XLamp® MHD-E LEDs ## **PRODUCT DESCRIPTION** The XLamp® MHD-E LED is a new generation of high-power LED that delivers a more effective way to achieve low-cost systems than mid-power (MP) LEDs. Built using • Cree LED's high-reliability ceramic-package • technology, the XLamp MHD-E LED is able to operate at higher temperatures than MP • LEDs with no reduction in rated lifetime, • enabling an impressive 60% reduction in • heat sink size and cost. Using many times • fewer LEDs than MP LEDs to achieve the • same performance, the XLamp MHD-E LED is optimized to simplify LED system designs for directional and semi-directional applications. # **FEATURES** - Flexible 9-V, 18-V or 36-V options - Maximum drive current: 1400 mA (9 V), 700 mA (18 V), 350 mA (36 V) - Viewing angle: 115° - Available in 70-CRI, 80-CRI and 90-CRI options - Unlimited floor life at ≤ 30 °C/85% RH - · Reflow solderable JEDEC J-STD-020C - · Electrically neutral thermal path - RoHS and REACh compliant - UL® recognized component (E349212) #### **TABLE OF CONTENTS** | Characteristics | 2 | |--|----| | Flux Characteristics, EasyWhite® Order | | | Codes and Bins - 9 V/18 V | 3 | | Flux Characteristics, EasyWhite® Order | | | Codes and Bins - 36 V | 5 | | Relative Spectral Power Distribution | 7 | | Relative Flux vs. Junction Temperature | 7 | | Electrical Characteristics | 8 | | Relative Flux vs. Current | 9 | | Relative Chromaticity vs. Current | 11 | | Relative Chromaticity vs. Temperature | 12 | | Typical Spatial Distribution | 13 | | Thermal Design | 13 | | Performance Groups – Luminous Flux | 15 | | Performance Groups - Chromaticity | 15 | | Standard White Chromaticity Regions | | | Plotted on the 1931 CIE Curve | 16 | | Bin and Order Code Format | 17 | | Reflow Soldering Characteristics | 18 | | Notes | 19 | | Mechanical Dimensions | 21 | | Electrical Configuration | 23 | | Tape and Reel | 24 | | Packaging | 25 | Cree LED / 4400 Silicon Drive / Durham, NC 27703 USA / +1.919.313.5330 / www.cree-led.com ## **CHARACTERISTICS** MHD-E 9-V/18-V LEDs are tested and binned in production in the 18-V configuration. MHD-E 36-V LEDs are tested and binned in production in the 36-V configuration. See the Mechanical Dimensions section on page 21 for pad layout options. | Characteristics | Unit | Minimum | Typical | Maximum | |--|---------|---------|---------|---------| | Thermal resistance, junction to solder point | °C/W | | 3.2 | | | Viewing angle (FWHM) | degrees | | 115 | | | Temperature coefficient of voltage (9 V)* | mV/°C | | -3.75 | | | Temperature coefficient of voltage (18 V) | mV/°C | | -7.5 | | | Temperature coefficient of voltage (36 V) | mV/°C | | -15 | | | ESD withstand voltage (HBM per Mil-Std-883D) | V | | | 8000 | | DC forward current (9 V)* | mA | | | 1400 | | DC forward current (18 V) | mA | | | 700 | | DC forward current (36 V) | mA | | | 350 | | Reverse current (9 V, 18 V, 36 V)* | mA | | | -0.1 | | Forward voltage (9 V, @ 800 mA, 85 °C)* | V | | 9.1 | 10 | | Forward voltage (18 V, @ 400 mA, 85 °C) | V | | 18.2 | 20 | | Forward voltage (36 V, @ 200 mA, 85 °C) | V | | 36.3 | 40 | | LED junction temperature | °C | | | 150 | ^{*} Data for the 9-V configuration is calculated and for reference only. # FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 9 V/18 V The following table provides order codes for XLamp MHD-E LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 17). Test condition: $T_J = 85$ °C, 18 V, $I_F = 400$ mA Reference condition: $T_J = 85$ °C, 9 V, $I_F = 800$ mA | Nominal | CRI Minimum Luminous Flux | | ous Flux | | 2-Step | | 3-Step | 5-Step | | | |---------|---------------------------|-------|----------------------|-----------------------|--------|------------|--------|-----------------------------|-------|-----------------------------| | CCT | Min | Group | Flux (lm)
@ 85 °C | Flux (lm)
@ 25 °C* | Group | Order Code | Group | Order Code | Group | Order Code | | | 70 | H2 | 900 | 1007 | | | | | 65E | MHDEWT-0000-
000C0BH265E | | 6500 K | 70 | H4 | 970 | 1085 | | | | | 00E | MHDEWT-0000-
000C0BH465E | | 6500 K | 80 | G4 | 840 | 940 | | | | | 65E | MHDEWT-0000-
000C0HG465E | | | 80 | H2 | 900 | 1007 | | | | | 03E | MHDEWT-0000-
000C0HH265E | | | 70 | H2 | 900 | 1007 | | | | | 57E | MHDEWT-0000-
000C0BH257E | | 5700 K | 70 | H4 | 970 | 1085 | | | | | | MHDEWT-0000-
000C0BH457E | | 3700 K | 80 | G4 | 840 | 940 | | | | | | MHDEWT-0000-
000C0HG457E | | | 80 | H2 | 900 | 1007 | | | | | 57E | MHDEWT-0000-
000C0HH257E | | | 70 | H2 | 900 | 1007 | | | | | 50E | MHDEWT-0000-
000C0BH250E | | | 70 | H4 | 970 | 1085 | | | | | 30E | MHDEWT-0000-
000C0BH450E | | 5000 K | 80 | G4 | 840 | 940 | | | 50G | MHDEWT-0000-
000C0HG450G | 50E | MHDEWT-0000-
000C0HG450E | | 3000 K | 80 | H2 | 900 | 1007 | | | 300 | MHDEWT-0000-
000C0HH250G | 50E | MHDEWT-0000-
000C0HH250E | | | 90 | F4 | 730 | 817 | | | 50G | MHDEWT-0000-
000C0UF450G | 50E | MHDEWT-0000-
000C0UF450E | | | 90 | G2 | 780 | 873 | | | 300 | MHDEWT-0000-
000C0UG250G | JUL | MHDEWT-0000-
000C0UG250E | - Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 19). - MHD-E LED order codes specify only a minimum flux bin and not a maximum. Cree LED may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code. - * Flux values @ 25 °C are calculated and for reference only. # FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 9 V/18 V - CONTINUED | Nominal | CRI | Minin | num Lumin | ous Flux | | 2-Step | | 3-Step | 5-Step | | |---------|-----|-------|----------------------|-----------------------|-------|-----------------------------|-------|-----------------------------|--------|-----------------------------| | CCT | Min | Group | Flux (lm)
@ 85 °C | Flux (lm)
@ 25 °C* | Group | Order Code | Group | Order Code | Group | Order Code | | | | G4 | 840 | 940 | | | | | | MHDEWT-0000-
000C0BG440E | | | 70 | H2 | 900 | 1007 | | | | | 40E | MHDEWT-0000-
000C0BH240E | | | | H4 | 970 | 1085 | | | | | | MHDEWT-0000-
000C0BH440E | | 4000 K | | G2 | 780 | 873 | | MHDEWT-0000-
000C0HG240H | | MHDEWT-0000-
000C0HG240G | | | | 4000 K | 80 | G4 | 840 | 940 | 40H | MHDEWT-0000-
000C0HG440H | 40G | MHDEWT-0000-
000C0HG440G | | | | | | H2 | 900 | 1007 | | MHDEWT-0000-
000C0HH240H | | MHDEWT-0000-
000C0HH240G | | | | | 00 | F2 | 680 | 761 | 4011 | MHDEWT-0000-
000C0UF240H | 400 | MHDEWT-0000-
000C0UF240G | | | | | 90 | F4 | 730 | 817 | 40H | MHDEWT-0000-
000C0UF440H | 40G | MHDEWT-0000-
000C0UF440G | | | | | 00 | G2 | 780 | 873 | 2511 | MHDEWT-0000-
000C0HG235H | 250 | MHDEWT-0000-
000C0HG235G | | | | 050014 | 80 | G4 | 840 | 940 | 35H | MHDEWT-0000-
000C0HG435H | 35G | MHDEWT-0000-
000C0HG435G | | | | 3500 K | 00 | F2 | 680 | 761 | 0511 | MHDEWT-0000-
000C0UF235H | 050 | MHDEWT-0000-
000C0UF235G | | | | | 90 | F4 | 730 | 817 | 35H | MHDEWT-0000-
000C0UF435H | 35G | MHDEWT-0000-
000C0UF435G | | | | | 00 | G2 | 780 | 873 | 2011 | MHDEWT-0000-
000C0HG230H | 200 | MHDEWT-0000-
000C0HG230G | | | | 2000 14 | 80 | G4 | 840 | 940 | 30H | MHDEWT-0000-
000C0HG430H | 30G | MHDEWT-0000-
000C0HG430G | | | | 3000 K | 90 | F2 | 680 | 761 | 30H | MHDEWT-0000-
000C0UF230H | 30G | MHDEWT-0000-
000C0UF230G | | | | | 90 | F4 | 730 | 817 | 3011 | MHDEWT-0000-
000C0UF430H | 30G | MHDEWT-0000-
000C0UF430G | | | | | 00 | G2 | 780 | 873 | 0711 | MHDEWT-0000-
000C0HG227H | 070 | MHDEWT-0000-
000C0HG227G | | | | 2700 K | 80 | G4 | 840 | 940 | 27H | MHDEWT-0000-
000C0HG427H | 27G | MHDEWT-0000-
000C0HG427G | | | | 2700 K | 60 | E4 | 635 | 710 | 0711 | MHDEWT-0000-
000C0UE427H | 070 | MHDEWT-0000-
000C0UE427G | | | | | 90 | F2 | 680 | 761 | 27H | MHDEWT-0000-
000C0UF227H | 27G | MHDEWT-0000-
000C0UF227G | | | - Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 19). - MHD-E LED order codes specify only a minimum flux bin and not a maximum. Cree LED may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code. - * Flux values @ 25 °C are calculated and for reference only. # FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 36 V The following table provides order codes for XLamp MHD-E LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 17). Test condition: TJ = 85 °C, 36 V, IF = 200 mA | Nominal | CRI | Minir | num Lumin | ous Flux | | 2-Step | 3-Step | | | 5-Step | |---------|-----|-------|----------------------|-----------------------|-------|------------|--------|-----------------------------|-------|-----------------------------| | CCT | Min | Group | Flux (lm)
@ 85 °C | Flux (lm)
@ 25 °C* | Group | Order Code | Group | Order Code | Group | Order Code | | | 70 | H2 | 900 | 1007 | | | | | 65E | MHDEWT-0000-
000N0BH265E | | 6500 K | 70 | H4 | 970 | 1085 | | | | | 05E | MHDEWT-0000-
000N0BH465E | | 6500 K | 80 | G4 | 840 | 940 | | | | | 65E | MHDEWT-0000-
000N0HG465E | | | 80 | H2 | 900 | 1007 | | | | | 03E | MHDEWT-0000-
000N0HH265E | | | 70 | H2 | 900 | 1007 | | | | | | MHDEWT-0000-
000N0BH257E | | 5700 K | 70 | H4 | 970 | 1085 | | | | | 57E | MHDEWT-0000-
000N0BH457E | | 5700 K | 80 | G4 | 840 | 940 | | | | | | MHDEWT-0000-
000N0HG457E | | | 00 | H2 | 900 | 1007 | | | | | 57E | MHDEWT-0000-
000N0HH257E | | | 70 | H2 | 900 | 1007 | | | | | 50E | MHDEWT-0000-
000N0BH250E | | | 70 | H4 | 970 | 1085 | | | | | 302 | MHDEWT-0000-
000N0BH450E | | 5000 K | 80 | G4 | 840 | 940 | | | 500 | MHDEWT-0000-
000N0HG450G | 50E | MHDEWT-0000-
000N0HG450E | | 3000 K | 00 | H2 | 900 | 1007 | | | 50G | MHDEWT-0000-
000N0HH250G | 5UE | MHDEWT-0000-
000N0HH250E | | | 90 | F4 | 730 | 817 | | | 500 | MHDEWT-0000-
000N0UF450G | 50E | MHDEWT-0000-
000N0UF450E | | | 90 | G2 | 780 | 873 | | | 50G | MHDEWT-0000-
000N0UG250G | JUE | MHDEWT-0000-
000N0UG250E | - Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 19). - MHD-E LED order codes specify only a minimum flux bin and not a maximum. Cree LED may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code. - Flux values @ 25 °C are calculated and for reference only. # FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS - 36 V - CONTINUED | Nominal | CRI | Minin | num Lumin | ous Flux | | 2-Step | | 3-Step | 5-Step | | |---------|-----|-------|----------------------|-----------------------|-------|-----------------------------|-------|-----------------------------|--------|-----------------------------| | CCT | Min | Group | Flux (lm)
@ 85 °C | Flux (lm)
@ 25 °C* | Group | Order Code | Group | Order Code | Group | Order Code | | | | G4 | 840 | 940 | | | | | | MHDEWT-0000-
000N0BG440E | | | 70 | H2 | 900 | 1007 | | | | | 40E | MHDEWT-0000-
000N0BH240E | | | | H4 | 970 | 1085 | | | | | | MHDEWT-0000-
000N0BH440E | | 4000 K | | G2 | 780 | 873 | | MHDEWT-0000-
000N0HG240H | | MHDEWT-0000-
000N0HG240G | | | | 4000 K | 80 | G4 | 840 | 940 | 40H | MHDEWT-0000-
000N0HG440H | 40G | MHDEWT-0000-
000N0HG440G | | | | | | H2 | 900 | 1007 | | MHDEWT-0000-
000N0HH240H | | MHDEWT-0000-
000N0HH240G | | | | | 90 | F2 | 680 | 761 | 40H | MHDEWT-0000-
000N0UF240H | 40G | MHDEWT-0000-
000N0UF240G | | | | | 90 | F4 | 730 | 817 | 4011 | MHDEWT-0000-
000N0UF440H | 400 | MHDEWT-0000-
000N0UF440G | | | | | 80 | G2 | 780 | 873 | 35H | MHDEWT-0000-
000N0HG235H | 35G | MHDEWT-0000-
000N0HG235G | | | | 3500 K | 00 | G4 | 840 | 940 | ээп | MHDEWT-0000-
000N0HG435H | 33G | MHDEWT-0000-
000N0HG435G | | | | 3300 K | 90 | F2 | 680 | 761 | 35H | MHDEWT-0000-
000N0UF235H | 35G | MHDEWT-0000-
000N0UF235G | | | | | 90 | F4 | 730 | 817 | ээп | MHDEWT-0000-
000N0UF435H | 33G | MHDEWT-0000-
000N0UF435G | | | | | 80 | G2 | 780 | 873 | 30H | MHDEWT-0000-
000N0HG230H | 30G | MHDEWT-0000-
000N0HG230G | | | | 3000 K | 80 | G4 | 840 | 940 | 3011 | MHDEWT-0000-
000N0HG430H | 300 | MHDEWT-0000-
000N0HG430G | | | | 3000 K | 90 | F2 | 680 | 761 | 30H | MHDEWT-0000-
000N0UF230H | 30G | MHDEWT-0000-
000N0UF230G | | | | | 90 | F4 | 730 | 817 | 3011 | MHDEWT-0000-
000N0UF430H | 300 | MHDEWT-0000-
000N0UF430G | | | | | 80 | G2 | 780 | 873 | 27H | MHDEWT-0000-
000N0HG227H | 27G | MHDEWT-0000-
000N0HG227G | | | | 2700 K | 80 | G4 | 840 | 940 | 2/П | MHDEWT-0000-
000N0HG427H | 2/6 | MHDEWT-0000-
000N0HG427G | | | | 2700 K | 00 | E4 | 635 | 710 | 2711 | MHDEWT-0000-
000N0UE427H | 270 | MHDEWT-0000-
000N0UE427G | | | | | 90 | F2 | 680 | 761 | 27H | MHDEWT-0000-
000N0UF227H | 27G | MHDEWT-0000-
000N0UF227G | | | - Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 19). - MHD-E LED order codes specify only a minimum flux bin and not a maximum. Cree LED may ship reels in flux bins higher than the minimum specified by the order code without advance notice. Shipments will always adhere to the chromaticity bin restrictions specified by the order code. - Flux values @ 25 °C are calculated and for reference only. ## **RELATIVE SPECTRAL POWER DISTRIBUTION** # **RELATIVE FLUX VS. JUNCTION TEMPERATURE** Test condition: 9 V (for reference), $I_r = 800$ mA; 18 V, $I_r = 400$ mA; 36 V, $I_r = 200$ mA # **ELECTRICAL CHARACTERISTICS (T_J = 85 °C)** # ELECTRICAL CHARACTERISTICS (T_J = 85 °C) - CONTINUED # **RELATIVE FLUX VS. CURRENT (T_J = 85 °C)** # RELATIVE FLUX VS. CURRENT (T_J = 85 °C) - CONTINUED # **RELATIVE CHROMATICITY VS. CURRENT (WARM WHITE)** # **RELATIVE CHROMATICITY VS. CURRENT (WARM WHITE) - CONTINUED** # RELATIVE CHROMATICITY VS. TEMPERATURE (WARM WHITE) Test condition: 9 V (for reference), I_f = 800 mA; 18 V, I_f = 400 mA; 36 V, I_F = 200 mA ## TYPICAL SPATIAL DISTRIBUTION Test condition: 9 V (for reference), $I_r = 800$ mA; 18 V, $I_r = 400$ mA; 36 V, $I_r = 200$ mA #### THERMAL DESIGN The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics. ## **THERMAL DESIGN - CONTINUED** # PERFORMANCE GROUPS – LUMINOUS FLUX (T_J = 85 °C) XLamp MHD-E LEDs are tested for luminous flux and placed into one of the following bins. | Group Code | Minimum Luminous Flux | Maximum Luminous Flux | |------------|-----------------------|-----------------------| | E4 | 635 | 680 | | F2 | 680 | 730 | | F4 | 730 | 780 | | G2 | 780 | 840 | | G4 | 840 | 900 | | H2 | 900 | 970 | | H4 | 970 | 1040 | | J2 | 1040 | 1120 | # **PERFORMANCE GROUPS - CHROMATICITY** XLamp MHD-E LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates. | EasyW | EasyWhite Color Temperatures - 2-Step | | | | | | | | | | |-------|---------------------------------------|--------|--------|--|--|--|--|--|--|--| | Code | сст | х | у | | | | | | | | | | | 0.3777 | 0.3739 | | | | | | | | | 40H | 4000 K | 0.3797 | 0.3816 | | | | | | | | | 40H | 4000 K | 0.3861 | 0.3855 | | | | | | | | | | | 0.3838 | 0.3777 | | | | | | | | | | | 0.4022 | 0.3858 | | | | | | | | | 35H | 3500 K | 0.4053 | 0.3942 | | | | | | | | | 3311 | | 0.4125 | 0.3977 | | | | | | | | | | | 0.4091 | 0.3891 | | | | | | | | | | | 0.4287 | 0.3975 | | | | | | | | | 30H | 3000 K | 0.4328 | 0.4064 | | | | | | | | | 3011 | 3000 K | 0.4390 | 0.4086 | | | | | | | | | | | 0.4347 | 0.3996 | | | | | | | | | | | 0.4524 | 0.4048 | | | | | | | | | 27H | 2700 K | 0.4574 | 0.4140 | | | | | | | | | 2/П | 2700 K | 0.4633 | 0.4154 | | | | | | | | | | | 0.4581 | 0.4062 | | | | | | | | # PERFORMANCE GROUPS - CHROMATICITY ($T_J = 85$ °C) - CONTINUED | | EasyWhite Color Temperatures - 3-Step Ellipse | | | | | | | | | | | |----------|---|--------------|--------|----------------|---------|----------------|--|--|--|--|--| | Bin Code | ССТ | Center Point | | int Major Axis | | Rotation Angle | | | | | | | Bin Code | 661 | х | у | a | b | (°) | | | | | | | 50G | 5000 K | 0.3447 | 0.3553 | 0.00840 | 0.00312 | 65.0 | | | | | | | 40G | 4000 K | 0.3818 | 0.3797 | 0.00939 | 0.00402 | 53.7 | | | | | | | 35G | 3500 K | 0.4073 | 0.3917 | 0.00927 | 0.00414 | 53.2 | | | | | | | 30G | 3000 K | 0.4338 | 0.4030 | 0.00834 | 0.00408 | 53.2 | | | | | | | 27G | 2700 K | 0.4577 | 0.4099 | 0.00834 | 0.00420 | 48.5 | | | | | | | | EasyWhite Color Temperatures - 5-Step Ellipse | | | | | | | | | | | |-----------|---|--------|---------|------------|------------|----------------|--|--|--|--|--| | Bin Code | сст | Cente | r Point | Major Axis | Minor Axis | Rotation Angle | | | | | | | Bill Code | 001 | x | у | а | b | (°) | | | | | | | 65E | 6500 K | 0.3123 | 0.3282 | 0.01110 | 0.00550 | 61.0 | | | | | | | 57E | 5700 K | 0.3287 | 0.3417 | 0.01230 | 0.00600 | 72.0 | | | | | | | 50E | 5000 K | 0.3447 | 0.3553 | 0.01400 | 0.00520 | 65.0 | | | | | | | 40E | 4000 K | 0.3818 | 0.3797 | 0.01565 | 0.00670 | 53.7 | | | | | | # STANDARD WHITE CHROMATICITY REGIONS PLOTTED ON THE 1931 CIE CURVE ## **BIN AND ORDER CODE FORMAT** Bin codes and order codes for MHD-E LEDs are configured in the following manner: 17 ## **REFLOW SOLDERING CHARACTERISTICS** In testing, Cree LED has found XLamp MHD-E LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree LED recommends that users follow the recommended soldering profile provided by the manufacturer of the solder paste used, and therefore it is the lamp or luminaire manufacturer's responsibility to determine applicable soldering requirements. Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment. | Profile Feature | Lead-Free Solder | |---|------------------| | Average Ramp-Up Rate $(Ts_{max} to T_p)$ | 1.2 °C/second | | Preheat: Temperature Min (Ts _{min}) | 120 °C | | Preheat: Temperature Max (Ts _{max}) | 170 °C | | Preheat: Time (ts _{min} to ts _{max}) | 65-150 seconds | | Time Maintained Above: Temperature (T _L) | 217 °C | | Time Maintained Above: Time (t _L) | 45-90 seconds | | Peak/Classification Temperature (Tp) | 235 - 245 °C | | Time Within 5 °C of Actual Peak Temperature (tp) | 20-40 seconds | | Ramp-Down Rate | 1 - 6 °C/second | | Time 25 °C to Peak Temperature | 4 minutes max. | Note: All temperatures refer to the topside of the package, measured on the package body surface. #### **NOTES** #### Measurements The luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree LED's control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications. #### **Pre-Release Qualification Testing** Please read the LED Reliability Overview for details of the qualification process Cree LED applies to ensure long-term reliability for XLamp LEDs and details of Cree LED's pre-release qualification testing for XLamp LEDs. #### **Lumen Maintenance** Cree LED now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document. Please read the Long-Term Lumen Maintenance application note for more details on Cree LED's lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature. ## **Moisture Sensitivity** Cree LED recommends keeping XLamp LEDs in the provided, resealable moisture-barrier packaging (MBP) until immediately prior to soldering. Unopened MBPs that contain XLamp LEDs do not need special storage for moisture sensitivity. Once the MBP is opened, XLamp MHD-E LEDs may be stored as MSL 1 per JEDEC J-STD-033, meaning they have unlimited floor life in conditions of \leq 30 °C/85% relative humidity (RH). Regardless of the storage condition, Cree LED recommends sealing any unsoldered LEDs in the original MBP. #### **RoHS Compliance** The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree LED representative or from the Product Ecology section of the Cree LED website. # **REACh Compliance** REACh substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree LED representative to insure you get the most up-to-date REACh Declaration. REACh banned substance information (REACh Article 67) is also available upon request. ## **NOTES - CONTINUED** ## **UL® Recognized Component** This product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750. ## **Vision Advisory** WARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LED Eye Safety application note. # **MECHANICAL DIMENSIONS** Thermal vias, if present, are not shown on these drawings. **Top View** Side **Bottom View** **Alternate Bottom View** ## **MECHANICAL DIMENSIONS - CONTINUED** # 9-V/18-V Class - 9-V Configuration 36-V Class **Recommended PCB Solder Pad** Recommended Stencil Pattern (Shaded Area Is Open) # 9-V/18-V Class - 18-V Configuration This configuration should not be used for 36-V class MHD-E LEDs. **Recommended PCB Solder Pad** Recommended Stencil Pattern (Shaded Area Is Open) # **ELECTRICAL CONFIGURATION** ## **TAPE AND REEL** All Cree LED carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard. All measurements are ±.13 mm unless otherwise indicated.. # **PACKAGING**