ANALOG

Low Cost, High Voltage, Programmable Gain In-Amp Using the AD5292 Digital Potentiometer and the AD8221 In-Amp

CIRCUIT FUNCTION AND BENEFITS

The circuit shown in Figure 1 provides a low cost, high voltage, programmable gain instrumentation amplifier (in-amp) using the AD5292 digital potentiometer and the AD8221 in-amp.
The circuit offers 1024 different gain settings that are controllable through a digital serial peripheral interface (SPI). The $\pm 1 \%$ resistor tolerance performance of the AD5292 provides low gain error over the full resistor range, as shown in Figure 2.

The circuit provides a high performance in-amp that delivers a high common-mode rejection ratio (CMRR) over frequency and dynamic programmable gain for both single-supply operation at +30 V and dual-supply operation at $\pm 15 \mathrm{~V}$. In addition, the AD5292 has an internal $20 \times$ programmable memory that allows the user to customize the in-amp gain at power-up.

The circuit provides accurate, low noise, high gain and is well suited for signal instrumentation conditioning, precision data acquisition, biomedical analysis, and aerospace instrumentation.

Figure 1. Programmable Gain In-Amp (Simplified Schematic, All Connections Not Shown)

TABLE OF CONTENTS

Circuit Function and Benefits... 1
Revision History .. 2
Circuit Description.. 3
Common Variations... 4
Reference.. 4

REVISION HISTORY

8/2018—Rev. A to Rev. B
Document Title Changed From CN0114 to AN-1578....Universal
Changes to Figure 1... 1
Changes to Circuit Description Section...................................... 3

3/2010-Rev. 0 to Rev. A
Changes to Circuit Function and Benefits Section .. 1

8/2009—Revision 0: Initial Version

CIRCUIT DESCRIPTION

This circuit employs the AD5292 digital potentiometer in conjunction with the AD8221 in-amp, providing an overall low cost, high voltage, programmable gain in-amp.

The differential input signal, +IN and -IN , is amplified by the AD8221. The in-amp offers accuracy, low noise, high CMRR, and high slew rate.
The maximum circuit gain (G) is defined in Equation 1, where $\mathrm{R}_{\text {AW_MIN }}$ is the wiper resistance of the AD5292 in the rheostat mode and represents the minimum value of the gain setting resistance (100Ω).

$$
\begin{equation*}
G=1+\frac{49.4 \mathrm{k} \Omega}{R_{A B}} \leq 1+\frac{49.4 \mathrm{k} \Omega}{R_{A W_{-} M I N}} \leq 500 \tag{1}
\end{equation*}
$$

where $R_{A B}$ is the total resistance across the A and B terminals of the AD5292 in rheostat mode.

Figure 2. Gain Error vs. Code
The circuit gain formula for any particular AD5292 resistance can be calculated with the following equation:

$$
\begin{equation*}
G=1+\frac{49.4 \mathrm{k} \Omega}{(1024-D) \times R_{A B} / 1024} \tag{2}
\end{equation*}
$$

where D is the decimal code.
Equation 2 is plotted in Figure 3 as a function of the decimal code.

Figure 3. Gain vs. Decimal Code

The maximum current allowed through the AD5292 is $\pm 3 \mathrm{~mA}$, which limits the allowable circuit gain as a function of differential input voltage.
Equation 3 shows the maximum gain limit as a function of the differential input voltage ($\mathrm{V}_{\text {IN }}$). This equation is derived by substituting $\mathrm{R}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{IN}} / 3 \mathrm{~mA}$ into Equation 1. The result of Equation 3 is plotted in Figure 4.

$$
\begin{equation*}
G \leq 1+\frac{148}{V_{I N}} \tag{3}
\end{equation*}
$$

Figure 4. Allowable Gain vs. Differential Input Voltage
Equation 1 limits the maximum circuit gain to 500 . Equation 2 can be solved for D, yielding Equation 4, which calculates the minimum allowable resistance (in terms of the digital code) in the AD5292 without exceeding the current limit.

$$
\begin{equation*}
D \geq 1024-\left(\frac{49.4 \mathrm{k} \Omega \times 1024}{R_{A B} \times(G-1)}\right) \tag{4}
\end{equation*}
$$

where:
D is the code loaded in the digital potentiometer.
G is the maximum gain calculated from Equation 3.
When the input to the circuit is an ac signal, the parasitic capacitances in the digital potentiometer can cause a reduction in the maximum AD8221 bandwidth. A gain and phase plot is shown in Figure 5.

Figure 5. Gain and Phase vs. Frequency (Vertical Scale Compressed to Show All Gain Curves)

The AD5292 has a $20 \times$ programmable memory, which allows presetting the output voltage in a specific value at power-up.
Excellent layout, grounding, and decoupling techniques must be used to achieve the desired performance from the circuits discussed in this application note (see MT-031 Tutorial and MT-101 Tutorial). As a minimum, use a 4-layer printed circuit board (PCB) with one ground plane layer, one power plane layer, and two signal layers.

COMMON VARIATIONS

The AD5291 (8 bits with $20 \times$ programmable power-up memory) and the AD5293 (10 bits, no power-up memory) are both $\pm 1 \%$ tolerance digital potentiometers that are suitable for this application.

REFERENCE

MT-031 Tutorial. Grounding Data Converters and Solving the Mystery of "AGND" and "DGND". Analog Devices.

MT-032 Tutorial. Ideal Voltage Feedback (VFB) Op Amp. Analog Devices.
MT-061 Tutorial Instrumentation Amplifier (In-Amp) Basics. Analog Devices.

MT-087 Tutorial. Voltage References. Analog Devices.
MT-091 Tutorial. Digital Potentiometers. Analog Devices.
MT-095 Tutorial. EMI, RFI, and Shielding Concepts. Analog Devices.

MT-101 Tutorial. Decoupling Techniques. Analog Devices.

