Resistive Product Solutions

Features:

- Small size and light weight
- Reliability and high quality
- Wider terminations provide higher power handling and more robust thermal performance
- Qualified to AEC-Q200
- RoHS compliant, lead free and halogen free
- REACH compliant

	Electrical Specifications									
Type/Code	Power Rating (W) @ 70°C	Maximum Working Voltage (V) ⁽¹⁾	Maximum Overload Voltage (V)	TCR (ppm/⁰C)	Ohmic Range (Ω) and Tolerance ⁽²⁾ 1%, 5%					
RMCW0612	0.75			±200	1 - 9.1					
RIVICVV0612	0.75		±100	±100	10 - 10M					
RMCW1020	1			±200	1 - 9.1					
KINGW 1020	I			±100	10 - 10M					
RMCW1218	1	200	200 400	±200	1 - 9.1					
KIVIC W 1210		200		±100	10 - 10M					
RMCW1225	2			±200	1 - 9.1					
RIVIC W 1225	2			±100	10 - 10M					
RMCW2030	3			±200	1 - 9.1					
RIVIC W2030	3			±100	10 - 10M					

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage

(2) E96 resistance values may be available in 1% tolerance but will be subject to a high MOQ's - contact Stackpole

	Electrical Specifications – RMCW-HP									
Type/Code	Power Rating (W) @ 70°C	Maximum Working Voltage (V) ⁽¹⁾	Maximum Overload Voltage (V)	TCR (ppm/⁰C)	Ohmic Range (Ω) and Tolerance ⁽²⁾ 1%, 5%					
RMCW0612HP	1.5									
RMCW1020HP	2	200	400	.100	1 - 9.1					
RMCW1218HP	2	200		±100	10 - 10M					
RMCW1225HP	3									

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage

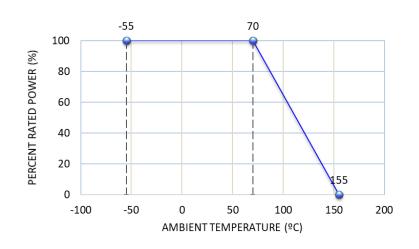
(2) E96 resistance values may be available in 1% tolerance but will be subject to a high MOQ's - contact Stackpole

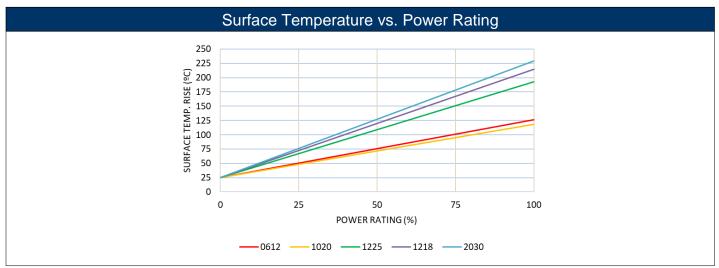
Electrical Specifications - Jumper								
Type/Code Jumper Rated Current (A) Maximum Overload Current (A) Jumper Resistance								
RMCW0612	4	15						
RMCW1020	6	22						
RMCW1218	6	22	0.02 max.					
RMCW1225	8	30						
RMCW2030	10	35						

Wide Termination Thick Film Chip Resistor

Mechanical Spe	ecifications
- 1 0 3	

Type/Code	L	W	Н	l1	12	Unit
RMCW0612	0.063 ± 0.008	0.126 ± 0.008	0.022 ± 0.004	0.012 ± 0.008	0.020 ± 0.008	inches
	1.60 ± 0.20	3.20 ± 0.20	0.55 ± 0.10	0.30 ± 0.20	0.50 ± 0.20	mm
RMCW1020	0.098 ± 0.008	0.197 ± 0.008	0.022 ± 0.004	0.016 ± 0.008	0.030 ± 0.008	inches
	2.50 ± 0.20	5.00 ± 0.20	0.55 ± 0.10	0.40 ± 0.20	0.75 ± 0.20	mm
RMCW1218	0.122 ± 0.004	0.181 ± 0.004	0.022 ± 0.002	0.016 ± 0.008	0.020 ± 0.008	inches
	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.05	0.40 ± 0.20	0.50 ± 0.20	mm
RMCW1225	0.126 ± 0.008	0.256 ± 0.008	0.022 ± 0.008	0.016 ± 0.008	0.030 ± 0.008	inches
	3.20 ± 0.20	6.50 ± 0.20	0.55 ± 0.20	0.40 ± 0.20	0.75 ± 0.20	mm
RMCW1225HP	0.126 ± 0.008	0.256 ± 0.008	0.026 ± 0.008	0.016 ± 0.008	0.030 ± 0.008	inches
	3.20 ± 0.20	6.50 ± 0.20	0.65 ± 0.20	0.40 ± 0.20	0.75 ± 0.20	mm
RMCW2030	0.201 ± 0.004	0.299 ± 0.004	0.047 ± 0.004	0.031 ± 0.008	0.031 ± 0.008	inches
	5.10 ± 0.10	7.60 ± 0.10	1.20 ± 0.10	0.80 ± 0.20	0.80 ± 0.20	mm


			e Characteris		
Test Item	Test Method	Test Spe	cification	Test Condition	
i cot item		1%	5%		
Temperature Coefficient of Resistance	JIS-C-5201-1 4.8	Within the spe	cified tolerance	At 25 / -55°C and 25°C / +155°C, 25°C is the reference temperature	
		. (19(0.050)	. (2% + 0.10)	6.25 times rated power or max. overload voltage whicheve is less for 5 seconds, except for high power (-HP).	
Short Time Overload	JIS-C-5201-1 4.13	± (1% + 0.05Ω)	± (2% + 0.1Ω)	For high power (-HP): 5 times rated power or max. overload voltage whichever is less for 5 seconds	
	IEC-60115-1 4.13	Jumper: max 0).02 Ω after test	Jumper: overload current for 5 seconds 0612=10A, 1020=15A, 1218=15A, 1225=20A, 2030=25A	
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1		hing area ≤ 5% g area ≤ 10%	260 ± 5°C for 30 seconds	
Resistance to Soldering Heat	JIS-C-5201-1 4.18 IEC-60115-1 4.18	± (0.5% + 0.05Ω)	± (1% + 0.05Ω)	260 ± 5°C for 10 seconds	
Rapid Change of Temperature	JIS-C-5201-1 4.19 IEC-60115-1 4.19	± (0.5% + 0.05Ω)	± (1% + 0.1Ω)	-55°C to +155°C, 5 cycles	
Resistance to Solvent	JIS-C-5201-1 4.29	± (0.5% + 0.05Ω)	± (0.5% + 0.05Ω)	The tested resistor should be immersed into isopropyl alcohol of 20 ~ 25°C for 60 seconds. Then the resistor is left in room temperature for 48 hours	
		Jumper: max 0.02 Ω after test		leit in room temperature for 48 hours	
Damp Heat with Load	JIS-C-5201-1 4.24 IEC-60115-1 4.24	± (1% + 0.05Ω)	± (2% + 0.05Ω)	40 ± 2°C, 90 ~ 95% R.H. RCWV or Max. Working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"	
		Jumper: max 0	.02 Ω after test		
Load Life (Endurance)	JIS-C-5201-1 4.25 IEC-60115-1 4.25.1	± (1% + 0.05Ω)	± (3% + 0.1Ω)	70 ± 2°C, RCWV or Max. Working voltage whichever is less for 1000 hours with 1.5 hours "ON" and 0.5 hour "OFF"	
		Jumper: max 0).02 Ω after test		
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6	≥ 10) GΩ	Apply 100 VDC for 1 minute	
Bending Strength	JIS-C-5201-1 4.33 IEC-60115-1 4.33	± (1% + 0.05Ω) ± (1% + 0.05Ω)		Bending once for 5 seconds. D: 0612, 1020, 1218, 1225, 2030 = 2 mm	


This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

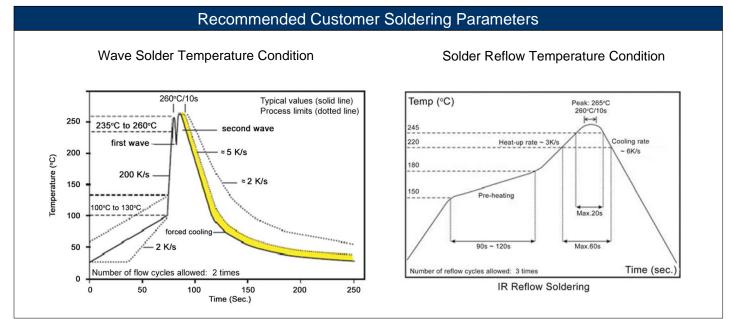
Power Derating Curve:

Wide Termination Thick Film Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

^{1.} Resistance value used for each size was at or near critical value.

- 2. Used poor heat conduction PCB.
- 3. Applied full power for 10 minutes prior to measurement.


4. Data for reference only. Actual performance under customer conditions may vary.

	Recommended Pad Layouts								
Type/Code	А	В	С	Unit					
RMCW0612	0.024	0.114	0.126	inches					
TIME WOOTZ	0.60	2.90	3.20	mm					
RMCW1020	0.030	0.134	0.197	inches					
RIVICVV 1020	0.75	3.40	5.00	mm					
DMOW/4040	0.080	0.167	0.189	inches					
RMCW1218	2.04	4.24	4.80	mm					
DMOWADDE	0.033	0.146	0.252	inches					
RMCW1225	0.85	3.70	6.40	mm					
RMCW/2020	0.138	0.295	0.307	inches					
RMCW2030	3.50	7.50	7.80	mm					

Wide Termination Thick Film Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

Rework temperature (hot air equipment): 350°C, 3 ~ 5 seconds Recommended reflow methods:

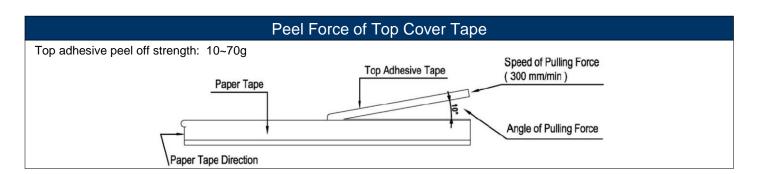
- IR, vapor phase oven, hot air oven
- If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.

Reel Specifications									
Type / Code	Re Size	eel Quantity	А	В	С	D	W	М	Unit
RMCW0612		5000	0.079 ± 0.020 2.00 ± 0.50	0.531 ± 0.039 13.50 ± 1.00	0.827 ± 0.039 21.00 ± 1.00	2.362 ± 0.039 60.00 ± 1.00	0.453 ± 0.079 11.50 ± 2.00	7.008 ± 0.079 178.00 ± 2.00	inches mm
RMCW1020									
RMCW1218	7"	4000	0.079 ± 0.020 2.00 ± 0.50	0.531 ± 0.039 13.50 ± 1.00	0.827 ± 0.039 21.00 ± 1.00	2.362 ± 0.039 60.00 ± 1.00	0.630 ± 0.079 16.00 ± 2.00	7.008 ± 0.079 178.00 ± 2.00	inches mm
RMCW1225									
RMCW2030		1000	0.079 ± 0.020 2.00 \pm 0.50	0.531 ± 0.039 13.50 ± 1.00	0.827 ± 0.039 21.00 ± 1.00	2.362 ± 0.039 60.00 ± 1.00	0.748 ± 0.079 19.00 ± 2.00	7.008 ± 0.079 178.00 ± 2.00	inches mm

Wide Termination Thick Film Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

San a


Packaging Specifications – Paper Tape									
$ \begin{array}{c} -A \\ - \end{array} \\ \hline P \hline \hline P \\ \hline P \hline \hline P \\ \hline P \hline \hline P \hline$									
Type/Code	А	В	W	E	F	Unit			
	0.075 ± 0.008 1.90 ± 0.20	0.138 ± 0.008 3.50 ± 0.20	0.315 ± 0.008 8.00 ± 0.20	0.069 ± 0.004 1.75 ± 0.10	0.138 ± 0.002 3.50 ± 0.05	inches mm			
RMCW0612	G	Н	Т	D	Р	Unit			
	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.059 +0.004 / -0	0.157 ± 0.004	inches			
	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	1.50 +0.10 / -0	4.00 ± 0.10	mm			

	Packaging Specifications – Embossed Tape								
$A = P \neq D1$ $Carrier T$ $Carrier T$ $Carrier T$ T $Carrier T$ T T T T T T									
Type/Code	A	В	W	E	F	G	Unit		
RMCW1020	0.110 ± 0.008	0.220 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches		
	2.80 ± 0.20	5.60 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm		
RMCW1225	0.134 ± 0.008	0.264 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches		
	3.40 ± 0.20	6.70 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm		
RMCW1225HP	0.134 ± 0.008	0.264 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches		
	3.40 ± 0.20	6.70 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm		
RMCW1218	0.130 ± 0.008	0.181 ± 0.008	0.472 ± 0.004	0.069 ± 0.004	0.217 ± 0.002	0.157 ± 0.004	inches		
	3.30 ± 0.20	4.60 ± 0.20	12.00 ± 0.10	1.75 ± 0.10	5.50 ± 0.05	4.00 ± 0.10	mm		
RMCW2030	0.217 ± 0.008	0.311 ± 0.008	0.630 ± 0.004	0.069 ± 0.004	0.295 ± 0.002	0.157 ± 0.004	inches		
	5.50 ± 0.20	7.90 ± 0.20	16.00 ± 0.10	1.75 ± 0.10	7.50 ± 0.05	4.00 ± 0.10	mm		
Type/Code	н	Т	D	D1	T1	Р	Unit		
RMCW1020	0.079 ± 0.002	0.009 ± 0.004	0.059 +0.004 / -0	0.059 ± 0.004	0.033 ± 0.006	0.157 ± 0.004	inches		
	2.00 ± 0.05	0.23 ± 0.10	1.50 +0.10 / -0	1.50 ± 0.10	0.85 ± 0.15	4.00 ± 0.10	mm		
RMCW1225	0.079 ± 0.002	0.009 ± 0.004	0.059 +0.004 / -0	0.059 ± 0.004	0.033 ± 0.006	0.157 ± 0.004	inches		
	2.00 ± 0.05	0.23 ± 0.10	1.50 +0.10 / -0	1.50 ± 0.10	0.85 ± 0.15	4.00 ± 0.10	mm		
RMCW1225HP	0.079 ± 0.002	0.009 ± 0.004	0.059 +0.004 / -0	0.059 ± 0.004	0.039 ± 0.006	0.157 ± 0.004	inches		
	2.00 \pm 0.05	0.23 ± 0.10	1.50 +0.10 / -0	1.50 ± 0.10	1.00 ± 0.15	4.00 ± 0.10	mm		
RMCW1218	0.079 ± 0.002	0.009 ± 0.004	0.059 +0.004 / -0	0.059 ± 0.004	0.033 ± 0.006	0.157 ± 0.004	inches		
	2.00 \pm 0.05	0.23 ± 0.10	1.50 +0.10 / -0	1.50 ± 0.10	0.85 ± 0.15	4.00 ± 0.10	mm		
RMCW2030	0.079 ± 0.002	0.010 ± 0.004	0.059 +0.004 / -0	0.059 ± 0.004	0.051 ± 0.004	0.315 ± 0.008	inches		
	2.00 \pm 0.05	0.25 ± 0.10	1.50 +0.10 / -0	1.50 ± 0.10	1.30 ± 0.10	8.00 ± 0.20	mm		

Stackpole Electronics, Inc.

Wide Termination Thick Film Chip Resistor

Resistive Product Solutions

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)			
RMCW	Wide Termination Thick Film Chip Resistors	SMD	YES ⁽¹⁾	100% Matte Sn over Ni	Always	Always			

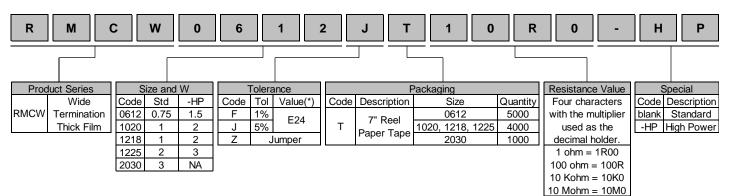
Note (1): RoHS compliant by means of exemption 7c-I

"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.


Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

Wide Termination Thick Film Chip Resistor

Resistive Product Solutions

How to Order

(*) E96 resistance values may be available in 1% tolerance but will be subject to high MOQ's. Contact Stackpole.