

Low-Voltage, 1 Ω SPDT Analog Switch with Power-Off Isolation

FSA4159

Description

The FSA4159 is a high–performance Single–Pole / Double–Throw (SPDT) analog switch. The device features ultra–low R_{ON} of 1 Ω at 4.5 V V_{CC} and operates over the wide V_{CC} range of 1.65 V to 5.50 V. The device is fabricated with sub–micron CMOS technology to achieve fast switching speeds and is designed for break–before–make operation.

The FSA4159 features very low quiescent current even when the control voltage is lower than the V_{CC} supply. This feature services mobile handset applications by allowing direct interface with baseband processor general-purpose I/Os.

Features

- $\bullet \;\; Low \; I_{CC}$ when the S Input is Lower than V_{CC}
- Power–Off Isolation ($V_{CC} = 0 \text{ V}$)
- 1 Ω On Resistance (R_{ON}) at 4.5 V V_{CC}
- 0.25 Ω Maximum R_{ON} Flatness for 4.5 V V_{CC}
- Space-Saving, Pb-Free, 6-Lead SC70 Surface Mount Package
- Broad V_{CC} Operating Range: 1.65 V to 5.50 V
- Fast Turn-On and Turn-Off Times
- Break-Before-Make Enable Circuitry
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Cellular Phone
- Portable Media Player
- PDA

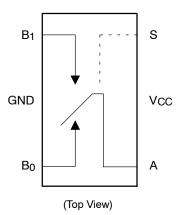


Figure 1. Analog Symbols

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD

SIP6 1.45X1.0 CASE 127EB

MARKING DIAGRAMS

A59 = Specific Device Code M = Assembly Operationmonth

FX = Specific Device Code (S2)

&K = 2-Digits Lot Run Traceability Code

&2 = 2-Digit Date Code&Z = Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Part Number	Operating Temperature Range	Top Mark	Package	Shipping [†]
FSA4159P6X	-40°C to +85°C	A59	SC-88 (SC-70 6 Lead), 1.25x2 (Pb-Free)	3000 / Tape & Reel
FSA4159L6X	−40°C to +85°C	S2	SIP6 1.45X1.0 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN CONFIGURATION

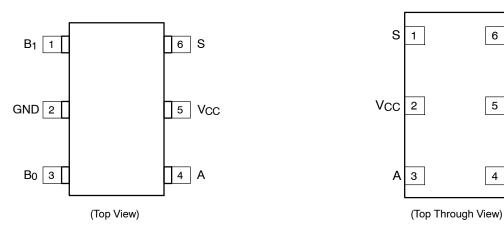


Figure 2. SC70 Pin Assignments

Figure 3. MicroPak[™] Pin Assignments

6 B₁

5

GND

Во

PIN DEFINITIONS

Pin# SC70	Pin# MicroPak	Name	Description
1	6	B1	Data Ports
2	5	GND	Ground
3	4	В0	Data Ports
4	3	А	Data Ports
5	2	V_{CC}	Supply Voltage
6	1	S	Control Input

TRUTH TABLE

Control Input (S)	Function
Low	B0 connected to A
High	B1 connected to A

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	6.5	V
V_{SW}	Switch Voltage (Note 1)		-0.5	V _{CC} + 0.5	V
V _{IN}	Input Voltage (Note 1)		-0.5	6.5	V
I _{IK}	Input Diode Current			-50	mA
I _{SW}	Switch Current (Continuous	s)		200	mA
I _{SWPEAK}	Peak Switch Current (Pulse	ed at 1 ms Duration, < 10% Duty Cycle)		400	mA
P _D	Power Dissipation at 85°C	Power Dissipation at 85°C			
T _{STG}	Storage Temperature Rang	е	-65	+150	°C
TJ	Maximum Junction Temper	ature		+150	°C
TL	Lead Temperature (Solderi	ng, 10 seconds)		+260	°C
ESD	Electrostatic Discharge	Human Body Model (JEDEC: JESD22-A114)		4000	V
	Capability	Charged Device Model (JEDEC: JESD22-C101)		1500	1
		Machine Model (JEDEC: JESD22-A115)		200	1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	1.65	5.50	V
S	Control Input Voltage (Note 2)	0	V _{CC}	V
V _{SW}	Switch Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C
$\theta_{\sf JA}$	Thermal Resistance, Still Air		350	°C/W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

^{2.} Control Input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS

(All typical values are at 25°C unless otherwise specified.)

					Ambient 7	Temperati	ure (T _A)		
				25°C			-40 to	+85°C]
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Unit
VIH	Input Voltage High	4.50 to 5.50					2.4		V
		3.00 to 3.60					2.4		
		2.30 to 2.70					1.8		
		1.65 to 1.95					1.5		
VIL	Input Voltage Low	4.50 to 5.50						0.8	V
		3.00 to 3.60						0.8	
		2.30 to 2.70						0.6	
		1.65 to 1.95						0.6	
lin	Control Input Leakage	5.50	V _{IN} = 0 V or V _{CC}	-2		2	-100	100	nA
IIIN		3.60	AIN = 0 A OL ACC	-2		2	-100	100	
		2.70		-2		2	-20	20	
	1.95		-2		2	-20	20		
INO(OFF), Off Leakage C of Port B ₀ and	Off Leakage Current of Port B ₀ and B ₁	5.50	A = 1 V, 4.5 V, $B_0 \text{ or } B_1 = 4.5 \text{ V}, 1.0 \text{ V}$	-10		10	-50	50	nA
		3.60	A = 1 V, 3.0 V, $B_0 \text{ or } B_1 = 3.0 \text{ V}, 1.0 \text{ V}$	-10		10	-50	50	
		2.70	A = 0.5 V, 2.3 V, B ₀ or B ₁ = 2.3 V, 0.5 V	-10		10	-50	50	
		1.95	A = 0.3 V, 1.65 V, B ₀ or B ₁ = 1.65 V, 0.3 V	-5		5	-20	20	
INO(ON), INC(ON)	On Leakage Current of Port B ₀ and B ₁	5.50	A = Float, B ₀ or B ₁ = 4.5 V, 1.0 V	-20		20	-100	100	nA
		3.60	A = Float, B ₀ or B ₁ = 3.0 V, 1.0 V	-10		10	-20	20	
		2.70	A = Float, B ₀ or B ₁ = 2.3 V, 0.5 V	-10		10	-20	20	
		1.95	A = Float, B ₀ or B ₁ = 1.65 V, 0.3 V	-5		5	-20	20	
IA(ON)	On Leakage Current of Port A	5.50	A = 1 V, 4.5 V B_0 or B_1 = 1 V, 4.5 V, or Floating	-20		20	-100	100	nA
		3.60	A = 1 V, 3 V B_0 or B_1 = 1 V, 3 V, or Floating	-10		10	-20	20	
		2.70	$A = 0.5 \text{ V}, 2.3 \text{ V} B_0 \text{ or } B_1 = 0.5 \text{ V}, 2.3 \text{ V}, or Floating}$	-10		10	-20	20	
		1.95	A = 0.3 V, 1.65 V $B_0 \text{ or } B_1 = 0.3 \text{ V}, 1.65 \text{ V},$ or Floating	-5		5	-20	20	
loff	Power Off Leakage Current of Port A & Port B	0	A = 0 to 5.5 V B ₀ or B ₁ = 0 to 5.5 V		±1.00		-5.00	5.00	μΑ

DC ELECTRICAL CHARACTERISTICS (continued)

(All typical values are at 25°C unless otherwise specified.)

					Ambient	ıre (T _A)			
					25°C		-40 to	+85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Unit
RPEAK	Peak On Resistance	4.50	$I_{OUT} = -100 \text{ mA},$ $B_0 \text{ or } B_1 = 0 \text{ to } V_{CC}$		1.0	1.1		1.3	Ω
		3.00	$I_{OUT} = -100 \text{ mA},$ $B_0 \text{ or } B_1 = 0 \text{ to } V_{CC}$		1.2	1.5		1.8	
		2.30	$I_{OUT} = -8 \text{ mA},$ $B_0 \text{ or } B_1 = 0 \text{ to } V_{CC}$		1.5	2.0		2.5	
		1.65	$I_{OUT} = 2 \text{ mA},$ $B_0 \text{ or } B_1 = 0 \text{ to } V_{CC}$ $T_A = 25, 85^{\circ}C$		4.0	10.0		15.0	
			$I_{OUT} = 2 \text{ mA},$ $B_0 \text{ or } B_1 = 0 \text{ to } V_{CC}$ $T_A = -40^{\circ}\text{C}$		10.0				
Ron	Switch On Resistance (Note 3)	4.50	$I_{OUT} = -100 \text{ mA},$ $B_0 \text{ or } B_1 = 2.5 \text{ V}$		0.8	0.9		1.1	Ω
		3.00	$I_{OUT} = -100 \text{ mA},$ $B_0 \text{ or } B_1 = 2.0 \text{ V}$		1.0	1.3		1.6	
		2.30	$I_{OUT} = -8 \text{ mA},$ $B_0 \text{ or } B_1 = 1.8 \text{ V}$		1.4	2.0		2.4	
		1.65	$I_{OUT} = -2 \text{ mA},$ $B_0 \text{ or } B_1 = 1.5 \text{ V}$		1.7	2.5		3.5	
ΔR_{ON}	On Resistance Matching Between	4.50	$I_{OUT} = -100 \text{ mA},$ $B_0 \text{ or } B_1 = 2.5 \text{ V}$		0.05	0.10		0.10	Ω
	Channels (Note 4)	3.00	I _{OUT} = -100 mA, B ₀ or B ₁ = 2.0 V		0.10	0.15		0.15	
		2.30	I _{OUT} = -8 mA, B ₀ or B ₁ = 1.8 V		0.15	0.20		0.20	
		1.65	$I_{OUT} = -2 \text{ mA},$ $B_0 \text{ or } B_1 = 1.5 \text{ V}$		0.15	0.40		0.40	
RFLAT(ON)	On Resistance Flatness (Note 5)	4.50	I _{OUT} = -100 mA, B ₀ or B ₁ = 1.0 V, 1.5 V, 2.5 V		0.075	0.250		0.250	Ω
		3.00	I _{OUT} = -100 mA, B ₀ or B ₁ = 0.8 V, 2.0 V		0.1	0.3		0.3	
		2.30	I _{OUT} = -8 mA, B ₀ or B ₁ = 0.8 V, 1.8 V		0.2	1.0		1.0	
		1.65	$I_{OUT} = -2 \text{ mA},$ $B_0 \text{ or } B_1 = 0.6 \text{ V}, 1.5 \text{ V}$		3.5				
I _{CC}	Quiescent Supply	5.50	$V_{IN} = 0$ or V_{CC} , $I_{OUT} = 0$		10.0	50.0		500.0	nA
	Current	3.60	V _{IN} = 0 or V _{CC} , I _{OUT} = 0		1.0	25.0		100.0	
		2.70	V _{IN} = 0 or V _{CC} , I _{OUT} = 0		0.5	20.0		50.0	
		1.95	V _{IN} = 0 or V _{CC} , I _{OUT} = 0		0.5	15.0		50.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
 ΔR_{ON} = R_{ON max} - R_{ON min} measured at identical V_{CC}, temperature and voltage.
 Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC ELECTRICAL CHARACTERISTICS

(All typical values are at V_{CC} = 1.8 V, 2.5 V, 3.0 V, 5.0 V at 25°C unless otherwise specified.)

					Ambien					
				25°C			-40 to	+85°C	1	
Symbol Parameter	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Unit	Figure
ton	Turn-On Time	4.50 to 5.50	B_0 or $B_1 = V_{CC}$,	1	16	30	1	35	ns	Figure 11
		3.00 to 3.60	$R_L = 50 \Omega$, $C_1 = 35 pF$	5	21	35	3	50		
		2.30 to 2.70		5	28	40	5	50		
	1.65 to 1.95		10	50	70	10	75			
toff	Turn-Off Time	4.50 to 5.50	B_0 or $B_1 = V_{CC}$,	1	13	20	1	30	ns	Figure 11
		3.00 to 3.60	$R_L = 50 \Omega$, $C_1 = 35 pF$	1	15	20	1	30		
		2.30 to 2.70	<u> </u>	2	20	35	2	50		
		1.65 to 1.95		2.0	28	40	2	50		
tввм	Break-Before-	4.50 to 5.50	B_0 or $B_1 = V_{CC}$,		3.0		0.1	20.0	ns	Figure 12
Make Time	3.00 to 3.60	$R_L = 50 \Omega$, $C_L = 35 pF$		6.0		1.0	40.0			
	2.30 to 2.70		2.0	10.0	35.0	2.0	45.0			
		1.65 to 1.95			22.0		2.0	70.0		
Q	Charge Injection	5.50	C _L = 1.0 nF,		15				рС	Figure 14
		3.30	$V_{GEN} = 0 V$, $R_{GEN} = 0 \Omega$		11]	
		2.50	GEN		8					
		1.65			6					
OIRR	Off Isolation	1.80 to 5.00	$f = 1 \text{ MHz}, R_L = 50 \Omega$		-60				dB	Figure 13
Xtalk	Crosstalk	1.80 to 5.00	$f = 1 \text{ MHz}, R_L = 50 \Omega$		-60				dB	Figure 13
BW	-3db Bandwidth	5.50	$R_L = 50 \Omega$		180				MHz	Figure 7
		3.30			180					Figure 8
	2.50			180					Figure 16	
		1.65			180					
THD	Total Harmonic	1.80	$R_L = 600 \Omega,$ $V_{IN} = 0.5 V_{PP},$		0.006				%	Figure 10 Figure 17
	Distortion	5.00	f = 20 Hz to 20 kHz		0.002					_

CAPACITANCE

				T _A = 25°C				
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Unit	Figure
C _{IN}	Control Pin Input Capacitance	0	f = 1 MHz		3.5		pF	Figure 10
C _{OFF}	B Port Off Capacitance	1.65 to 5.50	f = 1 MHz		12.0		pF	Figure 10
C _{ON}	A Port On Capacitance	1.65 to 5.50	f = 1 MHz		40.0		pF	Figure 10

TYPICAL PERFORMANCE CHARACTERISTICS

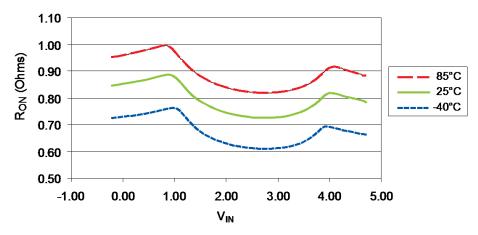


Figure 4. Switch R_{ON} ($V_{CC} = 4.5 V$)

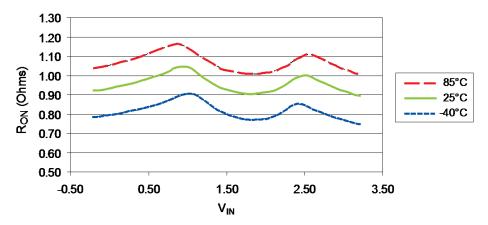


Figure 5. Switch R_{ON} (V_{CC} = 3.0 V)

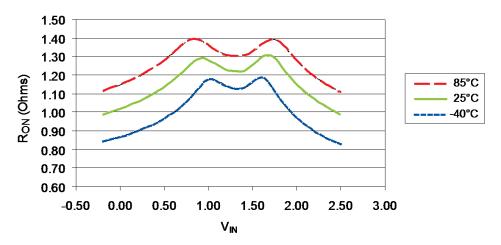


Figure 6. Switch R_{ON} (V_{CC} = 2.3 V)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

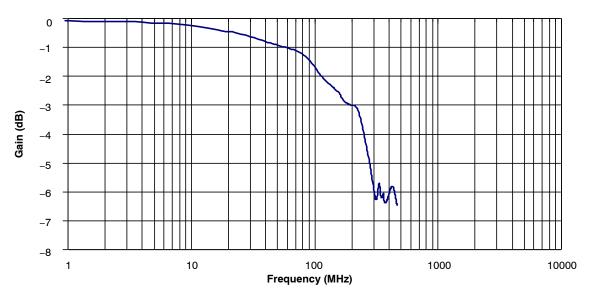


Figure 7. Frequency Response ($C_L = 0$ pF, $V_{CC} = 5.5$ V)

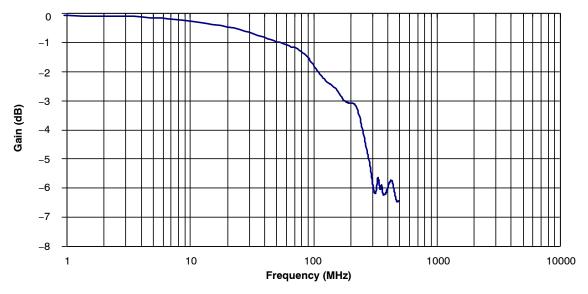


Figure 8. Frequency Response (C_L = 0 pF, V_{CC} = 3.3 V)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

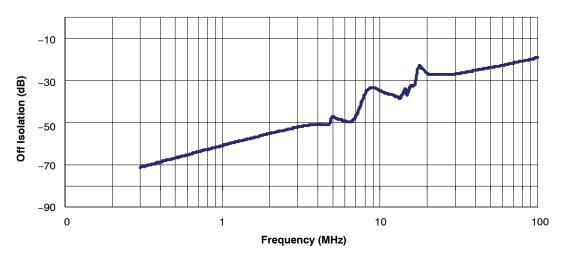


Figure 9. Off Isolation ($V_{CC} = 5.0 \text{ V}$)

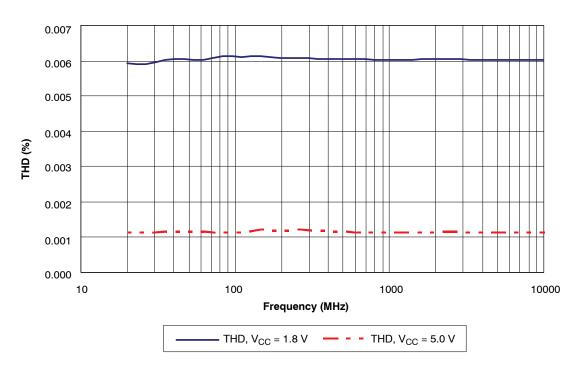
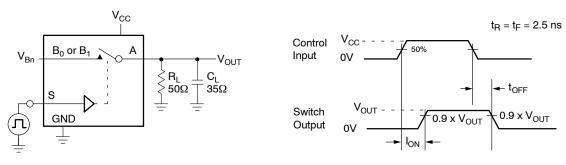
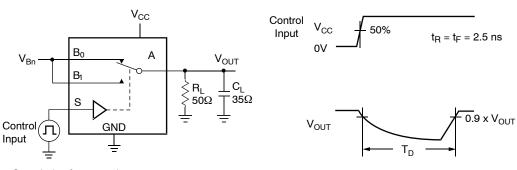



Figure 10. Total Harmonic Distortion, Frequency Response ($C_L = 0 pF$)


TEST DIAGRAMS

C_I Includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

Figure 11. Turn On / Off Timing

C_L includes fixture and stray capacitance

Figure 12. Break-Before-Make Timing

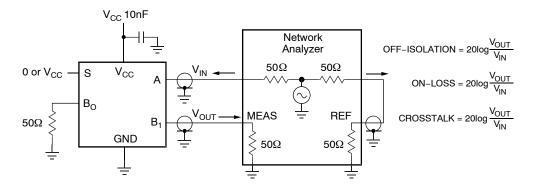


Figure 13. Off Isolation and Crosstalk

TEST DIAGRAMS (Continued)



Figure 14. Charge Injection

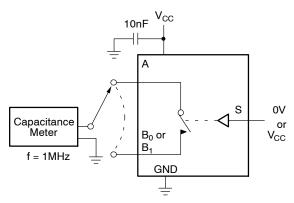


Figure 15. On / Off Capacitance Measurement Setup

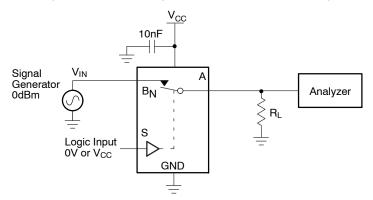


Figure 16. Bandwidth

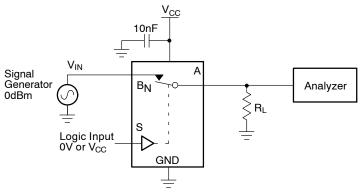
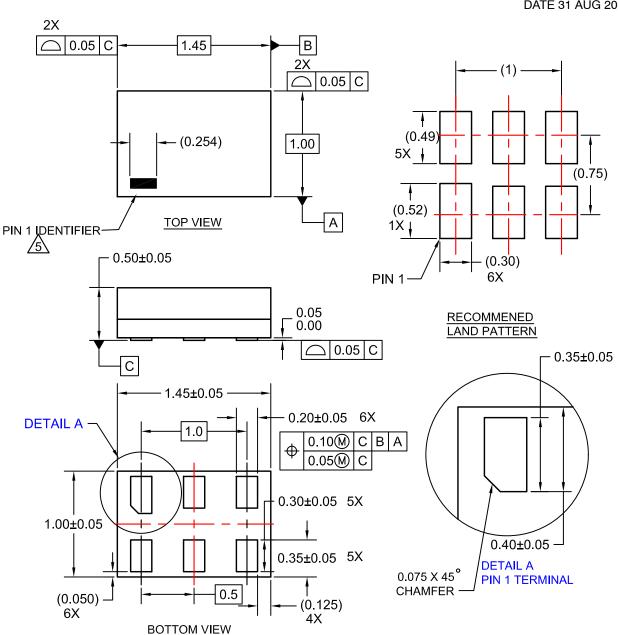



Figure 17. Harmonic Distortion

MicroPak is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

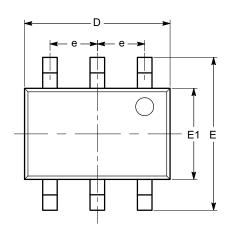
DATE 31 AUG 2016

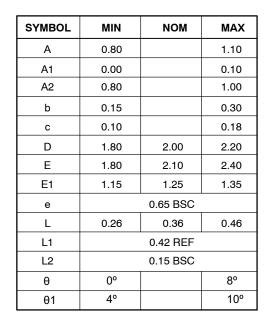
NOTES:

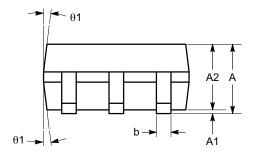
- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
 4. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY

 - OTHER LINE IN THE MARK CODE LAYOUT.

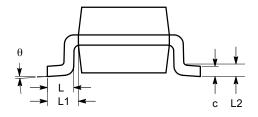
DOCUMENT NUMBER:	98AON13590G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SIP6 1.45X1.0		PAGE 1 OF 1		


ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD **ISSUE A**

DATE 07 JUL 2010



TOP VIEW

SIDE VIEW

END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.		PAGE 1 OF 1		
DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative