Power Output	30	W
Package	Surface Mount	_

Note:

Table 2.

Character Code	Code Value	
A	0	
В	1	
С	2	
D	3	
E	4	
F	5	
G	6	
Н	7	
J	8	
К	9	
Examples	1A = 10.0 GHz 2H = 27.0 GHz	

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH27030S	GaN HEMT	Each	212307
CGH27030S-AMP1	Test board without GaN HEMT	Each	
CGH27030S-AMP2	Test board with GaN HEMT installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2013-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.