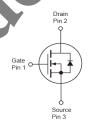


N-Channel Power MOSFET

800V, 3A, 4.2Ω

FEATURES

- Low R_{DS(ON)} 3.3Ω (Typ.)
- Low gate charge typical @ 19nC (Typ.)
- Low Crss typical @ 10.2pF (Typ.)
- Improved dv/dt capability


KEY PERFORMANCE PARAMETERS						
PARAMETER	R VALUE UN				PARAMETER VALUE	
V_{DS}	800	V				
R _{DS(on)} (max)	4.2	Ω				
Q_{g}	19	nC				

APPLICATION

- Power Supply
- Lighting

Notes: MSL 3 (Moisture Sensitivity Level) for TO-252 (D-PAK) per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)						
DADAMETER	CVIDO					
PARAMETER	SYMBOL	IPAK/DPAK	ITO-220	TO-220	UNIT	
Drain-Source Voltage	V_{DS}	800			V	
Gate-Source Voltage	V_{GS}	±30			V	
Continuous Drain Current (Note 4) T _C = 25°C	ı	3			A	
T _C = 100°C	l _D	1.83				
Pulsed Drain Current (Note 2)	I _{DM}	12			Α	
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	48		mJ		
Single Pulsed Avalanche Current (Note 3)	I _{AS}	3		Α		
Repetitive Avalanche Energy (Note 3)	E _{AR}	9.4		mJ		
Repetitive Avalanche Energy ^(Note 4)	dV/dt	4.5		V/ns		
Total Power Dissipation @ T _C = 25°C	P _{DTOT}	94	32	94	W	
Operating Junction and Storage Temperature Range	T_J, T_{STG}	- 55 to +150 °C			°C	

THERMAL PERFORMANCE					
DADAMETER	SYMBOL		LINIT		
PARAMETER		IPAK/DPAK	ITO-220	TO-220	UNIT
Junction to Case Thermal Resistance	$R_{\Theta Jc}$	1.33	3.9	1.33	°C/W
Junction to Ambient Thermal Resistance	$R_{\Theta JA}$	110	62.5		°C/W

Notes: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static (Note 5)	Static (Note 5)					
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	800			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	$V_{GS(TH)}$	2		4	V
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
Zero Gate Voltage Drain Current	$V_{DS} = 800V, V_{GS} = 0V$	I _{DSS}			10	μΑ
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 1.5A$	R _{DS(ON)}		3.3	4.2	Ω
Forward Transfer Conductance	$V_{DS} = 30V, I_{D} = 1.5A$	g fs		3.7	-	S
Dynamic (Note 6)						
Total Gate Charge	., ., ., ., .,	Q_g		19		
Gate-Source Charge	$V_{DS} = 640V, I_{D} = 3A,$ $V_{GS} = 10V$	Q_{gs}		4		nC
Gate-Drain Charge	- V _{GS} = 10V	Q _{gd}		7.6		
Input Capacitance	.,	C _{iss}		696		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	Coss		65		pF
Reverse Transfer Capacitance	1 = 1.0lvii 12	C _{rss}		10.2		
Gate Resistance	F = 1MHz, open drain	R_g		3.2		Ω
Switching (Note 7)	Switching (Note 7)					
Turn-On Delay Time		t _{d(on)}		48		
Turn-On Rise Time	$V_{GS} = 10V, I_D = 3A,$	t _r		36		
Turn-Off Delay Time	$V_{DD} = 400V, R_G = 25\Omega$	t _{d(off)}		106		ns
Turn-Off Fall Time		t _f		41		
Source-Drain Diode (Note 5)						
Source Current	Integral reverse diode	Is			3	Α
Source Current (Pulse)	in the MOSFET	I _{SM}			12	Α
Diode Forward Voltage	$I_S = 3A$, $V_{GS} = 0V$	V _{SD}			1.5	V
Reverse Recovery Time	$V_{GS} = 0V, I_{S} = 3A,$	t _{rr}		370		ns
Reverse Recovery Charge	$dI_F/dt = 100A/us$	Q _{rr}		1.8		μC

Notes:

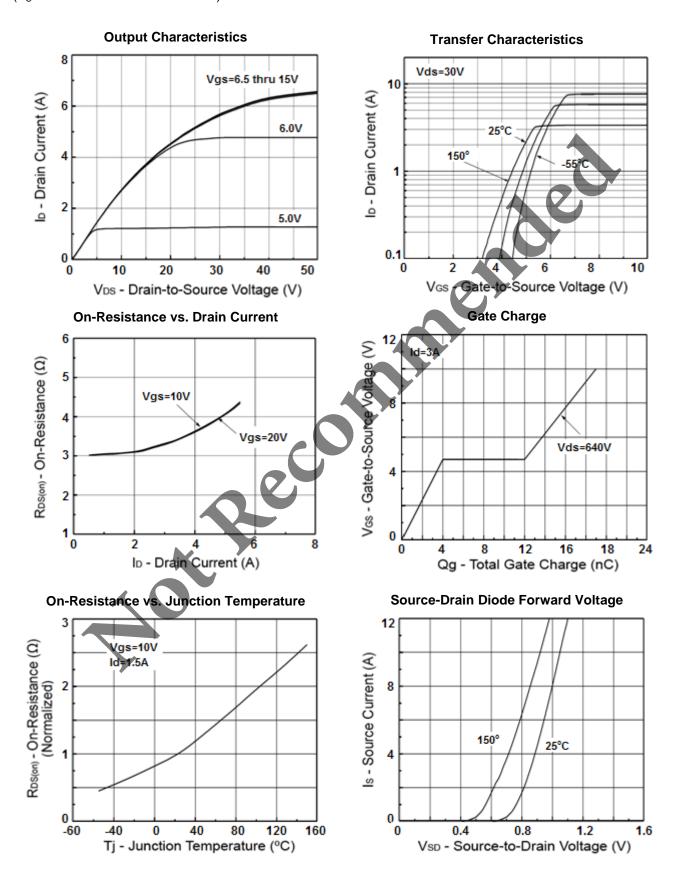
- 1. Current limited by package
- 2. Pulse width limited by the maximum junction temperature
- 3. L = 10mH, $I_{AS} = 3A$, $V_{DD} = 50V$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$
- 4. $I_{SD} \le 3A$, $dI/dt \le 200A/uS$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 5. Pulse test: PW \leq 300 μ s, duty cycle \leq 2%
- 6. For DESIGN AID ONLY, not subject to production testing.
- 7. Switching time is essentially independent of operating temperature.

ORDERING INFORMATION

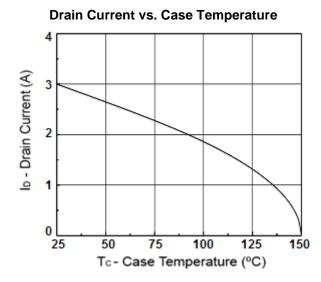
PART NO.	PACKAGE	PACKING
TSM3N80CZ C0G	TO-220	50pcs / Tube
TSM3N80CI C0G	ITO-220	50pcs / Tube
TSM3N80CH C5G	TO-251 (IPAK)	75pcs / Tube
TSM3N80CP ROG	TO-252 (DPAK)	2,500pcs / 13" Reel

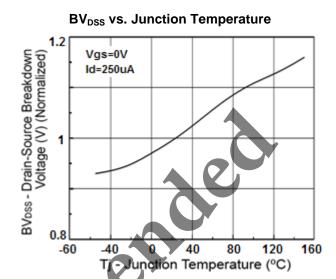
Note:

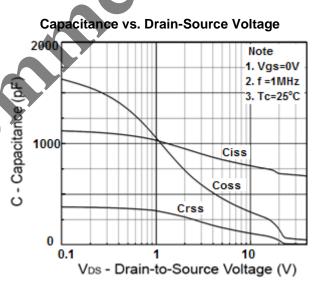
1. Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC


2. Halogen-free according to IEC 61249-2-21 definition

CHARACTERISTICS CURVES


 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$




CHARACTERISTICS CURVES

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$

Maximum Safe Operating Area(TO-220, I/D-PAK) Operation in this area is limited by Rds(on) 10¹ ⊨d10uS lo - Drain Current (A) 100uS 10mS 100mS 10° 10⁻¹ Single Pulse Tc=25°C Tj=125°C 10⁻² 0 1000 Vps - Drain-to-Source Voltage (V)

is limited by Rds(on) 10uS lo - Drain Current (A) 100uS 10mS 100mS 10º 10⁻¹

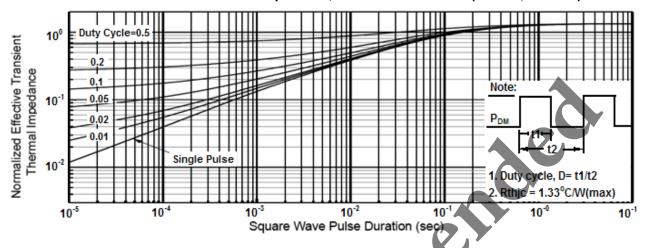
Maximum Safe Operating Area(ITO-220)

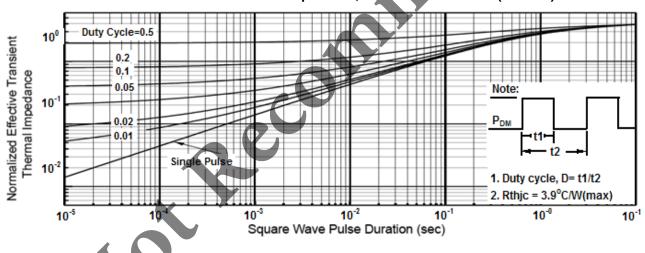
Operation in this area

100 1000 V_{DS} - Drain-to-Source Voltage (V)

10

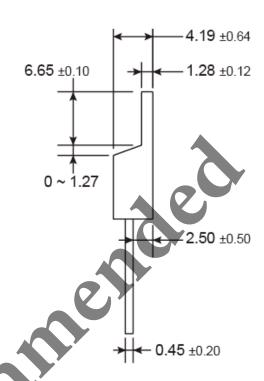
Single Pulse Tc=25°C Tj=125°C


10⁻² 0


CHARACTERISTICS CURVES

 $(T_C = 25^{\circ}C \text{ unless otherwise noted})$

Normalized Thermal Transient Impedance, Junction-to-Ambient (TO-220, I/D-PAK)



Normalized Thermal Transient Impedance, Junction-to-Ambient (ITO-220)

2.90 ±0.52 9.00 ±0.70 4.30 ±2.10 1.30 ±0.20 1.30 ±0.20 1.30 ±0.37

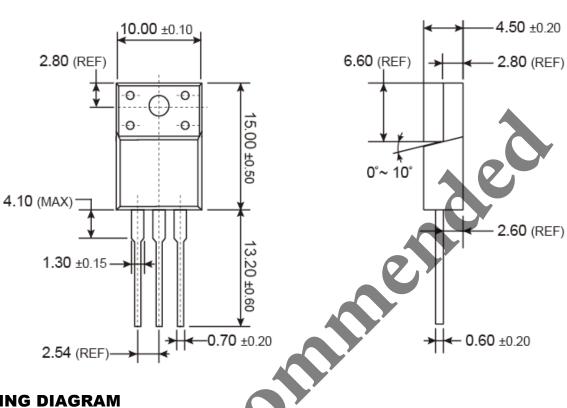
MARKING DIAGRAM

Y = Year Code

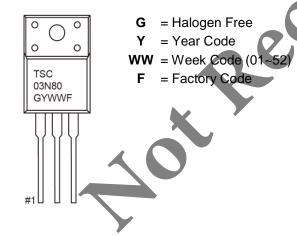
2.54 (REF)

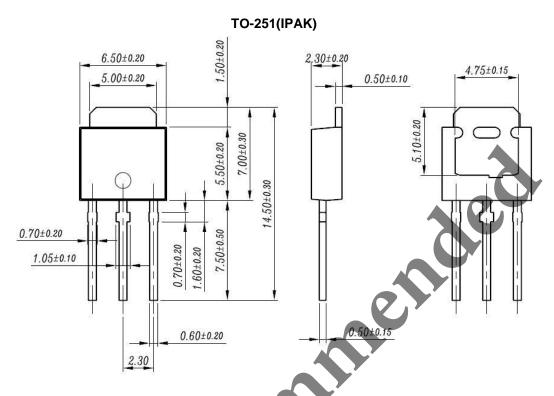
M = Month Code for Halogen Free Product

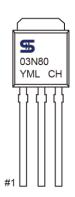
O =Jan P =Feb Q =Mar R =Apr


S =May T =Jun U =Jul V =Aug

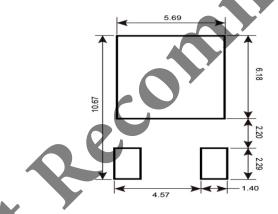
W = Sep X = Oct Y = Nov Z = Dec


L = Lot Code (1~9, A~Z)


ITO-220


MARKING DIAGRAM

MARKING DIAGRAM



- Y = Year Code
- M = Month Code for Halogen Free Product
 - O =Jan P =Feb
- **Q** =Mar
 - R =Apr
 - S =May Jun
- **U** =Jul V =Aug
- W =Sep
- Y =Nov
- **Z** =Dec
- $L = \text{Lot Code } (1 \sim 9, A \sim Z)$

TO-252(DPAK) 6.50±0.20 5.00±0.20 0.50 0.50 0.50 0.50 0.60±0.20 0.85±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20 0.50±0.20

SUGGESTED PAD LAYOUT (Unit: Millimeters)

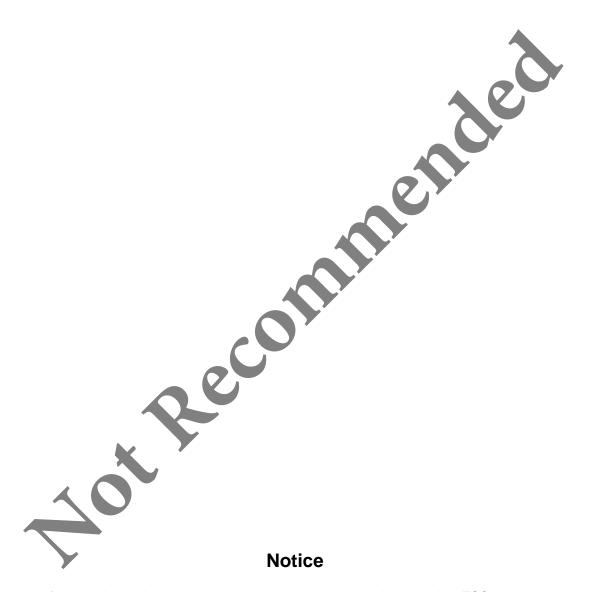
MARKING DIAGRAM

= Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Ma

Q =Mar **R** =Apr


S =May **T** =Jun

U =Jul **V** =Aug

W = Sep X = Oct Y = Nov Z = Dec

= Lot Code (1~9, A~Z)

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Document Number: DS P0000084 11 Version:

F1706