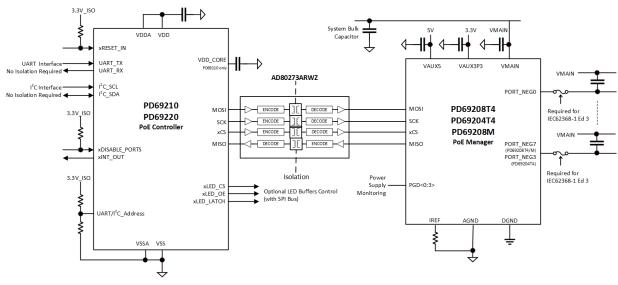
PD69210/PD69220

PoE PSE Controller Datasheet

Introduction

The Microchip Generation 6 family of PSE controllers include the PD69210 and PD69220 devices. The PD69210 and PD69220 have an identical feature set and differ only in physical pinout. The PD69210 and PD69220 are based on the Microchip SAM D21 family. The PD69210 or PD69220 are recommended for all new designs.


The PD69210 or PD69220 controllers when paired with the Microchip PD69208T4, PD69204T4, or PD69208M managers are part of a Power over Ethernet Power Supplying Equipment (PSE) system. This system enables designers to integrate enhanced mode PoE capabilities, as specified in IEEE 802.3af, IEEE 802.3at, IEEE 802.3bt, and PoH standards, into an Ethernet switch. The PD69210 and PD69220 will support up to 48 4-pair or 2-pair logical ports.

Both controllers are available in a 32-pin, 5 mm × 5 mm QFN package.

Typical PoE Application

The following figure shows the typical PoE application of Microchip Generation 6 devices.

Figure 1. Typical PoE Application

Consult Microchip AN3361 Designing an IEEE 802.3af/802.3at/802.3bt-Compliant PD69208 48-Port PoE System.

Features Matrix

Feature	Description	PD69210	PD69220
Support IEEE 802.3af/at		Y	Y
Support IEEE 802.3bt		Υ	Υ
Support HDBaseT (POH)		Y	Y
Port control matrix	Port matrix control enables to ascribe each physical port in the system to a logical port.	2p/4p	2p/4p
Logical ports	A logical port can be built from 2×physical ports or 1×physical port.	48	48
Max 2-pair power		45 W	45 W
Power management	The system supports three power management modes: Class (LLDP), Dynamic, and Static.	Per port	Per port
Power good	Used to select the system power bank to be applied to the specific PoE manager.	Y	Y
Port power limit	Configurable port power limit; when a port exceeds the limit, it is automatically disconnected.	Y	Y
Interrupt pin	Interrupt out from PoE controller indicating events such as port on, port off, port fault, PoE device fault, voltage out of range, and more.	Y	Y
Disable port pin	Shuts down all of the PoE ports in the system.	Y	Y
System OK indication	System validity indication. Provides a digital output signal to the host or to control an LED to indicate system status. When the system is OK pin state is low.	Y	Y
Legacy (reduced capacitance) detection	Enables detection and powering of pre-standard devices (PDs).	Per port	Per port
LED stream	A direct SPI interface to an external LED stream.	Y	Υ
Fast PoE	Ability of a system to quickly boot and power up ports without waiting for the host setting.	Y	Y
Perpetual PoE	Ability of a PoE system to maintain PoE power while upgrading host firmware or host is in reset.	Y	Y
Communication	Communication interface with host.	I ² C or UART	I ² C or UART
Communications protocol	Compatible with previous generations controllers.	Y	Υ
Pin-compatible with PD69200	Able to use on a PCB that was designed for the PD69200.	N	Y
	For I ² C and UART programming information, see section UART or I ² C Address Selection.		
MSL1 and RoHS		Y	Y

Table of Contents

Intr	oduction	on	1
	Typic	al PoE Application	1
	Featu	ıres Matrix	2
1.	Archi	tecture	
	1.1.	Firmware	4
	1.2.	Communication	4
	1.3.	GUI	4
	1.4.	Software Library	5
	1.5.	SPI Communication	5
	1.6.	UART	5
	1.7.	I ² C	5
	1.8.	UART or I ² C Address Selection	6
2.	Elect	rical Specifications	7
	2.1.	Electrical Characteristics	7
	2.2.	Immunity	7
	2.3.	Absolute Maximum Ratings	7
3.	Pins.		8
	3.1.	Pin Diagrams	
	3.2.	Pin Descriptions	
	0.2.	7 #1 B0001 pt.010	
4.	Pack	age Information	11
	4.1.	PD69210 Package Outline Drawing	11
	4.2.	PD69220 Package Outline Drawing	12
	4.3.	Thermal Specifications	13
	4.4.	Recommended PCB Layout	14
	4.5.	Recommended Solder Reflow Information	15
	4.6.	Reference Documents	16
5.	Orde	ring Information	17
6.	Revis	sion History	18
The	e Micro	ochip Website	19
Pro	duct C	Change Notification Service	19
Cu	stomer	Support	19
Mic	rochip	Devices Code Protection Feature	19
Leç	gal Not	ice	19
Tra	demar	ks	20
		anagement Systemanagement System	
		e Sales and Service	
VVC	iiuwide	5 Jaies and Jenvice	∠1

1. Architecture

The following figures show the simplified hardware architecture and firmware architecture of the PoE system based on the PD69210 and PD69220 controllers and PD69208T4, PD69204T4, and PD69208M managers.

Figure 1-1. Simplified Hardware Architecture

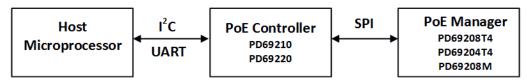
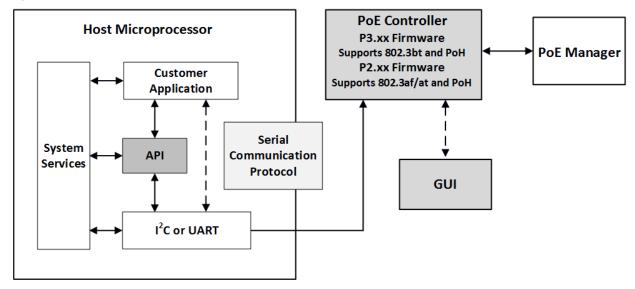



Figure 1-2. Simplified Firmware Architecture

- · Dark grey boxes indicate Microchip-supplied firmware.
- Light grey boxes indicate Microchip-provided documentation.
- · White boxes are user-supplied.

1.1 Firmware

- Firmware is pre-programmed in PD69210 and PD69220. Firmware version is identifiable via the IC Ordering Part Number.
- · Firmware is vendor-agnostic with regards to choice of the host controller.
- May be operated standalone or with I²C or UART communication to host.
- Default profiles are coded into the firmware. Microchip offers a Configuration Tool for profile modification.
- Firmware is field-upgradeable via the I²C or UART link.

1.2 Communication

Communication between the host application and the controller's firmware may be done via a 15-byte protocol. Customers may use a Microchip-provided API. Microchip provides a Serial Communication Protocol Guide.

1.3 GUI

This is a diagnostic tool for control of the Microchip PSE emulating or bypassing the host processor.

1.4 Software Library

Firmware (without the boot section), GUI, and API are available on Microchip's Software Library.

1.5 SPI Communication

PD69208T4, PD69204T4, and PD69208M managers use SPI communication in SPI slave mode to communicate with the various controllers. Each manager has an address determined by ADDR0–ADDR3 pins. Each controller can support up to 12 ICs at addresses 0–11. The actual frequency between PD692x0 ICs is 1 MHz.

The following table lists the SPI communication packet structure.

Table 1-1. SPI Communication—Packet Structure

Control Byte Selects PD69208T4 According to Address	R/W Bit		(Read Access Only)	Data Written to IC (Write Access Only) Read from IC (Read Access Only)
8 bits	R(0)/W(1)	8 bits	8 bits	16 bits

For more information about the SPI interface, see the PD69208T4, PD69204T4, and PD69208M Manager Datasheet.

1.6 UART

A pull-up resistor is required on the UART communication line. For more information, see AN3361 Designing an IEEE 802.3af/at/bt PoE System Based on PD692x0/PD69208.

UART communications configuration:

• Bits per second: 19,200 bps

· Data bits: 8

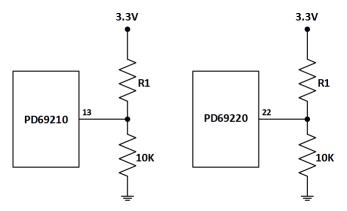
Parity: None Stop bits: 1Flow control: None

1.7 I²C

The PD692x0 requires the host to support I²C clock stretch.

I²C communication configuration:

· Address: 7 bits


Clock stretch: Host should support

· Transaction: 15 bytes or 1 byte

1.8 UART or I²C Address Selection

The choice of UART or I²C interface between the host CPU is made by applying a specific voltage level to pin #13 (I2C_ADDR_MEAS) on the PD69210, or by applying a specific voltage level to pin #22 (I2C_ADDR_MEAS) on the PD69220. Additionally, the specific I²C address is also set by this voltage level. In all cases, the voltage is set via an external resistor divider as shown in the following figure.

Figure 1-3. I²C Address Selection

The specific Value of R to choose UART or I^2C and to set the address is given in the following tables for PD69210 and PD69220.

Table 1-2. I²C Address Selection

I2C Address (Hexadecimal)	R1- ΚΩ (1%)
UART	N.C.
0x4	147
0x8	86.6
0xC	57.6
0x10	43.2
0x14	34
0x18	26.7
0x1C	22.1
0x20	18.2
0x24	15.4
0x28	13
0x2C	11
0x30	9.31
0x34	7.87
0x38	6.49
0x3C	5.49

2. Electrical Specifications

The following sections describe the electrical specifications for the PD69210 and PD69220 devices.

2.1 Electrical Characteristics

For a complete list of electrical characteristics, see Microchip SAM21 Family Datasheet.

Table 2-1. General Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{DD}	Power supply voltage		3.0	3.3	3.63	V
V_{DDA}	Power supply voltage		3.0	3.3	3.63	V
T _A	Temperature range		-40	25	85	°C
TJ	Junction temperature				100	°C

2.2 Immunity

Table 2-2. Immunity

Symbol	Parameter	Conditions	Min	Max	Units
ESD	ESD rating	HBM ¹	-2000	+2000	V
		CDM ²	-500	+500	V

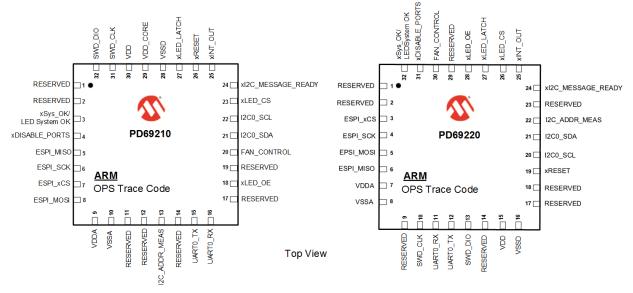
- 1. ESD HBM complies with JESD22 Class 2 standard.
- 2. ESD CDM complies with JESD22 Class 1 standard.

2.3 Absolute Maximum Ratings

Stresses beyond those listed in this section may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2-3. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
V_{DD}	Power supply voltage	0	3.8	V
V _{PIN}	Pin voltage with respect to GND and VDD	GND – 0.6 V	VDD + 0.6 V	V
Lead soldering temperature (40 s, reflow)			260	°C
Storage temperature		-60	150	°C


3. Pins

The PD69210 and PD69220 controller each has 32 pins, which are described in this section.

3.1 Pin Diagrams

The following figures represent the top view of PD69210 and PD69220 devices.

Figure 3-1. PD69210 and PD69220 Pin Diagram

Note: For definitions about markings in the pinout diagram, see Ordering Information.

3.2 Pin Descriptions

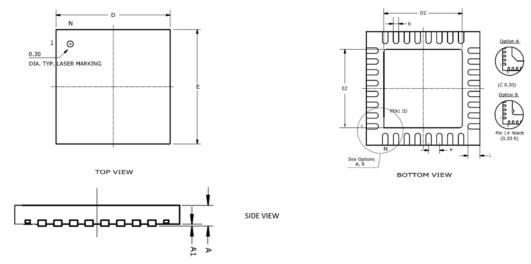
The following table describes the functional pin descriptions of the PD69210 and PD69220 devices.

Table 3-1. Pin Descriptions

PD69210 Pin	PD69220 Pin	Designation	Туре	Description
1	1	Reserved	OUT	Reserved UART. Leave open.
2	2	Reserved	IN	Reserved UART. Pull up to 3.3 V via 10 k Ω .
3	32	xSys_OK/LED System OK	OUT	System validity indication. The behavior of this output is controlled by individual software mask. (Active Low)
4	31	xDISABLE_PORTS	IN	Disable all PoE ports. When this input is asserted low, the controller shuts down all PoE ports in the system. See AN3361 for pin connection requirements. (Active Low)
5	6	ESPI_MISO	IN	ESPI bus to PoE manager. SPI master in, slave out. SPI packets are received on this line.

contii	continued				
PD69210 Pin	PD69220 Pin	Designation	Туре	Description	
6	4	ESPI_SCK	OUT	ESPI bus to PoE manager. SPI clock output to PD6920x, and LED stream clock output, set to 1 MHz.	
7	3	ESPI_xCS	OUT	ESPI bus to PoE manager. SPI chip select. Pull-up required. See AN3361 for pin connection requirements. (Active Low)	
8	5	ESPI_MOSI	OUT	ESPI bus from PoE manager. SPI master out, slave in. SPI packets are received on this line.	
9	7	VDDA	Supply	Main Supply 3.3 V.	
10	8	VSSA	GND	Ground.	
11	14	Reserved	Analog_IN	Reserved Analog_IN. Connect to 3.3 V or GND through 10 $k\Omega.$	
-	9, 29	Reserved	Analog_IN	Reserved Analog_IN. Connect to 3.3 V.	
12, 19	-	Reserved		Reserved. Leave open.	
13	22	I2C_ADDR_MEAS	Analog_IN	Analog input to determine I ² C address or UART operation.	
14	23	Reserved		Connect to GND.	
15	12	UART0_TX	OUT	UART transmit to host. 15-byte protocol reply/ telemetry is transmitted on this line. The baud rate is set to 19,200 bps.	
16	11	UART0_RX	IN	UART receive from a host. 15-byte protocol commands are received on this line. The baud rate is set to 19,200 bps. Pull-up is required. See AN3361 for details.	
17	18	Reserved	Oscillator	Reserved. Oscillator output. Leave open.	
	17	Reserved	Oscillator	Reserved. Oscillator output. Leave open.	
18	28	xLED_OE	OUT	Output enable signal for the LED stream. (Active Low)	
20	30	FAN_CONTROL	OUT	Logic out that may be used to control a fan driver. (Active High)	
21	21	I2C0_SDA	IN/OUT	I ² C bidirectional data. 15-byte protocol messages are transmitted on this line. Pull-up required, see AN3361 for details.	
22	20	I2C0_SCL	IN/OUT	I ² C clock from the host master. Speed is limited to 400 KHz. Clock stretch required. Pull-up required, see AN3361 for details.	
23	26	xLED_CS	OUT	Chip select signal for LED stream. (Active Low)	

conti	nued			
PD69210 Pin	PD69220 Pin	Designation	Туре	Description
24	24	xI2C_MESSAGE_READY	OUT	I ² C message ready for reading by the host. Controller asserts this line low when it has an answer to the host. Therefore, the host can poll this line and initiate I ² C read cycle only when the message is ready. After the host reads the data from the controller, this pin is asserted to high. (Active Low)
25	25	xINT_OUT	OUT	Interrupt output indication. This line is asserted low when a pre-configured event is in progress. (Active Low)
26	19	xRESET	IN/OUT	Host Reset input (Active Low). Controller can generate self-reset. In this case, the xRESET pin is driven low by the controller for 100 µs. See AN3361 for pin connection requirements.
27	27	xLED_LATCH ²	OUT	Latch signal for LED stream. (Active Low)
28	16	VSSD	GND	Ground.
29	-	VDD_CORE	Power	1.2 V core voltage connect 1 μF capacitor to VSSD.
30	15	VDD	Supply	Main 3.3 V supply.
31	10	SWD_CLK		PD69210 use a 1 kΩ pull-up to 3.3 V.
				PD69220 leave open or use 1k pull-up.
32	13	SWD_DIO		Leave open.
ePAD	ePAD	ePAD		Connect to VSSA. Must have sufficient copper mass to ensure adequate thermal performance.


4. Package Information

This section provides the package information for the PD69210 and PD69220 devices.

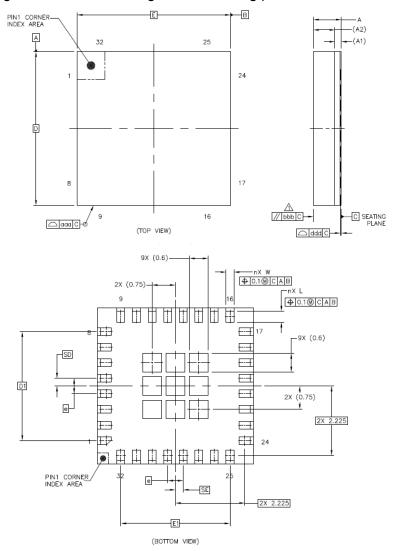
4.1 PD69210 Package Outline Drawing

The following figure shows the package drawing of PD69210 device.

Figure 4-1. PD69210 Package Outline Drawing (32 Pin QFN 5 mm × 5 mm)

The following table lists the dimensions and measurements of the PD69210 package.

Table 4-1. PD69210 Package Outline Dimensions and Measurements


Dimension	Millimeters		Inches	
	Min	Max	Min	Max
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0	0.002
е	0.50 BSC		0.02 BSC	
L	0.30	0.50	0.012	0.02
b	0.18	0.30	0.007	0.012
D2	3.50	3.70	0.138	0.147
E2	3.50	3.70	0.138	0.147
D	5.00 BSC		0.197 BSC	
Е	5.00 BSC		0.197 BSC	

Note: Dimensions do not include protrusions; they should not exceed 0.155 mm (0.006 in.) on any side. Lead dimension should not include solder coverage. Dimensions are in millimeters and inches for reference.

4.2 PD69220 Package Outline Drawing

The following figure shows the package outline drawing of the PD69220 device.

Figure 4-2. PD69220 Package Outline Drawing (32-Pin LGA 5 mm × 5 mm)

The following table lists the dimensions and measurements of the PD69220 package.

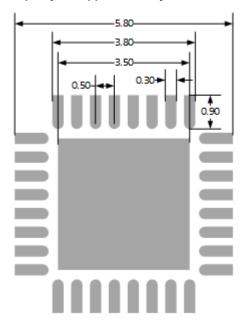
Table 4-2. PD69220 Package Outline Dimensions and Measurements

Dimension	Millimeters		
	Min	Тур	Max
A			1
A1		0.21	
A2		0.7	
D		5	
E		5	

continued				
Dimension	Millimeters			
	Min	Тур	Max	
W	0.2	0.25	0.3	
L	0.30	0.35	0.4	
е		0.5		
n		32		
D1		3.5		
E1		3.5		
SD		0.25		
SE		0.25		

4.3 Thermal Specifications

The following table lists the thermal specifications of the PD69210 and PD69220.


Table 4-3. Thermal Specifications

Thermal Resistance	Device	Тур	Units	Description
θ_{JA}	PD69210	40.9	°C/W	Junction-to-ambient thermal resistance.
θ_{JC}	PD69210	15.2	°C/W	Junction-to-case thermal resistance.
θ_{JA}	PD69220	65.0	°C/W	Junction-to-ambient thermal resistance.
θ_{JC}	PD69220	21.5	°C/W	Junction-to-case thermal resistance.

4.4 Recommended PCB Layout

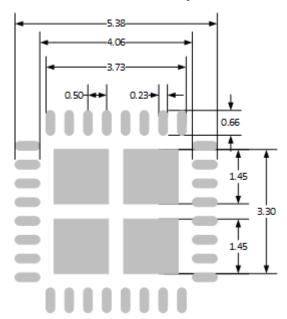

The following figures show the recommended PCB layout pattern for the 32-pin QFN 5 mm × 5 mm PD69210 and for the 32-pin LGA 5 mm × 5 mm PD69220. Units are in mm.

Figure 4-3. PD69210 and PD69220 Top-Layer Copper PCB Layout

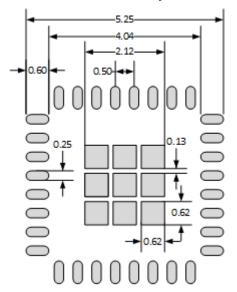

The recommended solder paste stencil for the PD69220 is different than the recommended stencil for PD69200.

Figure 4-4. PD69210 Top-Layer Solder Paste and Vias PCB Layout for Thermal Pad Array

Note: The contract manufacturer has latitude to modify the solder paste stencil for manufacturability reasons. The solder paste stencil covers 65% to 80% of the thermal pad and must not allow solder to be applied to the thermal vias under the QFN package using any method they deem appropriate. Any design should be subject to system validation and qualification prior to commitment to mass production of field deployment. Use a 5 mil stencil.

Figure 4-5. PD69220 Top-Layer Solder Paste and Vias PCB Layout for Thermal Pad Array

Note: The contract manufacturer has latitude to modify the solder paste stencil for manufacturability reasons. The solder paste stencil covers 65% to 80% of the thermal pad and must not allow solder to be applied to the thermal vias under the QFN package using any method they deem appropriate. Any design should be subject to system validation and qualification prior to commitment to mass production of field deployment. Use a 5 mil stencil.

The PD69220 may be used on a PCB that was designed for the PD69200, that is the top layer copper for the two devices is identical. However, the recommended solder paste stencil for the PD69220 is different than the recommended stencil for PD69200. The recommended solder paste stencil for the PD69200 is identical to the PD69210 as shown in figure PD69210 Top-Layer Solder Paste and Vias PCB Layout for Thermal Pad Array. For more information, see the PD69200 Datasheet.

4.5 Recommended Solder Reflow Information

RoHS 6/6

Pb-free 100% Matte Tin Finish

Package Peak Temperature for Solder Reflow (40 s maximum exposure)—260 °C (0 °C, -5 °C)

Table 4-4. Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (TS _{max} to Tp)	3 °C/second max	3 °C/second max
Preheat		
Temperature min (TS _{min})	100 °C	150 °C
Temperature max (TS _{max})	150 °C	200 °C
Time (ts _{min} to ts _{max})	60 s to 120 s	60 s to 180 s
Time Maintained		
Temperature (T _L)	183 °C	217 °C
Time (t _L)	60 s to 150 s	60 s to 150 s
Peak classification temperature (TP)	210 °C to 235 °C	240 °C to 255 °C

continued				
Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly		
Time within 5 °C of actual peak temperature (tp)	10 s to 30 s	20 s to 40 s		
Ramp-down rate	6 °C/second max	6 °C/second max		
Time 25 °C to peak temperature	6 minutes max	8 minutes max		

Figure 4-6. Classification Reflow Profiles

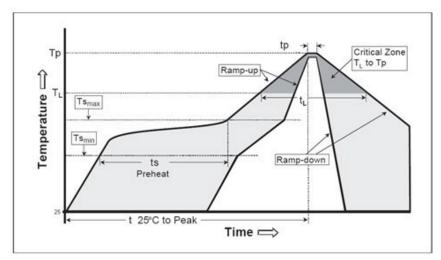


Table 4-5. Pb-Free Process—Package Classification Reflow Temperatures

Package Thickness	Volume <350 mm ³	Volume 350–2000 mm ³	Volume >2000 mm ³
Less than 1.6 mm ¹	260 + 0 °C	260 + 0 °C	260 + 0 °C
1.6 mm to 2.5 mm ¹	260 + 0 °C	250 + 0 °C	245 + 0 °C
Greater than or equal to 2.5 mm ¹	250 + 0 °C	245 + 0 °C	245 + 0 °C

 Tolerance: The device manufacturer or supplier should assure process compatibility up to and including the stated classification temperature, meaning that the Peak reflow temperature is +0 °C. For example, 260 °C to 0 °C, at the rated MSL value.

Note: Exceeding the ratings that are mentioned in the preceding table might cause damage to the device.

4.6 Reference Documents

- IEEE Std 802.3-2018 Clause 33 Power over Ethernet over 2-Pair and Clause 145 Power over Ethernet
- PD69210 Communication Protocol User Guide
- AN3361 Designing an IEEE 802.3af/at/bt PoE System Based on PD692x0/PD69208.
- PD69208T4, PD69204T4, and PD69208M PoE PSE Manager Datasheet
- PD69200 PoE PSE Controller Datasheet

5. Ordering Information

The following table lists the part ordering information for PD69210 and PD69220 devices.

Table 5-1. Ordering Information

Part Number	Package	Packaging Type	Temperature	Part Marking	Tray Marking
PD69210D ¹ VVVV ² SS ³	Plastic QFN 5 mm × 5 mm (32 lead)	Tray	–40 °C to 85 °C	Microchip Logo PD69210 ARM Logo YY ⁴ WW ⁵ NNN ⁶	PD69210D- VVVVSS PD-OOOOGabb ⁷ YYWW
PD69210D ¹ VVVV ² SS ³ -TR	Plastic QFN 5 mm × 5 mm (32 lead)	Tape and reel	-40 °C to 85 °C	Microchip Logo PD69210 ARM Logo YY ⁴ WW ⁵ NNN ⁶	
PD69220D ¹ VVVV ² SS ³	Plastic QFN Laminated ⁸ 5 mm × 5 mm (32 lead)	Tray	–40 °C to 85 °C	Microchip Logo PD69220 ARM Logo YY ⁴ WW ⁵ NNN ⁶	PD69220D- VVVVSS PD-OOOOGabb ⁷ YYWW
PD69220D ¹ VVVV ² SS ³ -TR	Plastic QFN Laminated ⁸ 5 mm × 5 mm (32 lead)	Tape and reel	–40 °C to 85 °C	Microchip Logo PD69220 ARM Logo YY ⁴ WW ⁵ NNN ⁶	

- 1. D is detection method.
 - C= IEEE 802.3 and pre-standard
 - R= IEEE 802.3 only
- 2. VVVV is firmware revision.
- 3. SS is firmware parameters options.
- 4. Year code (last two digits of calendar year).
- 5. Week code (week of January 1 is week 01).
- 6. Alphanumeric trace code.
- 7. Operational part number.
- 8. Laminated QFN is also called a Land Grid Array (LGA).

The firmware release note has all required information about how to specify the choice of VVVV and SS. Find the Firmware Release Notes in the Microchip Software Libraries, and register to My Microchip account to access the release notes.

Note: The package meets RoHS, Pb-free of the European Council to minimize the environmental impact of electrical equipment.

Note: Initial burning of controller's firmware is performed in the factory. Firmware upgrades can be performed by users using the communication interface. For more information, see TN-140 (Catalog Number: 06-0024-081).

6. Revision History

Revision	Date	Section	Description
A	03/2020		This is the initial issue of this document. The PD69220 PoE PSE controller is a new product offering and has not been previously described in any other document. The PD69210 PoE PSE controller was previously described in the following documents:
			 PD69208T4 and PD69210 Datasheet (Revision 3 September 2019 Document Number PD-000357193) PD69204T4 and PD69210 Datasheet (Revision 3 September 2019 Document Number PD-000359832) PD69208M and PD69210 Datasheet (Revision 3 September 2019 Document Number PD-000359833)

The Microchip Website

Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
 methods, to our knowledge, require using the Microchip products in a manner outside the operating
 specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of
 intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5722-0

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit http://www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
http://www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
http://www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075		Taiwan - Hsin Chu	
Dallas	China - Shenyang Tel: 86-24-2334-2829		Germany - Rosenheim
	China - Shenzhen	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX		Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			