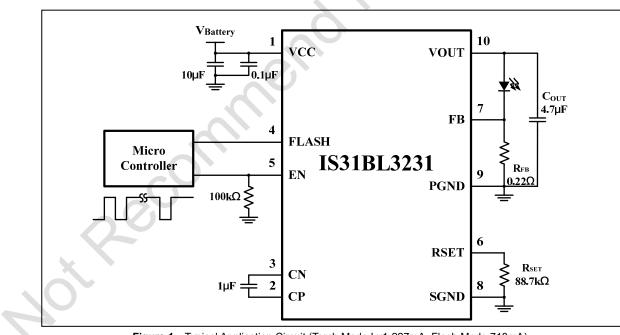
FLASH LED DRIVER

April 2022

GENERAL DESCRIPTION

The IS31BL3231 is a current-regulated charge pump and ideal for powering high brightness LEDs for camera flash and torch applications. The charge pump can be set to regulate two current levels for FLASH and TORCH modes. The IS31BL3231 automatically switches between linear and boost modes ensuring that LED current does not depend on the LED forward voltage.

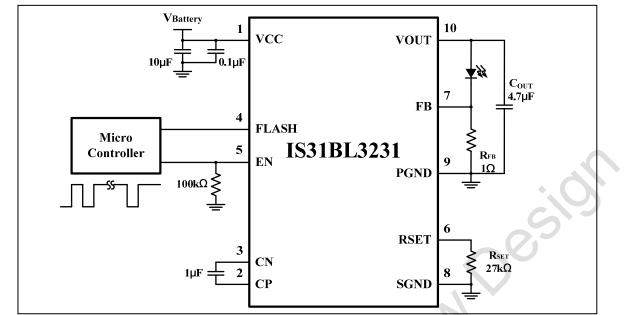
IS31BL3231 provides low cost, space saving solution for driving LED. It also integrates thermal and short circuit protection function.


IS31BL3231 is available in DFN-10 (3mm × 3mm). It operates from 2.7V to 5.5V over the temperature range of -40°C to +85°C.

FEATURES

- Operates from 2.7V to 5.5V
- Up to 90% efficiency in Torch Mode
- Output current up to 750mA
- Adjustable output current in Flash Mode
- Minimum external components, no external inductor required
- Automatic boost mode
- Less than 1µA shutdown current
- Low ripple and EMI
- Over voltage protection on output
- Short and over temperature protections
- Available in DFN-10 (3mm × 3mm) package

APPLICATIONS


- White LED backlighting
- Cellular phones
- Generic lighting/flash/strobe applications

TYPICAL APPLICATION CIRCUIT

Figure 1 Typical Application Circuit (Torch Mode Lv1-227mA, Flash Mode 718mA)

5

Recommended

Lumissil Microsystems – www.lumissil.com Rev. D, 04/01/2022

PIN CONFIGURATION

Package	Pin Configuration (Top View)		
DFN-10	VCC $1 1 1 \bullet$ $1 10$ VOUT CP $2 1 \bullet$ $1 10$ VOUT CP $2 1 \bullet$ $1 9$ PGND CN $3 1 \bullet$ $1 8$ SGND FLASH $4 1 \bullet$ $1 7$ FB EN $5 1 \bullet$ $1 6$ RSET		

PIN DESCRIPTION

No.PinDescription1VCCPower supply.2CPPositive input for external flying cap.3CNNegative input for external flying cap.4FLASHInput pin to toggle operation between Flash Mode and Torch Mode.5ENShutdown control input and Torch reference select pin. The intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty cycle PWM signal.6RSETSet the FB voltage in Flash Mode. $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.Thermal PadConnect to GND.	DFN-10	SCRIPTION	CN 3 1 FLASH 4 1 EN 5 1 6 RSET
2CPPositive input for external flying cap.3CNNegative input for external flying cap.4FLASHInput pin to toggle operation between Flash Mode and Torch Mode.5ENShutdown control input and Torch reference select pin. The intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty cycle PWM signal.6RSETSet the FB voltage in Flash Mode. $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.			Description
3CNNegative input for external flying cap.4FLASHInput pin to toggle operation between Flash Mode and Torch Mode.5ENShutdown control input and Torch reference select pin. The intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty cycle PWM signal.6RSETSet the FB voltage in Flash Mode. $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.	1	VCC	Power supply.
4FLASHInput pin to toggle operation between Flash Mode and Torch Mode.5ENShutdown control input and Torch reference select pin. The intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty cycle PWM signal.6RSETSet the FB voltage in Flash Mode. $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.	2	СР	Positive input for external flying cap.
4FLASHTorch Mode.5ENShutdown control input and Torch reference select pin. The intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty cycle PWM signal.6RSETSet the FB voltage in Flash Mode. $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.	3	CN	Negative input for external flying cap.
5ENThe intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty cycle PWM signal.6RSETSet the FB voltage in Flash Mode. $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.	4	FLASH	Input pin to toggle operation between Flash Mode and Torch Mode.
6RSET $V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$ 7FBFeedback input for the current control loop. $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.	5	EN	The intensity can be modulated by PWM signal via EN pin. It is recommended to use 100Hz and 5%~95% duty
7FB $I_{LED} = V_{FB} / R_{FB}$ 8SGNDInternal ground pin.9PGNDPower ground pin.10VOUTCharge pump output voltage.	6	RSET	~
9 PGND Power ground pin. 10 VOUT Charge pump output voltage.	7	FB	
10 VOUT Charge pump output voltage.	8	SGND	Internal ground pin.
	9	PGND	Power ground pin.
Thermal Pad Connect to GND.	10	VOUT	Charge pump output voltage.
		Thermal Pad	Connect to GND.

ORDERING INFORMATION Industrial Range: -40°C to +85°C

Order Part No.	Package	QTY/Reel
IS31BL3231-DLS2-TR	DFN-10, Lead-free	2500

Copyright © 2022 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Kornen

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

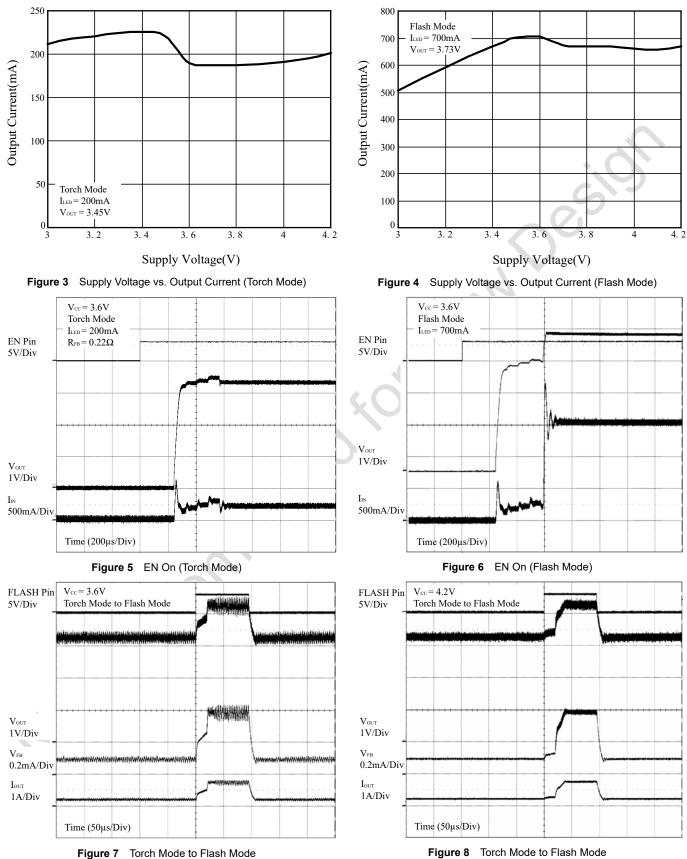
c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances

ABSOLUTE MAXIMUM RATINGS

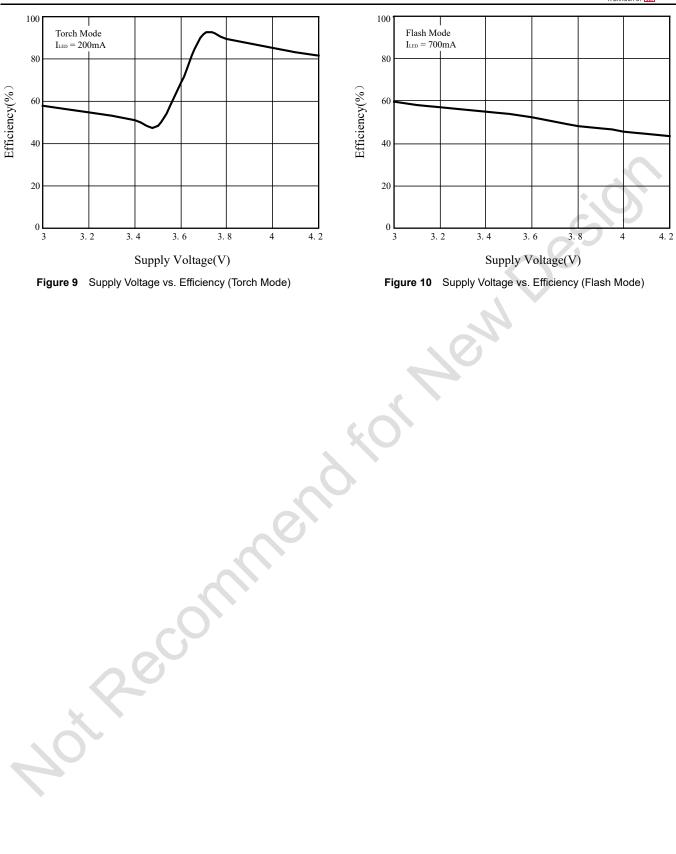
Supply voltage, V _{CC}	-0.3V ~ +6.0V
Voltage at EN pin	0V ~ 7V
Output current pulse (Flash Mode)	1A
Output current pulse (Torch Mode)	0.4A
Maximum junction temperature, T _{JMAX}	+150°C
Storage temperature range, Tstg	-65°C ~ +150°C
Operating temperature range, T _A	-40°C ~ +85°C
ESD (HBM)	±7kV
ESD (CDM)	±1kV

Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

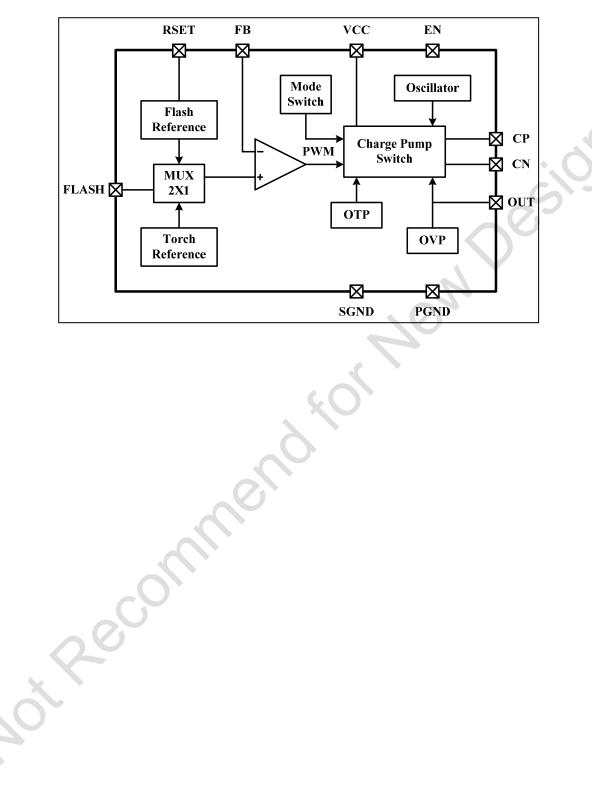
DC CHARACTERISTICS


T_A = +25°C, V_{CC} = 2.7V ~ 5.5V, unless otherwise stated. Typical value are T_A = +25°C, V_{CC} = 4.2V.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vcc	Supply voltage		2.7		5.5	V
lcc	Quiescent current	Vcc = 4.2V, V _{FLASH} = 0V		0.6		mA
Isd	Shutdown current	V _{CC} = 5.5V, V _{EN} = 0V			1	μA
ton	Charge pump soft start time			550		μs
V		$V_{FLASH} = V_{CC}, R_{SET} = 88.7 k\Omega$		150		
Vfb	FB reference voltage	V _{FLASH} = 0V		50		mV
V _{FB_MAX}	Maximum FB reference voltage	(Note 1)	550			mV
TOVP	Over temperature protection	~0		160		°C
VIH	Input logic high		1.4			V
VIL	Input logic low	6			0.4	V
tLO	EN low time	(Note 1)	0.3		75	μs
t _{HI}	EN high time	(Note 1)	0.1		75	μs
toff	EN shutdown timeout	(Note 1)		500		μs
t LAT	EN latch timeout	(Note 1)		500		μs


Note 1: Guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS



FUNCTIONAL BLOCK DIAGRAM

APPLICATION INFORMATION

GENERAL DESCRIPTION

The IS31BL3231 is a current-regulated charge pump and ideal for powering high brightness LEDs for camera flash and torch applications.

CHARGE PUMP

The charge pump converter boosts input supply voltage (V_{cc}) up to a higher output voltage (V_{OUT}) to drive LED.

The charge pump converter only requires three external components: supply decoupling capacitor, output bypass capacitor and flying capacitor.

Choose low ESR capacitors to ensure the best operating performance and place the capacitors as close as possible to the IS31BL3231.

The charge pump will start up automatically to offer a higher output voltage when V_{FB} is lower than the setting value.

CURRENT SETTING

The LED current is set by the external resister, R_{FB}, following the Equation (1) below.

$$I_{LED} = V_{FB} / R_{FB} \tag{1}$$

V_{FB} is calculated by the Equation (2) when IS31BL3231 operates in the Flash Mode. VFB is set in the Table 1 when IS31BL3231 operates in the Torch Mode.

OPERATING MODE

FLASH MODE

By pulling the FLASH pin to high, IS31BL3231 operates in the Flash Mode. VFB is set by the RSET.

$$V_{FB} = (1.25V / R_{SET}) \times 11.2k\Omega$$
(2)

For example, in Figure 1,

 $R_{FB} = 0.22\Omega, R_{SET} = 88.7 k\Omega$

So,
$$V_{FB} = (1.25V / 88.7k\Omega) \times 11.2k\Omega \approx 158mV$$

$$I_{LED} = 158 mV / 0.22 \Omega \approx 718 mA$$

The maximum VFB shouldn't be over 550mV or the actual current will be large difference from then calculated current.

TORCH MODE

By pulling the FLASH pin to low, IS31BL3231 operates in the Torch Mode. The VFB is controlled by Pulse Count Control (PCC wire) serial interface. The interface records rising edges of the EN pin and decodes them into 8 different states. The 8 voltage level settings available are indicated in Table 1.

Table 1 V_{FB} Control

Pulse	λ (True)	ILED (Typ.)		
Puise	V _{FB} (Тур.)	R _{FB} = 0.22Ω 227mA 273mA 318mA 386mA 455mA 545mA 636mA	R _{FB} = 1Ω	
1	50mV	227mA	50mA	
2	60mV	273mA	60mA	
3	70mV	318mA	70mA	
4	85mV	386mA	85mA	
5	100mV	455mA	100mA	
6	120mV	545mA	120mA	
7	140mV	636mA	140mA	
≥8	170mV	773mA	170mA	

TIMING CONTROL

The EN pin should be configured as the Figure 11. tLAT is the latch time. High level should be at last t_{LAT} to active the pulse signal. tOFF is the shutdown time. EN pin is pulled low at last toFF the IC will be shutdown.

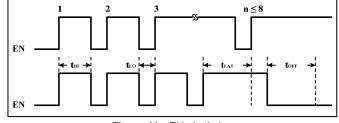


Figure 11 EN pin timing

THERMAL PROTECTION

The IS31BL3231 has a thermal protection circuit that will shut down the chip if the die temperature rises above the thermal limit until the temperature falls down.

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.
Liquidous temperature (TL) Time at liquidous (tL)	217°C 60-150 seconds
Peak package body temperature (Tp)*	Max 260°C
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.
Supplier $T_p \ge T_c$ T_c Supplier t_p $T_c -5^{\circ}C$ User $T_p \le T_c$ User t_p	

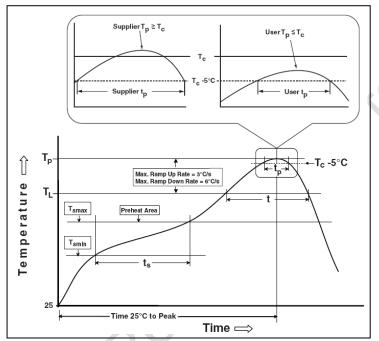
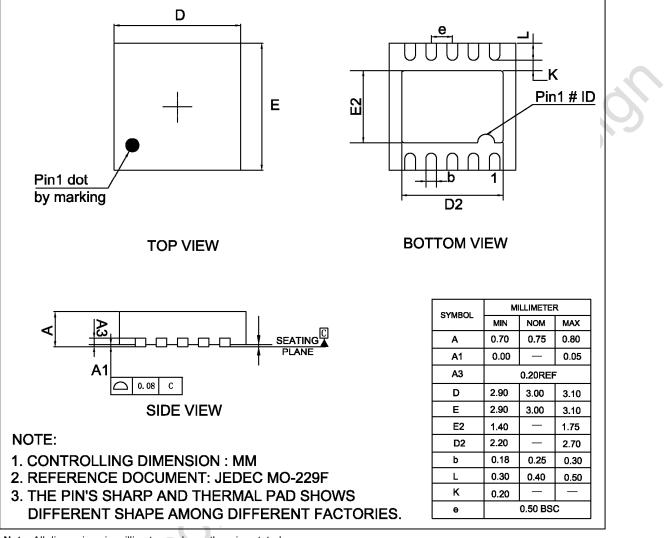
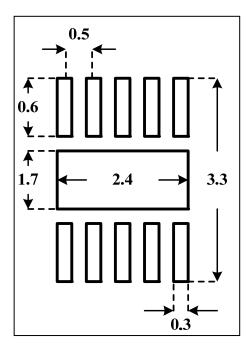



Figure 12 Classification Profile

PACKAGE INFORMATION

DFN-10



Note: All dimensions in millimeters unless otherwise stated.

MDest

RECOMMENDED LAND PATTERN

Note:

- 1. Land pattern complies to IPC-7351.
- 2. All dimensions in MM.

3. This document (including dimensions, notes & specs) is a recommendation based on typical circuit board manufacturing parameters. Since land pattern design depends on many factors unknown (eg. user's board manufacturing specs), user must determine suitability for use.

Recommen

REVISION HISTORY

Revision	Detail Information	Date
А	Initial release	2012.01.16
В	 P.7 add efficiency chart P.2 add application figure in 50mA(Torch), 500mA(Flash) P.3 add PWM dimming function P.5 remove ESD 	2012.12.03
С	 Add land pattern Correct 100kHz to 100Hz in Pin Description Add ESD value 	2015.06.12
D	Add NRND watermark	2022.04.01
	Recommend for New De	