<u>MOSFET</u> – Power, N-Channel, UltraFET

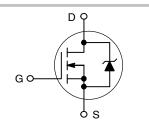
55 V, 75 A, 7 m Ω

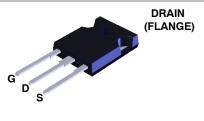
FDH5500-F085

Features

- Typ $R_{DS(on)} = 5.2 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 75 \text{ A}$
- Typ $Q_{g(10)} = 118 \text{ nC}$ at $V_{GS} = 10 \text{ V}$
- Simulation Models -Temperature Compensated PSPICE[™] and Saber[®] Models
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- AEC-Q101 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

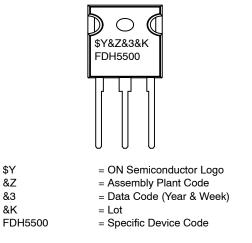
Applications


- DC Linear Mode Control
- Solenoid and Motor Control
- Switching Regulators
- Automotive Systems



ON Semiconductor®

www.onsemi.com


V _{DSS}	R _{DS(ON)} MAX	I _D MAX
55 V	$7 \text{ m}\Omega$	75 A

JEDEC TO-247 CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol		Parameter	Value	Unit
V _{DSS}	Drain to Source Voltage (55	V	
V _{DGR}	Gate to Gate Voltage (RG	_S = 20 kΩ) (Note 1)	55	V
V _{GS}	Gate to Source Voltage	±20	V	
I _D	Drain Current Continuous	75	А	
	Pulsed		Figure 4	
E _{AS}	Single Pulse Avalanche E	Single Pulse Avalanche Energy (Note 2)		mJ
PD	Power Dissipation	(T _C = 25°C)	375	W
		– Derate Above 25°C	2.5	W/°C
T _J , T _{STG}	Operating and Storage Te	Operating and Storage Temperature		
ΤL	Max. Lead Temp. for Solo	Max. Lead Temp. for Soldering (at 1.6 mm from case for 10 sec)		
T _{pkg}	Max. Package Temp. for	Soldering (Package Body for 10 sec)	260	°C

MOSFET MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Starting $T_J = 25^{\circ}C$ to $175^{\circ}C$. 2. Starting $TJ = 25^{\circ}C$, L = 0.48 mH, $I_{AS} = 60$ A

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
R_{\thetaJC}	Thermal Resistance Junction to Case	0.4	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-247, 1in ² copper pad area	30	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDH5500	FDH5500-F085	TO-247	Tube	N/A	30 Units

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	TERISTICS					
B _{VDSS}	Drain to Source Breakdown Voltage	I_D = 250 μ A, V_{GS} = 0 V	55			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 50 V, V_{GS} = 0 V, V_{DS} = 45 V			1	μA
		$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, V_{DS} = 45 \text{ V}, T_{C} = 150^{\circ}\text{C}$			250	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}$			±100	nA

ON CHARACTERISTICS

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, \ I_D = 250 \ \mu A$	2.0	2.9	4.0	V
R _{DS(ON)}	Drain to Source On Resistance	I _D = 75 A, V _{GS} = 10 V		5.2	7	mΩ

DYNAMIC CHARACTERISTICS

C _{ISS}	Input Capacitance	V_{DS} = 25 V, V_{GS} =	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz		3565		pF
C _{OSS}	Output Capacitance		Ī		1310		pF
C _{RSS}	Reverse Transfer Capacitance				395		pF
Q _{g(TOT)}	Total Gate Charge at 20 V	V_{GS} = 0 V to 20 V	$V_{DD} = 30 V$		206	268	nC
Q _{g(10)}	Total Gate Charge 10 V	$V_{GS} = 0 V$ to 10 V	14 - 0.1 22		118	153	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 V to 2 V	l _g = 1.0 mA		6.2	8.1	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 75$			17.8		nC
Q _{gd}	Gate to Drain "Miller" Charge	$R_{L} = 0.4 \Omega, I_{g} = 1.0$) mA		51		nC

SWITCHING CHARACTERISTICS

t _{on}	Turn-On Time	$V_{DD} = 30 V$		185	ns
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 V$ $I_{D} = 75 A$ $R_{L} = 0.4 \Omega$ $V_{GS} = 10 V$ $R_{GS} = 2.5 \Omega$	13.7		ns
tr	Rise Time	V _{GS} = 10 V R _{GS} = 2.5 Ω	102		ns
t _{d(off)}	Turn-Off Delay Time		34		ns
t _f	Fall Time		22		ns
t _{off}	Turn-Off Time			91	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 75 A	1	1.25	V
t _{rr}	Reverse Recovery Time	I _F = 75 A, dI _{SD} /dt = 100 A/μs	60	78	ns
Q _{rr}	Reverse Recovery Charge		77	100	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

(T_C = 25° C unless otherwise noted)

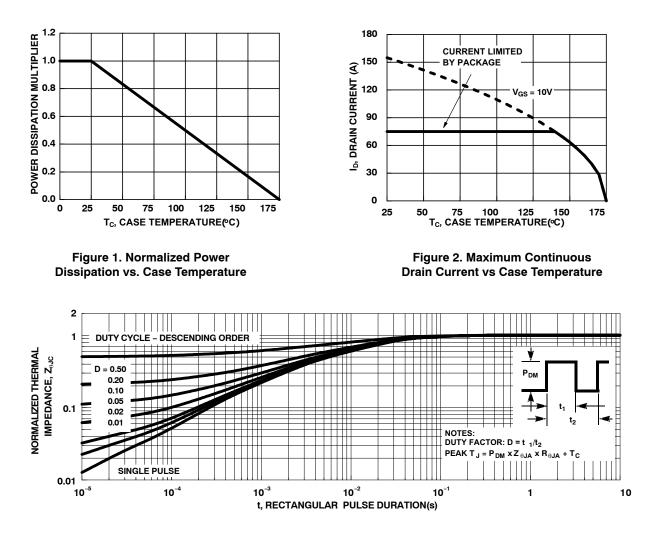


Figure 3. Normalized Maximum Transient Thermal Impedance

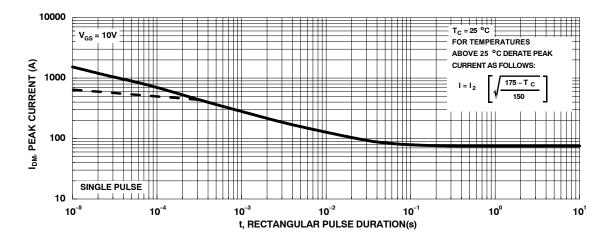


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (Continued)

(T_C = 25°C unless otherwise noted)

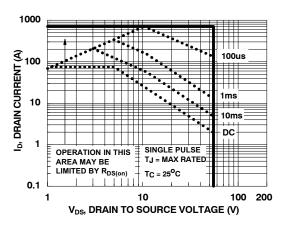


Figure 5. Forward Bias Safe Operating Area

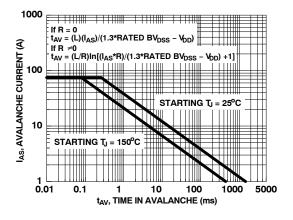
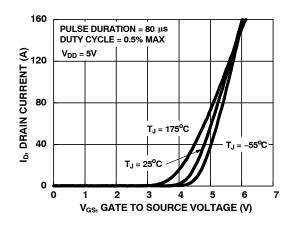
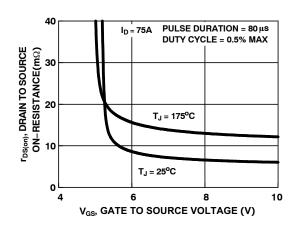
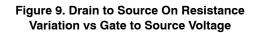
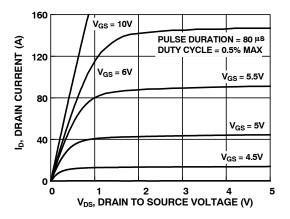


Figure 6. Unclamped Inductive Switching Capability

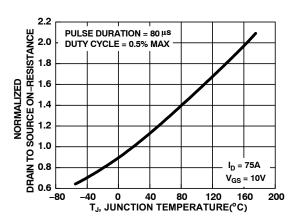

Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

TYPICAL CHARACTERISTICS (Continued)

(T_C = 25°C unless otherwise noted)

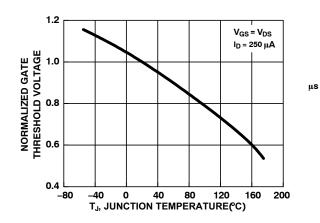


Figure 11. Normalized Gate Threshold Voltage vs. Junction Temperature

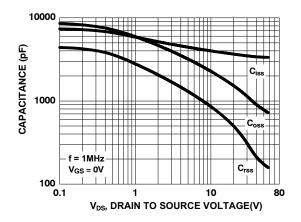


Figure 13. Capacitance vs. Drain to Source Voltage

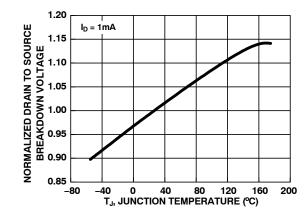


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

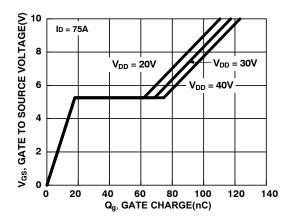
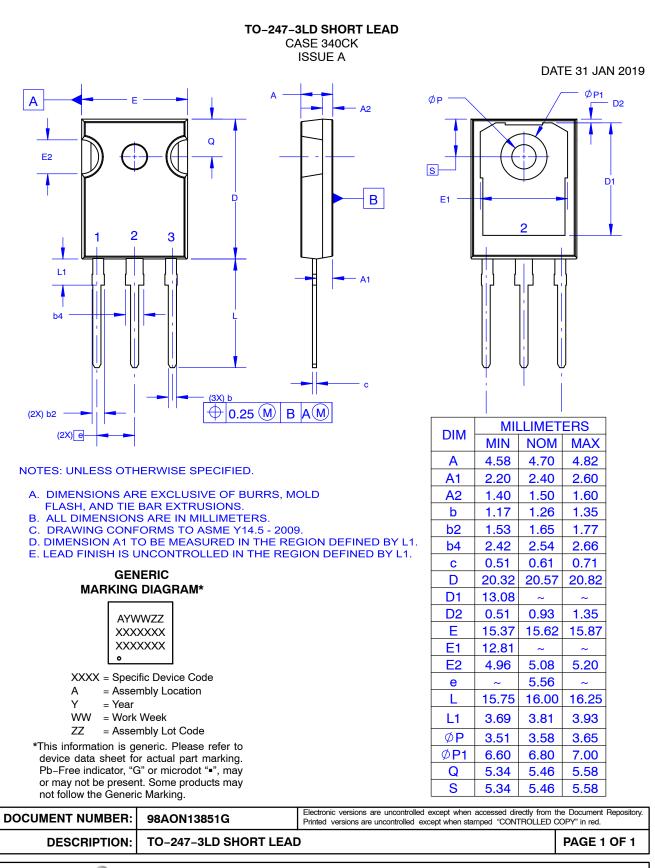



Figure 14. Gate Charge vs. Gate to Source Voltage

PSPICE is a trademark of MicroSim Corporation.

Saber is a registered trademark of Sabremark Limited Partnership.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative