

LMN400B01

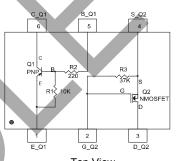
400mA LOAD SWITCH FEATURING PNP TRANSISTOR AND N-MOSFET WITH GATE PULL-DOWN RESISTOR

Product Summary

Reference	Device Type	R1 (NOM)	R2 (NOM)	R3 (NOM)	Figure
Q1	PNP Transistor	10K	220	_	2
Q2	N-MOSFET			37K	2

Features

- Voltage Controlled Small Signal Switch
- N-MOSFET with Gate Pull-Down Resistor
- Ideally Suited for Automated Assembly Processes
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

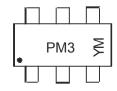

Description

LMN400B01 is best suited for applications where the load needs to be turned on and off using control circuits like micro-controllers, comparators etc. particularly at a point of load. It features a discrete pass transistor with stable $V_{\text{CE}(\text{SAT})}$ which does not depend on input voltage and can support continuous maximum current of 400 mA . It also contains a discrete N-MOSFET with gate pull-down resistor that can be used as control. The component devices can be used as a part of a circuit or as a stand alone discrete device.

Mechanical Data

- Case: SOT26
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals; Finish Matte Tin annealed over Copper leadframe.
 Solderable per MIL-STD-202, Method 208 3
- Weight: 0.016 grams (approximate)

Top View Internal Schematic


Ordering Information (Note 4)

Part Number	Case	Packaging
LMN400B01-7	SOT26	3000/Tape & Reel

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com.

Marking Information

PM3 = Product Type Marking Code, YM = Date Code Marking Y = Year, e.g., Z = 2012 M = Month, e.g., 9 = September

Date Code Key

Year	2006	20	007		2012	2	013	2014	2015	20	16	2017
Code	T		U		Z		Α	В	С)	Е
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5)	P _D	300	mW
Power Derating Factor above +100°C	P _{DER}	2.4	mW/°C
Output Current	I _{OUT}	400	mA

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Thermal Resistance, Junction to Ambient Air (Note 5)	$R_{ heta JA}$	417	°C/W

Maximum Ratings:

Pre-Biased PNP Transistor (Q1) (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	-50	V
Collector-Emitter Voltage	V_{CEO}	-50	V
Supply Voltage	Vcc	-50	V
Input Voltage	V _{IN}	-6 to +5	V
Output Current	Ic	-400	mA

Maximum Ratings:

ESD Protected N-Channel MOSFET (Q2) (@T_A = +25°C, unless otherwise specified.)

Ch	aracteristic	Symbol	Value	Unit
Drain-Source Voltage		V_{DSS}	60	V
Drain Gate Voltage (R _{GS} ≤1M	Ω)	V_{DGR}	60	V
Gate-Source Voltage	Continuous	V	+/-20	V
	Pulsed (tp < 50µS)	V_{GSS}	+/-40	V
Drain Current (Note 5)	Continuous (V _{GS} = 10V)	1	115	m A
	Pulsed (tp <10µS, Duty Cycle <1%)	ID	800	mA mA
Continuous Source Current		I _S	115	mA

Note: 5. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Electrical Characteristics: Pre-Biased PNP Transistor (Q1) (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 6)						
Collector-Base Cut Off Current	I _{CBO}		_	-500	nA	$V_{CB} = -50V, I_{E} = 0$
Collector-Emitter Cut Off Current	I _{CEO}		_	-1	μΑ	V _{CE} = -50V, I _B = 0
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-50		_	V	$I_C = -10\mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-50		_	V	$I_C = -2mA, I_B = 0$
Input Off Voltage	V _{I(OFF)}	-0.3		_	V	$V_{CE} = -5V$, $I_{C} = -100\mu A$
Ouput Current	I _{O(OFF)}			-1	μΑ	$V_{CC} = -50V, V_{I} = 0V$
ON CHARACTERISTICS (Note 6)						
			-0.06	-0.15	V	$I_C = -10mA$, $I_B = -0.3mA$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}		-0.18	-0.30	V	$I_C = -300 \text{mA}, I_B = -30 \text{mA}$
			-0.28	-0.60	V	$I_C = -500$ mA, $I_B = -50$ mA
		55	220			$V_{CE} = -5V, I_{C} = -50mA$
DC Current Gain		55	260			$V_{CE} = -5V, I_{C} = -100mA$
De Current Gain	h _{FE}	55	265		_	V_{CE} = -5V, I_{C} = -200 mA
		55	225		_	$V_{CE} = -5V, I_{C} = -400mA$
Input On Voltage	$V_{I(ON)}$	-3.0	-1.5		V_{DC}	$V_{O} = -0.3V$, $II_{C} = -2mA$
Input Current	l _i		-18	-45	mA	V _I = -5V
Base-Emitter Turn-on Voltage	V _{BE(ON)}		-1.2	-1.6	>	V _{CE} = -5V, I _C = -400mA
Base-Emitter Saturation Voltage	\/	1	-1.9	-2.5	>	$I_C = -50 \text{mA}, I_B = -5 \text{mA}$
base-Emiller Saturation Voltage	$V_{BE(SAT)}$	_	-5.25	-6.00	V	I _C = -400mA, I _B = -20mA
Input Resistor (Base), +/- 30%	R2	0.154	0.220	0.286	ΚΩ	_
Pull-up Resistor (Base to V _{CC} supply), +/- 30%	R1	7	10	13	ΚΩ	
Resistor Ratio (Input Resistor/Pullup resistor)	R1/R2	36	45	55		
SMALL SIGNAL CHARACTERISTICS						
Gain Bandwidth Product	f⊤	_	200	_	MHz	$V_{CE} = -10V, I_{E} = -5mA,$ f = 100MHz

* Pulse Test: Pulse width, tp <300 μ s, Duty Cycle, d \leq 0.02 Note: 6. Short duration pulse test used to minimize self-heating effect.

Electrical Characteristics: ESD Protected N-Channel MOSFET (Q2) (@TA = +25°C, unless otherwise specified.)

Symbol	Min	Тур	Max	Unit	Test Condition	
$V_{(BR)DSS}$	60	_	_	V	$V_{GS} = 0V, I_D = 10\mu A$	
I _{DSS}		_	1	μΑ	V _{GS} =0V, V _{DS} = 60V	
I _{GSSF}	_	_	0.95	mA	V _{GS} = 20V, V _{DS} = 0V	
I _{GSSR}			-0.95	mA	$V_{GS} = -20V, V_{DS} = 0V$	
$V_{GS(th)}$	1	1.6	2.5	٧	$V_{DS} = V_{GS}, I_{D} = 0.25 \text{mA}$	
V		0.09	1.5	V	$V_{GS} = 5V$, $I_D = 50mA$	
VDS(on)		0.6	3.75	>	$V_{GS} = 10V, I_D = 500mA$	
I _{D(on)}	500		1	mA	$V_{GS} = 10V$, $V_{DS} \ge 2^*V_{DS(ON)}$	
R _{DS(on)}		1.6	3	5	$V_{GS} = 5V$, $I_D = 50$ mA	
	_	1.2	2	77	V _{GS} = 10V, I _D = 500mA	
g FS	80	260	_	mS	$V_{DS} \ge 2*V_{DS(ON)}$, $I_D = 200 \text{ mA}$	
R3	_	37		kΩ	_	
C _{iss}	_		50	pF		
Coss	_		25	pF	V_{DS} = -25V, V_{GS} = 0V, f = 1MHz	
Crss		_	5	pF		
td _(on)	-		20	ns	$V_{DD} = 30V, V_{GS} = 10V,$	
td _(off)	_	-	40	ns	$I_D = 200 \text{mA},$ $R_G = 25 \Omega, R_L = 150 \Omega$	
SOURCE-DRAIN (BODY) DIODE CHARACTERISTICS AND MAXIMUM RATINGS						
V_{SD}		0.88	1.5	V	$V_{GS} = 0V$, $I_S = 300 \text{ mA*}$	
Is	_	_	300	mA	_	
Ism		_	800	mA	_	
	V(BR)DSS IDSS IGSSF IGSSR VGS(th) VDS(on) ID(on) RDS(on) GFS R3 Ciss Coss Crss td(on) td(off) D MAXIMU VSD IS	V(BR)DSS 60 IDSS — IGSSF — IGSSR — VGS(th) 1 VDS(on) — ID(on) 500 RDS(on) — GFS 80 R3 — Coss — Coss — Crss — td(on) — td(off) — D MAXIMUM RATIN VSD — Is —	V(BR)DSS 60 — IDSS — — IGSSF — — IGSSR — — VGS(th) 1 1.6 VDS(on) — 0.09 VDS(on) — 0.6 ID(on) 500 — RDS(on) — 1.6 — 1.2 9FS 80 260 R3 R3 — 37 Ciss — — Coss — — Crss — — td(on) — — td(off) — — D MAXIMUM RATINGS VSD — Is — —	V(BR)DSS 60 — — IDSS — — 1 IGSSF — — 0.95 IGSSR — — 0.95 VGS(th) 1 1.6 2.5 VDS(on) — 0.09 1.5 ID(on) 500 — — RDS(on) — 1.6 3 RDS(on) — 1.2 2 GFS 80 260 — R3 — 37 — Ciss — — 50 Coss — — 5 td(on) — — 5 td(off) — — 40 D MAXIMUM RATINGS VSD — 0.88 1.5 Is — — 300	V(BR)DSS 60 — — V IDSS — — 1 μA IGSSF — — 0.95 mA VGS(th) 1 1.6 2.5 V VDS(on) — 0.09 1.5 V ID(on) 500 — — mA RDS(on) — 1.6 3 Ω GFS 80 260 — mS R3 — 37 — kΩ Ciss — — 50 pF Coss — — 5 pF Crss — — 5 pF td(on) — — 40 ns D MAXIMUM RATINGS V — 300 mA	

^{*} Pulse Test: Pulse width, tp <300µs, Duty Cycle, d ≤0.02

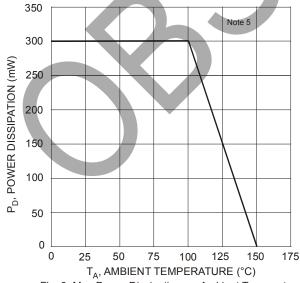
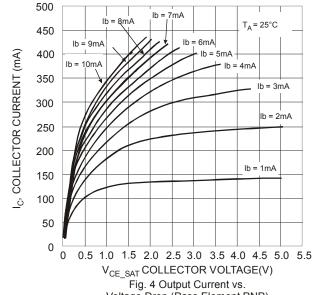



Fig. 3 Max Power Dissipation vs. Ambient Temperature

T_A = 25°C

_A= 85°C

1,000

Pre-Biased PNP Transistor Characteristics

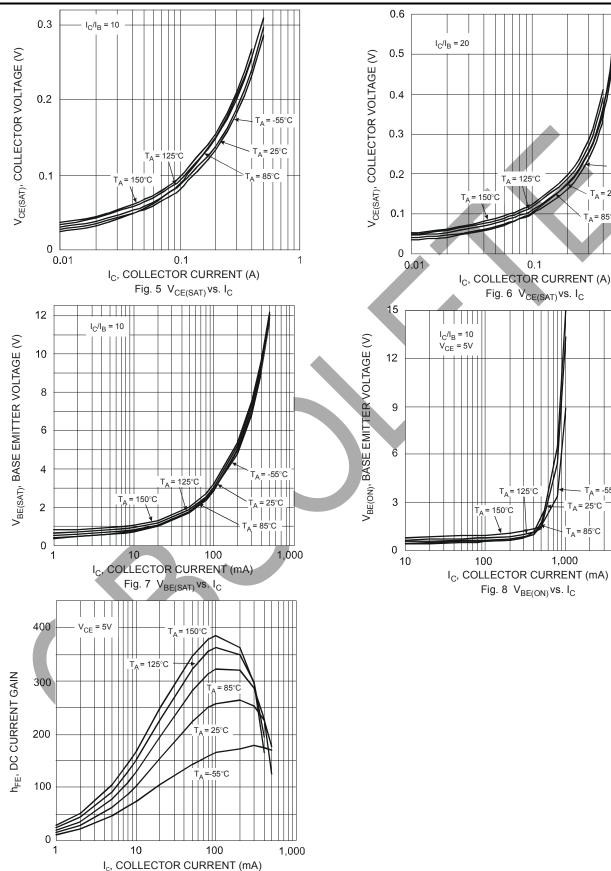
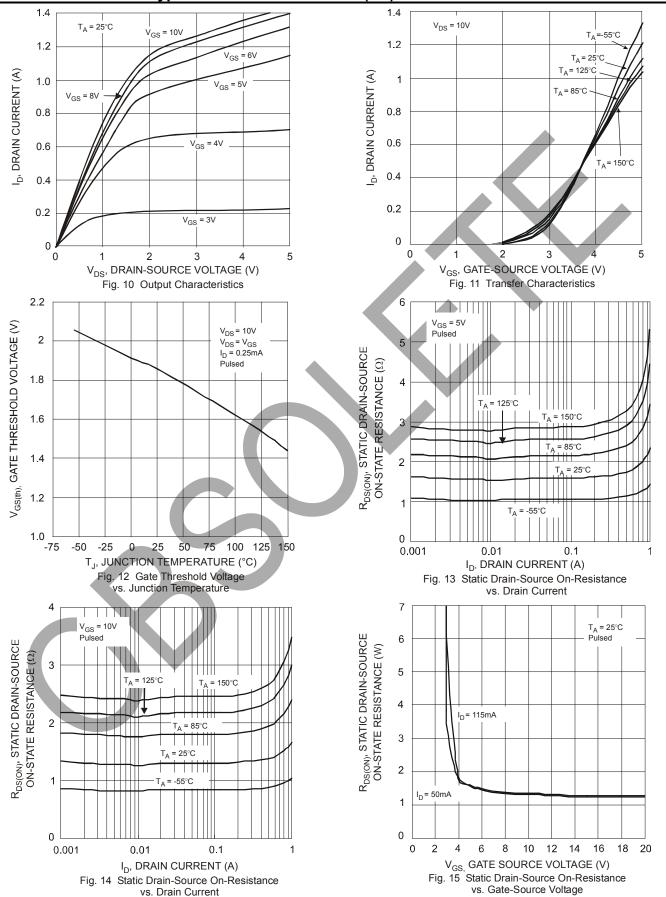
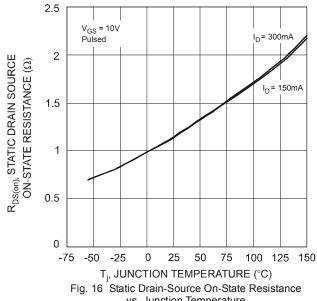
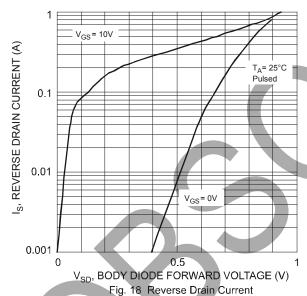



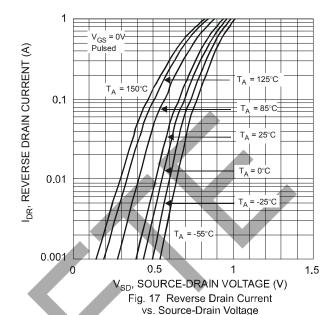
Fig. 9 h_{FE} vs. I_C

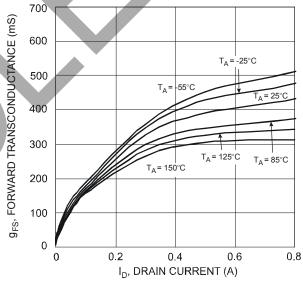
10,000



Typical N-Channel MOSFET (Q2) Characteristics




Typical N-Channel MOSFET (Q2) Characteristics (cont.)



vs. Source-Drain Voltage

Application Details

PNP Transistor and ESD Protected N-MOSFET integrated as one in LMN400E01 can be used as a discrete entity for general applications or as an integrated circuit to function as a Load Switch. When it is used as the latter as shown in Figure 20, various input voltage sources can be used as long as it does not exceed the maximum ratings of the device. These devices are designed to deliver continuous output load current up to a maximum of 400mA. The MOSFET Switch draws no current, hence the loading of the control circuitry is prevented. Care must be taken for higher levels of dissipation while designing for higher load conditions. These devices provide high power and also consume less space. The product mainly helps in optimizing power usage, thereby conserving battery life in a controlled load system like portable battery powered applications. (Please see Figure 21 for one example of a typical application circuit used in conjunction with a voltage regulator as a part of power management system).

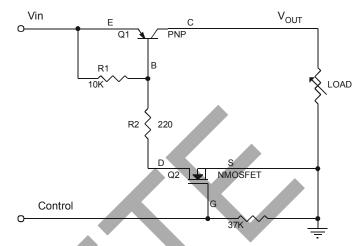


Figure 20 Circuit Diagram

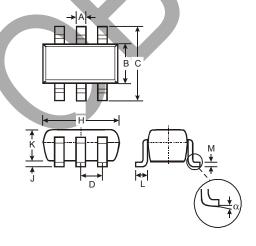
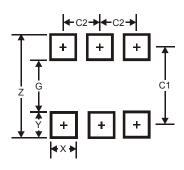



Figure 21 Typical Application Circuirt


Package Outline Dimensions

	SOT26					
Dim	Min	Max	Тур			
Α	0.35	0.50	0.38			
В	1.50	1.70	1.60			
С	2.70	3.00	2.80			
D	_	_	0.95			
Н	2.90	3.10	3.00			
J	0.013	0.10	0.05			
K	1.00	1.30	1.10			
L	0.35	0.55	0.40			
M	0.10	0.20	0.15			
α	0°	8°	_			
All D	imensi	ons in	mm			

Suggested Pad Layout

Dimensions	Value (in mm)
Z	3.20
G	1.60
Х	0.55
Y	0.80
C1	2.40
C2	0.95

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com