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Figure 1. Server/client architecture in an example embedded system.

What Makes a Software Application?
Much of the OTA update process is the act of transferring the new software 
from the server to the client. The software is transferred as a sequence 
of bytes, after it has been converted into a binary format from the source 
format. The conversion process compiles the source code files (for example, 
c, cpp), links them together into an executable file (for example, exe, elf), and 
then the executable is converted into a portable binary file format (for exam-
ple, bin, hex). At a high level, these file formats contain a sequence of bytes 
that belong at a specific address of memory in the microcontroller. Typically, 
we conceptualize the information being sent over a wireless link as data, 
such as a command to change the system’s state or sensor data collected 
by the system. In the case of the OTA update, the data is the new software 
in binary format. In many cases, the binary file will be too large to send in a 
single transfer from the server to the client, meaning that the binary file will 
need to be placed into separate packets, in a process called packetizing. To 
visualize this process better, Figure 2 demonstrates how different versions of 
the software will produce different binary files, and thus different packets to 
be sent during the OTA update. In this simple example, each packet contains 
8 bytes of data, with the first 4 bytes representing the address in the client’s 
memory to store the next 4 bytes.

Major Challenges
Based on this high level description of the OTA update process, three 
major challenges arise that the OTA update solution must address. The 
first challenge relates to memory. The software solution must organize the 
new software application into volatile or nonvolatile memory of the client 
device so that it can be executed when the update process completes. 
The solution must ensure that a previous version of the software is kept 
as a fallback application in case the new software has problems. Also, we 
must retain the state of the client device between resets and power cycles, 
such as the version of the software we are currently running, and where 
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Abstract
Many embedded systems are deployed in places that are difficult or 
impractical for a human operator to access. This is especially true for 
Internet of Things (IoT) applications, which are typically deployed in larger 
quantities and with limited battery life. Some examples would be embed-
ded systems that monitor the health of a person or a machine. These 
challenges, coupled with the rapid software lifecycle, cause many systems 
to require support for over-the-air (OTA) updates. An OTA update replaces 
the software on the microcontroller or microprocessor of the embedded 
system with new software. While many people are very familiar with OTA 
updates on their mobile devices, the design and implementation on a 
resource constrained system leads to many different challenges. In this 
article, we will describe several different software designs for OTA updates 
and discuss their trade-offs. We will see how hardware features of two 
ultra low power microcontrollers can be leveraged in OTA update software.

Building Blocks

Server and Client
An OTA update replaces the current software on a device with new soft-
ware, with the new software being downloaded wirelessly. In an embedded 
system, the device that runs this software is typically a microcontroller. A 
microcontroller is a small computing device with limited memory, speed, 
and power consumption. A microcontroller typically contains a micropro-
cessor (core) as well as digital hardware blocks for specific operations 
(peripherals). Ultra low power microcontrollers that typically consume  
30 μA/MHz to 40 μA/MHz in active mode are ideal for this type of appli-
cation. Using specific hardware peripherals on these microcontrollers and 
placing them into low power modes is an important part of the OTA update 
software design. An example of an embedded system that might require 
OTA updates is shown in Figure 1. Here we see a microcontroller con-
nected with a radio and sensor, which may be used in an IoT application 
that gathers data about the environment using the sensor and reports it 
periodically using the radio. This portion of the system is referred to as the 
edge node or client and is the target of the OTA update. The other portion  
of the system is referred to as the cloud or server and is the provider of the 
new software. The server and client communicate over a wireless connec-
tion using transceivers (radios).
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Figure 2. Binary conversion and packetization process of a software application.
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it is in memory. The second major challenge is communication. The new 
software must be sent from the server to the client in discrete packets, 
each targeting a specific address in the client’s memory. The scheme for 
packetizing, the packet structure, and the protocol used to transfer the 
data must all be accounted for in the software design. The final major 
challenge is security. With the new software being sent wirelessly from 
the server to the client, we must ensure that the server is a trusted party. 
This security challenge is known as authentication. We also must ensure 
that the new software is obfuscated to any observers, since it may contain 
sensitive information. This security challenge is known as confidentiality. 
The final element of security is integrity, ensuring that the new software  
is not corrupted when it is sent over the air.

The Second-Stage Boot Loader (SSBL)

Understanding the Boot Sequence
The primary boot loader is a software application that permanently resides 
on the microcontroller in read-only memory. The region of memory the 
primary boot loader resides in is known as info space and is sometimes 
not accessible to users. This application executes every time a reset 
occurs, generally performing some essential hardware initializations, 
and may load user software into memory. However, if the microcontroller 
contains on-chip nonvolatile memory, like flash memory, the boot loader 
does not need to do any loading and simply transfers control to the 
program in flash memory. If the primary boot loader does not have any 
support for OTA updates, it is necessary to have a second-stage boot 
loader. Like the primary boot loader, the SSBL will run every time a reset 
occurs, but will implement a portion of the OTA update process. This boot 
sequence is illustrated in Figure 3. In this section, we will describe why a 
second-stage boot loader is necessary and describe how specifying the 
role of this application is a key design trade-off.

Lesson Learned: Always Have an SSBL
Conceptually, it may seem simpler to omit the SSBL and place all the OTA 
update functionality into the user application, as it would allow an existing 
software framework, operating system, and device drivers to be seamlessly 
leveraged for the OTA process. The memory map and boot sequence of a 
system that chose this approach is illustrated in Figure 4.

Application A is the original application that is deployed on the 
microcontroller in the field. This application contains the OTA update- 
related software, which is leveraged to download Application B when 
requested by the server. After this download is complete and Application B 
has been verified, Application A will transfer control to Application B by 
performing a branch instruction to the reset handler of Application B. The 
reset handler is a small piece of code that is the entry point of the software 
application and runs on reset. In this case, the reset is mimicked by 
performing a branch, which is equivalent to a function call. There are two 
major issues with this approach:

 X Many embedded software applications employ a real-time operating 
system (RTOS), which allows the software to be split into concurrent 
tasks, each with different responsibilities in the system. For instance, 
the application presented in Figure 1 may have RTOS tasks for reading 
the sensor, running an algorithm on the sensor data, and interfacing 
with the radio. The RTOS itself is always active and is responsible 
for switching between these tasks based on asynchronous events or 
specific time-based delays. As a result, it is not safe to branch to a  
new program from an RTOS task, since other tasks will remain running 
in the background. The only safe way to terminate a program with a 
real-time operating system is through a reset.
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Figure 3. An example of a memory map and boot flow with SSBL.
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 X Based on Figure 4, a solution to the previous issue would be to have 
the primary boot loader branch to Application B instead of Application A. 
However, on some microcontrollers, the primary boot loader always runs 
the program that has its interrupt vector table (IVT), a key portion of the 
application that describes interrupt handling functions, located at address 
0. This means that some form of IVT relocation is necessary to have 
a reset map to Application B. If a power cycle occurs during this IVT 
relocation, it could leave the system in a permanently broken state.

These issues are mitigated by having an SSBL fixed at address 0, as 
illustrated in Figure 3. Since the SSBL is a non-RTOS program, it can safely 
branch to a new application. There is no concern of a power cycle placing 
the system in a catastrophic state since the IVT of the SSBL at address 0 is 
never relocated.

Design Trade-Off: The Role of the SSBL
We’ve spent a lot of time discussing the SSBL and the relationship it has 
with the application software, but what does this SSBL program do? At the 
bare minimum, the program must determine what the current application 
is (where it begins) and then branch to that address. The location of the 
various applications in the microcontroller memory is generally kept in 
a table of contents (ToC) as shown in Figure 3. This is a shared region of 
persistent memory that both the SSBL and application software use to 
communicate with each other. When the OTA update process completes, 
the ToC is updated with the new application information. Portions of the 
OTA update functionality can also be pushed to the SSBL. Deciding what 
portions is an important design decision when developing OTA update soft-
ware. The minimal SSBL described above will be extremely simple, easy 
to verify, and most likely will not require modifications during the life of the 
application. However, this means that each application must be responsible 
for downloading and verifying the next application. This can lead to code 
duplication in terms of the radio stack, device firmware, and OTA update 
software. On the other hand, we can choose to push the entire OTA update 
process to the SSBL. In this scenario, applications simply set a flag in the 
ToC to request an update and then perform a reset. The SSBL then per-
forms the download sequence and verification process. This will minimize 
code duplication and simplify the application specific software. However, 
this introduces a new challenge of potentially having to update the SSBL 
itself (that is, updating the update code). In the end, deciding what func-
tionality to place in the SSBL will depend on the memory constraints of 
the client device, the similarity between downloaded applications, and the 
portability of the OTA update software.

Design Trade-Off: Caching and Compression
Another key design decision in the OTA update software will be how to 
organize the incoming application in memory during the OTA update pro-
cess. The two types of memory that are typically found on a microcontroller 
are nonvolatile memory (for example, flash memory) and volatile memory 
(for example, SRAM). The flash memory will be used to store the program 
code and read-only data of an application, along with other system-level 
data such as the ToC and an event log. The SRAM will be used to store 
modifiable portions of the software application, such as nonconstant global 
variables and the stack. The software application binary illustrated in 
Figure 2 only contains the portion of the program that lives in nonvolatile 
memory. The application will initialize the portions that belong in volatile 
memory during a startup routine.

During the OTA update process, every time the client device receives a 
packet from the server containing a portion of the binary it will be stored 
in SRAM. This packet could be either compressed or uncompressed. The 
benefit of compressing the application binary is that it will be smaller 
in size, allowing for fewer packets to be sent and less space needed in 
SRAM to store them during the download procedure. The disadvantage 
of this approach is the extra processing time that the compression and 
decompression add to the update process, along with having to bundle 
compression related code in the OTA update software.

Since the new application software belongs in flash memory but arrives 
into SRAM during the update process, the OTA update software will need to 
perform a write to flash memory at some point during the update process. 
Temporarily storing the new application in SRAM is called caching. At a 
high level, there are three different approaches the OTA update software 
could take to caching.

 X No caching: Every time a packet arrives containing a portion of the new 
application, write it to its destination in flash memory. This scheme 
is extremely simple and will minimize the amount of logic in the OTA 
update software, but it requires that the region of flash memory for 
the new application is fully erased. This method wears down the flash 
memory and adds overhead.

 X Partial caching: Reserve a region of SRAM for caching, and when new 
packets arrive store them in that region. When the region fills up, empty 
it by writing the data to flash memory. This can get complex if packets 
arrive out of order or there are gaps in the new application binary, since 
a method of mapping SRAM addresses to flash addresses is required. 
One strategy is to have the cache act as a mirror of a portion of flash 

Figure 4. Example memory map and boot flow without SSBL
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memory. Flash memory is divided into small regions known as pages, 
which are the smallest division for erasing. Because of this natural di-
vision, a good approach is to cache one page of flash memory in SRAM 
and when it fills up or the next packet belongs in a different page, flush 
the cache by writing that page flash memory.

 X Full caching: Store the entire new application in SRAM during the OTA 
update process and only write it to flash memory when it has been fully 
downloaded from the server. This approach overcomes the shortcomings 
of the previous approaches by minimizing the number of writes to flash 
memory and avoiding complex caching logic in the OTA update software. 
However, this will place a limit on the size of the new application being 
downloaded, since the amount of available SRAM on the system is typi-
cally much smaller than the amount of available flash memory.
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Figure 5. Using SRAM to one page of cache flash memory.

The second scheme of partial caching during an OTA update is illustrated 
in Figure 5, where the portion of flash memory for Application A from 
Figures 3 and 4 is magnified and a functional memory map of the SRAM 
for the SSBL is illustrated. An example flash page size of 2 kB is shown. 
Ultimately this design decision will be determined based on the size of the 
new application and the allowed complexity of the OTA update software.

Security and Communication

Design Trade-Off: Software vs. Protocol
The OTA update solution must also address security and communication. 
Many systems like the one shown in Figure 1 will have a communication 
protocol implemented in hardware and software for normal (non-OTA 
update related) system behavior like exchanging sensor data. This means 
that there is a method of (possibly secure) wireless communication already 
established between the server and the client. Communication protocols 
that an embedded system like Figure 1 might use would be, for example, 
Bluetooth® Low Energy (BLE) or 6LoWPAN. Sometimes these protocols 
have support for security and data exchange that the OTA update software 
may be able to leverage during the OTA update process.

The amount of communication functionality that must be built into the OTA 
update software will ultimately be determined by how much abstraction is 
provided by the existing communication protocol. The existing commu-
nication protocol has facilities for sending and receiving files between the 

server and client that the OTA update software can simply leverage for the 
download process. However, if the communication protocol is more primitive 
and only has facilities for sending raw data, the OTA update software may 
need to perform packetizing and provide metadata along with the new appli-
cation binary. This also applies to the security challenges. The onus may be 
on the OTA update software to decrypt the bytes being sent over the air for 
confidentiality if the communication protocol does not support this.

In conclusion, building facilities like custom packet structure, server/client 
synchronization, encryption, and key exchange into the OTA update software 
will be determined based on what the system’s communication protocol 
provides and what the requirements are for security and robustness. In 
the next section, we will propose a complete security solution that solves 
all the challenges introduced earlier and we will show how to leverage a 
microcontroller’s cryptographic hardware peripheral in this solution.

Solving Security Challenges
Our security solution needs to keep the new application sent over-the-
air confidential, detect any corruption in the new application, and verify 
that the new application was sent from a trusted server as opposed to 
a malicious party. These challenges can be solved using cryptographic 
(crypto) operations. Specifically, two cryptographic operations known as 
encryption and hashing can be used in the security solution. Encryption 
will use a shared key (password) between the client and server to 
obfuscate the data being sent wirelessly. A specific type of encryption 
that the microcontroller’s crypto hardware accelerator may support is 
called AES-128 or AES-256, depending on the key size. Along with the 
encrypted data, the server can send a digest to ensure that there is no 
corruption. The digest is generated by hashing the data packet—an 
irreversible mathematical function that generates a unique code. If any 
part of the message or digest is modified after the server creates them, 
like a bit being flipped during wireless communication, the client will 
notice this modification when it performs the same hash function on the 
data packet and compares the digests. A specific type of hashing that the 
microcontroller’s crypto hardware accelerator may support is SHA-256. 
Figure 6 shows a block diagram of a crypto hardware peripheral in the 
microcontroller, with the OTA update software residing in the Cortex-M4 
application layer. This figure also shows the support for protected key 
storage in the peripheral, which can be leveraged in the OTA update  
software solution to safely store the client’s keys.
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ADuCM4050.
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A common technique to solve the final challenge of authentication is to use 
asymmetric encryption. For this operation, the server generates a public-pri-
vate key pair. The private key is known only by the server and the public 
key is known by the client. Using the private key, the server can generate a 
signature of a given block of data—like the digest of the packet that will be 
sent over the air. The signature is sent to the client, who can verify the signa-
ture using the public key. This enables the client to confirm the message was 
sent from the server and not a rogue third-party. This sequence is illustrated 
in Figure 7, with solid arrows representing function input/output and dashed 
arrows showing the information that is sent over the air.

Verifying Function Signing Function

SHA-256

Client Server

First Payload

Hash Digest

Private KeyPublic Key

Signature
True/False

Figure 7. Using asymmetric encryption to authenticate a message.

Most microcontrollers do not have hardware accelerators for these 
asymmetric encryption operations, but they can be implemented using 
software libraries such as Micro-ECC, which specifically targets resource 
constrained devices. The library requires a user-defined random number 
generating function, which can be implemented using the true random 
number generator hardware peripheral on the microcontroller. While these 
asymmetric encryption operations solve the trust challenge during an OTA 
update, they are costly in terms of processing time and require a signature  
to be sent with the data, which increases packet sizes. We could perform  
this check once at the end of the download, using a digest of the final 
packet or the digest of the entire new software application, but that would 
allow third-parties to download untrusted software to the client, which is  
not ideal. Ideally, we want to verify every packet that we receive is from  
our trusted server without the overhead of a signature each time. This  
can be achieved using a hash chain.

A hash chain incorporates the cryptographic concepts we have discussed 
in this section into a series of packets to tie them together mathematically. 
As Figure 8 shows, the first packet (number 0) contains the digest of the 
next packet. Instead of the actual software application data, the payload 
of the first packet is the signature. The second packet (number 1) payload 
contains a portion of the binary, and the digest of the third packet (number 2). 
The client verifies the signature in the first packet and caches the digest, 
H0, for later use. When the second packet arrives, the client hashes the 
payload and compares it to H0. If they match, the client can be sure 
that this subsequent packet was from the trusted server without all the 
overhead of doing a signature check. The expensive task of generating  
this chain is left to the server, and the client must simply cache and hash 
as each packet arrives to ensure packets arrive uncorrupted, with integrity, 
and authenticated.

@00000000
00 20 00 20 0B 1A 00 00 

@00000200
70 B5 04 46 1E 00 08 46  
15 46 04 D0 15 F8 01 1B 
A0 47 76 1E FA D1 70 BD
2D E9 F0 46 83 B0 82 46

Number Payload Hash

0 P0 = Signature(H0, Public Key) H0 = H(P1 + H1)

1 P1 = 00 20 00 20 0B 1A 00 00 H1 = H(P2 + H2)

2 P2 = 70 B5 04 46 1E 00 08 46 H2 = H(P3 + H3)

n Pn = … Hn = H(Pn+1 + Hn+1)

Figure 8. Applying the hash chain to a packet sequence.

Experimental Setup
The ultra low power microcontrollers that solve the memory, communication, 
and security design challenges mentioned in this article are the ADuCM3029 
and ADuCM4050. These microcontrollers contain the hardware peripherals 
discussed throughout the article for OTA updates such as flash memory, 
SRAM, crypto accelerator, and a true random number generator. The device 
family packs (DFPs) for these microcontrollers provide software support for 
building an OTA update solution on these devices. The DFP contains periph-
eral drivers that provide simple, flexible interfaces for using the hardware.

Hardware Configuration
To verify and validate the concepts discussed here, an OTA update soft-
ware reference design was created using the ADuCM4050. For the client, 
an ADuCM4050 EZ-KIT® is connected to an ADF7242 using the transceiver 
daughter board horseshoe connector. The client device is pictured on 
the left of Figure 9. For the server, a Python application was developed 
that runs on a Windows PC. The Python application communicates over 
the serial port to another ADuCM4050 EZ-KIT that also has an ADF7242 
attached in the same arrangement as the client. However, the right EZ-KIT  
in Figure 9 performs no OTA update logic, and simply relays packets 
received from the ADF7242 to the Python application.

Figure 9. Experimental hardware setup.

Software Components
The software reference design partitions the flash memory of the client 
device as shown in Figure 3. The main client application was designed 
to be very portable and configurable such that it could be leveraged in 
other arrangements or on other hardware platforms. Figure 10 shows the 
software architecture of the client device. Note that while we sometimes 
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refer to this entire application as the SSBL, in Figure 10 and from now on 
we logically separate the true SSBL portion (in blue) from the OTA update 
portion (in red), as the latter is not necessarily required to be implemented 
entirely in the same application as previously discussed. The hardware 
abstraction layer shown in Figure 10 keeps the OTA client software 
portable and independent of any underlying libraries (shown in orange).

OTA Client
    Update Sequence
    Hash Chain
    Error Handling

Second-Stage Boot Loader
    ToC Access
    Boot Sequence

ADuCM4050
DFP

ADF742
Stack

Micro-ECC
Library

ADuCM4050

Reset

Hardware Abstraction Layer (HAL)
    Messaging, Security Functions, Memory Access

Figure 10. Client software architecture.

The software application implements the boot sequence in Figure 3, a 
simple communication protocol for downloading the new application from 
the server, and the hash chain. Each packet in the communication protocol 
has a 12-byte metadata header, 64-byte payload, and a 32-byte digest. In 
addition, it has the following features:

 X Caching: Support for both no caching or caching one page of flash 
memory, depending on user configuration.

 X Table of Contents: The ToC is designed to only hold two applications, 
and the new application is always downloaded into the oldest spot,  
to keep a fallback application. This is called an A/B update scheme.

 X Messaging: Support for either the ADF7242 or UART for messaging, 
depending on user configuration. Using the UART for messaging 
eliminates the left EZ-KIT in Figure 9, leaving the kit on the right for  
the client. This over-the-wire update scheme is useful for initial system 
bring-up and debugging.

Results
Along with meeting the functional requirements and passing a variety of 
tests, the performance of the software is also critical to determining project 
success. Two metrics that are commonly used to measure the perfor-
mance of embedded software are footprint and cycles. Footprint refers to 
how much space the software application takes up in volatile (SRAM) and 
nonvolatile (flash) memory. Cycles refers to the number of microprocessor 
clock cycles the software uses to perform a specific task. While being 
similar to software run-time, it accounts for the fact that the software may 
enter low power modes while performing the OTA update where the micro-
processor is inactive, and no cycles are consumed. While the software 
reference design was not optimized for either of these metrics, they are 
useful for benchmarking the program and comparing design trade-offs.

Figure 11 and Figure 12 show the footprint of the OTA updates software 
reference design implemented on the ADuCM4050 with no caching. The 
figures are partitioned according to the components illustrated in Figure 10.  
As Figure 11 shows, the entire application uses around 15 kB of flash 
memory. This is quite small considering the ADuCM4050 contains 512 kB  
of flash memory. The true application software (the software developed for 
the OTA update process) only takes about 1.5 kB, with the rest being used  
for libraries such as the DFP, Micro-ECC, and ADF7242 stack. These results 
help to illustrate the design trade-off of what role the SSBL should have in 
the system. The majority of the 15 kB footprint is for the update process. 
The SSBL itself only takes around 500 bytes of footprint, with an additional  
1 kB to 2 kB of DFP code for device access like the flash driver.
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ADF7242 Micro-ECC DFP SSBL OTA Client HAL

Figure 11. Flash footprint (bytes).

ADF7242 Micro-ECC DFP SSBL OTA Client HAL

765

1512

116

188 336

Figure 12. SRAM footprint (bytes).

To evaluate the overhead of the software, we perform cycle counting every 
time a data packet is received and then look at the average number of 
cycles consumed per packet. Each data packet requires AES-128 decryption, 
SHA-256 hashing, a write to flash memory, and some packet metadata 
validation. With a packet payload size of 64 bytes and no caching, the 
overhead is 7409 cycles to process a single data packet. Using a 26 MHz 
core clock, this is about 285 microseconds of processing time. The value 
was calculated using the cycle counting driver located in the ADuCM4050 
DFP (unadjusted cycles) and is the average taken during a 100 kB binary 
download (about 1500 packets). The minimal overhead per packet can 
be attributed to the drivers in the DFP leveraging the direct memory 
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access (DMA) hardware peripheral on the ADuCM4050 when performing bus 
transactions and the drivers placing the processor into a low power sleep 
state during each transaction. If we disable the use of low power sleeping 
in the DFP and change the bus transactions to not use DMA, the overhead 
per data packet increases to 17,297 cycles. This illustrates the impact that 
efficient use of device drivers has on an embedded software application. 
While the overhead is also kept low by having a small number of data bytes 
per packet, doubling the data bytes per packet to 128 only yields a small 
increase in cycles—resulting in 8362 cycles for the same experiment.

Cycles and footprint also illustrate the trade-off discussed earlier of 
caching packet data instead of writing to flash memory each time. With 
one page of flash memory caching enabled, the overhead per data packet 
reduces from 7409 to 5904 cycles. This 20% reduction comes from the 
ability to skip the flash write for most packets and only perform a flash 
write when the cache is full. The reduction comes at a price of SRAM 
footprint. Without caching, the HAL only requires 336 bytes of SRAM, as 
shown in Figure 12. However, when caching is used we must reserve 
space equal to a full page of flash memory, which increases the SRAM 
utilization to 2388 bytes. The flash memory utilization of the HAL also 
increases by a small amount due to the extra code needed to determine 
when the cache must be flushed.

These results demonstrate the tangible impact the design decisions will 
have on the performance of the software. There is no one-size-fits-all 
solution—each system will have different requirements and constraints, 
and the OTA update software will need to be tuned to address them. 
Hopefully this article has shed some light on common problems and trade-
offs that were faced when designing, implementing, and validating an OTA 
update software solution.
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