

```
Maxim > Design Support > Technical Documents > Tutorials > A/D and D/A Conversion/Sampling Circuits > APP 4685
```

Maxim > Design Support > Technical Documents > Tutorials > Amplifier and Comparator Circuits > APP 4685

Maxim > Design Support > Technical Documents > Tutorials > Sensors > APP 4685

Keywords: cpap, continuous positive airway pressure, block diagram, electrical components, respiratory ventilation

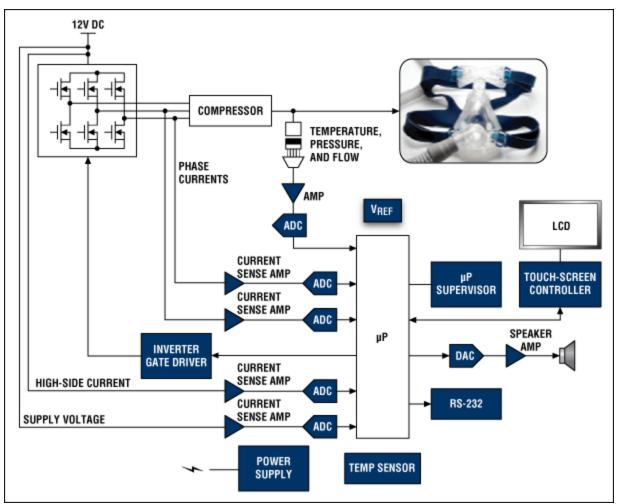
TUTORIAL 4685

How Continuous Positive Airway Pressure (CPAP) Respiratory Ventilation Systems Function

By: John Gosson May 10, 2010

Abstract: This application note introduces how a continuous positive airway pressure (CPAP) ventilation system operates. The main subfunctions of CPAP respiratory ventilation include air-hose-environment sensing, compressor motor-drive feedback, motor-drive excitation, and a communication interface to a technician/doctor. These subfunctions are explained and a functional block diagram showing system components is also detailed.

Continuous positive airway pressure (CPAP) is a type of respiratory ventilation originally developed for combating sleep apnea, which remains its primary use. It is also useful in providing ventilation for newborns and anyone suffering respiratory failure.


As airway muscles relax during sleep, the airway can become partially obstructed. This can lead to lower blood oxygenation and cause awakening or arousal from deep sleep. Maintaining positive air pressure by supplying a continuous source of compressed air, the face mask forms a seal to the face. It is only this air pressure that maintains the open airway, and not the actual movement of air. A sleep physician usually determines the required air pressure after completing a sleep study.

Pressure sensors supply feedback of the applied air pressure in the mask/delivery hose to the microprocessor controller. This microprocessor controller manages the motor-drive stage of a compressor to maintain the correct fan velocity necessary to generate the required air pressure.

The main subfunctions that the system is required to monitor and control can be divided as follows:

- 1. **Air-hose-environment sensing** This covers air pressure, but may also include air temperature, humidity, and flow rate.
- 2. **Compressor motor-drive feedback** Similar to all motor-drive systems, some feedback must be provided to maintain torque and/or velocity control. Typically, phase currents or shunt current and rotor feedback must be provided.
- 3. **Motor-drive excitation** This is the generation of the waveforms necessary to both induce current in the electric motor and produce the torque that causes motion.
- 4. **Communication interface to technician/doctor** This requires the ability to display information as well as input commands and controls from the medical team. This can include LCD drivers and touch-screen controllers, as well as a means for audio communication alerts, such as beeps and tones.

Functional block diagram of a CPAP system. For a list of Maxim's recommended solutions for CPAP designs, please go to: www.maximintegrated.com/CPAP.

Given the time and expense required to achieve FDA approval, manufacturers must select a supplier with a customer-oriented discontinuance policy to ensure that system components will be available for many years.

Medical customers rely on Maxim products because, over the years, we have carefully avoided discontinuing parts. We realize how devastating product discontinuance can be to a customer, so we work diligently to transfer some products to newer production lines, create wafer buffers, allow last-time purchases, or develop upgrade devices. Very few Maxim parts have ever been discontinued while demand still existed. Maxim's Discontinuance Policy is one of the most flexible among our peer supplier companies.

Related Parts			
DS600	±0.5°C Accurate Analog-Output Temperature Sensor	Free Samples	
DS7505	High-Precision Digital Thermometer and Thermostat	Free Samples	
DS75LV	Low-Voltage Digital Temperature Sensor	Free Samples	

MAX11800	Low-Power, Ultra-Small Resistive Touch-Screen Controllers with I ² C/SPI Interface	Free Samples
MAX11801	Low-Power, Ultra-Small Resistive Touch-Screen Controllers with I ² C/SPI Interface	Free Samples
MAX11802	Low-Power, Ultra-Small Resistive Touch-Screen Controllers with I ² C/SPI Interface	Free Samples
MAX11803	Low-Power, Ultra-Small Resistive Touch-Screen Controllers with I ² C/SPI Interface	Free Samples
MAX11811	TacTouch™, Low-Power, Ultra-Small, Resistive Touch-Screen Controller with Haptic Driver	Free Samples
MAX1228	12-Bit 300ksps ADCs with FIFO, Temp Sensor, Internal Reference	Free Samples
MAX1229	12-Bit 300ksps ADCs with FIFO, Temp Sensor, Internal Reference	Free Samples
MAX15036	2.2MHz, 3A Buck or Boost Converters with an Integrated High-Side Switch	Free Samples
MAX16056	125nA Supervisory Circuits with Capacitor-Adjustable Reset and Watchdog Timeouts	Free Samples
MAX16814	Integrated, 4-Channel, High-Brightness LED Driver with High-Voltage DC-DC Controller	Free Samples
MAX16826	Programmable, Four-String HB LED Driver with Output-Voltage Optimization and Fault Detection	Free Samples
MAX16838	Integrated, 2-Channel, High-Brightness LED Driver with High-Voltage Boost and SEPIC Controller	Free Samples
MAX3232E	±15kV ESD-Protected, Down to 10nA, 3.0V to 5.5V, Up to 1Mbps, True RS-232 Transceivers	Free Samples
MAX4238	Ultra-Low Offset/Drift, Low-Noise, Precision SOT23 Amplifiers	Free Samples
MAX5064	125V/2A, High-Speed, Half-Bridge MOSFET Drivers	Free Samples
MAX5556	Low-Cost Stereo Audio DAC	Free Samples
MAX6034	Precision, Micropower, Low-Dropout, SC70 Series Voltage Reference	Free Samples
MAX6129	Ultra-Low-Power Series Voltage Reference	Free Samples
MAX8902A	Low-Noise 500mA LDO Regulators in a 2mm x 2mm TDFN Package	Free Samples
MAX9617	High-Efficiency, 1.5MHz Op Amps with RRIO	Free Samples
MAX9634	1μA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier	Free Samples

MAX9860	16-Bit Mono Audio Voice Codec	Free Samples
MAX9918	-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers	Free Samples
MAX9922	Ultra-Precision, High-Side Current-Sense Amplifiers	Free Samples
MAX9928F	-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4685: http://www.maximintegrated.com/an4685

TUTORIAL 4685, AN4685, AN 4685, APP4685, Appnote4685, Appnote 4685

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal