onsemi

Quad 2-Input OR Gate

MM74HC32

General Description

The MM74HC32 OR gates utilize advanced silicon–gate CMOS technology to achieve operating speeds similar to LS–TTL gates with the low power consumption of standard CMOS integrated circuits.

All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS–TTL loads. The 74HC logic family is functionally as well as pin–out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical Propagation Delay: 10 ns
- Wide Power Supply Range: 2 V 6 V
- Low Quiescent Current: 20 µA maximum (74HC Series)
- Low Input Current: 1 µA Maximum
- Fanout of 10 LS-TTL Loads
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Connection Diagram

Figure 1. Pin Assignments for SOIC and TSSOP

Logic Diagram

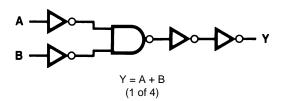
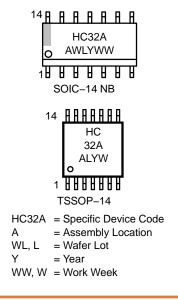



Figure 2. Logic Diagram

CASE 948G

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol		Rating		
V _{CC}	Supply Voltage	–0.5 to +7.0 V		
V _{IN}	DC Input Voltage		–0.5 to V _{CC} + 0.5 V	
V _{OUT}	DC Output Voltage		–0.5 to V _{CC} + 0.5 V	
I _{IK} , I _{OK}	Clamp Diode Current	Clamp Diode Current		
I _{OUT}	DC Output Current, per Pin	±25 mA		
I _{CC}	DC V_{CC} or GND Current, per Pin	±50 mA		
T _{STG}	Storage Temperature Range		–65°C to +150°C	
PD	Power Dissipation Note 2		600 mW	
	S.O. Package Only		500 mW	
ΤL	Lead Temperature (Soldering 10 S	260°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Unless otherwise specified all voltages are referenced to ground.

2. Power Dissipation temperature derating - plastic "N" package: -12 mW/°C from 65°C to 85°C.

RECOMMENDED OPERATING CONDITIONS

Symbol		Min	Max	Unit	
V _{CC}	Supply Voltage			6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage			V _{CC}	V
T _A	Operating Temperature Range			+85	°C
t _r , t _f	Input Rise or Fall Times V _{CC} = 2.0 V			1000	ns
		$V_{CC} = 4.5 V$		500	ns
		$V_{CC} = 6.0 V$	-	400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MM74HC32

DC CHARACTERISTICS (Note 3)

	Parameter			T _A = 25°C		$T_A = -40^{\circ}C$ to $85^{\circ}C$	
Symbol		V _{CC} (V)	Conditions	Тур	Gua	aranteed Limits	Unit
VIH	Minimum HIGH Level Input Voltage	2.0		-	1.5	1.5	V
		4.5		-	3.15	3.15	
		6.0		-	4.2	4.2	
VIL	Maximum LOW Level Input Voltage	2.0		-	0.5	0.5	V
		4.5		-	1.35	1.35	
		6.0		-	1.8	1.8	
V _{OH}	Minimum HIGH Level Output Voltage	2.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$	2.0	1.9	1.9	V
		4.5	4.5 I _{OUT} ≤ 20 μA	4.5	4.4	4.4	
		6.0		6.0	5.9	5.9	
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 4.0 \text{ mA}$	4.2	3.98	3.84	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{ mA}$	5.2	5.48	5.34	
V _{OL}	Maximum LOW Level Output Voltage	2.0	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL}, \\ I_{OUT} \leq 20 \ \mu A \end{array}$	0	0.1	0.1	V
		4.5		0	0.1	0.1	
		6.0		0	0.1	0.1	
		4.5	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL}, \\ I_{OUT} \leq 4.0 \text{ mA} \end{array}$	0.2	0.26	0.33	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \leq 5.2 \text{ mA}$	0.2	0.26	0.33	
I _{IN}	Maximum Input Current	6.0	$V_{IN} = V_{CC}$ or GND	-	±0.1	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	6.0	$V_{IN} = V_{CC} \text{ or}$ GND, $I_{OUT} = 0 \ \mu A$	_	2.0	20	μA

3. For a power supply of 5 V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC CHARACTERISTICS (V_{CC} = 5 V, T_A = 25^{\circ}C, C_L = 15 \text{ pF}, t_r = t_f = 6 \text{ ns})

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay		10	18	ns

AC CHARACTERISTICS (V_{CC} = 2.0 V to 6.0 V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified))

				T _A =	25°C	$T_A = -40^{\circ}C$ to $85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур	Gua	ranteed Limits	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay	2.0		30	100	125	ns
		4.5		12	20	25	
		6.0		9	17	21	
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time	2.0		30	75	95	ns
		4.5		8	15	19	
		6.0		7	13	16	
C _{PD}	Power Dissipation Capacitance (Note 4)		(per gate)	50	-	-	pF
CIN	Maximum Input Capacitance			5	10	10	pF

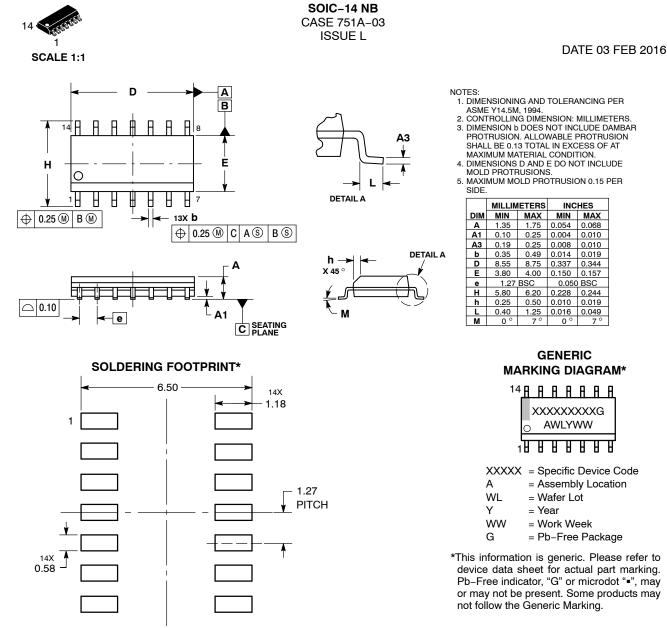
4. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HC32

ORDERING INFORMATION

Part Number	Package	Shipping [†]	
MM74HC32M	SOIC-14, Case 751A-03 (Pb-Free, Halide-Free)	55 Units / Tube	
MM74HC32MTC	TSSOP-14, Case 948G-01 (Pb-Free, Halide Free)	96 Units / Tube	
MM74HC32MX	SOIC-14, Case 751EF (Pb-Free, Halide-Free)	2500 Units / Tape & Reel	
MM74HC32MTCX	TSSOP–14, Case 948G–01 (Pb–Free, Halide Free)	2500 Units / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


DUSEM

0.068

0.019

0.344

0.244

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

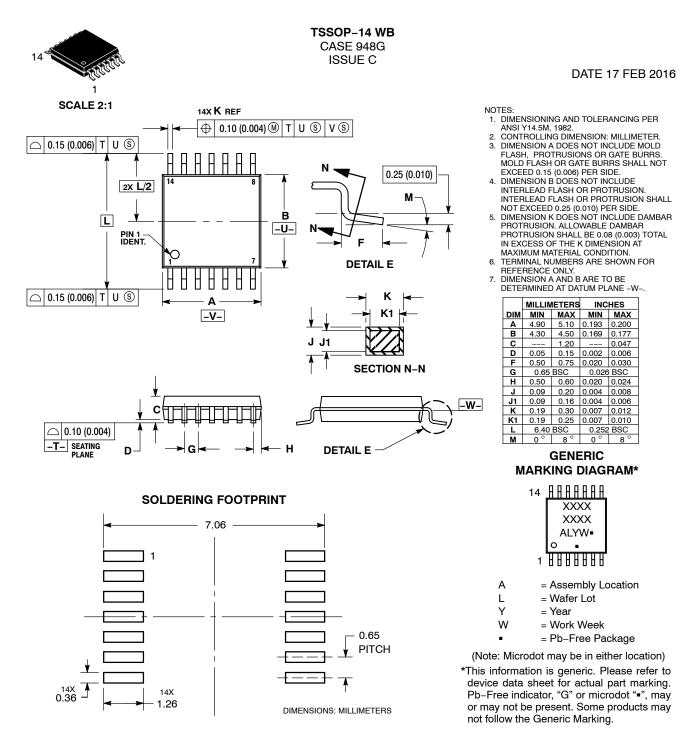
SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



SOIC14 CASE 751EF **ISSUE O** DATE 30 SEP 2016 8.75 8.50 Α 0.65 7.62 14 8 14 8 В 4.00 6.00 5.60 3.80 Ħ 1.70 7 **PIN #1** 1,27 7 0.51 **IDENT.** 1.270.35 (0.33) \oplus 0.25 (M) С В Α LAND PATTERN RECOMMENDATION TOP VIEW 1.75 MAX 0.25 С 0.19 0.10 С 1.50 0.25 0.10 1.25 SIDE VIEW **FRONT VIEW** NOTES: A. CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C **B. ALL DIMENSIONS ARE IN MILLIMETERS** 0.50 0.25 × 45° C. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS LAND PATTERN STANDARD: R0.10 GAGE D. SOIC127P600X145-14M PLANE R0.10 E. CONFORMS TO ASME Y14.5M, 2009 0.36 8° 0° 0.90 0.50 SEATING PLANE (1.04)DETAIL A SCALE 16 : 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98AON13739G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC14 PAGE 1 OF 1

ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER:	98ASH70246A Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	TSSOP-14 WB	P-14 WB					
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular							

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative