
 VISIT ANALOG.COM

Vol 53 No 4, December 2019

Manipulating MCU SPI
Interface to Access a
Nonstandard SPI ADC
Steven Xie, Product Applications Engineer

Question:
Can I access a nonstandard SPI interface with my MCU?

Answer:
Yes, but it might take a little extra effort.

Introduction
Many current precision analog-to-digital converters (ADCs) have a serial
peripheral interface (SPI) or some serial interface to communicate with
controllers including a microcontroller unit (MCU), a DSP, or an FPGA. The
controllers write or read ADC internal registers and read conversion codes.
SPI is becoming more and more popular due to its simple printed circuit
board (PCB) routing and a faster clock rate compared to parallel interface.
And, it is easy to connect an ADC to the controller with a standard SPI.

Some new ADCs have an SPI, but others have a nonstandard 3-wire or
4-wire SPI as a node because they want to achieve a faster throughput
rate. For example, the AD7616, AD7606, and AD7606B family has two
or four SDO lines for faster throughput rate in serial mode. The AD7768,
AD7779, and AD7134 families have multiple SDO lines and they work as
SPI mains. Users tend to encounter difficulties in designing microcontroller
SPIs for ADC configuration and code reading.

DOUT1

DOUT0

DCLK

DRDY

Format1

Daisy-Chaining Is
Possible in This Format

DGND

Format0

IOVDD
Channel 0 to Channel 3

Output on DOUT0

Channel 4 to Channel 7
Output on DOUT1

1
0

AD7768

Figure 1. AD7768 as a serial main with two data output pins (14001-193).

Standard MCU SPI Connection to an ADC
SPI is a synchronous, full-duplex, main/node-based interface. The data from
the main or the node is synchronized on the rising or falling clock edge.
Both main and node can transmit data at the same time. Figure 2 shows a
typical 4-wire MCU SPI interface connection.

SCLK
MCU/DSPADC

MOSI

MISO

SCLK

SPI MainSPI Node

DIN

DOUT

CSCS

Figure 2. Standard MCU SPI connection to an ADC node.

To begin SPI communication, the controller must send the clock signal and
select the ADC by enabling the CS signal, which is usually an active low
signal. Since SPI is a full-duplex interface, both the controller and ADC can
output data at the same time via the MOSI/DIN and MISO/DOUT lines,
respectively. The controller SPI interface provides the user with flexibility to
select the rising or falling edge of the clock to sample and/or shift the data.
For reliable communication between the main and the node, users must
follow the digital interface timing specifications of both the microcontroller
and the ADC chip.

https://www.analog.com/en/analog-dialogue.html
https://registration.analog.com/login/AccountRegistration.aspx
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices/
https://www.facebook.com/AnalogDevicesInc
https://www.analog.com/en/index.html
https://www.analog.com/en/products/AD7616.html
https://www.analog.com/en/products/ad7606.html
https://www.analog.com/en/products/AD7606B.html
https://www.analog.com/en/products/AD7768.html
https://www.analog.com/en/products/ad7779.html

2 Manipulating MCU SPI Interface to Access a Nonstandard SPI ADC

If the microcontroller SPI and ADC serial interface have the standard SPI
timing mode, it is not a problem for users to design the PCB routing and
develop the drive firmware. But there are some new ADCs with a serial
interface port that is not a typical SPI timing pattern. It does not seem pos-
sible for the MCU or the DSP to read data through the AD7768 serial port, a
nonstandard timing SPI port, as shown in Figure 4.

This article will introduce approaches to manipulating the standard micro-
controller SPI to interface with ADCs that have nonstandard SPI ports.

This article will cover four different solutions to read the ADC codes by
serial interface:

 X Solution 1: MCU as SPI node interfacing to ADC as SPI main by
one DOUT line.

 X Solution 2: MCU as SPI node interfacing to ADC as SPI main by
two DOUT lines.

 X Solution 3: MCU as SPI node interfacing to ADC as SPI main
through DMA.

 X Solution 4: MCU as SPI main and SPI node to read data on two
DOUT lines.

CPOL = 1

CPOL = 0

MISO

MOSI

NSS
(to Node)

Capture Strobe

CPHA = 1

CPOL = 1

CPOL = 0

MSBit

MISO

MOSI

NSS
(to Node)

Capture Strobe

CPHA = 0

MSBit

LSBit

LSBit

MSBit

MSBit LSBit

LSBit

DCLK

DRDY

DOUT0

Sample N Sample N + 1

Figure 3. Example SPI data clock timing diagram.

Figure 4. AD7768 FORMATx = 1× timing diagram output on DOUT0 only.

3Visit analog.com

AD7768 Code Reading with STM32F429
Microcontroller SPI by One DOUT Line
As shown in Figure 4, when FORMATx = 11 or 10, Channel 0 to Channel 7
output data on DOUT0 only. In standard mode operation, the AD7768/
AD7768-4 operates as the main and stream data to the MCU, DSP, or
FPGA. The AD7768/AD7768-4 supplies the data, the data clock (DCLK), and
a falling edge framing signal (DRDY) to the node device.

The STM32Fxxx family of microcontrollers are widely used in many different
applications. The MCUs have several SPI ports, which can be configured as
SPI main or node with typical SPI timing modes. The methods introduced in
the following session can also be applied on other microcontrollers with an
8-bit, a 16-bit, or a 32-bit frame.

The AD7768/AD7768-4 have 8-channels and 4-channels, simultaneous sam-
pling sigma-delta (Σ-Δ) ADCs, respectively, with a sigma-delta modulator
and digital filter per channel, enabling synchronized sampling of ac and dc
signals. They achieve 108 dB dynamic range at a maximum input bandwidth
of 110.8 kHz, combined with typical performance of ±2 ppm INL, ±50 μV
offset error, and ±30 ppm gain error. The AD7768/AD7768-4 user can trade
off input bandwidth, output data rate, and power dissipation, and select one
of three power modes to optimize for noise targets and power consumption.
The flexibility of the AD7768/AD7768-4 allows them to become reusable plat-
forms for low power dc and high performance ac measurement modules.
Unfortunately, AD7768’s serial interface is not a typical SPI timing mode,
and AD7768 works as the serial interface main. Generally, users must use
FPGA/CPLD as its controller.

For example, 32F429IDISCOVERY and AD7768 eval boards are used. The
workaround SPI wires are connected as shown in Figure 5. In this setup, all
eight AD7768 channel data outputs on DOUT0 only.

NSS(CS)

EXT10

SCK MCU/DSP
AD7768

MOSI

GND

DRDY

DCLK

STM32F429I-DISCO
EVAL-AD7768FMCZ

DOUT0

GND

Figure 5. AD7768 outputs data on DOUT0 to an STM32F429 MCU SPI connection.

Problems to be solved:

 X AD7768 works as the SPI main, so the STM32F429I SPI must be
configured as SPI node.

 X DRDY high pulse is just one cycle of DCLK duration that is not a
typical CS.

 X DCLK continuously outputs and DRDY is low when all the channel
data bit output is finished.

Solution 1: MCU SPI as Node Interfacing to SPI
Main ADC by One DOUT Line

 X Configure one of STM32F429 is SPI ports, like SPI4, as a node to receive
data bits on MOSI at DCLK.

 X Connect AD7768 DRDY to the STM32F429 external interrupt input pin
EXTI0 and NSS (SPI CS) pin. The rising edge of DRDY will trigger EXTI0
handler routine to enable the SPI node to start to receive data bits from
the first DCLK falling edge after DRDY goes to low. Timing design is
critical here.

 X After all the data from Channel 0 to Channel 7 are received, the SPI
should be disabled to prevent reading in extra invalid data, since the
DRDY makes SPI node CS low and DCLK keeps toggling.

DRDY

DCLK

LSB LSBMSB

MOSI Read in at
SCK Falling Edge

EXT10

DOUTx

t1

tODR

t7

t6
t5t4t3

t2 t8

t9

Figure 6. AD7768 data bits read in timing solution.

https://www.analog.com/en/index.html
https://www.analog.com/en/products/AD7768-4.html

4 Manipulating MCU SPI Interface to Access a Nonstandard SPI ADC

MCU Firmware Development Notes
With the software in interrupt mode, DCLK can run up to 4 MHz, and ODR
8 kSPS is achieved. The software should go into the interrupt handler to
start SPI within one and a half DCLK period time (375 ns). To more easily

enable the software to go into the interrupt routine, the MCU can read the
data at the DCLK rising edge, which can give an additional half DCLK period
time. But, since the t5 DCLK rise to the DOUTx invalid minimum is –3 ns
(–4 ns for IOVDD = 1.8 V), a propagation delay (>|t5| + MCU hold time) on
DOUTx should be added by PCB routing or buffer.

Figure 7. Configure the SPI4 peripheral.

/*## Configure the SPI4 peripheral ###*/

Spi4Handle.Instance = SPI4;//use STM32F429 SPI4

Spi4Handle.Init.Direction = SPI_DIRECTION_2LINES_RXONLY;

Spi4Handle.Init.CLKPhase = SPI_PHASE_1EDGE;//read at DCLK falling edge

Spi4Handle.Init.CLKPolarity = SPI_POLARITY_HIGH;//read at DCLK falling edge

Spi4Handle.Init.DataSize = SPI_DATASIZE_8BIT;//or 16BIT

Spi4Handle.Init.NSS = SPI_NSS_HARD_INPUT;//make /CS low active

Spi4Handle.Init.Mode = SPI_MODE_SLAVE;//MCU SPI4 as SPI Slave

/*## Enable EXTI0 and SPI4 to Receive AD7768 Data bits ###*/

// clear EXTI0 IT flag prior to enable external interrupt 0 !!!

__HAL_GPIO_EXTI_CLEAR_IT(KEY_BUTTON_PIN);

HAL_NVIC_EnableIRQ(EXTI0_IRQn);

// wait for EXTI0 interrupt (/DRDY rising edge) to prepare for reading last conversion data

if (EXTI0_Flag == SET)

{

 EXTI0_Flag = RESET;//clear /DRDY rising edge flag variable

 // throw out the last byte/word captured in the previous ODR cycle !!!

 Rx_temp = *(__IO uint8_t *)&Spi4Handle.Instance->DR;
 __HAL_SPI_ENABLE(&Spi4Handle);

 // SPI4_CNVByteNum is the total data byte number to read in one conversion cycle

 while (SPI4_ByteCount < SPI4_CNVByteNum)

 {

 // Check the RXNE flag

 if (__HAL_SPI_GET_FLAG(&Spi4Handle, SPI_FLAG_RXNE))//

 {

 // transfer the received data from DR register to memory

 SPI_RxBuffer[RxBuf_Idn] = *(__IO uint8_t *)&Spi4Handle.Instance->DR;

 RxBuf_Idn++;

 SPI4_ByteCount++;

 }

 }

 // disable SPI4 to prevent read in extra data after all channel codes finished due to /DRDY
 is low active and DCLK continuously pulses

 __HAL_SPI_DISABLE(&Spi4Handle);

 SPI4_CNVCount++;

 RxBuf_Idn = SPI4_CNVCount * SPI4_CNVByteNum;
 SPI4_ByteCount = 0;

}//end of if (EXTI0_Flag == SET)

else

{//*** other software jobs ***//}

/*## handles External 0 interrupt request ###*/

// EXTI0 rising edge triggered to leave more response time for going into EXTI0_IRQHandler !!!

void EXTI0_IRQHandler(void)

{

 if(__HAL_GPIO_EXTI_GET_IT(EXTI0) != RESET)

 {

 // enable SPI4 as soon as possible, and make sure before the first DCLK falling edge
 after /DRDY falling !!!

 __HAL_SPI_ENABLE(&Spi4Handle);

 __HAL_GPIO_EXTI_CLEAR_IT(EXTI0);

 EXTI0_Flag = SET;

 }

}

5Visit analog.com

Solution 2: MCU SPI as Node Interfacing to SPI
Main ADC by Two DOUT Lines
In the first solution, only DOUT0 is used to output all the 8-channel data.
So, the data reading limits the ADC throughput rate to 8 kSPS. As shown
in Figure 1, Channel 0 to Channel 3 output on DOUT0 and Channel 4 to
Channel 7 output on DOUT1 can reduce the data transfer time. The serial
wires are connected as shown in Figure 7. With such improvement, the
ODR can easily go up to 16 kSPS at DCLK 4 MHz.

NSS(CS)

NSS(CS)

EXT10

SCK

SCK

SP14

SP15

AD7768

MOSI

MOSI

GND

STM32F429I-DISCOEVAL-AD7768FMCZ

STM32F429

DRDY

DCLK
DOUT0

DOUT1

GND

Figure 8. AD7768 output data on DOUT0 and DOUT1 to STM32F429 MCU SPI connection.

The firmware can use polling mode instead of the interrupt mode to reduce
the time latency from the DRDY rising edge trigger to enable the SPI to receive
the data. This can achieve ODR 32 kSPS at DCLK 8 MHz.

Solution 3: MCU SPI as Node Interfacing to SPI
Main ADC Through DMA
Direct memory access (DMA) is used in order to provide high speed data
transfer between peripherals and memory, and between memory and memory.
Data can be quickly moved by DMA without any MCU action. This keeps MCU
resources free for other operations. Here are the design notes for an MCU SPI
acting as node to receive data through DMA.

Solution 4: MCU SPI as Main and Node to Read
Data on Two DOUT Lines
The high throughput or multichannel precision ADCs provide SPI ports with
two, four, and even eight SDO lines for faster code reading time in serial
mode. For microcontrollers with two or more SPI ports, they can concurrently
run the SPI ports for faster code reading.

Figure 9. EXTI0 in polling mode and SPI4 and SPI5 to receive AD7768 data bits on DOUT0 and DOUT1.

/*## EXTI0 in Polling Mode and SPI4 & SPI5 to Receive AD7768 Data bits on DOUT0 and DOUT1 ###*/

// Polling for EXTI0 (/DRDY) rising edge to start MCU SPI ports

while (__HAL_GPIO_EXTI_GET_IT(EXTI0) != SET);

{

 __HAL_SPI_ENABLE(&Spi4Handle);

 __HAL_SPI_ENABLE(&Spi5Handle);

 __HAL_GPIO_EXTI_CLEAR_IT(EXTI0);

}

// throw out the last byte/word captured in the previous ODR cycle !!!

Rx_temp = *(__IO uint8_t *)&Spi4Handle.Instance->DR;

Rx_temp = *(__IO uint8_t *)&Spi5Handle.Instance->DR;

while (SPI4_ByteCount < SPI4_CNVByteNum)// total data byte number to read in one conversion cycle

{

 if (__HAL_SPI_GET_FLAG(&Spi5Handle, SPI_FLAG_RXNE))//

 {

 SPI_RxBuffer[RxBuf_Idn] = *(__IO uint8_t *)&Spi4Handle.Instance->DR;

 SPI_RxBuffer[RxBuf_Idn+1] = *(__IO uint8_t *)&Spi5Handle.Instance->DR;

 RxBuf_Idn++;

 SPI4_ByteCount += 2;

 }

}

__HAL_SPI_DISABLE(&Spi4Handle);

__HAL_SPI_DISABLE(&Spi5Handle);

/*## EXTI0 in Polling Mode and SPI4 DMA to Receive AD7768 Data bits on DOUT0 ###*/

// Polling for EXTI0 (/DRDY) rising edge to start MCU SPI ports

while (EXTI0_Flag != SET);// wait for EXTI0 interrupt (/DRDY rising edge)

EXTI0_Flag = RESET;// clear flag variable

// throw out the last byte/word captured in the previous ODR cycle !!!

Rx_temp = *(__IO uint8_t *)&Spi4Handle.Instance->DR;

Spi4Handle.hdmarx->Instance->NDTR = SPI4_CNVByteNum;// set data number to read

Spi4Handle.hdmarx->Instance->PAR = (uint32_t)&(Spi4Handle.Instance->DR);// source address

Spi4Handle.hdmarx->Instance->M0AR = (uint32_t)(SPI_RxBuffer+RxBuf_Idn); // target address

//*** clear event flags corresponding to the stream in DMA_LISR or DMA_HISR register ***//

((DMA_Base_Registers *)Spi4Handle.hdmarx->StreamBaseAddress)->IFCR = 0x3FU << Spi4Handle.hdmarx->StreamIndex;

__HAL_DMA_ENABLE(Spi4Handle.hdmarx);

while ((Spi4Handle.hdmarx->Instance->CR & DMA_SxCR_EN) == SET) // hardware cleared

{;} // ADC data received in the target memory buffer

SPI4_CNVCount++;

RxBuf_Idn = SPI4_CNVCount * SPI4_CNVByteNum;

Figure 10. EXTI0 in polling mode and SPI4 DMA to receive AD7768 data bits on DOUT0.

https://www.analog.com/en/index.html

6 Manipulating MCU SPI Interface to Access a Nonstandard SPI ADC

In the following use case, 32F429IDISCOVERY uses SPI4 as SPI main and
SPI5 as SPI node to receive EVAL-AD7606B-FMCZ data on DOUTA and DOUTB
as shown in Figure 8.

The AD7606B is a 16-bit, simultaneous sampling, analog-to-digital data
acquisition system (DAS) with eight channels, each channel containing
analog input clamp protection, a programmable gain amplifier (PGA), a
low-pass filter, and a 16-bit successive approximation register (SAR) ADC.
The AD7606B also contains a flexible digital filter, low drift, 2.5 V precision
reference and reference buffer to drive the ADC and flexible parallel and
serial interfaces. The AD7606B operates from a single 5 V supply and
accommodates ±10 V, ±5 V, and ±2.5 V true bipolar input ranges when
sampling at throughput rates of 800 kSPS for all channels.

NSS(CS)

NSS(CS)

MOSI

EXT10

SCK

SCK

SP14

SP15

AD7606B
MISO

MOSI(DIN)

GND

STM32F429I-DISCOEVAL-AD7606B-FMCZ

STM32F429

CS
SDI

BUSY

SCLK
DOUTA

DOUTB

GND

Figure 11. MCU SPIs used in main and node mode to receive data on DOUTA and
DOUTB.

/*## Configure the SPI4 as Master and SPI5 as Slave ###*/

Spi4Handle.Init.Direction = SPI_DIRECTION_2LINES;

Spi4Handle.Init.CLKPhase = SPI_PHASE_1EDGE;//read at DCLK falling edge

Spi4Handle.Init.CLKPolarity = SPI_POLARITY_HIGH;//read at DCLK falling edge

Spi4Handle.Init.DataSize = SPI_DATASIZE_16BIT;

Spi4Handle.Init.NSS = SPI_NSS_SOFT;// NSS pin is configured as GPIO output for /CS

Spi4Handle.Init.Mode = SPI_MODE_MASTER;// SPI4 as SPI Master

Spi5Handle.Init.Direction = SPI_DIRECTION_2LINES_RXONLY;// only receive data

Spi5Handle.Init.NSS = SPI_NSS_HARD_INPUT;

Spi5Handle.Init.Mode = SPI_MODE_SLAVE;// SPI5 as SPI Slave

/*## Enable SPI4 as Master and SPI5 as Slave to Receive AD7606B Codes ###*/

__HAL_SPI_ENABLE(&Spi4Handle);

__HAL_SPI_ENABLE(&Spi5Handle);

while (SPI4_CNVCount < SPI4_CNVNum)

{

 CLR_CNV();

 SET_CNV();//AD7606B conversion start

 // wait for conversion finish, BUSY goes from high to low. Polling or interrupt mode

 while (BUSY == SET) {;}

 while (SPI4_WordCount < SPI4_CNVWordNum)// code number to read per conversion cycle

 {

 CLR_CS();

 *(__IO uint8_t *)&Spi4Handle.Instance->DR = 0;

 while (__HAL_SPI_GET_FLAG(&Spi4Handle, SPI_FLAG_RXNE) != SET);
 Delay_xus(1);// need half SCLK cycle delay for slow SCLK rate < 10MHz

 SET_CS();

 SPI_RxBuffer[RxBuf_Idn] = *(__IO uint16_t *)&Spi4Handle.Instance->DR;

 SPI_RxBuffer[RxBuf_Idn+ADCSDO1_WordIdn] = *(__IO uint16_t \\
 *)&Spi5Handle.Instance->DR;

 RxBuf_Idn++;

 SPI4_WordCount += 2;

 }

 SPI4_CNVCount++;

 RxBuf_Idn = SPI4_CNVCount * SPI4_CNVWordNum;

 SPI4_WordCount = 0;

}//while (SPI4_CNVCount < SPI4_CNVNum)

__HAL_SPI_DISABLE(&Spi4Handle);

__HAL_SPI_DISABLE(&Spi5Handle);

Figure 12. Configure the SPI4 as main and SPI5 as node.

VISIT ANALOG.COM

For regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2019 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

Figure 13 shows the AD7606B digital interface capture of BUSY, SCLK, DOUTA,
and DOUB running at 240 kSPS.

Figure 13. Scope capture of AD7606B BUSY, SCLK, and data on DOUTA and DOUTB.

Conclusion
This article discussed approaches to using a microcontroller SPI to access
ADCs with nonstandard SPI interfaces. These approaches can be used
directly or with slight adjustments to control the ADC SPI, which is working
as an SPI main or with multiple DOUT lines for a faster throughput rate.

Acknowledgements
Many thanks to applications engineers Mika Jiang and Yao Zhao for advice on
the quick startup on the STM32F429IDISCOVERY kit and firmware debug jobs.

References
Dhaker, Piyu. “Introduction to SPI Interface.” Analog Dialogue, Vol 52.
September 2018.

RM0090 Reference Manual: STM32F405/415, STM32F407/417,
STM32F427/437 and STM32F429/439 Advanced ARM®-Based 32-Bit
MCUs. STMicroelectronics, February 2019.

STM32F427xx Data Sheet. STMicroelectronics, January 2018.

UM1670 User Manual: Discovery Kit with STM32F429ZI MCU.
STMicroelectronics, September 2017.

Usach, Miguel. AN-1248 Application Note: SPI Interface.
Analog Devices, Inc., September 2015.

About the Author
Steven Xie has worked as a product applications engineer with the China Design Center in ADI Beijing since March 2011.
He provides technical support for SAR ADC products across China. Prior to that, he worked as a hardware designer in wire-
less communication base stations for four years. In 2007, Steven graduated from Beihang University with a master’s degree
in communications and information systems. He can be reached at steven.xie@analog.com.

https://www.analog.com/en/index.html
https://www.analog.com/en/index.html
https://www.analog.com/en/about-adi/contact-us.html
https://ez.analog.com
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/resource/en/datasheet/dm00071990.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/6b/25/05/23/a9/45/4d/6a/DM00093903.pdf/files/DM00093903.pdf/jcr:content/translations/en.DM00093903.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/AN-1248.pdf
mailto:steven.xie%40analog.com?subject=

