

80 W, 5.0 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

Cree's CMPA5259080S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 7 mm x 7 mm surface mount (QFN package).

PN: CMPA5259080S Package Type: 7 x 7 QFN

Typical Performance Over 5.2 - 5.9 GHz ($T_c = 25^{\circ}C$)

Parameter	5.2 GHz	5.5 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	29.0	30.5	28.1	dB
Output Power ^{1,3}	112.9	112.5	99.9	W
Power Gain ^{1,3}	21.4	21.4	21.0	dB
Power Added Efficiency ^{1,3}	47	49	47	%

Notes:

 $^{1}V_{_{DD}}$ = 40 V, I $_{_{DO}}$ = 350 mA

² Measured at Pin = -20 dBm

 3 Measured at Pin = 29 dBm and 500 μ s; Duty Cycle = 20%

Features

- >48% Typical Power Added Efficiency
- 29 dB Small Signal Gain
- 110 W Typical P_{SAT} •
- Operation up to 40 V •
- High Breakdown Voltage
- **High Temperature Operation**

Note: Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

Applications

Civil and Military Pulsed Radar Amplifiers

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	120	VDC	25°C
Gate-source Voltage	V _{GS}	-10, +2	VDC	25°C
Storage Temperature	T _{stg}	-55, +150	°C	
Maximum Forward Gate Current	I _G	23.2	mA	25°C
Maximum Drain Current	I _{dmax}	4.8	А	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 5.2 GHz to 5.9 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{gs(th)}	-3.6	-3.1	-2.4	V	$V_{\rm DS} = 10 \text{ V}, I_{\rm D} = 23.2 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	$V_{\rm DC}$	$V_{_{DD}} = 40 \text{ V}, \text{ I}_{_{DQ}} = 350 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	16.7	23.2	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	100	-	-	V	$V_{GS} = -8 \text{ V}, I_{D} = 23.2 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	S21 ₁	-	27	-	dB	Pin = -20 dBm, Freq = 5.2 - 5.9 GHz
Output Power	P _{OUT1}	-	105	-	W	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.2 GHz
Output Power	P _{OUT2}	-	102	-	W	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29dBm, Freq = 5.5 GHz
Output Power	P _{outs}	_	112	-	W	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.9 GHz
Power Added Efficiency	PAE ₁	-	50	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.2 GHz
Power Added Efficiency	PAE ₂	-	48	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.5 GHz
Power Added Efficiency	PAE ₃	-	48	-	%	$V_{_{DD}}$ = 40 V, I $_{_{DQ}}$ = 350 mA, $P_{_{\rm IN}}$ = 29 dBm, Freq = 5.9 GHz
Power Gain	$G_{_{P1}}$	-	21	-	dB	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.2 GHz
Power Gain	G _{P2}	-	21	-	dB	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.5 GHz
Power Gain	G _{P3}	-	22	-	dB	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.9 GHz
Input Return Loss	S11	-	-10	-	dB	Pin = -20 dBm, 5.2 - 5.9 GHz
Output Return Loss	S22	-	-4	-	dB	Pin = -20 dBm, 5.2 - 5.9 GHz
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No damage at all phase angles

Notes:

¹ Scaled from PCM data

² Measured in CMPA5259080S high volume test fixture at 5.2, 5.5 and 5.9 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 3 Unless otherwise noted: Pulse Width = 25 μ s, Duty Cycle = 1%

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T _J	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{_{ ext{ hetaJC}}}$	0.95	°C/W	Pulse Width = 500 μs , Duty Cycle =20%

Notes:

 $^{\rm 1}$ Simulated for the CMPA5259080S at $\rm P_{\scriptscriptstyle DISS}$ = 120 W

Typical Performance of the CMPA5259080S

Test conditions unless otherwise noted: $V_{D} = 40 V$, $I_{DO} = 350 mA$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 °C$

Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

Figure 5. Drain Current vs Frequency as a Function of Temperature

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

Typical Performance of the CMPA5259080S

Test conditions unless otherwise noted: $V_D = 40 \text{ V}$, $I_{DQ} = 350 \text{ mA}$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 \text{ °C}$

Frequency (GHz)

Frequency (GHz)

Test conditions unless otherwise noted: $V_D = 40 V$, $I_{DO} = 350 mA$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 °C$

Test conditions unless otherwise noted: V_D = 40 V, I_{DO} = 350 mA, Pulse Width = 500 µs, Duty Cycle = 20%, Pin = 29 dBm, T_{BASE} = +25 °C

Input Power (dBm)

Input Power (dBm)

Typical Performance of the CMPA5259080S

Test conditions unless otherwise noted: $V_D = 40 V$, $I_{DO} = 350 mA$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 °C$

Input Power (dBm)

Input Power (dBm)

Test conditions unless otherwise noted: $V_D = 40 V$, $I_{DO} = 350 mA$, Pulse Width = 500 μ s, Duty Cycle = 20%, Pin = 29 dBm, $T_{BASE} = +25 °C$

Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

Figure 32. 2nd Harmonic vs Output Power as a Function of IDQ

Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

Output Power (dBm)

Figure 33. 3rd Harmonic vs Output Power as a Function of IDQ

Test conditions unless otherwise noted: V_D = 40 V, I_{DO} = 350 mA, Pin = -20 dBm, T_{BASE} = +25 $^{\circ}$ C

Figure 36. Input RL vs Frequency as a Function of Temperature

Figure 37. Input RL vs Frequency as a Function of Temperature

Figure 39. Output RL vs Frequency as a Function of Temperature

S22 (dB)

Typical Performance of the CMPA5259080S

Test conditions unless otherwise noted: V_{D} = 40 V, I_{DO} = 350 mA, Pin = -20 dBm, T_{BASE} = +25 °C

Figure 42. Input RL vs Frequency as a Function Voltage

Figure 43. Input RL vs Frequency as a Function of IDQ

Figure 45. Output RL vs Frequency as a Function of IDQ

CMPA5259080S-AMP1 Demonstration Amplifier Schematic

CMPA5259080S-AMP1 Demonstration Amplifier Circuit Outline

CMPA5259080S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C7, C8, C14, C15, C20, C21, C27, C28	CAP, 10pF, +/-5%,pF,200V, 0402	8
C6, C9, C13, C16, C29, C22, C26, C29	CAP, 470PF, 5%, 100V, 0603, X	8
C5, C10, C12, C17, C18, C23, C25, C30	CAP,33000PF, 0805,100V, X7R	8
C2	CAP, 33 UF, 20%, G CASE	1
C1	CAP, 10UF, 16V, TANTALUM	1
C31	CAP, 0.1PF, ATC 100 B	1
R1,R2,R4,R5	RES 15 OHM, +/-1%, 1/16W, 0402	4
R3,R6,R7,R8	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W2,W3	WIRE, BLACK, 22 AWG ~ 2.5"	2
W1	WIRE, BLACK, 22 AWG ~ 3.0"	1
	PCB, TEST FIXTURE, RF-35TC, 0.010 THK, 7x7 AIR CAVITY QFN, EVAL BOARD	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
U1	CMPA5259080S	1

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA5259080S (Package 7 x 7 QFN)

NOTES :

OTES : 1. DIRECTIONING AND TOLERANCING CONFORM TO ASME YIA.SM. - 1994. 2. ALL DIMENSIONS ARE IN HILLINGTERS & IS IN DEGREES. J. IN IS THE UTTAL HUNGER OF TERMINAL SIDE SET SEED BETWEEN D.15 AND 0.20mm FROM TERMINAL TP. 2. NO JUNE REFER TO THE HUNGER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 5. MAX. PARTAGE WARPAGE IS D.33 mm. 7. MAXIMUM JULGWARE SET SIDE SIDE COMMING IN ALL DIRECTIONS. MARPING AND ONE HUNGER SIDE COMMING IN ALL DIRECTIONS.

B. BLATERAL COPLANARITY 2014 APPLIES TO THE EXPOSED HEAT SINK SLAG AS WELL AS THE TERMINALS. 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220 11. ALL PLATED SURFACES ARE TIN 0.010 nvm +/- 0.005mm.

,				n.,	ľ
٩.	MIN.	I NOM,	MAX.	1 *	L
A	0.60	0.9	1.0		
A1	0.00	0.03	D.06		- h
A3		0.20 REF.			H
Ð			12	2	L P
Κ		0.20 MIN.			
D		7.0 8SC			
Ε		7.0 BSC			Ē

N	D.50m	n LEAD	РІТСН	۰ ۹,
Lī	MIN.	NOM.	MAX.	
		0.50 BSC.		
- IN		48		3
INC	i i	12		盇
INE		12		AL.
L	0.35	0.41	0.48	
Ь	0.19	0.25	0.33	Æ
122	5.61	5.72	5.83	
E2	5.81	5.72	5.83	

PIN	DESC.	PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC	43	VG2B
2	NC	16	VD1A	30	RFGND	44	NC
3	NC	17	NC	31	RFOUT	45	VD1B
4	NC	18	VG2A	32	RFGND	46	NC
5	RFGND	19	NC	33	NC	47	VG1B
6	RFIN	20	NC	34	NC	48	NC
7	RFGND	21	VD2A	35	NC		
8	NC	22	VD2A	36	NC		
9	NC	23	NC	37	NC		
10	NC	24	NC	38	NC		
11	NC	25	NC	39	VD2B		
12	NC	26	NC	40	VD2B		
13	NC	27	NC	41	NC		
14	VG1A	28	NC	42	NC		

Part Number System

Table 1.	
----------	--

Parameter	Value	Units
Lower Frequency	5.2	GHz
Upper Frequency	5.9	GHz
Power Output	80	W
Package	Surface Mount	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.	
Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/rf

Sales Contact rfsales@cree.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

© 2020 – 2021 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.