

Welcome to CircuitPython!

Created by Kattni Rembor

https://learn.adafruit.com/welcome-to-circuitpython

Last updated on 2023-01-09 11:05:40 PM EST

©Adafruit Industries Page 1 of 153

7

7

9

11

18

19

20

25

28

31

Table of Contents

Welcome To CircuitPython

• This guide will get you started with CircuitPython!

What is CircuitPython?

• CircuitPython is based on Python

• Why would I use CircuitPython?

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Installing CircuitPython

• Download the latest version!

• Windows 7 and 8.1 Drivers

• Start the UF2 Bootloader

• For most boards:

• For RP2040 boards:

• Bootloader Mode

• For most boards:

• For RP2040 boards:

• Install CircuitPython

• What's the difference between CIRCUITPY and boardnameBOOT or RPI-RP2?

• Bootloader Drive Names

Windows 7 and 8.1 Drivers

The CIRCUITPY Drive

• Boards Without CIRCUITPY

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

Exploring Your First CircuitPython Program

• Imports & Libraries

• Setting Up The LED

• Loop-de-loops

• What Happens When My Code Finishes Running?

• What if I Don't Have the Loop?

Connecting to the Serial Console

• Are you using Mu?

• Serial Console Issues or Delays on Linux

• Setting Permissions on Linux

• Using Something Else?

Interacting with the Serial Console

©Adafruit Industries Page 2 of 153

34

39

50

55

64

71

71

73

The REPL

• Entering the REPL

• Interacting with the REPL

• Returning to the Serial Console

CircuitPython Libraries

• The Adafruit Learn Guide Project Bundle

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

• CircUp CLI Tool

CircuitPython Hardware

• Circuit Playground Express

• Circuit Playground Bluefruit

• Circuit Playground Express or Bluefruit?

• QT Py RP2040

• Feather M4 Express

• Metro M4

• Itsy Bitsy M4 Starter Kit

Welcome to the Community!

• Adafruit Discord

• CircuitPython.org

• Adafruit GitHub

• Adafruit Forums

• Read the Docs

CircuitPython Documentation

• CircuitPython Core Documentation

• CircuitPython Library Documentation

Advanced Setup

Recommended Editors

• Recommended editors

• Recommended only with particular settings or add-ons

• Editors that are NOT recommended

Library File Types and Frozen Libraries

• RAM vs Filesystem Space

• .mpy Library Files

• What is an .mpy file?

• Creating an .mpy File

• .py Library Files.

• What is a .py file?

• Frozen Libraries

©Adafruit Industries Page 3 of 153

88

94

97

101

103

107

• What is a frozen library?

• Project Bundle and Frozen Libraries

• Library File Priority

• What library files does CircuitPython look for?

• Where does CircuitPython look for library files?

• Building CircuitPython with an Updated Frozen Library

• What's the Real Difference?

• Memory Usage between .mpy and .py

• Using gc.mem_free() to Check Your Bytes

• Common Issues and Solutions

• .mpy Failing When It Worked Previously

• Memory Allocation

• Memory Fragmentation

• Import Order Can Matter

• Library Structure Not Intact or in Improper Directory

• Don't Name Your Test Code the Same as a Library

PyCharm and CircuitPython

• Disable Auto-save

• Creating a project on a computer's file system

• Install circuitpython-stubs

• Install Libraries

• Serial console in the terminal pane

Renaming CIRCUITPY

• Renaming CIRCUITPY on Mac

• Renaming CIRCUITPY on Windows

• Renaming CIRCUITPY on Linux

• Renaming CIRCUITPY through CircuitPython

• Reverting to CIRCUITPY

Advanced Serial Console on Windows

• Windows 7 and 8.1

• What's the COM?

• Install Putty

Advanced Serial Console on Mac

• What's the Port?

• Connect with screen

Advanced Serial Console on Linux

• What's the Port?

• Connect with screen

• Permissions on Linux

Non-UF2 Installation

• Espressif Boards without UF2 Bootloaders

• STM Boards

• Flashing with Bossac - For Non-Express Feather M0's & Arduino Zero

• Command-Line ahoy!

• Download Latest CircuitPython Firmware

• Download BOSSA

• Test bossac

• Get Into the Bootloader

• Run the bossac Command

©Adafruit Industries Page 4 of 153

114

120

138

141

141

143

Frequently Asked Questions

• Using Older Versions

• Python Arithmetic

• Wireless Connectivity

• Asyncio and Interrupts

• Status RGB LED

• Memory Issues

• Unsupported Hardware

Troubleshooting

• Always Run the Latest Version of CircuitPython and Libraries

• I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

• Bootloader (boardnameBOOT) Drive Not Present

• Windows Explorer Locks Up When Accessing boardnameBOOT Drive

• Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied

• CIRCUITPY Drive Does Not Appear or Disappears Quickly

• Device Errors or Problems on Windows

• Serial Console in Mu Not Displaying Anything

• code.py Restarts Constantly

• CircuitPython RGB Status Light

• CircuitPython 7.0.0 and Later

• CircuitPython 6.3.0 and earlier

• Serial console showing ValueError: Incompatible .mpy file

• CIRCUITPY Drive Issues

• Safe Mode

• To erase CIRCUITPY: storage.erase_filesystem()

• Erase CIRCUITPY Without Access to the REPL

• For the specific boards listed below:

• For SAMD21 non-Express boards that have a UF2 bootloader:

• For SAMD21 non-Express boards that do not have a UF2 bootloader:

• Running Out of File Space on SAMD21 Non-Express Boards

• Delete something!

• Use tabs

• On MacOS?

• Prevent & Remove MacOS Hidden Files

• Copy Files on MacOS Without Creating Hidden Files

• Other MacOS Space-Saving Tips

• Device Locked Up or Boot Looping

"Uninstalling" CircuitPython

• Backup Your Code

• Moving Circuit Playground Express to MakeCode

• Moving to Arduino

CircuitPython Essentials

How Do I Learn Python?

• Python for Beginner Non-Programmers

• Python for Programmers

• Python FAQs

• Python Success Stories

• Final Note

Archive

©Adafruit Industries Page 5 of 153

143

149

CircuitPython M0 Hardware

• Trinket M0

• Gemma M0

• Circuit Playground Express

• Feather M0 Express

• Metro M0 Express

• What's Next?

CircuitPython for ESP8266

• Why are we dropping support for ESP8266?

• About ESP8266 for CircuitPython (3.x)

• Installing CircuitPython on the ESP8266

• Download esptool

• Download Latest CircuitPython Firmware

• Get ESP8266 Ready For Bootloading

• Erase ESP8266

• Program ESP8266

• Upload Libraries & Files Using Ampy!

• Other Stuff To Know!

©Adafruit Industries Page 6 of 153

Welcome To CircuitPython

So, you've got a new CircuitPython compatible board. You plugged it in. Maybe it

showed up as a disk drive called CIRCUITPY. Maybe it didn't! Either way, you need to

know where to go from here. Well, this guide has you covered!

This guide will get you started with CircuitPython!

There are many amazing things about your new board. One of them is the ability to

run CircuitPython. You may have seen that name on the Adafruit site () somewhere.

Not sure what it is? This guide can help!

"But I've never coded in my life. There's no way I do it!" You absolutely can!

CircuitPython is designed to help you learn from the ground up. If you're new to

everything, this is the place to start!

This guide will walk you through how to get started with CircuitPython. You'll learn

how to install CircuitPython, get updated to the newest version of CircuitPython,

setup a serial connection, and edit your code. You'll learn some basics of how

CircuitPython works, and about the CircuitPython libraries. You'll also find a list of

frequently asked questions, and a series of troubleshooting steps if you run into any

issues.

Welcome to CircuitPython!

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

©Adafruit Industries Page 7 of 153

https://www.adafruit.com/

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

CircuitPython is based on Python

Python is the fastest growing programming language. It's taught in schools and

universities. It's a high-level programming language which means it's designed to be

easier to read, write and maintain. It supports modules and packages which means it's

easy to reuse your code for other projects. It has a built in interpreter which means

there are no extra steps, like compiling, to get your code to work. And of course,

Python is Open Source Software which means it's free for anyone to use, modify or

improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already

have Python knowledge, you can easily apply that to using CircuitPython. If you have

no previous experience, it's really simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

©Adafruit Industries Page 8 of 153

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. CircuitPython has builtin support for microcontroller

hardware features like digital I/O pins, hardware buses (UART, I2C, SPI), audio I/

O, and other capabilities. There are also many libraries and drivers for sensors,

breakout boards and other external components.

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being

updated. Adafruit welcomes and encourages feedback from the community, and

incorporate it into the development of CircuitPython. That's the core of the open

source concept. This makes CircuitPython better for you and everyone who uses it!

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

•

•

•

•

•

•

•

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

©Adafruit Industries Page 9 of 153

Download and Install Mu

Download Mu from https://codewith.mu ().

Click the Download link for downloads and

installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the lower

right corner of the window, next to the

"gear" icon. If the mode says "Microbit" or

something else, click the Mode button in

the upper left, and then choose

"CircuitPython" in the dialog box that

appears.

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

Ubuntu users: Mu currently (checked May 4, 2022) does not install properly on

Ubuntu 22.04. See https://github.com/mu-editor/mu/issues to track this issue.

See https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

and https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-

circuitpython for other editors to use.

©Adafruit Industries Page 10 of 153

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://github.com/mu-editor/mu/issues
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/pycharm-and-circuitpython
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681

Mu attempts to auto-detect your board on

startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board and

ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

Installing CircuitPython

As CircuitPython development continues and and there are new releases,

Adafruit will stop supporting older releases. If you are running earlier versions of

CircuitPython, you need to update to the latest. Generally Adafruit will support

the last two major versions.

©Adafruit Industries Page 11 of 153

https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Some of the CircuitPython compatible boards come with CircuitPython installed.

Others are CircuitPython-ready, but need to have it installed. As well, you may want to

update the version of CircuitPython already installed on your board. The steps are the

same for installing and updating. This section will cover how to install or update

CircuitPython on your board.

Download the latest version!

The first thing you'll want to do is download the most recent version of CircuitPython.

If you're already running CircuitPython, make sure you're running the latest version! If

you're unsure, you can follow the steps below to ensure you have the latest version

installed.

ALWAYS BACKUP YOUR CODE BEFORE INSTALLING OR UPDATING

CIRCUITPYTHON. Most of the time, nothing will be removed from your board during

the update, but it can happen. If you already have code on your board, be sure to

back it up to your computer before following the steps below.

Download the latest software for your board by clicking the green button below to go

to CircuitPython.org ().

Click here to download

CircuitPython from CircuitPython.org

You only have to install CircuitPython ONCE. After that you are free to code all

you like without going through this process again until it's time to upgrade!

Always back up your code before installing or updating CircuitPython!

©Adafruit Industries Page 12 of 153

https://circuitpython.org/downloads
https://circuitpython.org/downloads

Next, you'll want to plug in your board using a known-good USB data cable. Make

sure the USB cable is a data cable! There are some that work only for charging and

can lead to a lot of frustration.

Windows 7 and 8.1 Drivers

If you're using Windows 7 or 8.1, check out the Windows 7 and 8.1 Drivers page () for

details.

It is highly recommended that you upgrade to Windows 10.

Start the UF2 Bootloader

Nearly all CircuitPython boards ship with a bootloader called UF2 (USB Flashing

Format) that makes installing and updating CircuitPython a quick and easy process.

The bootloader is the mode your board needs to be in for the CircuitPython .uf2 file

you downloaded to work. If the file you downloaded that matches the board name

ends in uf2 then you want to continue with this section. However, if the file ends in

.bin, you have to do a more complex installation - go to this page () for details.

If you're using Windows 7 or 8.1, you need to install a driver before plugging in

your board.

©Adafruit Industries Page 13 of 153

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/non-uf2-installation

For most boards:

Find the reset button on your board. It's a small, black button, and on most of the

boards, it will be the only button available. It is typically labeled RESET or RST on the

board. (On Circuit Playground Express and Bluefruit, it's the smaller button located in

the center of the board.)

Tap this button twice to enter the bootloader. If it doesn't work on the first try, don't be

discouraged. The rhythm of the taps needs to be correct and sometimes it takes a

few tries. If you have a Circuit Playground Express, and it's fresh-out-of-the-bag try

pressing the button once.

For RP2040 boards:

You'll want to find two buttons on the RP2040 boards: reset and BOOTSEL/BOOT. The

two buttons are the same size - small black buttons. Reset is typically labeled RESET

or RST on the board. The boot button is labeled BOOTSEL or BOOT on the board.

©Adafruit Industries Page 14 of 153

To enter the bootloader on an RP2040 board, you must hold down the boot select

button, and while continuing to hold it, press and release the reset button. Continue

to hold the boot select button until the bootloader drive appears.

Bootloader Mode

Once successful, the RGB status LED(s) on the board will flash red and then stay

green. A new drive will show up on your computer.

For most boards:

The drive will be called boardnameBOOT where boardname is a reference to your

specific board. For example, a basic Feather will have FEATHERBOOT and a Trinket

will have TRINKETBOOT etc.

For RP2040 boards:

The drive will be called RPI-RP2 on all RP2040 boards.

Going forward, the bootloader drive will be referred to as the boot drive.

The board is now in bootloader mode! This is what you need to install or update

CircuitPython.

©Adafruit Industries Page 15 of 153

Install CircuitPython

Now find the file you downloaded. Drag that file to the boot drive on your computer.

The lights should flash again, boot will disappear and a new drive will show up on

your computer called CIRCUITPY.

Congratulations! You've successfully installed or updated CircuitPython!

©Adafruit Industries Page 16 of 153

What's the difference between CIRCUITPY

and boardnameBOOT or RPI-RP2?

When you plug a CircuitPython board into your computer, your computer will see the

board's flash memory as a USB flash drive where files can be stored. When you have

successfully installed CircuitPython, you'll see the CIRCUITPY drive. When you

double-tap the reset button on most boards, you'll see the boardnameBOOT drive, or

when hold boot select and tap reset for RP2040 boards, you'll see RPI-RP2. You can

drag files to the boot drives and CIRCUITPY, but only CIRCUITPY will run your

CircuitPython code.

Normally, when you drag a file to a mounted USB drive, the file copies to the drive

and then is able to be seen in your file explorer. However, when you drag the

CircuitPython UF2 file to the boot drive, it seems to disappear, and the drive

disconnects. This is normal! The UF2 is essentially an installer file, and does not

simply sit on the drive, but installs CircuitPython if the board is in bootloader mode

(i.e. the boot drive).

You will be able to copy other files to the boot drive but they will not run or be

accessible to CircuitPython. So make sure that once you're done installing

CircuitPython, that you're dragging to and editing files on the CIRCUITPY drive!

Bootloader Drive Names

This list is not exhaustive, but should give you an idea what to look for in a bootloader

drive name.

Feather RP2040 = RPI-RP2

QT Py RP2040 = RPI-RP2

ItsyBitsy RP2040 = RPI-RP2

Trinket M0 = TRINKETBOOT

Gemma M0 = GEMMABOOT

Circuit Playground Express = CPLAYBOOT

ItsyBitsy M0 Express = ITSYBOOT

ItsyBitsy M4 Express = ITSYM4BOOT

Feather M0 Express = FEATHERBOOT

Feather M4 Express = FEATHERBOOT

Metro M0 Express = METROBOOT

Metro M4 Express = METROM4BOOT

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 17 of 153

Grand Central M4 Express = GCM4BOOT

NeoTrelis M4 Express = TRELM4BOOT

PyPortal, Pynt and Titano = PORTALBOOT

Windows 7 and 8.1 Drivers

If you're using Windows 7 or 8.1, you'll need to install a driver to use a CircuitPython-

compatible board. You do not need to install drivers on Mac, Linux or Windows 10.

First, uninstall any older versions of the driver with the following steps:

Unplug any boards.

Navigate to Uninstall or Change a Program by opening Control Panel-

>Programs->Uninstall a program.

Uninstall everything named "Windows Driver Package - Adafruit Industries LLC

...".

Next, download the new 2.5.0.0 (or higher) Adafruit Windows Drivers Package using

the following link:

Download Adafruit Windows 7/8.1

Driver Installer

When running the installer, you'll be shown a list of drivers to choose from. You can

check and uncheck the boxes to choose which drivers to install.

•

•

•

If you're using Windows 7 or 8.1, you need to install a driver before plugging in

your board.

•

•

•

©Adafruit Industries Page 18 of 153

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest

It is recommended that you upgrade to Windows 10. Windows 10 makes the drivers

unnecessary and solves other problems.There are currently no plans to update the

available drivers, given that Windows 7 is end-of-life. As of this writing, you can still

upgrade for free from Windows 7 or 8.1 to Windows 10. See these () links ().

The CIRCUITPY Drive

When CircuitPython finishes installing, or you plug a CircuitPython board into your

computer with CircuitPython already installed, the board shows up on your computer

as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and files will live.

You can edit your code directly on this drive and when you save, it will run

automatically. When you create and edit code, you'll save your code in a code.py file

located on the CIRCUITPY drive. If you're following along with a Learn guide, you can

paste the contents of the tutorial example into code.py on the CIRCUITPY drive and

save it to run the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a code.py file

containing print("Hello World!") and an empty lib folder. If your CIRCUITPY

drive does not contain a code.py file, you can easily create one and save it to the

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7/8.1 drivers for CircuitPython boards released since then, including

RP2040 boards, are not available. The boards work fine on Windows 10 without

extra drivers.

©Adafruit Industries Page 19 of 153

https://www.cnet.com/how-to/how-to-download-windows-10-for-free-now-that-windows-7-is-dead/
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

drive. CircuitPython looks for code.py and executes the code within the file

automatically when the board starts up or resets. Following a change to the contents

of CIRCUITPY, such as making a change to the code.py file, the board will reset, and

the code will be run. You do not need to manually run the code. This is what makes it

so easy to get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new file,

renaming a current file, or deleting an existing file will trigger a reset of the board.

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support native USB.

Those boards cannot present a CIRCUITPY drive. This includes boards using ESP32

or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You can use the

Thonny editor (), which uses hidden commands sent to the REPL to read and write

files. Or you can use the CircuitPython web workflow, introduced in Circuitpython 8.

The web workflow provides browser-based WiFi access to the CircuitPython

filesystem. These guides will help you with the web workflow:

CircuitPython on ESP32 Quick Start ()

CircuitPython Web Workflow Code Editor Quick Start ()

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

•

•

©Adafruit Industries Page 20 of 153

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page () has more details. Otherwise, make sure you do

"Eject" or "Safe Remove" on Windows or "sync" on Linux after writing a file if you

aren't using Mu. (This is not a problem on MacOS.)

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your editor,

and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example ().

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

©Adafruit Industries Page 21 of 153

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them, and

they're indented exactly the same amount.

All the lines before that have no spaces

before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 22 of 153

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on your

CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page () for details on different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 23 of 153

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting () page of every board

guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 24 of 153

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.tx

t, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

Exploring Your First CircuitPython Program

First, you'll take a look at the code you're editing.

Here is the original code again:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

©Adafruit Industries Page 25 of 153

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. The files built into CircuitPython are called m

odules, and the files you load separately are called libraries. Modules are built into

CircuitPython. Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board

import digitalio

import time

The import statements tells the board that you're going to use a particular library or

module in your code. In this example, you imported three modules: board ,

digitalio , and time . All three of these modules are built into CircuitPython, so no

separate library files are needed. That's one of the things that makes this an excellent

first example. You don't need anything extra to make it work!

These three modules each have a purpose. The first one, board , gives you access to

the hardware on your board. The second, digitalio , lets you access that hardware

as inputs/outputs. The third, time , let's you control the flow of your code in multiple

ways, including passing time by 'sleeping'.

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED . So, you initialise that pin, and you set it to

output. You set led to equal the rest of that information so you don't have to type it

all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially means,

"forever do the following:". while True: creates a loop. Code will loop "while" the

condition is "true" (vs. false), and as True is never False, the code will loop forever.

All code that is indented under while True: is "inside" the loop.

©Adafruit Industries Page 26 of 153

Inside our loop, you have four items:

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

First, you have led.value = True . This line tells the LED to turn on. On the next

line, you have time.sleep(0.5) . This line is telling CircuitPython to pause running

code for 0.5 seconds. Since this is between turning the led on and off, the led will be

on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off, and tim

e.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds. This occurs

between turning the led off and back on so the LED will be off for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is running!

So, when you changed the first 0.5 to 0.1 , you decreased the amount of time that

the code leaves the LED on. So it blinks on really quickly before turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes Running?

When your code finishes running, CircuitPython resets your microcontroller board to

prepare it for the next run of code. That means any set up you did earlier no longer

applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop entirely,

and replacing it with led.value = True . The LED will flash almost too quickly to

see, and turn off. This is because the code finishes running and resets the pin state,

and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite or

otherwise.

©Adafruit Industries Page 27 of 153

What if I Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can lead to some

unexpected behavior in simple programs like this since the "exit" also resets the state

of the hardware. This is a different behavior than running commands via REPL. So if

you are writing a simple program that doesn't seem to work, you may need to add a

loop to the end so the program doesn't exit.

The simplest loop would be:

while True:

 pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs ().

Connecting to the Serial Console

One of the staples of CircuitPython (and programming in general!) is something called

a "print statement". This is a line you include in your code that causes your code to

output text. A print statement in CircuitPython (and Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where the serial

console comes in!

The serial console receives output from your CircuitPython board sent over USB and

displays it so you can see it. This is necessary when you've included a print statement

in your code and you'd like to see what you printed. It is also helpful for

troubleshooting errors, because your board will send errors and the serial console will

display those too.

The serial console requires an editor that has a built in terminal, or a separate

©Adafruit Industries Page 28 of 153

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

terminal program. A terminal is a program that gives you a text-based interface to

perform various tasks.

Are you using Mu?

If so, good news! The serial console is built into Mu and will autodetect your board

making using the serial console really really easy.

First, make sure your CircuitPython board

is plugged in.

If you open Mu without a board plugged

in, you may encounter the error seen here,

letting you know no CircuitPython board

was found and indicating where your code

will be stored until you plug in a board.

If you are using Windows 7, make sure you

installed the drivers ().

Once you've opened Mu with your board plugged in, look for the Serial button in the

button bar and click it.

The Mu window will split in two, horizontally, and display the serial console at the

bottom.

If nothing appears in the serial console, it may mean your code is done running

or has no print statements in it. Click into the serial console part of Mu, and press

CTRL+D to reload.

©Adafruit Industries Page 29 of 153

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the serial

console, or are seeing "AT" and other gibberish when you connect, then the

modemmanager service might be interfering. Just remove it; it doesn't have much use

unless you're still using dial-up modems.

To remove modemmanager , type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you press the S

erial button, you need to add yourself to a user group to have permission to connect

to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to the group.

On other Linux distributions, the group you need may be different. See the Advanced

Serial Console on Linux () for details on how to add yourself to the right group.

Using Something Else?

If you're not using Mu to edit, are using or if for some reason you are not a fan of its

built in serial console, you can run the serial console from a separate program.

©Adafruit Industries Page 30 of 153

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Windows requires you to download a terminal program. Check out the Advanced

Serial Console on Windows page for more details. ()

MacOS has Terminal built in, though there are other options available for download. C

heck the Advanced Serial Console on Mac page for more details. ()

Linux has a terminal program built in, though other options are available for

download. Check the Advanced Serial Console on Linux page for more details. ()

Once connected, you'll see something like the following.

Interacting with the Serial Console

Once you've successfully connected to the serial console, it's time to start using it.

The code you wrote earlier has no output to the serial console. So, you're going to

edit it to create some output.

Open your code.py file into your editor, and include a print statement. You can print

anything you like! Just include your phrase between the quotation marks inside the

parentheses. For example:

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello, CircuitPython!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial console.

©Adafruit Industries Page 31 of 153

file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Excellent! Our print statement is showing up in our console! Try changing the printed

text to something else.

import board

import digitalio

import time

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = True

 time.sleep(1)

 led.value = False

 time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll see what

the serial console displays when the board reboots. Then you'll see your new change!

The Traceback (most recent call last): is telling you the last thing your board

was doing before you saved your file. This is normal behavior and will happen every

time the board resets. This is really handy for troubleshooting. Let's introduce an error

so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it says le

d.value = Tru

import board

import digitalio

import time

©Adafruit Industries Page 32 of 153

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

 print("Hello back to you!")

 led.value = Tru

 time.sleep(1)

 led.value = False

 time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you may have a

colored status LED blinking at you. This is because the code is no longer correct and

can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on purpose.

You may have 200 lines of code, and have no idea where your error could be hiding.

This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing it was

able to run was line 10 in your code. The next line is your error: NameError: name

'Tru' is not defined . This error might not mean a lot to you, but combined with

knowing the issue is on line 10, it gives you a great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what the

problem is already. But if you didn't, you'd want to look at line 10 and see if you could

figure it out. If you're still unsure, try googling the error to get some help. In this case,

you know what to look for. You spelled True wrong. Fix the typo and save your file.

©Adafruit Industries Page 33 of 153

Nice job fixing the error! Your serial console is streaming and your red LED Is blinking

again.

The serial console will display any output generated by your code. Some sensors,

such as a humidity sensor or a thermistor, receive data and you can use print

statements to display that information. You can also use print statements for

troubleshooting, which is called "print debugging". Essentially, if your code isn't

working, and you want to know where it's failing, you can put print statements in

various places to see where it stops printing.

The serial console has many uses, and is an amazing tool overall for learning and

programming!

The REPL

The other feature of the serial connection is the Read-Evaluate-Print-Loop, or REPL.

The REPL allows you to enter individual lines of code and have them run immediately.

It's really handy if you're running into trouble with a particular program and can't

figure out why. It's interactive so it's great for testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once that

connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop and you'll

see Press any key to enter the REPL. Use CTRL-D to reload. Follow those

instructions, and press any key on your keyboard.

©Adafruit Industries Page 34 of 153

The Traceback (most recent call last): is telling you the last thing your board

was doing before you pressed Ctrl + C and interrupted it. The KeyboardInterrupt

is you pressing CTRL+C. This information can be handy when troubleshooting, but for

now, don't worry about it. Just note that it is expected behavior.

If your code.py file is empty or does not contain a loop, it will show an empty output

and Code done running. . There is no information about what your board was

doing before you interrupted it because there is no code running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL immediately

after pressing CTRL+C. Again, there is no information about what your board was

doing before you interrupted it because there is no code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to the

REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few more times.

©Adafruit Industries Page 35 of 153

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was released.

Next, it gives you the type of board you're using and the type of microcontroller the

board uses. Each part of this may be different for your board depending on the

versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first thing you'll do

is run help() . This will tell you where to start exploring the REPL. To run code in the

REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of CircuitPython you're

using. Second, a URL for the CircuitPython related project guides. Then... wait. What's

this? To list built-in modules type `help("modules")`. Remember the

modules you learned about while going through creating code? That's exactly what

this is talking about! This is a perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

©Adafruit Industries Page 36 of 153

This is a list of all the core modules built into CircuitPython, including board .

Remember, board contains all of the pins on the board that you can use in your

code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt. It might

look like nothing happened, but that's not the case! If you recall, the import

statement simply tells the code to expect to do something with that module. In this

case, it's telling the REPL that you plan to do something with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use in your

code. Each board's list will differ slightly depending on the number of pins available.

Do you see LED ? That's the pin you used to blink the red LED!

The REPL can also be used to run code. Be aware that any code you enter into the

REPL isn't saved anywhere. If you're testing something new that you'd like to keep,

make sure you have it saved somewhere on your computer as well!

Every programmer in every programming language starts with a piece of code that

says, "Hello, World." You're going to say hello to something else. Type into the REPL:

print("Hello, CircuitPython!")

©Adafruit Industries Page 37 of 153

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write entire

programs into the REPL to test them. Remember that nothing typed into the REPL is

saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you want to

see if a few new lines of code will work. It's fantastic for troubleshooting code by

entering it one line at a time and finding out where it fails. It lets you see what

modules are available and explore those modules.

Try typing more into the REPL to see what happens!

Returning to the Serial Console

When you're ready to leave the REPL and return to the serial console, simply press CT

RL+D. This will reload your board and reenter the serial console. You will restart the

program you had running before entering the REPL. In the console window, you'll see

any output from the program you had running. And if your program was affecting

anything visual on the board, you'll see that start up again as well.

You can return to the REPL at any time!

Everything typed into the REPL is ephemeral. Once you reload the REPL or return

to the serial console, nothing you typed will be retained in any memory space. So

be sure to save any desired code you wrote somewhere else, or you'll lose it

when you leave the current REPL instance!

©Adafruit Industries Page 38 of 153

CircuitPython Libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs () are an excellent reference for how it all should work. In Python terms, you can

place our library files in the lib directory because it's part of the Python path by

default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 39 of 153

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

The Adafruit Learn Guide Project Bundle

The quickest and easiest way to get going with a project from the Adafruit Learn

System is by utilising the Project Bundle. Most guides now have a Download Project

Bundle button available at the top of the full code example embed. This button

downloads all the necessary files, including images, etc., to get the guide project up

and running. Simply click, open the resulting zip, copy over the right files, and you're

good to go!

The first step is to find the Download Project Bundle button in the guide you're

working on.

The Download Project Bundle button is only available on full demo code

embedded from GitHub in a Learn guide. Code snippets will NOT have the

button available.

©Adafruit Industries Page 40 of 153

The Download Project Bundle button downloads a zip file. This zip contains a series

of directories, nested within which is the code.py, any applicable assets like images or

audio, and the lib/ folder containing all the necessary libraries. The following zip was

downloaded from the Piano in the Key of Lime guide.

When you open the zip, you'll find some nested directories. Navigate through them

until you find what you need. You'll eventually find a directory for your CircuitPython

version (in this case, 7.x). In the version directory, you'll find the file and directory you

need: code.py and lib/. Once you find the content you need, you can copy it all over

to your CIRCUITPY drive, replacing any files already on the drive with the files from

the freshly downloaded zip.

When you copy the contents of the Project Bundle to your CIRCUITPY drive, it

will replace all the existing content! If you don't want to lose anything, ensure you

copy your current code to your computer before you copy over the new Project

Bundle content!

The Piano in the Key of Lime guide was chosen as an example. That guide is

specific to Circuit Playground Express, and cannot be used on all boards. Do not

expect to download that exact bundle and have it work on your non-CPX

microcontroller.

In some cases, there will be other files such as audio or images in the same

directory as code.py and lib/. Make sure you include all the files when you copy

things over!

©Adafruit Industries Page 41 of 153

Once you copy over all the relevant files, the project should begin running! If you find

that the project is not running as expected, make sure you've copied ALL of the

project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

©Adafruit Industries Page 42 of 153

https://circuitpython.org/libraries

The CircuitPython Community Library

Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

©Adafruit Industries Page 43 of 153

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

•

•

©Adafruit Industries Page 44 of 153

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

©Adafruit Industries Page 45 of 153

However, import statements can also sometimes look like the following:

from library_or_module import name

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section () on The REPL page () in this guide, the

help("modules") command is discussed. This command provides a list of all of the

built-in modules available in CircuitPython for your board. So, if you connect to the

serial console on your board, and enter the REPL, you can run help("modules") to

see what modules are available for your board. Then, as you read through the impor

t statements, you can, for the purposes of figuring out which libraries to load, ignore

the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

•

©Adafruit Industries Page 46 of 153

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 47 of 153

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing

Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

©Adafruit Industries Page 48 of 153

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportEr

ror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page ().

Updating CircuitPython Libraries and

Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

©Adafruit Industries Page 49 of 153

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp () that can be used to

easily install and update libraries on your device. Follow the directions on the install

page within the CircUp learn guide (). Once you've got it installed you run the

command circup update in a terminal to interactively update all libraries on the

connected CircuitPython device. See the usage page in the CircUp guide () for a full

list of functionality

CircuitPython Hardware

Perhaps you're new to electronics and programming. Maybe you're a pro, but you've

never worked with CircuitPython. Working with CircuitPython is super simple, but

requires that you have a CircuitPython compatible microcontroller. Some boards are

better than others for getting started than others. So which one do you choose?

This page contains all of the beginner CircuitPython compatible boards and a bit

about the features of each one. You're ready to get started, now to figure out what

features will work best for you!

©Adafruit Industries Page 50 of 153

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage

Circuit Playground Express

Circuit Playground Express

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333

The Adafruit Circuit Playground Express, running the ATSAMD21 microcontroller, is

the perfect board for beginners to electronics and programming. It has tons built in:

ten RGB NeoPixel LEDs, an accelerometer, temperature, light and sound sensors, mini

speaker, two buttons, a slide switch, IR transmitter and receiver, little red LED, and

eight alligator-clip friendly GPIO pads, seven of which can act as touch pads.

This is an excellent beginner choice that does not require any soldering.

Circuit Playground Bluefruit

Circuit Playground Bluefruit - Bluetooth

Low Energy

Circuit Playground Bluefruit is our third

board in the Circuit Playground series,

another step towards a perfect

introduction to electronics and

programming. We've...

https://www.adafruit.com/product/4333

The Adafruit Circuit Playground Bluefruit, running the Bluetooth LE capabile

nRF52840, is an all-in-one board designed to get you started with programming an

electronics. It's loaded with all kinds of LEDs, sensors and inputs, including an

accelerometer, light, temperature, and sound sensors, touch pads, buttons, switch,

NeoPixel LEDs, speaker, and more. Additional capabilities can be added via the

alligator clip friendly pads.

©Adafruit Industries Page 51 of 153

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333

This is an excellent beginner choice that does not require any soldering.

Circuit Playground Express or Bluefruit?

There are two great Circuit Playground options for using CircuitPython. So which one

is better for you? You'll be fine with either, but here a few key differences that may

drive you one way or the other.

The Circuit Playground Express has more support in MakeCode () / Code.org

and the SAMD21 is a more universal processor. Theres a lot more example

codes for it. However, it's an older chip so not as powerful and of course, does

not have Bluetooth LE wireless

The Circuit Playground Bluefruit does not have an IR transceiver (for remote

control projects) because it has BLE instead. The processor is more powerful,

has tons more memory which comes in handy with CircuitPython projects as

they grow. However, its a newer chip, and does not have full MakeCode

support, Code.org CS Discoveries support, or as many projects.

It also has Bluetooth LE connectivity so it can wirelessly connect to computers,

phones, tablets and other devices.

QT Py RP2040

Easily interface to STEMMA QT / Qwiic sensors and breakouts.

Adafruit QT Py RP2040

What a cutie pie! Or is it... a QT Py? This

diminutive dev board comes with one of

our new favorite chip, the RP2040. It's

been made famous in the new

https://www.adafruit.com/product/4900

•

•

The original ATmega 32u4 based Circuit Playground (Renamed the Circuit

Playground Classic) is NOT CircuitPython compatible. Use the Express or

Bluefruit versions.

©Adafruit Industries Page 52 of 153

https://makecode.com
https://www.adafruit.com/product/4900
https://www.adafruit.com/product/4900

The Adafruit QT Py uses an RP2040 microcontroller, has 11 GPIO pins, a built in RGB

NeoPixel LED, and a USB Type C connector, in the same size, form factor and pinout

as the Seeed Xiao. There is 8MB of flash for CircuitPython and file storage. The built

in STEMMA QT connector makes it super simple to use any of the available STEMMA

QT sensors and breakouts () with no soldering required.

This is a good choice if you want an easy way to interface to STEMMA QT / Qwiic

connected sensors without a lot of expense

Feather M4 Express

Adafruit Feather M4 Express - Featuring

ATSAMD51

It's what you've been waiting for, the

Feather M4 Express featuring ATSAMD51.

This Feather is fast like a swift, smart like

an owl, strong like a ox-bird (it's half ox,...

https://www.adafruit.com/product/3857

The Adafruit Feather M4 Express is running the ATSAMD51 microcontroller. With some

light soldering, this board enables you to use the many FeatherWings available (),

which provides a ton of possibilities without a lot of wiring necessary. It has 21 GPIO

pins, a little red LED and an RGB NeoPixel LED. You can power it with and charge a

lipoly battery.

A good choice if you want access to Feather ecosystem and its many FeatherWing

add on boards. The board is very powerful and runs CircuitPython very nicely

©Adafruit Industries Page 53 of 153

https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/category/945

Metro M4

Adafruit Metro M4 feat. Microchip

ATSAMD51

Are you ready? Really ready? Cause here

comes the fastest, most powerful Metro

ever. The Adafruit Metro M4 featuring the

Microchip ATSAMD51. This...

https://www.adafruit.com/product/3382

The Adafruit Metro M4, featuring the ATSAMD51 microcontroller, is a development

board in the Metro form factor. It boasts 25 GPIO pins, along with four indicator LEDs

and an RGB NeoPixel LED. It can be powered via USB using the micro USB connector,

or through the DC jack. The great thing about this board is that it's compatible with Ar

duino Shields (), meaning there are a ton of possibilities available without a lot of

wiring necessary.

This board can also be used with the examples from the Metro Experimenter's Guide (

).

A good choice if you want something in the classic Arduino UNO form factor for use

with the many available Arduino shields. The board is very powerful and runs

CircuitPython very nicely

Itsy Bitsy M4 Starter Kit

A more hands on approach with some light soldering required.

©Adafruit Industries Page 54 of 153

https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3382
https://www.adafruit.com/category/21
https://www.adafruit.com/category/21
https://learn.adafruit.com/experimenters-guide-for-metro

CircuitPython Starter Kit with Adafruit Itsy

Bitsy M4

You've heard about CircuitPython and

maybe you want to get started fast with a

breadboard-friendly microcontroller

board! We recommend the ItsyBitsy M4 - a

super fast chip...

https://www.adafruit.com/product/4028

This kit does require some soldering to attach the header pins to the Itsy Bitsy M4. It

also requires building up each circuit to use the various components. However, this

does allow you to gain more experience by being more hands on with the hardware.

This a good choice if you are comfortable soldering and building circuits and want a

more hands on experience. The board is very powerful and runs CircuitPython very

nicely

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started with and

great for learning. It runs on microcontrollers and works out of the box. You can plug it

in and get started with any text editor. The best part? CircuitPython comes with an

amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's available for

anyone to use, edit, copy and improve upon. This also means CircuitPython becomes

better because of you being a part of it. Whether this is your first microcontroller

©Adafruit Industries Page 55 of 153

https://www.adafruit.com/product/4028
https://www.adafruit.com/product/4028
https://www.adafruit.com/product/4028

board or you're a seasoned software engineer, you have something important to offer

the Adafruit CircuitPython community. This page highlights some of the many ways

you can be a part of it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the community

comes together to volunteer and provide live support of all kinds. From general

discussion to detailed problem solving, and everything in between, Discord is a digital

maker space with makers from around the world.

There are many different channels so you can choose the one best suited to your

needs. Each channel is shown on Discord as "#channelname". There's the #help-with-

projects channel for assistance with your current project or help coming up with ideas

for your next one. There's the #show-and-tell channel for showing off your newest

creation. Don't be afraid to ask a question in any channel! If you're unsure, #general is

a great place to start. If another channel is more likely to provide you with a better

answer, someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython questions.

#help-with-circuitpython is there for new users and developers alike so feel free to

ask a question or post a comment! Everyone of any experience level is welcome to

join in on the conversation. Your contributions are important! The #circuitpython-dev

channel is available for development discussions as well.

The easiest way to contribute to the community is to assist others on Discord.

Supporting others doesn't always mean answering questions. Join in celebrating

successes! Celebrate your mistakes! Sometimes just hearing that someone else has

gone through a similar struggle can be enough to keep a maker moving forward.

©Adafruit Industries Page 56 of 153

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your

granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking forward to

meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the best place to

find information about CircuitPython is circuitpython.org (). Everything you need to get

started with your new microcontroller and beyond is available. You can do things like

download CircuitPython for your microcontroller () or download the latest

CircuitPython Library bundle (), or check out which single board computers support

Blinka (). You can also get to various other CircuitPython related things like Awesome

CircuitPython or the Python for Microcontrollers newsletter. This is all incredibly

useful, but it isn't necessarily community related. So why is it included here? The Cont

ributing page ().

CircuitPython itself is written in C. However, all of the Adafruit CircuitPython libraries

are written in Python. If you're interested in contributing to CircuitPython on the

Python side of things, check out circuitpython.org/contributing (). You'll find

information pertaining to every Adafruit CircuitPython library GitHub repository, giving

©Adafruit Industries Page 57 of 153

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/blinka
https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://circuitpython.org/contributing

you the opportunity to join the community by finding a contributing option that works

for you.

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them reflected on the

Contributing page, it could be that the job that checks for new updates hasn't yet run

for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

GitHub pull requests, or PRs, are opened when folks have added something to an

Adafruit CircuitPython library GitHub repo, and are asking for Adafruit to add, or

merge, their changes into the main library code. For PRs to be merged, they must first

be reviewed. Reviewing is a great way to contribute! Take a look at the list of open

pull requests, and pick one that interests you. If you have the hardware, you can test

code changes. If you don't, you can still check the code updates for syntax. In the

case of documentation updates, you can verify the information, or check it for spelling

and grammar. Once you've checked out the update, you can leave a comment letting

us know that you took a look. Once you've done that for a while, and you're more

comfortable with it, you can consider joining the CircuitPythonLibrarians review team.

The more reviewers we have, the more authors we can support. Reviewing is a crucial

part of an open source ecosystem, CircuitPython included.

©Adafruit Industries Page 58 of 153

Open Issues

The second tab you'll find is a list of open issues.

GitHub issues are filed for a number of reasons, including when there is a bug in the

library or example code, or when someone wants to make a feature request. Issues

are a great way to find an opportunity to contribute directly to the libraries by

updating code or documentation. If you're interested in contributing code or

documentation, take a look at the open issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels are

applied to issues to make the goal easier to identify at a first glance, or to indicate the

difficulty level of the issue. Click on the dropdown next to "Sort by issue labels" to see

the list of available labels, and click on one to choose it.

If you're new to everything, new to contributing to open source, or new to

contributing to the CircuitPython project, you can choose "Good first issue". Issues

with that label are well defined, with a finite scope, and are intended to be easy for

someone new to figure out.

©Adafruit Industries Page 59 of 153

If you're looking for something a little more complicated, consider "Bug" or

"Enhancement". The Bug label is applied to issues that pertain to problems or failures

found in the library. The Enhancement label is applied to feature requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there is a guide ()

to walk you through the entire process. As well, there are always folks available on Di

scord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

This section is generated by a script that runs checks on the libraries, and then

reports back where there may be issues. It is made up of a list of subsections each

containing links to the repositories that are experiencing that particular issue. This

page is available mostly for internal use, but you may find some opportunities to

contribute on this page. If there's an issue listed that sounds like something you could

help with, mention it on Discord, or file an issue on GitHub indicating you're working

to resolve that issue. Others can reply either way to let you know what the scope of it

might be, and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

©Adafruit Industries Page 60 of 153

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord
https:adafru.it/discord

If you speak another language, you can help translate CircuitPython! The translations

apply to informational and error messages that are within the CircuitPython core. It

means that folks who do not speak English have the opportunity to have these

messages shown to them in their own language when using CircuitPython. This is

incredibly important to provide the best experience possible for all users.

CircuitPython uses Weblate to translate, which makes it much simpler to contribute

translations. You will still need to know some CircuitPython-specific practices and a

few basics about coding strings, but as with any CircuitPython contributions, folks are

there to help.

Regardless of your skill level, or how you want to contribute to the CircuitPython

project, there is an opportunity available. The Contributing page () is an excellent

place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like to

contribute, there are ways for everyone to be a part of the CircuitPython project. The

CircuitPython core is written in C. The libraries are written in Python. GitHub is the

best source of ways to contribute to the CircuitPython core (), and the CircuitPython

libraries (). If you need an account, visit https://github.com/ () and sign up.

If you're new to GitHub or programming in general, there are great opportunities for

you. For the CircuitPython core, head over to the CircuitPython repository on GitHub,

click on "Issues ()", and you'll find a list that includes issues labeled "good first issue ()"

. For the libraries, head over to the Contributing page Issues list (), and use the drop

down menu to search for "good first issue ()". These issues are things that have been

identified as something that someone with any level of experience can help with.

These issues include options like updating documentation, providing feedback, and

fixing simple bugs. If you need help getting started with GitHub, there is an excellent

guide on Contributing to CircuitPython with Git and GitHub ().

©Adafruit Industries Page 61 of 153

https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either issues

list and you'll find plenty of ways to contribute. You'll find all sorts of things, from new

driver requests, to library bugs, to core module updates. There's plenty of

opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries, you may find

problems. If you find a bug, that's great! The team loves bugs! Posting a detailed issue

to GitHub is an invaluable way to contribute to improving CircuitPython. For

CircuitPython itself, file an issue here (). For the libraries, file an issue on the specific

library repository on GitHub. Be sure to include the steps to replicate the issue as well

as any other information you think is relevant. The more detail, the better!

Testing new software is easy and incredibly helpful. Simply load the newest version of

CircuitPython or a library onto your CircuitPython hardware, and use it. Let us know

about any problems you find by posting a new issue to GitHub. Software testing on

both stable and unstable releases is a very important part of contributing

CircuitPython. The developers can't possibly find all the problems themselves! They

need your help to make CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report problems and

much more. If you have questions, remember that Discord and the Forums are both

there for help!

Adafruit Forums

The Adafruit Forums () are the perfect place for support. Adafruit has wonderful paid

support folks to answer any questions you may have. Whether your hardware is giving

you issues or your code doesn't seem to be working, the forums are always there for

©Adafruit Industries Page 62 of 153

https://github.com/adafruit/circuitpython/issues
https://forums.adafruit.com

you to ask. You need an Adafruit account to post to the forums. You can use the same

account you use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the forums

are a more reliable source of information. If you want to be certain you're getting an

Adafruit-supported answer, the forums are the best place to be.

There are forum categories that cover all kinds of topics, including everything

Adafruit. The Adafruit CircuitPython () category under "Supported Products & Projects"

is the best place to post your CircuitPython questions.

Be sure to include the steps you took to get to where you are. If it involves wiring,

post a picture! If your code is giving you trouble, include your code in your post!

These are great ways to make sure that there's enough information to help you with

your issue.

You might think you're just getting started, but you definitely know something that

someone else doesn't. The great thing about the forums is that you can help others

too! Everyone is welcome and encouraged to provide constructive feedback to any of

the posted questions. This is an excellent way to contribute to the community and

share your knowledge!

Read the Docs

©Adafruit Industries Page 63 of 153

https://forums.adafruit.com/viewforum.php?f=60

Read the Docs () is a an excellent resource for a more detailed look at the

CircuitPython core and the CircuitPython libraries. This is where you'll find things like

API documentation and example code. For an in depth look at viewing and

understanding Read the Docs, check out the CircuitPython Documentation () page!

CircuitPython Documentation

You've learned about the CircuitPython built-in modules and external libraries. You

know that you can find the modules in CircuitPython, and the libraries in the Library

Bundles. There are guides available that explain the basics of many of the modules

and libraries. However, there's sometimes more capabilities than are necessarily

showcased in the guides, and often more to learn about a module or library. So,

where can you find more detailed information? That's when you want to look at the

API documentation.

The entire CircuitPython project comes with extensive documentation available on

Read the Docs. This includes both the CircuitPython core () and the Adafruit

CircuitPython libraries ().

CircuitPython Core Documentation

The CircuitPython core documentation () covers many of the details you might want to

know about the CircuitPython core and related topics. It includes API and usage info,

a design guide and information about porting CircuitPython to new boards,

MicroPython info with relation to CircuitPython, and general information about the

project.

©Adafruit Industries Page 64 of 153

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/

The main page covers the basics including where to download CircuitPython, how to

contribute, differences from MicroPython, information about the project structure, and

a full table of contents for the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is API and Usage. This is where you can find information about how

to use individual built-in core modules, such as time and digitalio , details about

the supported ports, suggestions for troubleshooting, and basic info and links to the li

brary bundles. The Core Modules section also includes the Support Matrix, which is a

table of which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design guide, archit

ecture information, details on porting, and adding module support to other ports.

The third section is MicroPython Specific. It includes information on MicroPython and

related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further information

including details on building, testing, and debugging CircuitPython, along with various

other useful links including the Adafruit Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming, you'll find a

wealth of information to help you along your CircuitPython journey in the

documentation!

©Adafruit Industries Page 65 of 153

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar fashion. Each

library has its own page on Read the Docs. There is a comprehensive list available her

e (). Otherwise, to view the documentation for a specific library, you can visit the

GitHub repository for the library, and find the link in the README.

For the purposes of this page, the LED Animation library () documentation will be

featured. There are two links to the documentation in each library GitHub repo. The

first one is the docs badge near the top of the README.

The second place is the Documentation section of the README. Scroll down to find it,

and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

The Introduction page is generated from the README, so it includes all the same info,

such as PyPI installation instructions, a quick demo, and some build details. It also

includes a full table of contents for the rest of the documentation (which is not part of

the GitHub README). The page should look something like the following.

The left side contains links to the rest of the documentation, divided into three

separate sections: Examples, API Reference, and Other Links.

Not all library documentation will look exactly the same, but this will give you

some idea of what to expect from library docs.

©Adafruit Industries Page 66 of 153

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

Examples

The Examples section () is a list of library examples. This list contains anywhere from a

small selection to the full list of the examples available for the library.

This section will always contain at least one example - the simple test example.

The simple test example is usually a basic example designed to show your setup is

working. It may require other libraries to run. Keep in mind, it's simple - it won't

showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

In some cases, you'll find a longer list, that may include examples that explore other

features in the library. The LED Animation documentation includes a series of

examples, all of which are available in the library. These examples include

demonstrations of both basic and more complex features. Simply click on the example

that interests you to view the associated code.

©Adafruit Industries Page 67 of 153

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

You can view the rest of the examples by clicking through the list or scrolling down

the page. These examples are fully working code. Which is to say, while they may rely

on other libraries as well as the library for which you are viewing the documentation,

they should not require modification to otherwise work.

API Reference

The API Reference section () includes a list of the library functions and classes. The

API (Application Programming Interface) of a library is the set of functions and classes

the library provides. Essentially, the API defines how your program interfaces with the

functions and classes that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code is included

in a single Python (.py) file, will only have one item. Libraries for which the code is

multiple Python files in a directory (called subpackages) will have multiple items in this

list. The LED Animation library has a series of subpackages, and therefore, multiple

items in this list.

Click on the first item in the list to begin viewing the API Reference section.

When there are multiple links in the Examples section, all of the example content

is, in actuality, on the same page. Each link after the first is an anchor link to the

specified section of the page. Therefore, you can also view all the available

examples by scrolling down the page.

As with the Examples section, all of the API Reference content is on a single

page, and the links under API Reference are anchor links to the specified section

of the page.

©Adafruit Industries Page 68 of 153

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

When you click on an item in the API Reference section, you'll find details about the

classes and functions in the library. In the case of only one item in this section, all the

available functionality of the library will be contained within that first and only

subsection. However, in the case of a library that has subpackages, each item will

contain the features of the particular subpackage indicated by the link. The

documentation will cover all of the available functions of the library, including more

complex ones that may not interest you.

The first list item is the animation subpackage. If you scroll down, you'll begin to see

the available features of animation. They are listed alphabetically. Each of these

things can be called in your code. It includes the name and a description of the

specific function you would call, and if any parameters are necessary, lists those with

a description as well.

You can view the other subpackages by clicking the link on the left or scrolling down

the page. You may be interested in something a little more practical. Here is an

example. To use the LED Animation library Comet animation, you would run the

following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match

your wiring if

using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground

Express or QT Py

Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

"""

import board

import neopixel

from adafruit_led_animation.animation.comet import Comet

from adafruit_led_animation.color import JADE

©Adafruit Industries Page 69 of 153

Update to match the pin connected to your NeoPixels

pixel_pin = board.A3

Update to match the number of NeoPixels you have connected

pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:

 comet.animate()

Note the line where you create the comet object. There are a number of items inside

the parentheses. In this case, you're provided with a fully working example. But what

if you want to change how the comet works? The code alone does not explain what

the options mean.

So, in the API Reference documentation list, click the

adafruit_led_animation.animation.comet link and scroll down a bit until you

see the following.

Look familiar? It is! This is the documentation for setting up the comet object. It

explains what each argument provided in the comet setup in the code meant, as well

as the other available features. For example, the code includes speed=0.02 . The

documentation clarifies that this is the "Animation speed in seconds". The code

doesn't include ring . The documentation indicates this is an available setting that

enables "Ring mode".

This type of information is available for any function you would set up in your code. If

you need clarification on something, wonder whether there's more options available,

or are simply interested in the details involved in the code you're writing, check out

the documentation for the CircuitPython libraries!

©Adafruit Industries Page 70 of 153

Other Links

This section is the same for every library. It includes a list of links to external sites,

which you can visit for more information about the CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to go

beyond the basic library features covered in a guide, or you're interested in

understanding those features better, the library documentation on Read the Docs has

you covered!

Advanced Setup

CircuitPython is designed to lower the barrier for entry to programming and

electronics, which makes it excellent for beginners. It's also extremely extensible to

far more complex projects, meaning it's also great for folks with more experience. If

you have been programming for a while, or you're ready to explore some of the more

advanced options available for working with CircuitPython, this section is for you!

Recommended Editors

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs.

However, you must wait until the file is done being saved before unplugging or

resetting your board! On Windows using some editors this can sometimes take up to

90 seconds, on Linux it can take 30 seconds to complete because the text editor

©Adafruit Industries Page 71 of 153

does not save the file completely. Mac OS does not seem to have this delay, which is

nice!

This is really important to be aware of. If you unplug or reset the board before your

computer finishes writing the file to your board, you can corrupt the drive. If this

happens, you may lose the code you've written, so it's important to backup your code

to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out the file

completely when you save it. Check out the list of recommended editors below.

Recommended editors

mu () is an editor that safely writes all changes (it's also our recommended

editor!)

emacs () is also an editor that will fulIy write files on save ()

Sublime Text () safely writes all changes

Visual Studio Code () appears to safely write all changes

gedit on Linux appears to safely write all changes

IDLE (), in Python 3.8.1 or later, was fixed () to write all changes immediately

Thonny () fully writes files on save

Recommended only with particular settings or add-ons

vim () / vi safely writes all changes. But set up vim to not write swapfiles () (.swp

files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n , set

the no swapfile option, or set the directory option to write swapfiles

elsewhere. Otherwise the swapfile writes trigger restarts of your program.

The PyCharm IDE () is safe if "Safe Write" is turned on in Settings->System

Settings->Synchronization (true by default).

If you are using Atom (), install the fsync-on-save package () or the language-

circuitpython package () so that it will always write out all changes to files on CIR

CUITPY.

SlickEdit () works only if you add a macro to flush the disk ().

•

•

•

•

•

•

•

•

•

•

•

The editors listed below are specifically NOT recommended!

©Adafruit Industries Page 72 of 153

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython
https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290

Editors that are NOT recommended

notepad (the default Windows editor) and Notepad++ can be slow to write, so

the editors above are recommended! If you are using notepad, be sure to eject

the drive.

IDLE in Python 3.8.0 or earlier does not force out changes immediately.

nano (on Linux) does not force out changes.

geany (on Linux) does not force out changes.

Anything else - Other editors have not been tested so please use a

recommended one!

Library File Types and Frozen Libraries

This guide has already covered the basics of CircuitPython library usage. Copy a

library to your CIRCUITPY drive, and it's available for use in your code.

However, you may have noticed there are two bundles available for download, or that

on some boards, you don't have to copy a library over to be able to use it. What

gives? This page covers the deeper details about library files, how to use them, why

to use one over the other, and much more.

Library files are available in two different file formats: .mpy and .py. There are

separate library bundles for each file type. Libraries are accessible to CircuitPython in

three different ways: .mpy files, .py files, or frozen modules. The next few sections

detail the differences between the file types, and the various ways to access libraries.

RAM vs Filesystem Space

This page refers regularly to library file memory (RAM) usage. "Memory" on this page

means RAM (Random Access Memory), which is the read/write memory in the

microcontroller. RAM and memory are used interchangeably throughout this page.

There is one section that references filesystem space. Filesystem space is not RAM; it

is where files are stored.

.mpy Library Files

The most commonly used library file type is an .mpy file. You can download the .mpy

version of a library directly from its GitHub repository, but the simplest, most

•

•

•

•

•

©Adafruit Industries Page 73 of 153

convenient way to get them is by downloading the appropriate bundle from the Librar

ies page () on circuitpython.org (). The first bundle on the Libraries page is the .mpy

bundle. This bundle provides every library in the Adafruit CircuitPython Bundle in the

.mpy format.

The Community Bundle, which is made up of community sourced and maintained

libraries, is also available in an .mpy format, further down the Libraries page.

What is an .mpy file?

An .mpy file is a file that has been generated by running the mpy-cross tool on a

.py file, which compiles the .py file to bytecode. This process removes the doc strings

and does some minor optimisations. Further, comments, whitespace, and type hints

don't translate into bytecode, so they are also not present following compilation. The

result is a file that is smaller and uses less RAM memory. mpy-cross makes it

possible to import some libraries that couldn't otherwise be imported as .py files on

smaller boards because they take up too much RAM to compile on the board.

Basically, you can provide CircuitPython with an .mpy file, it is loaded into RAM, but as

it is already compiled, it does not need to be compiled on the fly. Between that and

the minor optimisation that comes with the .mpy format, it uses less memory than a

.py file. One caveat is that .mpy files are not human-readable. If you want to look at

the code directly, you'll need to use a .py file.

To use an .mpy formatted library, you simply copy over the .mpy library file to to the /

lib folder on your CIRCUITPY drive. For example, if you're using a demo that requires

the NeoPixel library, you would copy the neopixel.mpy file to your /lib folder.

If you're interested in modifying the library, you'll find that you can't edit an .mpy file.

For that, you need to switch to a .py file.

©Adafruit Industries Page 74 of 153

https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org

Creating an .mpy File

Creating your own .mpy files out of .py files is a quick and simple process using mpy-

cross .

Download the latest mpy-cross for your operating system from here (), ensuring you

choose the version of mpy-cross that matches your version of CircuitPython. Builds

are available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. For example, if

you're using CircuitPython 7.3.0 with MacOS Big Sur, you could download mpy-cross-

macos-bigsur-7.3.0-arm64. For ease of use, rename the file you download to mpy-

cross.

To make an .mpy file, you will first need a .py file to work with. Open a terminal

program or commandline, cd into the directory containing mpy-cross, and run the

following:

./mpy-cross path/to/your-library-file.py

This will create your-library-file.mpy in the same directory as the original .py file.

Then, copy your-library-file.mpy to your CIRCUITPY drive to use it. Easy as that!

.py Library Files.

Every CircuitPython library is available as a .py file. You can download the .py library

files individually from their respective GitHub repositories. The quicker, more

convenient way is to download the .py version of the Adafruit CircuitPython Bundle

from the Libraries page. It is available as the "Python Source Bundle".

The Community Bundle, which is made up of community sourced and maintained

libraries, is available in a .py format, further down the Libraries page. It is also titled

"Python Source Bundle".

©Adafruit Industries Page 75 of 153

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/

What is a .py file?

A .py file is a Python file that you can open and modify in your favorite Python editor.

However, unless you're planning to modify a library and test your modifications, it is,

in general, better to stick with .mpy files. Basically, .py files require more memory, and

trying to use them on smaller microcontrollers like the SAMD21 (M0) can result in

memory allocation failures when the library is imported in your code.

Frozen Libraries

In some cases, library modules are "frozen" into the CircuitPython build for a specific

board. You won't find a "frozen" bundle anywhere - there is nowhere to download

frozen libraries, because they are built into CircuitPython for specific boards (i.e. only

builds for boards that require frozen libraries). A library being frozen into

CircuitPython means you can access that library without copying any files to CIRCUIT

PY/lib.

What is a frozen library?

Some microcontroller boards, such as the Circuit Playground Express, simply do not

have enough memory to run code from some library files, even if they are .mpy

format. In these cases, the applicable libraries and possibly the dependencies are

included in the CircuitPython build for that specific board. Frozen libraries are any

libraries that are included in CircuitPython builds for various boards. There are two

advantages to doing this: it ensures code runs if there are otherwise memory issues,

but more practically speaking, it means you can access these libraries in your code

without copying the files to the CIRCUITPY/lib directory.

An excellent example of a board requiring frozen modules is the Circuit Playground

Express. The CPX is easiest to use with the Adafruit CircuitPlayground Library. Many

of the guides in the Adafruit Learn System for the CPX use the CircuitPlayground

library. The problem is, if you copy the CircuitPlayground library, and its dependencies

(Adafruit CircuitPython HID, LIS3DH, Thermistor, and NeoPixel) to the CPX, your code

will quickly fail to run due to insufficient available memory. The CircuitPlayground

Library imports all of the dependencies, so when you import it in your code, you're

importing the rest of the list as well. So, what can you do? Freeze all of these libraries

into the CPX CircuitPython build!

©Adafruit Industries Page 76 of 153

If you're wondering whether your microcontroller board has any frozen libraries in its

CircuitPython build, you can check out the Downloads page on circuitpython.org () for

your specific board. Search for your board, and click on it to open its specific

download page. Under each version of CircuitPython currently available for your

board, you'll find a list of "Built-in modules available:", and, in the event that your build

contains frozen libraries, a list of "Included frozen modules:", as well. The frozen

modules list includes all libraries frozen into CircuitPython for your board. The

following shows the PyPortal on circuitpython.org (), including its list of frozen

modules, highlighted in magenta in the bottom right corner of the image below.

Project Bundle and Frozen Libraries

Project Bundle basics () are covered on the CircuitPython Libraries page. However, it's

important to understand how the Project Bundle works with frozen libraries. The

Project Bundle isn't aware of the frozen libraries. Therefore, the Download Project

Bundle button downloads a zip containing all of the library files necessary for a given

example, whether or not the libraries are frozen into CircuitPython for a particular

board build. This won't cause issues with running the libraries (continue reading this

page for details), but it does mean that the libraries are taking up filesystem space. If

this causes issues for you, you can delete any library files from the /lib directory that

are frozen into the CircuitPython build for your board.

Here is an example using the Circuit Playground Express. Below are the /lib directory

from the the Project bundle in the Piano in the Key of Lime guide (), and the list of

frozen modules in CircuitPython for CPX as available on the Downloads page ().

©Adafruit Industries Page 77 of 153

https://circuitpython.org/downloads
https://circuitpython.org/board/pyportal/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries#the-adafruit-learn-guide-project-bundle-3118462-5
https://learn.adafruit.com/circuit-playground-express-piano-in-the-key-of-lime/piano-in-the-key-of-lime
https://circuitpython.org/board/circuitplayground_express/

As you can see, all of the "Included frozen modules:" are also in the /lib directory in

downloaded from the Project Bundle. Therefore, if you begin to run out of filesystem

space on your Circuit Playground Express, you can delete the files from the /lib direct

ory that match the list on the Downloads page to make more available. This applies to

a project bundle for any microcontroller that contains frozen libraries..

Library File Priority

CircuitPython looks for specific library file types in specific locations on a

microcontroller, both in a particular order. You can use this to your advantage when

trying to use updated or modified libraries.

What if you want to test modifications or updates you made to a library file that is on

your board as an .mpy file, or a library that is frozen into CircuitPython? There are a

couple of ways to do this. To test your updates, you can copy the updated .py library

file to the CIRCUITPY drive in the proper location. Specific to only frozen libraries, you

can create your own build of CircuitPython with the change frozen in.

What library files does CircuitPython look for?

Library development requires the ability to test library changes live on a

microcontroller to ensure they work properly. This means making an update to a .py

file, copying it to CIRCUITPY, and running an example that uses your update.

However, once you get into the development cycle, you may end up with multiple

Note that adafruit_bus_device is a special case. It is built into CircuitPython for

most boards as an actual module (as you can see in the "Built-in modules

available:" list). The Project Bundle doesn't know about that either, so it includes

it in the download. As long as you see it on the Downloads page, you can

remove it from your microcontroller as well.

©Adafruit Industries Page 78 of 153

copies of a library on your board in different formats. How can you be sure

CircuitPython is running the updated file? Check the format.

CircuitPython will attempt to run a .py file first. This means if you have a .py library file

and a .mpy file of the same library in the same directory, CircuitPython will run the .py.

For example, if you have neopixel.py and neopixel.mpy in your /lib folder on CIRCUITP

Y, the neopixel.py file will take precedence over the neopixel.mpy file. Therefore,

when you import neopixel in your code.py file to test your updates, it will import

your updated library. The same results would occur if you had the same .py and .mpy

file in root on your CIRCUITPY drive.

This can be used to your advantage, but it can also lead to potential issues. The Com

mon Issues and Solutions section () below has more details.

The location of various library files on CIRCUITPY also plays a part in how

CircuitPython decides which file to choose. Find out the specifics in the next section.

Where does CircuitPython look for library files?

Testing your library modifications on a microcontroller is crucial. Frozen libraries had

the potential for making that more difficult. as you cannot remove them from the

board. So, CircuitPython looks for library files in different locations in a specified

order, in a way that allows you to "override" libraries in other locations. How do you

know what that order is? That's where sys.path comes in.

In CircuitPython (and Python), sys.path is a variable in the sys module that returns

a list of strings that specify the search path for modules or libraries. More simply put,

it allows for telling CircuitPython exactly where to look, and in what order, for library

files on the CIRCUITPY drive.

To find out the specifics, you can run the following two lines of code in code.py or

from the REPL on the board you're currently working with. If there are libraries frozen

into CircuitPython for the particular board, the results will look like this:

>>> import sys

>>> print(sys.path)

['', '/', '.frozen', '/lib']

If there are not frozen libraries, the results will look like this:

©Adafruit Industries Page 79 of 153

https://learn.adafruit.com/welcome-to-circuitpython/library-file-types#common-issues-and-solutions-3118124-33
https://learn.adafruit.com/welcome-to-circuitpython/library-file-types#common-issues-and-solutions-3118124-33

>>> import sys

>>> print(sys.path)

['', '/', '/lib']

What does this actually mean? You can break down the results as follows.

If there are frozen modules built into the build of CircuitPython for the board you're

using, CircuitPython looks for library files in the following locations in this exact order:

Library files in the current directory (CIRCUITPY/)

Library files in root (CIRCUITPY/)

Fozen modules (.frozen is a fake directory for this purpose, as the frozen

modules are not in the filesystem)

Library files in the library folder (CIRCUITPY/lib)

If there are no frozen modules built into the build of CircuitPython for the board you're

using, CircuitPython looks for library files in the following locations in this exact order:

Library files in the current directory (CIRCUITPY/)

Library files in root (CIRCUITPY/)

Library files in the library folder (CIRCUITPY/lib)

What does all of this mean practically speaking? Here are a couple of examples.

You put the .mpy version of a library into the /lib folder, and you find an issue.

You obtain the .py version of the library file, make your changes, and are ready

to test. Instead of deleting the .mpy in the /lib folder, you can copy your modified

.py file to root on CIRCUITPY/, and it will "override" the .mpy as CircuitPython

will find your modified .py first, and run it.

You are using a microcontroller board with a particular library frozen into

CircuitPython, and you find an issue. You obtain the .py version of the library,

make your changes, and are ready to test. You can place the modified .py file in

root on CIRCUITPY/, and it will "override" the frozen module as CircuitPython will

find your modified .py first, and run it.

You can also run mpy-cross on your modified .py file, and place the .mpy file in root

on CIRCUITPY/, and you will "override" the frozen modules and everything in the lib/ f

older. This is necessary if you find that using the .py file causes your code to fail due

to memory issues.

•

•

•

•

•

•

•

1.

2.

©Adafruit Industries Page 80 of 153

Ostensibly all of this also means you can put libraries in root on your CIRCUITPY/ driv

e, and they will run as they do in the /lib folder. However, if you always copy library

files to the /lib folder, it means this technique for testing is always available without

needing to delete files before you test.

Building CircuitPython with an Updated Frozen Library

With some boards, for example the Circuit Playground Express, you'll find that

overriding the frozen modules with a .py file will cause running your code to fail due

to a memory allocation failure (). In some cases, even if you run mpy-cross on the

.py file, your code will still fail. This means you may have to create your own build of

CircuitPython with your modified library frozen into it.

The more difficult but most realistic way to test a frozen library modification is to build

CircuitPython with your modified library included. It's the most realistic way to test

because it ensures that the changes still fit into the specific CircuitPython build. It also

allows you to test a library when, even as an .mpy, the code fails to run due to

memory constraints. However, for some folks this is an intimidating prospect when

they wanted to test a simple change they made to a library.

This is why there are detailed instructions () for creating your own build of

CircuitPython. Follow the instructions as is, up to the Build CircuitPython section ().

Before you run the actual build, you'll want to create a new branch () in your local

copy of the CircuitPython repository, and then copy the modified library into the froze

n/ directory.

Before you can do that, you'll want to follow the steps here () to clone a copy of the

library you're modifying to your computer. Make your modifications within the local

library directory. When you're ready to test, you'll copy the entire library directory, e.g.

the Adafruit_CircuitPython_CircuitPlayground/ directory, into the frozen/ directory in

root of your local copy of the CircuitPython repository. This will replace the existing

version with your updated version.

Once you've updated the library directory in frozen/ with your modified version of the

library, you're ready to build. Continue following the instructions in the Building

CircuitPython () guide to finish building your version of CircuitPython. Remember to

©Adafruit Industries Page 81 of 153

https://learn.adafruit.com/welcome-to-circuitpython/library-file-types#memory-allocation-failure-3117918-31
https://learn.adafruit.com/building-circuitpython/introduction
https://learn.adafruit.com/building-circuitpython/build-circuitpython#build-circuitpython-2986723-14
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github/always-work-on-a-branch
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/building-circuitpython/build-circuitpython
https://learn.adafruit.com/building-circuitpython/build-circuitpython

change the board you're building for, if it is different from the one in the example.

Once built, place your board into bootloader mode, and copy the firmware.uf2 file to

the *BOOT drive.

Now, you're ready to test your changes!

What's the Real Difference?

You now understand the different ways libraries are supplied to CircuitPython, and

which options work best for different use cases. But, how do you know that these

separate options actually make a difference in memory usage? There's a simple way

to see the actual difference, by the numbers, for yourself.

Memory Usage between .mpy and .py

There are two parts of importing a Python file that use extra memory. The code

compilation process, and the resulting bytecode, which needs to be stored in memory

during and after the compilation. Remember, .mpy files are already compiled, and do

not need to be compiled on import.

Essentially, the import of an .mpy loads compiled code, and the import of a .py must

compile the code on import. In both cases, the compiled code lives in RAM, and the

resulting compiled code is basically the same size. However, the compilation process

takes extra RAM temporarily during compilation, and if there's not enough RAM

available, it will fail. Compilation may also cause some fragmentation, but this is

mostly avoided in CircuitPython.

Think of it this way. You can bring a ready-to-eat cake to your friend's house, or you

can show up with the plan to bake the same cake at your friend's house. Both

completed cakes will take up the same amount of space. However, waiting to bake

the cake means you'll need more space and resources before the cake is ready to

eat, to combine the ingredients, bake it, and frost it. If it turns out your friend doesn't

have the space available, or is missing a crucial ingredient, you wouldn't be able to

complete the cake. Basically, if you're unsure whether you'll have everything needed

©Adafruit Industries Page 82 of 153

to bake a cake at your friend's house, it's better to show up with a completed cake to

ensure there is cake to be had!

If you're unsure whether your microcontroller board has the memory resources

needed to run a .py version of a library, the simplest solution is to choose a .mpy file

instead.

Using gc.mem_free() to Check Your Bytes

CircuitPython has a built-in gc (garbage collector) module, which includes

gc.mem_free() . The mem_free() functionality is specific to CircuitPython (and

MicroPython), and is therefore not available in the CPython gc module.

When you run gc.mem_free() in the REPL, or print(gc.mem_free()) in code.py,

it returns the number of bytes of available heap RAM. This is the amount of RAM left

for importing further libraries, and executing code. Specifically for our purposes,

though, it will tell us how much memory is used when importing the same library as a

.py file, an .mpy file, and a frozen module.

For this example, you will use the NeoPixel library on the Circuit Playground Express.

The NeoPixel library is frozen into the CircuitPython build for CPX, as well as being

available in the two bundles as neopixel.mpy and neopixel.py. To prepare for this,

download both the mpy bundle and the Python Source Bundle. To get started, you'll

want to connect to the serial console and enter the REPL.

For each of these examples, you'll first run the following from the REPL:

>>> import gc

>>> gc.mem_free()

This provides you with a baseline of available memory before importing any further

libraries.

First up, you'll test out how much memory is used when importing the frozen version

of the NeoPixel library. Make sure you have no libraries copied anywhere on your CIR

CUITPY drive, including in the lib folder!

Once you've determined the baseline, as explained above, run the following from the

REPL:

>>> import neopixel

>>> gc.mem_free()

©Adafruit Industries Page 83 of 153

As you can see, the baseline available memory is 17840 bytes. Once you import the

frozen version of NeoPixel, you have 16432 bytes available. Importing the frozen

version requires 1408 bytes.

Now, copy the neopixel.mpy file to the root of your CIRCUITPY/ drive. Remember,

CircuitPython looks in the root directory for libraries before checking the frozen

modules. This will ensure that you're importing the version you intend to.

Follow the same steps as above to get a baseline and show the memory available

following import.

The baseline is the same, however, the available memory following import is now

13984 bytes. Importing neopixel.mpy requires 3856 bytes.

Next, delete the neopixel.mpy file from the CIRCUITPY drive. Copy the neopixel.py file

to the root of your CIRCUITPY/ drive.

Follow the same steps as above to get a baseline and show the memory available

following import.

The baseline is the same, however, the available memory following import is now

11680 bytes. Importing neopixel.py requires 6160 bytes.

©Adafruit Industries Page 84 of 153

Importing each file type requires significantly different amounts of memory! The

available memory following each file type import is what's left to import more libraries,

and run your code. You can see how using different file types might impact the ability

to use memory-constrained microcontroller boards, and run more complicated code.

Common Issues and Solutions

This page has explained the different ways you can obtain, access, and test

modifications to CircuitPython libraries. Here are some issues you may run into in the

course of things, and suggestions as to how to deal with them.

.mpy Failing When It Worked Previously

You are certain that you downloaded the .mpy version of the library, and that the code

ran previously using the .mpy file, but now, it's failing due to memory usage. The most

common reason for this that there is a leftover .py version of the same library in the

same directory (e.g. the .py and .mpy are both in /lib), or the .py file is in an "override"

directory (e.g. the .py is in / and the .mpy is in /lib). In both of these examples,

CircuitPython is going to load the .py file.

If you run into this, check out the contents of your CIRCUITPY drive, and ensure that

you don't have any leftover .py files in / or in /lib. More often than not, you'll find that

removing the .py file resolves this situation.

Memory Allocation

There are answers in the FAQ in this guide () as to what a memory error is, and how to

avoid it if you're interested in more detail. What it boils down to is your

microcontroller board running out of memory to import libraries or execute code.

The Circuit Playground Express is a memory-constrained microcontroller board.

Substituting the CircuitPlayground library for the NeoPixel library in the byte-checking

example results in similar behavior for the frozen module and the .mpy file. However,

if you try to import the CircuitPlayground library as a .py package, it will fail to import

with an error similar to the one below.

©Adafruit Industries Page 85 of 153

https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105286

The CircuitPlayground library is an excellent example of this because the library is

quite large, has a significant number of dependencies imported in it, and absolutely

cannot be run on the CPX as a .py file. This is not the case for all libraries frozen into

all builds of CircuitPython (as shown with NeoPixel), so you will not always get this

result when attempting to test modifications or updates.

Memory Fragmentation

A memory allocation failure does not necessarily mean you are entirely out of

memory. CircuitPython memory can become fragmented the more you do, and have

smaller chunks of memory available across the entire heap that add up to the amount

needed, but not a single chunk big enough to allocate for a particular task.

Fragmentation can block allocation of any chunk of memory that needs to be

contiguous, such as a large buffer. In the context of importing a library file, it

specifically means that there is not a single large enough chunk of memory to allocate

the memory requested.

In the case of importing a .mpy file, the compiled bytecode is imported across

multiple chunks. In the case of importing a .py file, the memory needed for

compilation may exceed the size of the chunks available, in which case, you would

run out of memory before there is even any bytecode to import.

CircuitPython does do some optimisation to avoid memory fragmentation. Once a

library is imported successfully, it is moved to the end of the available memory, which

decreases fragmentation. Some fragmentation is unavoidable over time, but the

import optimisation definitely helps with avoiding as much initially.

Import Order Can Matter

If you have code that is failing on import, you may find that changing the import order

allows your code to run. Before you have imported anything, there are larger chunks

of memory available. Therefore, importing the larger libraries first, while there is still

©Adafruit Industries Page 86 of 153

larger chunks of memory free, may enable your code to successfully run, even when it

initially failed. This is not a guaranteed result, but in some cases, it can help.

Library Structure Not Intact or in Improper Directory

Remember that library files are available in two structures - a single file, and a

directory containing multiple files. These structures must be kept intact for

CircuitPython to be able to use the library. In the case of a single file, copy that

standalone file to your CIRCUITPY drive. In the case of a directory, copy the entire

directory and its contents to your CIRCUITPY drive.

Further, library files must not be placed into another directory. For example, if you

create a neopixel/ directory on CIRCUITPY, and place neopixel.mpy inside of it, your

code will fail. CircuitPython does not check superfluous directories for library files or

packages.

In any of the situations above, your code will fail when you attempt to use the library

in your code. When CircuitPython can't find the module you use within the library file,

it will throw an error. The error will often be something like the following. (This error is

specifically from an attempt to create the pixels object in code.py with neopixel.mp

y in a neopixel/ directory.)

Don't Name Your Test Code the Same as a Library

Throughout your CircuitPython experience, you will write all sorts of different demos.

You will obviously need to name files something other than code.py as you work

through multiple demos, so you know what the file is, and so CircuitPython knows

which file you currently want to run. However, in doing this, there is one serious

caveat that can cause you all sorts of issues and make troubleshooting difficult. You

must avoid naming your files the same name as a library file.

Say you write a NeoPixel example. Then you're ready to move on to a different

example. So, you rename your current code.py to neopixel.py and move on to the

next demo. The next time you need to use the NeoPixel library in your code, you will

find that your code will fail. This is because it is trying to import your previously

renamed code.py file, which of course does not have the library contents.

©Adafruit Industries Page 87 of 153

The best way to avoid this is to stay creative with your filenames. Do something like

always include code in the name (i.e. neopixel_code.py), or get even more descriptive

with it, calling it something like neopixel_all_pixels_red.py. These are two simple

suggestions. There are also plenty of other ways to be creative about file naming.

PyCharm and CircuitPython

PyCharm () is a full-featured Python editor

that includes super helpful things like code

completion and error highlighting. It's

available for free in a Community Edition.

These steps will help you make the most

out of the PyCharm IDE for working with

CircuitPython:

Disable PyCharm's auto-saving features ()

Create a project on your local system drive

and add CIRCUITPY as a content root ()

Install the circuitpython-stubs ()

Install any libraries that you are working

with if they are deployed to PyPi ()

Connect to serial console inside of the

Terminal pane () (optional)

Disable Auto-save

By default, PyCharm will auto-save the code file(s) that you are working on very

frequently. This is normally great, but with CIRCUITPY drives, it is can be undesirable

because it will cause the device to reset and re-run the code more frequently than

you might want. When you're using PyCharm to edit files directly on CIRCUITPY

drives, it's best to disable the auto-save features and save manually with CTRL+S

whenever you're ready to run the new version of code.py.

To disable auto-save, follow these steps:

Open settings with CTRL+ALT+S or click File -> Settings

Open up Appearance & Behavior -> System Settings

Uncheck the box for "Save files if the IDE is idle for X seconds"

Uncheck the box for "Save files when switching to a different application"

1.

2.

3.

4.

©Adafruit Industries Page 88 of 153

https://learn.adafruit.com//assets/105835
https://learn.adafruit.com//assets/105835
https://www.jetbrains.com/pycharm/
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#disable-auto-save-3105027-2
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#create-a-project-on-computers-file-system-3105042-4
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#create-a-project-on-computers-file-system-3105042-4
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#create-a-project-on-computers-file-system-3105042-4
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#install-circuitpython-stubs-3105091-10
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#install-circuitpython-stubs-3105091-10
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#install-libraries-3105094-13
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#install-libraries-3105094-13
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#serial-console-in-the-terminal-pane-3105096-15
https://learn.adafruit.com/welcome-to-circuitpython/blueberry-pycharm-cereal?preview_token=WsdVgHQVBTr9iHLerIfyWA#serial-console-in-the-terminal-pane-3105096-15

Creating a project on a computer's file system

PyCharm likes to create a folder named .idea which holds configuration settings and

meta information about your project. This folder gets created in the root directory of

the project that you are working in. Ideally, we don't want this to end up on the CIRCU

ITPY drive, because it will eat up precious storage space and cause the device to

reset when files inside of it are altered. The way we avoid this is by creating our

project on the computer's hard drive and then adding CIRCUITPY or the directory that

contains it as a "content root" so that PyCharm will show the files on the CIRCUITPY

drive as part of the project.

Click File -> New Project

Enter a name for the project. I like to use DEVICE_WORKSPACE but you can

choose any name you like

Enter or browse to a location on your computer's hard drive to store the project

directory in

Click the Create button

With your new project open, click File -> Settings or press CTRL+ALT+S to open

the settings window

Open "Project [YOUR_PROJECT_NAME]" then click "Project Structure"

Click the "+ Add Content Root" button on the right side of the window

1.

2.

3.

4.

5.

6.

7.

©Adafruit Industries Page 89 of 153

The next step depends on your host OS.

If you are on Linux, type or navigate to /media/[username]/ where [username] is your

actual username on the computer. Click "Okay" to add this directory as the content

root.

If you are on Mac, type or navigate to /Volumes/ then click "Okay" to add this

directory as the content root.

If you are on Windows, type or navigate to the drive letter that matches your CIRCUIT

PY drive, e.g. D:\, then click "Okay" to add this directory as the content root.

After completing these steps, you'll have a project on your computer's hard drive

which will get the .idea directory stored inside of it. And you'll also have access to the

CIRCUITPY drive(s) that are connected to your computer.

On Windows, the content root that you've added may eventually show up empty

if you open the project when the CircuitPython device is not connected, or if the

drive letter on your device changes due to other removable storage devices

getting plugged in. Repeat the above instructions to re-add the device with its

current drive letter. You can also click the "X" on the old / non-working content

roots to remove them from the list in the same settings window.

©Adafruit Industries Page 90 of 153

Install circuitpython-stubs

The circuitpython-stubs will let PyCharm know more information about the built-

in core modules in CircuitPython so that it can offer relevant code hints and typing

information. The stubs are published on PyPi, and installing them can be done in the

PyCharm settings window.

Click File -> Settings or press CTRL+ALT+S to open the Settings window

Open "Project: [YOUR_PROJECT_NAME]" then click Python Interpreter

Click the + install button on the right side of the window

Type "circuitpython-stubs" into the search bar

Select the circuitpython-stubs package then press the Install Package

button at the bottom left

1.

2.

3.

4.

5.

©Adafruit Industries Page 91 of 153

Install Libraries

If you project uses libraries from the CircuitPython Library Bundle, you can install

them on your computer if they are published to PyPi. Doing so will give PyCharm

information about the library in order to offer more relevant code hints and type

information.

©Adafruit Industries Page 92 of 153

Use the above instructions to open the Available Packages window, then enter "adafr

uit-circuitpython-" into the search box to see all of the libraries deployed to PyPi.

Serial console in the terminal pane

If you use the instructions from Advanced Serial Console on Mac () or Advanced Serial

Console on Linux (), you can connect to the CircuitPython device's serial console

inside the Terminal pane within PyCharm.

To open the Terminal pane, click View -> Tool Windows -> Terminal.

Connect to your device using screen or tio . Then, you can see output and interact

with the device and REPL.

©Adafruit Industries Page 93 of 153

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Renaming CIRCUITPY

There are many boards that work with CircuitPython. You may find yourself in a

situation where you're working with more than one board at the same time. What

happens when you have multiple boards plugged into your computer? You have

multiple CIRCUITPY drives! How do you know which one is which? You can rename

each CIRCUITPY drive to avoid confusion.

When you rename CIRCUITPY, it writes the name to the filesystem. This means that

the name change will persist through disconnecting the board, as well as reloading

CircuitPython!

The name must be 11 characters or less! This is a limitation of the filesystem. You will

receive an error if you choose a name longer than 11 characters.

Renaming CIRCUITPY on Mac

Renaming your CIRCUITPY drive on Mac is

simple. Click on the drive in Finder so you

can see the contents. Then, right click on

the drive in Finder and choose "Rename".

Once you click "Rename", in the right-click

menu, the drive name will show up in a

text box where you can rename the drive.

Type in the new name.

©Adafruit Industries Page 94 of 153

https://learn.adafruit.com//assets/69226
https://learn.adafruit.com//assets/69226
https://learn.adafruit.com//assets/69294
https://learn.adafruit.com//assets/69294

Renaming CIRCUITPY on Windows

Renaming the CIRCUITPY drive on Windows is easy. Open File Explorer and find the C

IRCUITPY drive. Right click on it, and click "Rename".

You can also rename the drive through the

"Properties" menu, which can be opened

several different ways through the

Windows File Explorer, including right

clicking on the CIRCUITPY drive and

choosing "Properties".

Once you click "Rename" in the right-click

menu, the drive name will show up in a

text box where you can rename the drive.

Type in the new name.

Renaming CIRCUITPY on Linux

Renaming CIRCUITPY on Linux requires a couple of steps. You'll need to identify the

mount point, and then run a command to rename the drive.

Open a terminal program. Run the following to find out where your board is mounted:

df | grep CIRCUITPY

You will see CIRCUITPY on the right end of the resulting line. The dev/foo (where foo

is the name of the mount point) on the left end of that line is the mount point.

©Adafruit Industries Page 95 of 153

https://learn.adafruit.com//assets/69227
https://learn.adafruit.com//assets/69227
https://learn.adafruit.com//assets/69232
https://learn.adafruit.com//assets/69232

Next you can run the following to unmount the board, replacing foo with your specific

mount point.

sudo umount /dev/foo

To rename the board, run the following:

sudo fatlabel /dev/foo NEW_NAME

Then, eject your board, unplug it, and plug it back in to force it to remount with the

new name.

To check to see if it worked, look for the drive in your file manager. Or, you can run

the following:

df | grep NEW_NAME

Renaming CIRCUITPY through CircuitPython

You can also rename the board using CircuitPython. Create a new file on your CIRCUI

TPY drive called boot.py. Copy the following code into the new boot.py file:

import storage

storage.remount("/", readonly=False)

m = storage.getmount("/")

m.label = "NEW_NAME"

storage.remount("/", readonly=True)

storage.enable_usb_drive()

The name must be 11 characters or less! This is a limitation of the filesystem. You

will receive an error if you choose a name longer than 11 characters.

©Adafruit Industries Page 96 of 153

Eject your board, and reboot the board either by pressing the reset button once, or

unplugging it and plugging it back in. After a moment, it should show up in your file

explorer with the NEW_NAME you chose for it! You can delete boot.py after the newly

named board shows up in your file explorer.

Reverting to CIRCUITPY

You can follow the same processes above to rename the drive back to CIRCUITPY.

You will also revert to CIRCUITPY by erasing the filesystem. If you are in a situation

where you need to erase the filesystem on your CircuitPython board, the drive name

will revert to CIRCUITPY on completion.

Advanced Serial Console on Windows

Windows 7 and 8.1

If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the Windows 7

and 8.1 Drivers page () for details. You will not need to install drivers on Mac, Linux or

Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using Windows

7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no longer receives

security updates. A free upgrade to Windows 10 is still available ().

What's the COM?

First, you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

You'll use Windows Device Manager to determine which port the board is using. The

easiest way to determine which port the board is using is to first check without the

board plugged in. Open Device Manager. Click on Ports (COM & LPT). You should find

something already in that list with (COM#) after it where # is a number.

©Adafruit Industries Page 97 of 153

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new item will

appear under Ports (COM & LPT). You'll find a different (COM#) after this item in the

list.

Sometimes the item will refer to the name of the board. Other times it may be called

something like USB Serial Device, as seen in the image above. Either way, there is a

new (COM#) following the name. This is the port your board is using.

©Adafruit Industries Page 98 of 153

Install Putty

If you're using Windows, you'll need to download a terminal program. You're going to

use PuTTY.

The first thing to do is download the latest version of PuTTY (). You'll want to

download the Windows installer file. It is most likely that you'll need the 64-bit version.

Download the file and install the program on your machine. If you run into issues, you

can try downloading the 32-bit version instead. However, the 64-bit version will work

on most PCs.

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.

In the box under Serial line, enter the serial port you found that your board is

using.

In the box under Speed, enter 115200. This called the baud rate, which is the

speed in bits per second that data is sent over the serial connection. For boards

with built in USB it doesn't matter so much but for ESP8266 and other board

with a separate chip, the speed required by the board is 115200 bits per second.

So you might as well just use 115200!

If you want to save those settings for later, use the options under Load, save or delete

a stored session. Enter a name in the box under Saved Sessions, and click the Save

button on the right.

•

•

•

©Adafruit Industries Page 99 of 153

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Once your settings are entered, you're ready to connect to the serial console. Click

"Open" at the bottom of the window. A new window will open.

If no code is running, the window will either be blank or will look like the window

above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

©Adafruit Industries Page 100 of 153

Advanced Serial Console on Mac

Connecting to the serial console on Mac does not require installing any drivers or

extra software. You'll use a terminal program to find your board, and screen to

connect to it. Terminal and screen both come installed by default.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that starts with

tty. . The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

different. In this case, you're asking to see all of the listings in /dev/ that start with t

ty. and end in anything. This will show us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include your board.

©Adafruit Industries Page 101 of 153

A new listing has appeared called /dev/tty.usbmodem141441 . The tty.usbmodem1

41441 part of this listing is the name the example board is using. Yours will be called

something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0 . The ttyACM0 part of

this listing is the name the example board is using. Yours will be called something

similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You're going to use a command called screen . The screen command is

included with MacOS. To connect to the serial console, use Terminal. Type the

following command, replacing board_name with the name you found your board is

using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

©Adafruit Industries Page 102 of 153

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux

Connecting to the serial console on Linux does not require installing any drivers, but

you may need to install screen using your package manager. You'll use a terminal

program to find your board, and screen to connect to it. There are a variety of

terminal programs such as gnome-terminal (called Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit of

automatically reconnecting. You would need to install it using your package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you plug your

board in to USB on your computer, it connects to a serial port. The port is like a door

through which your board can communicate with your computer using USB.

The easiest way to determine which port the board is using is to first check without

the board plugged in. Open your terminal program and type the following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that starts with tt

yACM. The command ls shows you a list of items in a directory. You can use * as a

wildcard, to search for files that start with the same letters but end in something

©Adafruit Industries Page 103 of 153

different. In this case, You're asking to see all of the listings in /dev/ that start with ttyA

CM and end in anything. This will show us the current serial connections.

In the example below, the error is indicating that are no current serial connections

starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include your board.

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this listing is

the name the example board is using. Yours will be called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to the serial

console. You'll use a command called screen . You may need to install it using the

package manager.

©Adafruit Industries Page 104 of 153

To connect to the serial console, use your terminal program. Type the following

command, replacing board_name with the name you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part tells

screen the name of the board you're trying to use. The third part tells screen what

baud rate to use for the serial connection. The baud rate is the speed in bits per

second that data is sent over the serial connection. In this case, the speed required

by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code is

running, the window will be blank. Otherwise, you'll see the output of your code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into an issue

with permissions. Linux keeps track of users and groups and what they are allowed to

do and not do, like access the hardware associated with the serial connection for

running screen . So if you see something like this:

©Adafruit Industries Page 105 of 153

then you may need to grant yourself access. There are generally two ways you can do

this. The first is to just run screen using the sudo command, which temporarily

gives you elevated privileges.

Once you enter your password, you should be in:

The second way is to add yourself to the group associated with the hardware. To

figure out what that group is, use the command ls -l as shown below. The group

name is circled in red.

Then use the command adduser to add yourself to that group. You need elevated

privileges to do this, so you'll need to use sudo . In the example below, the group is a

dm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or in some

cases, reboot your machine. After you log in again, verify that you have been added

to the group using the command groups . If you are still not in the group, reboot and

check again.

©Adafruit Industries Page 106 of 153

And now you should be able to run screen without using sudo .

And you're in:

The examples above use screen , but you can also use other programs, such as put

ty or picocom , if you prefer.

Non-UF2 Installation

Espressif Boards without UF2 Bootloaders

See this page () for how to load a .bin file on an ESP32 or ESP32-C3 board.

STM Boards

See this page () for how to upload a .bin file using the built-in STM bootloader.

This installation page is only required if you do not have UF2 bootloader installed

(e.g. boardBOOT drag-n-drop)!

©Adafruit Industries Page 107 of 153

https://learn.adafruit.com/circuitpython-with-esp32-quick-start/installing-circuitpython
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details

Flashing with Bossac - For Non-Express Feather M0's &

Arduino Zero

The older Feather M0 boards don't come with UF2, instead they come with a simpler

bootloader called bossa. This is also what is installed on Arduino Zero's and other

CircuitPython compatible boards that use the ATSAMDx1 or nRF52840. It is the only

method you can use if your CircuitPython installation file is a .bin rather than a .uf2

Command-Line ahoy!

Flashing with bossac requires the use of your computer's command line interface. On

Windows, that's the cmd or powershell tool. On Mac and Linux, use Terminal!

Download Latest CircuitPython Firmware

The first thing you'll want to do is download the most recent version of CircuitPython.

Compatible boards have .bin files available for download on circuitpython.org ().

Click the green button below to search for your board to find the appropriate file.

Find and download software for

your board from CircuitPython.org

©Adafruit Industries Page 108 of 153

https://circuitpython.org
https://circuitpython.org/downloads

Once downloaded, save the .bin file onto your desktop, you'll need it soon!

If you are running Windows 7, you must install the driver set (it is covered on this

page) () so you have access to the COM port.

Download BOSSA

Once you have a firmware image you'll need to download the BOSSA tool, which that

can load firmware on SAMD21/51 boards. This tool is actually used internally by the

Arduino IDE when it programs these boards, however you can use it yourself to load

custom firmware

Be aware you must use 1.7.0 or higher version of bossac to program SAMD21 and

SAMD51 boards! Versions of BOSSA before version 1.7.0 won't work because it

doesn't support the SAMD21/51 chips. Also note that bossac versions 1.9.0 and newer

have incompatibly changed their command-line parameters, and can erase your

bootloader if it is not protected. (Adafruit boards ship with protected bootloaders.)

Follow the directions below carefully, depending on which version you have.

To flash with bossac (BOSSA's command line tool) first download the latest version

from here (). The ming32 version is for Windows, apple-darwin for Mac OSX and

various linux options for Linux.

bossac works with .bin files only, it will not work with .uf2 files!

©Adafruit Industries Page 109 of 153

https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://github.com/shumatech/BOSSA/releases/latest

erase option wipes SAMD21

protected bootloader, fuses

Test bossac

Open a terminal and navigate to the folder with the bossac tool. Then check the tool

runs by running it with the --help option:

Open a terminal and navigate to the folder

with the bossac tool. Then check the tool

runs by running it with the --help option

with bossac --help

Or if you're using Linux or Mac OSX you'll

need to add a ./ to specify that bossac is

run from the current directory like ./

bossac --help

Make sure you see BOSSA version 1.7.0 or

higher! And see the warning below about

version 1.9.0 and higher. If you see a lower

version then you accidentally downloaded

an older version of the tool and it won't

work to flash SAMD21 chips. Go back and

grab the latest release from this BOSSA

GitHub repository () as mentioned above.

Port Selection for Mac OS

You'll need to know what port to use if you're on a Mac.

In your same terminal window, run the command ls /dev/cu.* . Note the ports

listed, then plug in your board and run the command again. The device may be listed

something like /dev/cu.usbmodem14301. Make note of the port name for the bossac

section below.

Never use bossac or its Windows equivalent (BOSSA) 1.9.0 or higher without

specifying an offset: 0x2000 for SAMD21, 0x4000 for SAMD51. Omitting the

offset will damage the fuse settings on the board and can lead to a broken

bootloader. See the link below.

©Adafruit Industries Page 110 of 153

https://github.com/shumatech/BOSSA/issues/99
https://learn.adafruit.com//assets/49610
https://learn.adafruit.com//assets/49610
https://github.com/shumatech/BOSSA/releases
https://github.com/shumatech/BOSSA/releases

Get Into the Bootloader

You'll have to 'kick' the board into the bootloader manually. Do so by double-clicking

the reset button. The red "#13" LED should pulse on and off. If you are using an

Arduino Zero, make sure you are connected to the native USB port not the

debugging/programming port.

One special note, if you're using the Arduino M0 from Arduino.org you'll need to

replace its bootloader with the Arduino Zero bootloader so it can work with BOSSA.

 To do this install the Arduino/Genuino Zero board in the Arduino IDE board manager

and then follow these steps to burn the Arduino Zero bootloader () (using the program

ming port on the board). Once you've loaded the Arduino Zero bootloader you

should be able to use the M0 with bossac as described below.

Run the bossac Command

With your board plugged in and running the bootloader you're ready to flash

CircuitPython firmware onto the board. Copy the firmware .bin file to the same

directory as the bossac tool, then in a terminal navigate to that location and run one

ofthe following commands, depending on which version of bossac you have.

With bossac version 1.9 or later, you must give an --offset parameter on the

command line to specify where to start writing the firmware in flash memory. This

parameter was added in bossac 1.8.0 with a default of 0x2000 , but starting in 1.9, the

default offset was changed to 0x0000 , which is not what you want in most cases. If

you omit the argument for bossac 1.9 or later, you will probably see a "Verify Failed"

error from bossac, and you will damage the fuse settings on your board, rendering

the bootloader inoperable. Remember to change the option for -p or --port to

match the port on your machine.

Replace the filename below with the name of your downloaded .bin : it will vary

based on your board!

With bossac versions 1.9 or later, you must use the --offset parameter on the

command line, and it must have the correct value for your board. Otherwise you

will brick your board.

©Adafruit Industries Page 111 of 153

https://learn.adafruit.com/proper-step-debugging-atsamd21-arduino-zero-m0/restoring-bootloader#arduino-zero

Using bossac Version 1.7.0

There is no --offset parameter available. Use a command line like this:

MacOS

bossac -p /dev/cu.usbmodemxxx -e -w -v -R adafruit-circuitpython-boar

dname-version.bin

Linux

The port to use will vary, but will probably be /dev/ttyACM0 .

bossac -p /dev/ttyACMx -e -w -v -R adafruit-circuitpython-boardname-v

ersion.bin

Windows

The COM port you use will vary. Choose the one the for the board (see the Device

Manager if necessary).

bossac -p COMx -e -w -v -R adafruit-circuitpython-boardname-version.b

in

For example,

bossac -p /dev/cu.usbmodem14301 -e -w -v -R adafruit-circuitpython-

feather_m0_express-3.0.0.bin

Using bossac Versions 1.8, and 1.9 or Later

For M0 (SAMD21) boards, which have an 8kB bootloader, you must specify --

offset=0x2000 . Do not omit the --offset parameter; you will brick your board if

you omit it.

MacOS

bossac -p /dev/cu.usbmodemxxx -e -w -v -R --offset=0x2000 adafruit-

circuitpython-boardname-version.bin

©Adafruit Industries Page 112 of 153

Linux

The port to use will vary, but will probably be /dev/ttyACM0 .

bossac -p /dev/ttyACMx -e -w -v -R --offset=0x2000 adafruit-

circuitpython-boardname-version.bin

Windows

The COM port you use will vary. Choose the one the for the board (see the Device

Manager if necessary).

bossac -p COMx -e -w -v -R --offset=0x2000 adafruit-circuitpython-boa

rdname-version.bin

For example, on MacOS:

bossac -p /dev/cu.usbmodem14301 -e -w -v -R --offset=0x2000 adafruit-

circuitpython-feather_m0_express-3.0.0.bin

For M4 (SAMD51) boards, which have a 16kB bootloader, you must specify -

offset=0x4000 . Do not omit the --offset parameter; you will brick your board if

you omit it.

MacOS

bossac -p /dev/cu.usbmodemxxx -e -w -v -R --offset=0x4000 adafruit-

circuitpython-boardname-version.bin

Linux

The port to use will vary, but will probably be /dev/ttyACM0 .

bossac -p /dev/ttyACMx -e -w -v -R --offset=0x4000 adafruit-

circuitpython-boardname-version.bin

Windows

The COM port you use will vary. Choose the one the for the board (see the Device

Manager if necessary).

©Adafruit Industries Page 113 of 153

bossac -p COM5 -e -w -v -R --offset=0x4000 adafruit-circuitpython-boa

rdname-version.bin

For example, on MacOS:

bossac -p /dev/cu.usbmodem14301 -e -w -v -R --offset=0x4000 adafruit-

circuitpython-feather_m4_express-3.0.0.bin

This will e rase the chip, w rite the given file, v erify the write and R eset the board.

On Linux or MacOS you may need to run this command with sudo ./bossac ... , or

add yourself to the dialout group first.

After bossac loads the firmware you should see output similar to the following:

After reset, CircuitPython should be running and the CIRCUITPY drive will appear. You

can always manually reset the board by clicking the reset button, sometimes that is

needed to get it to 'wake up'. Express boards may cause a warning of an early eject of

a USB drive but just ignore it. Nothing important was being written to the drive!

Frequently Asked Questions

These are some of the common questions regarding CircuitPython and CircuitPython

microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython ()

CPC = Circuit Playground Classic () (does not run CircuitPython)

CPX = Circuit Playground Express ()

CPB = Circuit Playground Bluefruit ()

©Adafruit Industries Page 114 of 153

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333

Using Older Versions

I have to continue using CircuitPython 6.x or earlier.

Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 6.x or earlier library

bundles. We highly encourage you to update CircuitPython to the latest version ()

and use the current version of the libraries (). However, if for some reason you

cannot update, here are the last available library bundles for older versions:

2.x bundle ()

3.x bundle ()

4.x bundle ()

5.x bundle ()

6.x bundle ()

Python Arithmetic

Does CircuitPython support floating-point numbers?

All CircuitPython boards support floating point arithmetic, even if the

microcontroller chip does not support floating point in hardware. Floating point

numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit mantissa. Note

that this is two bits less than standard 32-bit single-precision floats. You will get

about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

•

•

•

•

•

©Adafruit Industries Page 115 of 153

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip

Does CircuitPython support long integers, like regular

Python?

Python long integers (integers of arbitrary size) are available on most builds, except

those on boards with the smallest available firmware size. On these boards,

integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards without an

external flash chip, such as the Adafruit Gemma M0, Trinket M0, QT Py M0, and the

Trinkey series. There are also a number of third-party boards in this category.

There are also a few small STM third-party boards without long integer support.

time.localtime() , time.mktime() , time.time() , and

time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board that is

running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you can

check out this guide () on using AirLift with CircuitPython - extra wiring is required

and some boards like the MacroPad or NeoTrellis do not have enough available

pins to add the hardware support.

For further project examples, and guides about using AirLift with specific hardware,

check out the Adafruit Learn System ().

How do I do BLE (Bluetooth Low Energy) with

CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE

implementation. Your program can act as both a BLE central and peripheral. As a

central, you can scan for advertisements, and connect to an advertising board. As a

peripheral, you can advertise, and you can create services available to a central.

Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete () BLE

implementation. Your program can act as a central, and connect to a peripheral.

©Adafruit Industries Page 116 of 153

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

You can advertise, but you cannot create services. You cannot advertise

anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet available. Note

that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for use with

AirLift () or other NINA-FW-based co-processors. Some boards have this

coprocessor on board, such as the PyPortal (). Currently, this implementation only

supports acting as a BLE peripheral. Scanning and connecting as a central are not

yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio with

CircuitPython?

Check out Adafruit's RFM boards ()for simple radio communication supported by

CircuitPython, which can be used over distances of 100m to over a km, depending

on the version. The RFM SAMD21 M0 boards can be used, but they were not

designed for CircuitPython, and have limited RAM and flash space; using the RFM

breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards except

the smallest SAMD21 builds. Read about using it in the Cooperative Multitasking in

CircuitPython () Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio for

multitasking / 'threaded' control of your code

Status RGB LED

©Adafruit Industries Page 117 of 153

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

My RGB NeoPixel/DotStar LED is blinking funny colors -

what does it mean?

The status LED can tell you what's going on with your CircuitPython board. Read

more here for what the colors mean! ()

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on the

board. The CircuitPython microcontroller boards have a limited amount of memory

available. You can have about 250 lines of code on the M0 Express boards. If you

try to import too many libraries, a combination of large libraries, or run a program

with too many lines of code, your code will fail to run and you will receive a

MemoryError in the serial console.

What do I do when I encounter a MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the memory.

While this is unlikely to resolve your issue, it's a simple step and is worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython libraries

are available in the bundle in a .mpy format which takes up less memory than .py

format. Be sure that you're using the latest library bundle () for your version of

CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten comments,

remove extraneous or unneeded code, or any other clean up you can do to

shorten your code. If you're using a lot of functions, you could try moving those

into a separate library, creating a .mpy of that library, and importing it into your

code.

You can turn your entire file into a .mpy and import that into code.py. This means

you will be unable to edit your code live on the board, but it can save you space.

Can the order of my import statements affect memory?

It can because the memory gets fragmented differently depending on allocation

order and the size of objects. Loading .mpy files uses less memory so its

recommended to do that for files you aren't editing.

©Adafruit Industries Page 118 of 153

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross .

You can download mpy-cross for your operating system from here (). Builds are

available for Windows, macOS, x64 Linux, and Raspberry Pi Linux. Choose the

latest mpy-cross whose version matches the version of CircuitPython you are

using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a

yourfile.mpy in the same directory as the original file.

How do I check how much memory I have free?

Run the following to see the number of bytes available for use:

import gc

gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in CircuitPython? Why

not?

We dropped ESP8266 support as of 4.x - For more information please read about it

here ()!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and have

added a WiFi workflow for wireless coding! ()

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560 run

CircuitPython?

No.

©Adafruit Industries Page 119 of 153

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

Troubleshooting

From time to time, you will run into issues when working with CircuitPython. Here are

a few things you may encounter and how to resolve them.

Always Run the Latest Version of

CircuitPython and Libraries

As CircuitPython development continues and there are new releases, Adafruit will

stop supporting older releases. You need to update to the latest CircuitPython. ().

You need to download the CircuitPython Library Bundle that matches your version of

CircuitPython. Please update CircuitPython and then download the latest bundle ().

As new versions of CircuitPython are released, Adafruit will stop providing the

previous bundles as automatically created downloads on the Adafruit CircuitPython

Library Bundle repo. If you must continue to use an earlier version, you can still

download the appropriate version of mpy-cross from the particular release of

CircuitPython on the CircuitPython repo and create your own compatible .mpy library

files. However, it is best to update to the latest for both CircuitPython and the library

bundle.

I have to continue using CircuitPython 5.x or earlier.

Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 5.x or earlier library

bundles. You are highly encourged to update CircuitPython to the latest version () and

use the current version of the libraries (). However, if for some reason you cannot

update, links to the previous bundles are available in the FAQ ().

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 120 of 153

https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289

Bootloader (boardnameBOOT) Drive Not

Present

You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship with the UF2

bootloader ()installed. The Feather M0 Basic, Feather M0 Adalogger, and similar

boards use a regular Arduino-compatible bootloader, which does not show a boardna

meBOOT drive.

MakeCode

If you are running a MakeCode () program on Circuit Playground Express, press the

reset button just once to get the CPLAYBOOT drive to show up. Pressing it twice will

not work.

MacOS

DriveDx and its accompanything SAT SMART Driver can interfere with seeing the

BOOT drive. See this forum post () for how to fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you upgrade

to Windows 10 with the driver package installed? You don't need to install this

package on Windows 10 for most Adafruit boards. The old version (v1.5) can interfere

with recognizing your device. Go to Settings -> Apps and uninstall all the "Adafruit"

driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must install a

driver. Installation instructions are available here ().

It is recommended () that you upgrade to Windows 10 if possible; an upgrade is

probably still free for you. Check here ().

©Adafruit Industries Page 121 of 153

file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader
file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

You should now be done! Test by unplugging and replugging the board. You should

see the CIRCUITPY drive, and when you double-click the reset button (single click on

Circuit Playground Express running MakeCode), you should see the appropriate boar

dnameBOOT drive.

Let us know in the Adafruit support forums () or on the Adafruit Discord () if this does

not work for you!

Windows Explorer Locks Up When

Accessing boardnameBOOT Drive

On Windows, several third-party programs that can cause issues. The symptom is that

you try to access the boardnameBOOT drive, and Windows or Windows Explorer

seems to lock up. These programs are known to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to AIDA64.

They acquired hardware to test, and released a beta version that fixes the

problem. This may have been incorporated into the latest release. Please let us

know in the forums if you test this.

Hard Disk Sentinel

Kaspersky anti-virus: To fix, you may need to disable Kaspersky completely.

Disabling some aspects of Kaspersky does not always solve the problem. This

problem has been reported to Kaspersky.

ESET NOD32 anti-virus: There have been problems with at least version

9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT Drive

Hangs at 0% Copied

On Windows, a Western DIgital (WD) utility that comes with their external USB drives

can interfere with copying UF2 files to the boardnameBOOT drive. Uninstall that utility

to fix the problem.

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0) .

Windows 7 drivers for CircuitPython boards released since then, including

RP2040 boards, are not yet available. The boards work fine on Windows 10. A

new release of the drivers is in process.

•

•

•

•

©Adafruit Industries Page 122 of 153

https://forums.adafruit.com
https://adafru.it/discord

CIRCUITPY Drive Does Not Appear or

Disappears Quickly

Kaspersky anti-virus can block the appearance of the CIRCUITPY drive. There has not

yet been settings change discovered that prevents this. Complete uninstallation of

Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this problem on

Windows 7. The user turned off both Smart Firewall and Auto Protect, and CIRCUITPY

then appeared.

Sophos Endpoint security software can cause CIRCUITPY to disappear () and the

BOOT drive to reappear. It is not clear what causes this behavior.

Device Errors or Problems on Windows

Windows can become confused about USB device installations. This is particularly

true of Windows 7 and 8.1. It is recommended () that you upgrade to Windows 10 if

possible; an upgrade is probably still free for you: see this link ().

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup Tool () (on

that page, scroll down to "Device Cleanup Tool"). Download and unzip the tool.

Unplug all the boards and other USB devices you want to clean up. Run the tool as

Administrator. You will see a listing like this, probably with many more devices. It is

listing all the USB devices that are not currently attached.

©Adafruit Industries Page 123 of 153

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html

Select all the devices you want to remove, and then press Delete. It is usually safe

just to select everything. Any device that is removed will get a fresh install when you

plug it in. Using the Device Cleanup Tool also discards all the COM port assignments

for the unplugged boards. If you have used many Arduino and CircuitPython boards,

you have probably seen higher and higher COM port numbers used, seemingly

without end. This will fix that problem.

Serial Console in Mu Not Displaying

Anything

There are times when the serial console will accurately not display anything, such as,

when no code is currently running, or when code with no serial output is already

running before you open the console. However, if you find yourself in a situation

where you feel it should be displaying something like an error, consider the following.

Depending on the size of your screen or Mu window, when you open the serial

console, the serial console panel may be very small. This can be a problem. A basic

CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.

code.py output:

Traceback (most recent call last):

 File "code.py", line 7

SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only see blank

lines or blank lines followed by Press any key to enter the REPL. Use CTRL-D

to reload. . If this is the case, you need to either mouse over the top of the panel to

utilise the option to resize the serial panel, or use the scrollbar on the right side to

scroll up and find your message.

This applies to any kind of serial output whether it be error messages or print

statements. So before you start trying to debug your problem on the hardware side,

©Adafruit Industries Page 124 of 153

be sure to check that you haven't simply missed the serial messages due to serial

output panel height.

code.py Restarts Constantly

CircuitPython will restart code.py if you or your computer writes to something on the

CIRCUITPY drive. This feature is called auto-reload, and lets you test a change to your

program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps, will write to

the CIRCUITPY as part of their operation. Sometimes they do this very frequently,

causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known to cause

this problem. It is possible to prevent this by disabling the " ()Acronis Managed

Machine Service Mini" ().

If you cannot stop whatever is causing the writes, you can disable auto-reload by

putting this code in boot.py or code.py:

import supervisor

supervisor.disable_autoreload()

CircuitPython RGB Status Light

Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar RGB LED

on the board that indicates the status of CircuitPython. A few boards designed before

CircuitPython existed, such as the Feather M0 Basic, do not.

Circuit Playground Express and Circuit Playground Bluefruit have multiple RGB LEDs,

but do NOT have a status LED. The LEDs are all green when in the bootloader. In

versions before 7.0.0, they do NOT indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save battery

power and simplify the blinks. These blink patterns will occur on single color LEDs

when the board does not have any RGB LEDs. Speed and blink count also vary for

this reason.

©Adafruit Industries Page 125 of 153

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

On start up, the LED will blink YELLOW multiple times for 1 second. Pressing the

RESET button (or on Espressif, the BOOT button) during this time will restart the board

and then enter safe mode. On Bluetooth capable boards, after the yellow blinks, there

will be a set of faster blue blinks. Pressing reset during the BLUE blinks will clear

Bluetooth information and start the device in discoverable mode, so it can be used

with a BLE code editor.

Once started, CircuitPython will blink a pattern every 5 seconds when no user code is

running to indicate why the code stopped:

1 GREEN blink: Code finished without error.

2 RED blinks: Code ended due to an exception. Check the serial console for

details.

3 YELLOW blinks: CircuitPython is in safe mode. No user code was run. Check

the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can change the

LED color from the REPL. The status indicator will not persist on non-NeoPixel or

DotStar LEDs.

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is running

•

•

•

•

©Adafruit Industries Page 126 of 153

pulsing GREEN: code.py (etc.) has finished or does not exist

steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is waiting for

a reset to indicate that it should start in safe mode

pulsing YELLOW: Circuit Python is in safe mode: it crashed and restarted

steady WHITE: REPL is running

steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then indicate

the line number of the error. The color of the first flash indicates the type of error:

GREEN: IndentationError

CYAN: SyntaxError

WHITE: NameError

ORANGE: OSError

PURPLE: ValueError

YELLOW: other error

These are followed by flashes indicating the line number, including place value. WHIT

E flashes are thousands' place, BLUE are hundreds' place, YELLOW are tens' place,

and CYAN are one's place. So for example, an error on line 32 would flash YELLOW

three times and then CYAN two times. Zeroes are indicated by an extra-long dark gap.

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 127 of 153

Serial console showing ValueError:

Incompatible .mpy file

This error occurs when importing a module that is stored as a .mpy binary file that

was generated by a different version of CircuitPython than the one its being loaded

into. In particular, the mpy binary format changed between CircuitPython versions 6.x

and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to download

a newer version of the library that triggered the error on import . All libraries are

available in the Adafruit bundle ().

CIRCUITPY Drive Issues

You may find that you can no longer save files to your CIRCUITPY drive. You may find

that your CIRCUITPY stops showing up in your file explorer, or shows up as NO_NAM

E. These are indicators that your filesystem has issues. When the CIRCUITPY disk is

not safely ejected before being reset by the button or being disconnected from USB,

it may corrupt the flash drive. It can happen on Windows, Mac or Linux, though it is

more common on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is no longer

able to provide the USB services. You will need to reload CircuitPython to resolve this

situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the board so you

get a boardnameBOOT drive rather than a CIRCUITPY drive, and copy the latest

version of CircuitPython (.uf2) back to the board. This may restore CIRCUITPY

functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try putting

the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your code.py on

your CIRCUITPY drive, your board has gotten into a state where CIRCUITPY is read-

only, or you have turned off the CIRCUITPY drive altogether, safe mode can help.

©Adafruit Industries Page 128 of 153

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Safe mode in CircuitPython does not run any user code on startup, and disables auto-

reload. This means a few things. First, safe mode bypasses any code in boot.py

(where you can set CIRCUITPY read-only or turn it off completely). Second, it does not

run the code in code.py. And finally, it does not automatically soft-reload when data is

written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,

safe mode gives you the opportunity to correct it without losing all of the data on the

CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

1000ms. On some boards, the onboard status LED will blink yellow during that time. If

you press reset during that 1000ms, the board will start up in safe mode. It can be

difficult to react to the yellow LED, so you may want to think of it simply as a "slow"

double click of the reset button. (Remember, a fast double click of reset enters the

bootloader.)

Entering Safe Mode in CircuitPython 6.x

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset

(highlighted in red above). Immediately after the board starts up or resets, it waits

700ms. On some boards, the onboard status LED (highlighted in green above) will

turn solid yellow during this time. If you press reset during that 700ms, the board will

start up in safe mode. It can be difficult to react to the yellow LED, so you may want to

think of it simply as a slow double click of the reset button. (Remember, a fast double

click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse

yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently

blink yellow three times.

If you connect to the serial console, you'll find the following message.

©Adafruit Industries Page 129 of 153

Auto-reload is off.

Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.

Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not

run until you press the reset button, or unplug and plug in your board, to get out of

safe mode.

At this point, you'll want to remove any user code in code.py and, if present, the boot.

py file from CIRCUITPY. Once removed, tap the reset button, or unplug and plug in

your board, to restart CircuitPython. This will restart the board and may resolve your

drive issues. If resolved, you can begin coding again as usual.

If safe mode does not resolve your issue, the board must be completely erased and

CircuitPython must be reloaded onto the board.

To erase CIRCUITPY: storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the filesystem. If you

have a version of CircuitPython older than 2.3.0 on your board, you can update to the

newest version () to do this.

Connect to the CircuitPython REPL () using Mu or a terminal program.

Type the following into the REPL:

>>> import storage

>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart. That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython previous to

2.3.0 and you don't want to upgrade, there are options available for some specific

boards.

You WILL lose everything on the board when you complete the following steps. If

possible, make a copy of your code before continuing.

1.

2.

©Adafruit Industries Page 130 of 153

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

The options listed below are considered to be the "old way" of erasing your board.

The method shown above using the REPL is highly recommended as the best method

for erasing your board.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use the file to

erase your board.

 1. Download the correct erase file:

Circuit Playground Express

Feather M0 Express

Feather M4 Express

Metro M0 Express

Metro M4 Express QSPI Eraser

Trellis M4 Express (QSPI)

Grand Central M4 Express (QSPI)

PyPortal M4 Express (QSPI)

Circuit Playground Bluefruit (QSPI)

Monster M4SK (QSPI)

PyBadge/PyGamer QSPI Eraser.UF2

If at all possible, it is recommended to use the REPL to erase your CIRCUITPY

drive. The REPL method is explained above.

©Adafruit Industries Page 131 of 153

https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649
https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613

CLUE_Flash_Erase.UF2

Matrix_Portal_M4_(QSPI).UF2

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The status LED will turn yellow or blue, indicating the erase has started.

 5. After approximately 15 seconds, the status LED will light up green. On the

NeoTrellis M4 this is the first NeoPixel on the grid

 6. Double-click the reset button on the board to bring up the boardnameBOOT d

rive.

 7. Drag the appropriate latest release of CircuitPython () .uf2 file to the boardnam

eBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If the LED flashes red during step 5, it means the erase has failed. Repeat the steps

starting with 2.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page (). You'll also need to load your code and reinstall your

libraries!

For SAMD21 non-Express boards that have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that have a UF2

bootloader include Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based

Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps to erase

your board.

 1. Download the erase file:

SAMD21 non-Express Boards

©Adafruit Industries Page 132 of 153

https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2

 2. Double-click the reset button on the board to bring up the boardnameBOOT

drive.

 3. Drag the erase .uf2 file to the boardnameBOOT drive.

 4. The boot LED will start flashing again, and the boardnameBOOT drive will

reappear.

 5. Drag the appropriate latest release CircuitPython () .uf2 file to the

boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file explorer

again.

If you haven't already downloaded the latest release of CircuitPython for your board,

check out the installation page () YYou'll also need to load your code and reinstall

your libraries!

For SAMD21 non-Express boards that do not have a UF2

bootloader:

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. Non-Express boards that do not have a

UF2 bootloader include the Feather M0 Basic Proto, Feather Adalogger, or the

Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2 bootloader, f

ollow these directions to reload CircuitPython using bossac (), which will erase and

re-create CIRCUITPY.

Running Out of File Space on SAMD21 Non-

Express Boards

Any SAMD21-based microcontroller that does not have external flash available is

considered a SAMD21 non-Express board. This includes boards like the Trinket M0,

GEMMA M0, QT Py M0, and the SAMD21-based Trinkey boards.

The file system on the board is very tiny. (Smaller than an ancient floppy disk.) So, its

likely you'll run out of space but don't panic! There are a number of ways to free up

space.

©Adafruit Industries Page 133 of 153

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Delete something!

The simplest way of freeing up space is to delete files from the drive. Perhaps there

are libraries in the lib folder that you aren't using anymore or test code that isn't in

use. Don't delete the lib folder completely, though, just remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete that if you

don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters. Usually the

recommendation is to indent code with four spaces for every indent. In general, that

is recommended too. However, one trick to storing more human-readable code is to

use a single tab character for indentation. This approach uses 1/4 of the space for

indentation and can be significant when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the extra

hidden files that macOS adds by running a few commands to disable search indexing

and create zero byte placeholders. Follow the steps below to maximize the amount of

space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run this

command in a terminal to list all the volumes:

ls -l /Volumes

©Adafruit Industries Page 134 of 153

Look for a volume with a name like CIRCUITPY (the default for CircuitPython). The full

path to the volume is the /Volumes/CIRCUITPY path.

Now follow the steps from this question () to run these terminal commands that stop

hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY

cd /Volumes/CIRCUITPY

rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}

mkdir .fseventsd

touch .fseventsd/no_log .metadata_never_index .Trashes

cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to your

board's volume if it's different. At this point all the hidden files should be cleared from

the board and some hidden files will be prevented from being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders

mentioned above will be created automatically if you erase and reformat the

filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage

>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by MacOS. In

particular if you copy a file that was downloaded from the internet it will have special

metadata that MacOS stores as a hidden file. Luckily you can run a copy command

from the terminal to copy files without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating Hidden Files

Once you've disabled and removed hidden files with the above commands on macOS

you need to be careful to copy files to the board with a special command that

prevents future hidden files from being created. Unfortunately you cannot use drag

and drop copy in Finder because it will still create these hidden extended attribute

files in some cases (for files downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal. For

example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

©Adafruit Industries Page 135 of 153

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a command

like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists before

copying.

if lib does not exist, you'll create a file named lib !

cp -X file_name.mpy /Volumes/CIRCUITPY/lib

This is safer, and will complain if a lib folder does not exist.

cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually delete hidden

files here's how to do so. First, move into the Volumes/ directory with cd /Volumes/ ,

and then list the amount of space used on the CIRCUITPY drive with the df

command.

That's not very much space left! The next step is to show a list of the files currently on

the CIRCUITPY drive, including the hidden files, using the ls command. You cannot

use Finder to do this, you must do it via command line!

There are a few of the hidden files that MacOS loves to generate, all of which begin

with a ._ before the file name. Remove the ._ files using the rm command. You can

©Adafruit Industries Page 136 of 153

remove them all once by running rm CIRCUITPY/._* . The * acts as a wildcard to

apply the command to everything that begins with ._ at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for libraries and

code!

Device Locked Up or Boot Looping

In rare cases, it may happen that something in your code.py or boot.py files causes

the device to get locked up, or even go into a boot loop. A boot loop occurs when the

board reboots repeatedly and never fully loads. These are not caused by your

everyday Python exceptions, typically it's the result of a deeper problem within

CircuitPython. In this situation, it can be difficult to recover your device if CIRCUITPY

is not allowing you to modify the code.py or boot.py files. Safe mode is one recovery

option. When the device boots up in safe mode it will not run the code.py or boot.py

scripts, but will still connect the CIRCUITPY drive so that you can remove or modify

those files as needed.

The method used to manually enter safe mode can be different for different devices.

It is also very similar to the method used for getting into bootloader mode, which is a

different thing. So it can take a few tries to get the timing right. If you end up in

bootloader mode, no problem, you can try again without needing to do anything else.

For most devices:

Press the reset button, and then when the RGB status LED blinks yellow, press the

reset button again. Since your reaction time may not be that fast, try a "slow" double

click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:

Press and release the reset button, then press and release the boot button about 3/4

of a second later.

©Adafruit Industries Page 137 of 153

Refer to the diagrams above for boot sequence details.

"Uninstalling" CircuitPython

A lot of our boards can be used with multiple programming languages. For example,

the Circuit Playground Express can be used with MakeCode, Code.org CS

Discoveries, CircuitPython and Arduino.

Maybe you tried CircuitPython and want to go back to MakeCode or Arduino? Not a

problem. You can always remove or reinstall CircuitPython whenever you want! Heck,

you can change your mind every day!

There is nothing to uninstall. CircuitPython is "just another program" that is loaded

onto your board. You simply load another program (Arduino or MakeCode) and it will

overwrite CircuitPython.

Backup Your Code

Before replacing CircuitPython, don't forget to make a backup of the code you have

on the CIRCUITPY drive. That means your code.py any other files, the lib folder etc.

You may lose these files when you remove CircuitPython, so backups are key! Just

drag the files to a folder on your laptop or desktop computer like you would with any

USB drive.

Moving Circuit Playground Express to

MakeCode

On the Circuit Playground Express (this currently does NOT apply to Circuit

Playground Bluefruit), if you want to go back to using MakeCode, it's really easy. Visit

makecode.adafruit.com () and find the program you want to upload. Click Download to

download the .uf2 file that is generated by MakeCode.

Now double-click your CircuitPython board until you see the onboard LED(s) turn

green and the ...BOOT directory shows up.

©Adafruit Industries Page 138 of 153

https://makecode.adafruit.com

Then find the downloaded MakeCode .uf2 file and drag it to the CPLAYBOOT drive.

Your MakeCode is now running and CircuitPython has been removed. Going forward

you only have to single click the reset button to get to CPLAYBOOT. This is an

idiosyncrasy of MakeCode.

Moving to Arduino

If you want to use Arduino instead, you just use the Arduino IDE to load an Arduino

program. Here's an example of uploading a simple "Blink" Arduino program, but you

don't have to use this particular program.

Start by plugging in your board, and double-clicking reset until you get the green

onboard LED(s).

©Adafruit Industries Page 139 of 153

Within Arduino IDE, select the matching board, say Circuit Playground Express.

Select the correct matching Port:

Create a new simple Blink sketch example:

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Make sure the LED(s) are still green, then click Upload to upload Blink. Once it has

uploaded successfully, the serial Port will change so re-select the new Port!

Once Blink is uploaded you should no longer need to double-click to enter

bootloader mode. Arduino will automatically reset when you upload.

©Adafruit Industries Page 140 of 153

CircuitPython Essentials

You've gone through the Welcome to CircuitPython guide. You've already gotten

everything setup, and you've gotten CircuitPython running. Great! Now what?

CircuitPython Essentials!

There are a number of core modules built into CircuitPython and commonly used

libraries available. The Essentials guide will introduce you to these and show you an

example of how to use each one.

It's time to get started learning the CircuitPython Essentials ()!

How Do I Learn Python?

A question that is often asked is, "How do I learn Python?" Obviously, there's no

canonical answer because everyone learns in different ways. To that end, though, this

page contains a list of links that can at least help you get started.

Python for Beginner Non-Programmers

Links in this section are for folks who are entirely new to programming and are

interested in beginning with Python.

Getting started with Python ()

Python Beginner's Guide: Overview ()

Python learning resources for non-programmers ()

•

•

•

©Adafruit Industries Page 141 of 153

https://learn.adafruit.com/circuitpython-essentials/circuitpython-essentials
https://www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers

Python for Programmers

Links in this section are for folks who are new to Python, but not new to programming

in general.

Python learning resources for programmers ()

Python resources for programmers available in learner's native languages ()

Python FAQs

These are FAQs from the official Python documentation.

Basic FAQs:

General Python FAQ ()

Python on Windows FAQ ()

Advanced FAQs:

Design and History FAQ ()

Python Success Stories

You may be wondering, "What can I do with Python?" The Python folks have provided

an extensive list of real-life applications of Python ().

You can also refer to the Adafruit Learning System () for dozens upon dozens of

CircuitPython programs used in real projects. Feel free to reuse any code you wish, it

is Open Source.

Final Note

This list of resources is not exhaustive by any stretch of the imagination. It is meant to

provide you with a place to start.

If you're trying to learn Python, and you're having trouble, don't be discouraged!

Everyone learns in different ways and at their own pace. If you're working through

•

•

•

•

•

©Adafruit Industries Page 142 of 153

https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/Languages
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/windows.html
https://docs.python.org/3/faq/design.html
https://www.python.org/about/success
https://learn.adafruit.com/

something, and the way it's presented not sinking in, don't be afraid to look for a

different resource. Be sure to stick with it until you find your own style!

Archive

As CircuitPython development continues, the inevitable deprecation of features

occurs, resulting in guide pages that have information that is no longer relevant or

supported. Adafruit prefers to preserve all guide pages. Therefore pages are not

deleted, but instead, are marked as deprecated.

The pages nested under this page are no longer supported. You may refer to them,

but please understand that Adafruit no longer supports the concepts within them.

CircuitPython M0 Hardware

Now it's time to do something great with what you've learned! Every CircuitPython

board is perfect for projects. However, each one excels in different areas. This page

will provide you with some details about each board, and highlight Learn guides

where each one is used. You can try these out or get ideas for your own project!

All pages in this category contain concepts that are no longer relevant or

supported!

Other than Circuit Playground (which IS recommended!), it is no longer

recommended to purchase M0 (ATSAMD21) boards for use with CircuitPython

projects. There are now newer microcontrollers available at the same price-point

that are faster and have more memory. The information available on this page is

still valid for the boards listed.

©Adafruit Industries Page 143 of 153

Trinket M0

The Adafruit Trinket M0 () is the smallest CircuitPython board Adafruit carries. But

don't let that fool you! It's a tiny board with a lot of power. Adafruit wanted to design a

microcontroller board that was small enough to fit into any project, and low cost

enough to use without hesitation. Planning to test a proof of concept and need a

CircuitPython board to throw in? Not ready to disassemble the project you worked so

hard to design to extract the board you used last time? Trinket M0 has you covered.

It's the lowest cost CircuitPython board available but it easily holds its own with the

bigger boards!

Trinket M0 ships with CircuitPython and comes with demo code already on the board.

You can open and edit the main.py file found on the CIRCUITPY drive to get started,

or create your own! The Trinket M0 guide () gives you everything you need to know

about your board. Check out the CircuitPython () section to find a huge list of

examples to try.

You can use Trinket M0 to make the Chilled Drinkibot () which uses the Trinket to

control thermoelectric cooling of a beverage. Or build a spooky Halloween project

that turns your candy bucket into a Screaming Cauldron ()!

©Adafruit Industries Page 144 of 153

https://www.adafruit.com/product/3500
file:///home/adafruit-trinket-m0-circuitpython-arduino
file:///home/adafruit-trinket-m0-circuitpython-arduino/circuitpython
file:///home/chilled-drinkibot
file:///home/screaming-cauldron/overview

Gemma M0

The Adafruit Gemma M0 () is a tiny CircuitPython board with just enough built-in to

build many simple projects. It's designed to be worked into your wearable projects,

with big holes around the outside for sewing (and they're alligator clip friendly too!).

Gemma M0 will super-charge your wearables and is easier to use than ever. There

are capacitive touch pads, an on-off switch and an RGB DotStar LED built right into

the board so there's plenty you can do without adding a thing. Add conductive thread

and LEDs and you'll have a blinky wearable in no time!

Like Trinket, Gemma M0 ships with CircuitPython and has demo code already on the

board. You can open and edit the main.py file on the CIRCUITPY drive, or create your

own! The Gemma M0 guide () shows you all the info about your board, and has a

great list of CircuitPython examples () to try out.

Use Gemma M0 to create a pair of Clockwork Goggles () with fun light patterns on

NeoPixel rings. Or accessorise with this 3D printed Sheikah Pendant () to add a bit of

light to your next costume!

©Adafruit Industries Page 145 of 153

https://www.adafruit.com/product/3501
file:///home/adafruit-gemma-m0/overview
file:///home/adafruit-gemma-m0/circuitpython
file:///home/gemma_m0_clockwork_goggles
file:///home/gemma-m0-sheikah-pendant

Circuit Playground Express

The Adafruit Circuit Playground Express () is the next step towards a perfect

introduction to electronics and programming. It's packed full of sensors, LEDs, buttons

and switches, and it's super easy to get started with! This board is super versatile.

Whether you're new to electronics and programming, or a seasoned veteran, Circuit

Playground Express is an amazing board to work with. With so much built into the

board, you can learn how different types of electronics work and learn to program

them all without purchasing any other parts. All you need is a USB cable and the

board! But, that's just the beginning. Many of the pads around the outside of the

board function in multiple ways allowing you to wire other things to the board. For

example, you could wire up a servo or a potentiometer. The possibilities are endless!

The Circuit Playground Express guide () has tons of information on all the fantastic

features of the board. The CircuitPython section () of the guide has an extensive list of

examples using the built-in features of the CircuitPython and the board. There is also

a section called Python Playground () with more demos and a Drum Machine project ()

to try out.

You can turn your Circuit Playground Express into a capacitive touch tone Piano in the

Key of Lime () using the touch pads on the board. Use the built in accelerometer to

make a UFO Flying Saucer () complete with lights and alien sounds using your board,

and some extra supplies from around the house or a 3D printed saucer!

©Adafruit Industries Page 146 of 153

https://www.adafruit.com/product/3333
file:///home/adafruit-circuit-playground-express/overview
file:///home/adafruit-circuit-playground-express/circuitpython-quickstart
file:///home/adafruit-circuit-playground-express/python-playground
file:///home/adafruit-circuit-playground-express/playground-drum-machine
file:///home/circuit-playground-express-piano-in-the-key-of-lime/overview
file:///home/circuit-playground-express-piano-in-the-key-of-lime/overview
file:///home/ufo-circuit-playground-express

Feather M0 Express

The Adafruit Feather M0 Express () is the first Feather designed specifically for

CircuitPython. It's part of a line of Adafruit Feather development boards () designed to

work standalone or stacked, and is powered by USB or lithium ion battery so it works

for both stationary and on-the-go projects. Feather M0 Express comes with two

headers for use with a solderless breadboard, or you can solder wires directly to the

pins on the board. This allows for prototyping while you're working on your project

and permanent installation when you're ready. One of the things that makes the

Feather M0 Express amazing is the the huge array of boards called Featherwings ()

which are designed to fit right on the Feather. There are CircuitPython libraries for

many of these boards and more are being written all the time.

Feather M0 Express ships CircuitPython-ready with the UF2 bootloader installed and

ready for you to install CircuitPython when you receive your board. Create your first

program, save it to the board, and off you go! The Feather M0 Express guide () has all

the details about your board, and a CircuitPython section () to get you started.

Feather M0 Express can be used to power all kinds of projects. Build a CircuitPython

Painter () POV LED wand using 3D printed parts and DotStar strips. Create an

engraved edge-lit LED Acrylic Sign () with NeoPixels. There are guides to go with the

Featherwings that explain how to use them with CircuitPython, like the OLED Display (

) and Adalogger Featherwing ().

©Adafruit Industries Page 147 of 153

https://www.adafruit.com/product/3403
file:///home/adafruit-feather/feather-specification?view=all
https://www.adafruit.com/category/871
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython
file:///home/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/kattni-circuitpython
file:///home/circuitpython-painter
file:///home/circuitpython-painter
file:///home/led-acrylic-sign
file:///home/micropython-hardware-ssd1306-oled-display?view=all
file:///home/micropython-hardware-sd-cards/tdicola-circuitpython?view=all

Metro M0 Express

Metro M0 Express () is the first Metro board designed to work with CircuitPython. This

is not a beginner board. If you're just getting started, Adafruit recommends one of the

previous boards. It has a lot of the same features as Feather M0 Express, as well as

some development specific features (like the SWD port built in!). The Metro M0

Express is designed to work with the Arduino form-factor, so if you've already got

Arduino shields, this board would be great for you. There are CircuitPython libraries

for some shields already. It has 25 GPIO pins (the most of any of these boards!) so it's

great if you're looking for a lot of options.

Metro M0 Express ships CircuitPython-ready with the UF2 bootloader installed and is

ready for you to install CircuitPython when you receive your board. Create your first

program, save it to the board, and you're good to go! The Metro M0 Express guide ()

gives you all the details about your board, and the CircuitPython section () is available

to get you started.

All sensors and breakout boards with CircuitPython libraries will work with the Metro

M0 Express running CircuitPython. Find the guide for your sensor and follow the

guide to find out how to wire it up. There are a ton of options available.

What's Next?

Now you're ready to jump into some more Learn Guides or simply get started with a

brand new project. Great job, and good luck!

©Adafruit Industries Page 148 of 153

https://www.adafruit.com/product/3505
file:///home/adafruit-metro-m0-express-designed-for-circuitpython
file:///home/adafruit-metro-m0-express-designed-for-circuitpython/circuitpython-setup

CircuitPython for ESP8266

Why are we dropping support for

ESP8266?

CircuitPython on ESP8266 has not been a great experience for users. Its hard to send

files to the device because it has no native USB, and you can quickly run out of RAM

(there's less than you think once the networking stack is added). We've decided to

only use ESP as a co-processor. Specifically, the ESP32 because it has good TLS/SSL

support which is now essential for even the most basic interactions.

If you'd like to use ESP8266, please keep to version 3.x with the knowledge that it

isn't supported. You can also check out MicroPython for ESP8266 which is still

supported!

If you'd like to add WiFi support, check out our guide on ESP32/ESP8266 as a co-

processor. ()

About ESP8266 for CircuitPython (3.x)

We have two 'strains' of CircuitPython, the primary one is the ATSAMD21/51-based

boards that have native USB connectivity. Native USB means that the board can show

up as a disk drive called CIRCUITPY and hold all your files on it.

There's also CircuitPython for boards like the ESP8266 and nRF52832, these are

really nice chips with WiFi and Bluetooth, respectively, built in. But they do not have

native USB! That means there is no way for the chip to appear as a disk drive. You can

still use them with CircuitPython but its a lot tougher, so we don't recommend them

for beginners. Here's what you have to know about using non-native chips for

CircuitPython:

You only get a REPL connection! No HID keyboard/mouse or other USB interface

No disk drive for drag-n-drop file moving, files must be moved via a special tool

such as ampy that 'types' the file in for you via the REPL

We are no longer supporting CircuitPython on ESP8266. This page is for

historical purposes only. There is no guarantee that the instructions will continue

to work.

•

•

©Adafruit Industries Page 149 of 153

https://learn.adafruit.com/adding-a-wifi-co-processor-to-circuitpython-esp8266-esp32
https://learn.adafruit.com/adding-a-wifi-co-processor-to-circuitpython-esp8266-esp32

Loading CircuitPython requires command line tools

Installing CircuitPython on the ESP8266

To use CircuitPython with the ESP8266 you'll need to first flash it with the latest

firmware.

Download esptool

First install the esptool.py software which enables firmware flashing on the

ESP8266. The easiest way to install this tool is from Python's pip package manager.

 If you don't have it already you'll need to install Python 2.7 () (make sure you check

the box to put Python in your system path when installing on Windows) and then run

the following command in a terminal: pip install esptool

Note on Mac OSX and Linux you might need to run the command as root with sudo,

like: sudo pip install esptool

If you receive an error that esptool.py only supports Python 2.x try running again

with the pip2 command instead of pip (likely your system is using Python 3 and the

pip command is getting confused which version to use).

Download Latest CircuitPython Firmware

Next download the latest CircuitPython ESP8266 firmware file:

Download Latest ESP8266 Huzzah

Firmware (v3.1.2)

•

©Adafruit Industries Page 150 of 153

https://www.python.org/downloads/
https://github.com/adafruit/circuitpython/releases/download/3.1.2/adafruit-circuitpython-feather_huzzah-3.1.2.bin

Get ESP8266 Ready For Bootloading

Now you'll need to put the ESP8266 into its firmware flashing mode. Each ESP8266

board is slightly different:

For a raw ESP8266 module you'll need to wire up buttons to ground for the

GPIO0 and RESET pins. Hold the GPIO0 button down (or connect the line to

ground) and while still holding GPIO0 to ground press and release the RESET

button (or connect and release the line from ground), then release GPIO0.

For the HUZZAH ESP8266 breakout () buttons for GPIO0 and RESET are built in

to the board. Hold GPIO0 down, then press and release RESET (while still

holding GPIO0), and finally release GPIO0.

For the Feather HUZZAH ESP8266 () you don't need to do anything special to

go into firmware flashing mode. This board is built to detect when the serial

port is opened for flashing and automatically configure the ESP8266 module to

receive firmware. Be sure to first install the SiLabs CP210x driver () on Windows

and Mac OSX to make the board's serial port visible! On Windows you want the

normal VCP driver, not the 'with Serial Enumeration' driver.

Erase ESP8266

It's recommended to erase the entire flash memory of the ESP8266 board before

uploading firmware. Run the following command in a terminal to perform this erase:

esptool.py --port ESP8266_PORTNAME erase_flash

Where ESP8266_PORTNAME is the path or name of the serial port that is connected to

the ESP8266. The exact name of the device varies depending on the type of serial to

USB converter chip so you might need to look at the serial ports with and without the

device connected to find its name.

•

•

•

©Adafruit Industries Page 151 of 153

https://www.adafruit.com/product/2471
https://www.adafruit.com/product/2821
https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

Program ESP8266

Now put the ESP8266 back into firmware flashing mode and run the following

command to load the downloaded firmware file:

esptool.py --port ESP8266_PORTNAME --baud 115200 write_flash --flash_size=detect 0

firmware.bin

Again set ESP8266_PORTNAME to the path or name of the serial port that is

connected to the ESP8266. In addition set firmware.bin to the name or path to the

firmware file you would like to load.

Once the tool finishes flashing the firmware (you'll usually see a blue light on the

ESP8266 module flashing during this process) press the RESET button on the

ESP8266 board or disconnect and reconnect it to your computer. You should be all

set to start using the latest CircuitPython firmware on the board!

©Adafruit Industries Page 152 of 153

Note that if you see an error that "detect is not a valid flash_size parameter" you

might be using an older version of esptool.py. To upgrade to the latest version run

the following command pip install --upgrade esptool

Upload Libraries & Files Using Ampy!

The biggest difference you'll find with ESP8266 is that you need to use a special tool

to move files around. Check out ampy by reading this guide. It's about MicroPython

but CircuitPython is nearly identical so the the overall installation and usage is

identical!

Learn how to use ampy to move files

on your ESP8266

Other Stuff To Know!

The REPL works as you'd expect, so check out that introductory page.

File storage is in the same chip as CircuitPython so if you update, you may lose

your files! Keep backups.

Libraries and API are also the same as for other CircuitPython boards.

Note that the ESP8266 does not have a ton of pins available, and only one

analog input with 0-1.0V range. There is no UART port available (it's the one

used for the REPL!)

There are no analog outputs.

For SPI and I2C, you can use them! But you will need to use bitbangio () to

create the bus objects

•

•

•

•

•

•

©Adafruit Industries Page 153 of 153

https://learn.adafruit.com/micropython-basics-load-files-and-run-code/
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html

	Welcome to CircuitPython!
	Table of Contents
	Welcome To CircuitPython
	What is CircuitPython?
	Installing the Mu Editor
	Installing CircuitPython
	Windows 7 and 8.1 Drivers
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Hardware
	Welcome to the Community!
	CircuitPython Documentation
	Advanced Setup
	Recommended Editors
	Library File Types and Frozen Libraries
	PyCharm and CircuitPython
	Renaming CIRCUITPY
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Non-UF2 Installation
	Frequently Asked Questions
	Troubleshooting
	"Uninstalling" CircuitPython
	CircuitPython Essentials
	How Do I Learn Python?
	Archive
	CircuitPython M0 Hardware
	CircuitPython for ESP8266

	Welcome To CircuitPython
	This guide will get you started with CircuitPython!

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Installing CircuitPython
	Download the latest version!
	Windows 7 and 8.1 Drivers

	Start the UF2 Bootloader
	For most boards:
	For RP2040 boards:

	Bootloader Mode
	For most boards:
	For RP2040 boards:

	Install CircuitPython
	What's the difference between CIRCUITPY and boardnameBOOT or RPI-RP2?
	Bootloader Drive Names

	Windows 7 and 8.1 Drivers
	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Hardware
	Circuit Playground Express
	Circuit Playground Bluefruit
	Circuit Playground Express or Bluefruit?

	QT Py RP2040
	Feather M4 Express
	Metro M4
	Itsy Bitsy M4 Starter Kit
	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Advanced Setup
	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Library File Types and Frozen Libraries
	RAM vs Filesystem Space

	.mpy Library Files
	What is an .mpy file?
	Creating an .mpy File

	.py Library Files.
	What is a .py file?

	Frozen Libraries
	What is a frozen library?
	Project Bundle and Frozen Libraries

	Library File Priority
	What library files does CircuitPython look for?
	Where does CircuitPython look for library files?
	Building CircuitPython with an Updated Frozen Library

	What's the Real Difference?
	Memory Usage between .mpy and .py
	Using gc.mem_free() to Check Your Bytes

	Common Issues and Solutions
	.mpy Failing When It Worked Previously
	Memory Allocation
	Memory Fragmentation
	Import Order Can Matter
	Library Structure Not Intact or in Improper Directory
	Don't Name Your Test Code the Same as a Library

	PyCharm and CircuitPython
	Disable Auto-save
	Creating a project on a computer's file system
	Install circuitpython-stubs
	Install Libraries
	Serial console in the terminal pane

	Renaming CIRCUITPY
	Renaming CIRCUITPY on Mac
	Renaming CIRCUITPY on Windows
	Renaming CIRCUITPY on Linux
	Renaming CIRCUITPY through CircuitPython

	Reverting to CIRCUITPY
	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Non-UF2 Installation
	Espressif Boards without UF2 Bootloaders
	STM Boards
	Flashing with Bossac - For Non-Express Feather M0's & Arduino Zero
	Command-Line ahoy!
	Download Latest CircuitPython Firmware
	Download BOSSA
	Test bossac
	Get Into the Bootloader
	Run the bossac Command
	Using bossac Version 1.7.0
	Using bossac Versions 1.8, and 1.9 or Later

	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 6.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 5.x or earlier. Where can I find compatible libraries?

	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	MacOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	"Uninstalling" CircuitPython
	Backup Your Code

	Moving Circuit Playground Express to MakeCode
	Moving to Arduino
	CircuitPython Essentials
	How Do I Learn Python?
	Python for Beginner Non-Programmers
	Python for Programmers
	Python FAQs
	Python Success Stories
	Final Note

	Archive
	CircuitPython M0 Hardware
	Trinket M0
	Gemma M0
	Circuit Playground Express
	Feather M0 Express
	Metro M0 Express

	What's Next?
	CircuitPython for ESP8266
	Why are we dropping support for ESP8266?
	About ESP8266 for CircuitPython (3.x)
	Installing CircuitPython on the ESP8266
	Download esptool
	Download Latest CircuitPython Firmware
	Get ESP8266 Ready For Bootloading
	Erase ESP8266
	Program ESP8266

	Upload Libraries & Files Using Ampy!
	Other Stuff To Know!

