

N-Channel Power MOSFET

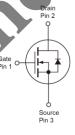
100V, 70A, $13m\Omega$

FEATURES

- Low R_{DS(ON)} to minimize conductive loss
- Low gate charge for fast power switching
- Compliant to RoHS directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21

ΛD	DI	IC	ION

- Synchronous Rectifier in SMPS
- LED lighting application
- 48V Battery System


KEY PERFORMANCE PARAMETERS			
PARAMETER	VALUE	UNIT	
V _{DS}	100	V	
R _{DS(on)} (max)	13	mΩ	
Q _g	145	nC	

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)				
PARAMETER	70	SYMBOL	Limit	UNIT
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V_{GS}	±20	V
	$T_C = 25^{\circ}C$		70	
Continuous Drain Current (Note 3)	T _C = 70°C		61	A
Continuous Diain Current	$T_A = 25^{\circ}C$	I _D	12	A
	T _A = 70°C		9	
Drain Current-Pulsed (Note 1)	I _{DM}	150	А	
Avalanche Current, L=0.5mH	I _{AS} , I _{AR}	25	А	
Avalanche Energy, L=0.5mH		E _{AS} , E _{AR}	156	mJ
Ť	$T_C = 25^{\circ}C$		120	
Maximum Dawar Dissination (Note 2)	$T_C = 70$ °C		80	_ w
Maximum Power Dissipation (Note 2)	T _A = 25°C	I _D	8.3	VV
	T _A = 70°C		5.3	
Storage Temperature Range	T _{STG}	- 55 to +150	°C	
Operating Junction Temperature Range		T _J	- 55 to +150	°C

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	Limit	UNIT	
Thermal Resistance – Junction to Case	R _{eJC}	1	°C/W	
Thermal Resistance – Junction to Ambient	$R_{\Theta JA}$	40	°C/W	

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	100	7	-	V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 30A$	R _{DS(ON)}		10	13	mΩ
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	$V_{GS(TH)}$	2	3	4	V
Zero Gate Voltage Drain Current	$V_{DS} = 80V, V_{GS} = 0V$	I _{DSS}	(7	1	μΑ
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
Dynamic						
Total Gate Charge		Q_g)	145		
Gate-Source Charge	$V_{DS} = 50V, I_{D} = 30A,$	Q_{gs}		25		nC
Gate-Drain Charge	$V_{GS} = 10V$	Q_{gd}		43		
Input Capacitance		C _{iss}		4300		_
Output Capacitance	$V_{DS} = 30V, V_{GS} = 0V,$ f = 1.0MHz	C _{oss}		300		pF
Reverse Transfer Capacitance	1 = 1.0IVIN2	C _{rss}		120		
Switching						
Turn-On Delay Time		t _{d(on)}		27		
Turn-On Rise Time	$V_{GS} = 10V$, $V_{DS} = 50V$, $R_G = 3\Omega$,	t _r		13		
Turn-Off Delay Time		t _{d(off)}		15		ns
Turn-Off Fall Time		t _f		42		
Source-Drain Diode						
Forward On Voltage	$V_{GS} = 0V, I_{S} = 30A$	V _{SD}		0.8	1.3	V
Reverse Recovery Time	I _S = 30A, T _J = 25°C	t _{rr}		165		ns
Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	Q _{rr}		175		nC

Notes:

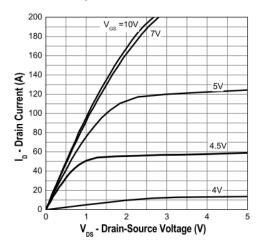
- 1. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 2. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\theta JA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. $R_{\theta JA}$ shown below for single device operation on FR-4PCB in still air.

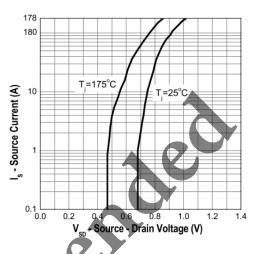
2

3. The maximum current is limited by package.

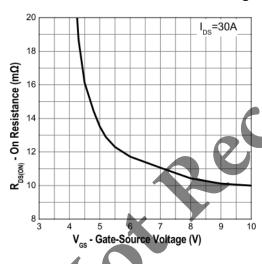
ORDERING INFORMATION

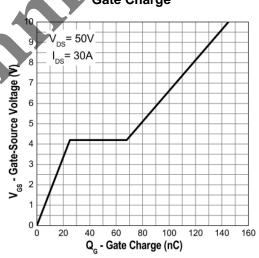
PART NO.	PACKAGE	PACKING	
TSM70N10CP ROG	TO-252 (DPAK)	2,500pcs / 13" Reel	
TSM70N10CH C5G	TO-251 (IPAK)	75pcs / Tube	
TSM70N10CH X0G	TO-251S (IPAK SL)	75pcs / Tube	

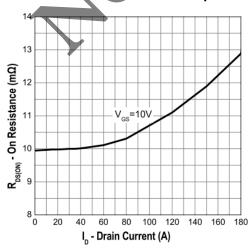


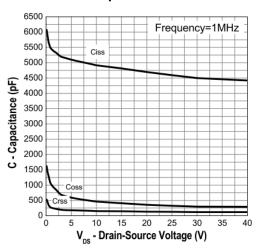

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$


Output Characteristics

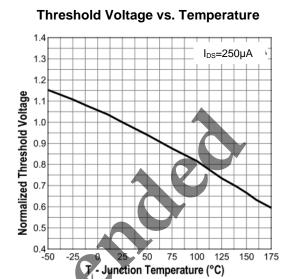

Transfer Characteristics

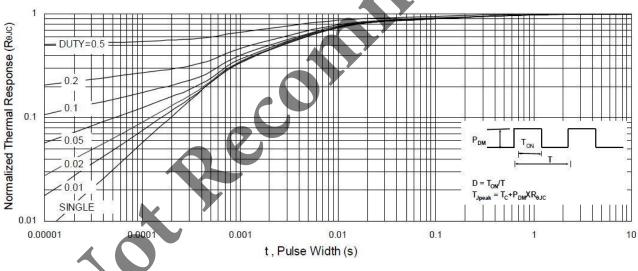

On-Resistance vs. Gate-Source Voltage


Gate Charge

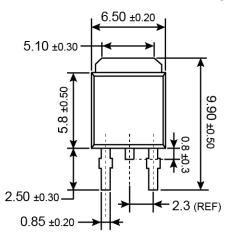
On-Resistance vs. Junction Temperature

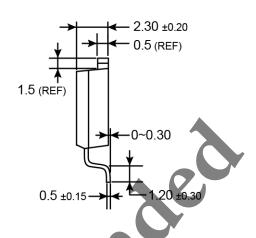
Capacitance

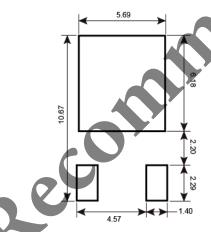


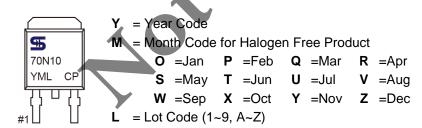

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

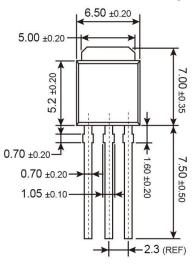

Normalized Thermal Transient Impedance, Junction-to-Ambient

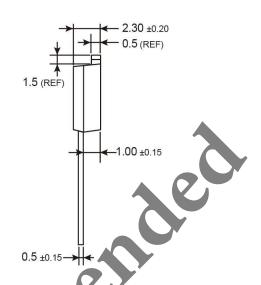


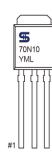

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)



SUGGESTED PAD LAYOUT (Unit: Millimeters)


MARKING DIAGRAM




PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

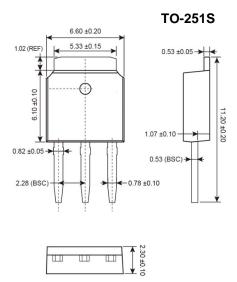
MARKING DIAGRAM

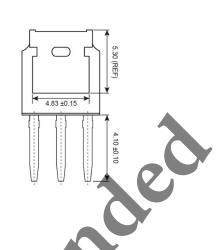
Y = Year Code

M = Month Code for Halogen Free Product

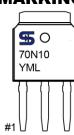
O =Jan P =Feb Q =Mar

Jan Pereb Q = Iviai


S =May T =Jun U =Jul V =Au


W = Sep X = Oct Y = Nov Z = Dec

L = Lot Code (1~9, A~Z)



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb **Q** =Mar

S =May T =Jun

W =Sep X =Oct

U =Jul

=Dec Y = Nov

L = Lot Code (1~9, A~Z)

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.