VS-MBR1035-M3, VS-MBR1045-M3

Vishay Semiconductors

High Performance Schottky Rectifier, 10 A

www.vishay.com

TO-220AC 2L

PRIMARY CHARACTERISTICS					
I _{F(AV)}	10 A				
V _R	35 V, 45 V				
V _F at I _F	0.57 V				
I _{RM} max.	15 mA at 125 °C				
T _J max.	150 °C				
E _{AS}	8 mJ				
Package	2L TO-220AC				
Circuit configuration	Single				

FEATURES

- 150 °C T_J operation
- High frequency operation
- · Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified according to JEDEC[®]-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

This Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	VALUES	UNITS				
I _{F(AV)}	(AV) Rectangular waveform					
I _{FRM}	T _C = 135 °C	20	A			
V _{RRM}		35/45	V			
I _{FSM}	t _p = 5 μs sine	1060	А			
V _F	10 A _{pk} , T _J = 125 °C	0.57	V			
TJ	Range	-65 to +150	°C			

VOLTAGE RATINGS						
PARAMETER SYMBOL VS-MBR1035-M3 VS-MBR1045-M3 UNI						
Maximum DC reverse voltage	V _R	35	45	V		
Maximum working peak reverse voltage	V _{RWM}		40	v		

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS			
Maximum average forward current	I _{F(AV)}	T_{C} = 135 °C, rated V_{R}	10	А			
Peak repetitive forward current	I _{FRM}	Rated V _R , square wave, 20	Rated V _R , square wave, 20 kHz, T_{C} = 135 °C				
Non-repetitive peak surge current	I _{FSM}	5 µs sine or 3 µs rect. pulse and with rated V _{RRM} applied		1060	A		
		Surge applied at rated load single phase, 60 Hz	150				
Non-repetitive avalanche energy	E _{AS}	$T_J=25~^\circ C,~I_{AS}=2~A,~L=4$	8	mJ			
Repetitive avalanche current	I _{AR}	Current decaying linearly to Frequency limited by T _J ma	2	А			

Revision: 22-Dec-2021

Document Number: 96266

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

FREE

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS		
		20 A	T _J = 25 °C	0.84		
Maximum forward voltage drop	V _{FM} ⁽¹⁾	10 A	T 405.00	0.57	V	
		20 A	T _J = 125 °C	0.72		
Maximum instantaneous reverse current	I _{RM} ⁽¹⁾	T _J = 25 °C	Rated DC voltage	0.1	mA	
Maximum instantaneous reverse current		T _J = 125 °C	haled DC vollage	15		
Threshold voltage	V _{F(TO)}	T _{.1} = T _{.1} maximum		0.354	V	
Forward slope resistance	Forward slope resistance r_t $I_J = I_J mathachine$		Jinaximum		mΩ	
Maximum junction capacitance	CT	V_{R} = 5 V_{DC} (test signal range 100 kHz to 1 MHz) 25 $^{\circ}\mathrm{C}$		600	pF	
Typical series inductance	L _S	Measured from top of tern	8.0	nH		
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs		

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction temperature range	TJ		-65 to +150	°C			
Maximum storage temperature range	T _{Stg}		-65 to +175	0			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation 2.0		°C/W			
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased	0.50	0/11			
Approximate weight			2	g			
Approximate weight			0.07	oz.			
Mounting torque			6 (5)	kgf ⋅ cm			
Mounting torque maximum			12 (10)	(lbf ⋅ in)			
Marking daviag			MBR1035				
Marking device		Case style 2L TO-220AC	MBR1045				

VS-MBR1035-M3, VS-MBR1045-M3

Vishay Semiconductors

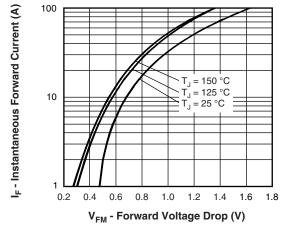


Fig. 1 - Maximum Forward Voltage Drop Characteristics

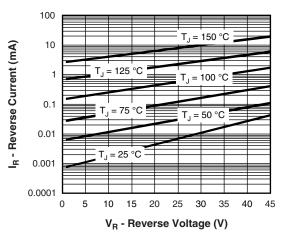


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

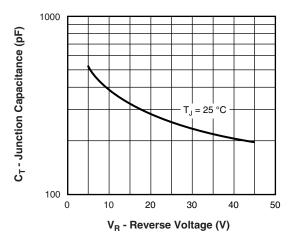


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

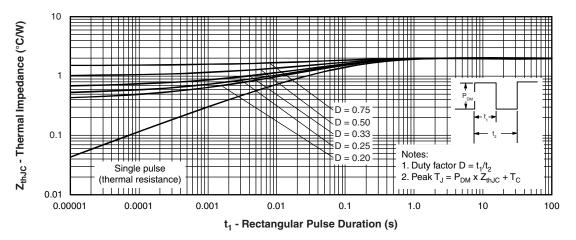
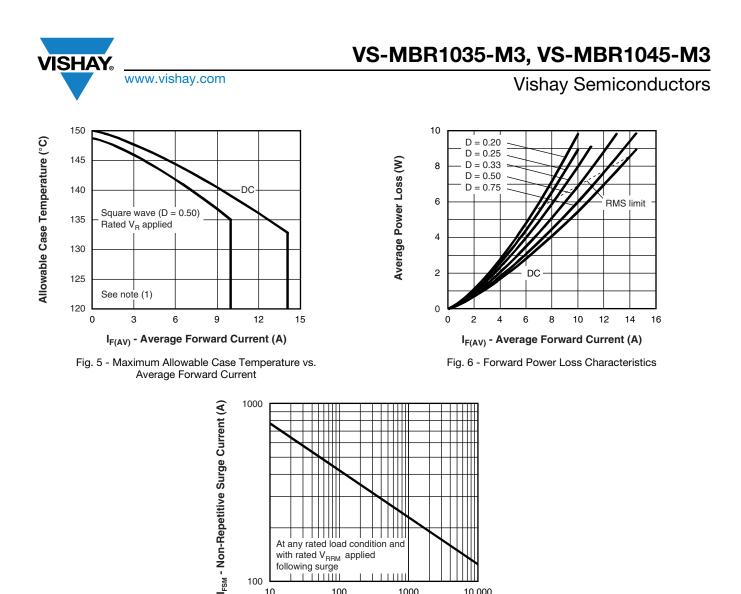



Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

 Revision: 22-Dec-2021
 3
 Document Number: 96266

 For technical questions within your region: DiodesAsia@vishay.com, DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

At any rated load condition and with rated $\mathrm{V}_{\mathrm{RRM}}$ applied following surge

100

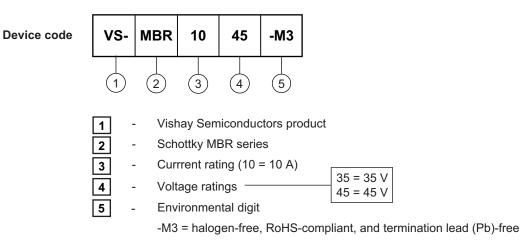
1000

t_p - Square Wave Pulse Duration (µs) Fig. 7 - Maximum Non-Repetitive Surge Current

10 000

Note

- (1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;
- $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

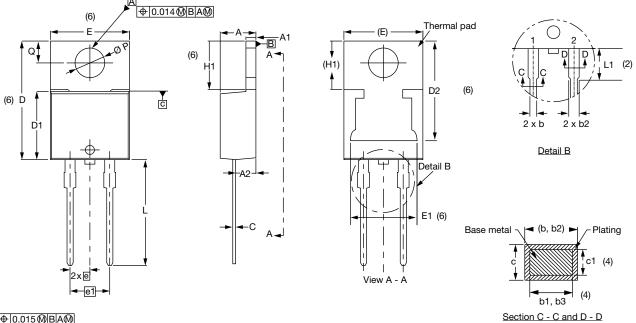

100 10

VS-MBR1035-M3, VS-MBR1045-M3

Vishay Semiconductors

ORDERING INFORMATION TABLE

ORDERING INFORMATION (Example) PREFERRED P/N BASE QUANTITY PACKAGING DESCRIPTION VS-MBR1035-M3 50 Antistatic plastic tubes 50 VS-MBR1045-M3 Antistatic plastic tubes


LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?96156				
Part marking information	www.vishay.com/doc?95391			
SPICE model	www.vishay.com/doc?95293			

Vishay Semiconductors

TO-220AC 2L

DIMENSIONS in millimeters and inches

⊕0.015@BA@

SYMBOL	MILLIMETERS		INCHES		NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.50	2.92	0.098	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.35	0.585	0.604	3
D1	8.38	9.02	0.330	0.355	

SYMBOL	MILLIMETERS		INCHES		NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	11.68	13.30	0.460	0.524	6, 7
Е	10.11	10.51	0.398	0.414	3, 6
E1	6.86	8.89	0.270	0.350	6
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØР	3.54	3.91	0.139	0.154	
Q	2.60	3.00	0.102	0.118	

Conforms to JEDEC[®] outline TO-220AC

Notes

⁽²⁾ Lead dimension and finish uncontrolled in L1

(4) Dimension b1, b3, and c1 apply to base metal only

- (6) Thermal pad contour optional within dimensions E, H1, D2, and E1
- ⁽⁷⁾ Outline conforms to JEDEC[®] TO-220, except D2

Revision: 07-Mar-2022

1

Document Number: 96156

 $^{^{(1)}\,}$ Dimensioning and tolerancing as per ASME Y14.5M-1994 $\,$

⁽³⁾ Dimension D, D1, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

⁽⁵⁾ Controlling dimensions: inches

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.