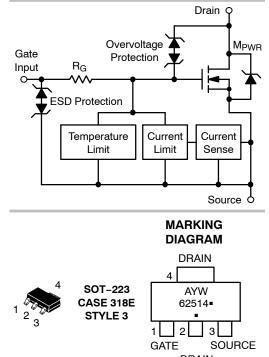
Self-protected FET, Temp and Current Limit, Voltage Clamp, ESD, SOT-223

HDPlus devices are an advanced series of power MOSFETs which utilize ON Semiconductor's latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain-to-Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate-to-Source Clamp.

Features


- Current Limitation
- Thermal Shutdown with Automatic Restart
- Short Circuit Protection
- Low R_{DS(on)}
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection
- This is a Pb–Free Device

ON Semiconductor®

http://onsemi.com

6.0 AMPERES* 40 VOLTS CLAMPED R_{DS(on)} = 90 mΩ

DRAIN A = Assembly Location Y = Year W = Work Week

62514 = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NIF62514T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
NIF62514T3G	SOT-223 (Pb-Free)	4000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*Limited by the current limit circuit.

MOSFET MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	40	Vdc
Drain-to-Gate Voltage Internally Clamped (R_{GS} = 1.0 M Ω)	V _{DGR}	40	Vdc
Gate-to-Source Voltage	V _{GS}	±16	Vdc
$ \begin{array}{l} \text{Drain Current} \\ - \text{ Continuous } @ \ T_A = 25^{\circ}\text{C} \\ - \text{ Continuous } @ \ T_A = 100^{\circ}\text{C} \\ - \text{ Pulsed } (t_p \leq 10 \ \mu\text{s}) \end{array} $	I _D I _D I _{DM}	Internally Li	mited
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2) @ $T_A = 25^{\circ}C$ (Note 3)	P _D	1.1 1.73 8.93	W
Thermal Resistance, Junction-to-Tab Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$\begin{array}{c} R_{\theta JT} \\ R_{\theta JA} \\ R_{\theta JA} \end{array}$	14 114 72.3	°C/W
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, V_{DS} = 40 Vdc, I_L = 2.8 Apk, L = 80 mH, R_G = 25 Ω)	E _{AS}	300	mJ
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Mounted onto min pad board.
Mounted onto 1" pad board.
Mounted onto large heatsink.

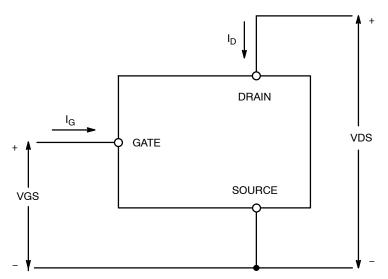
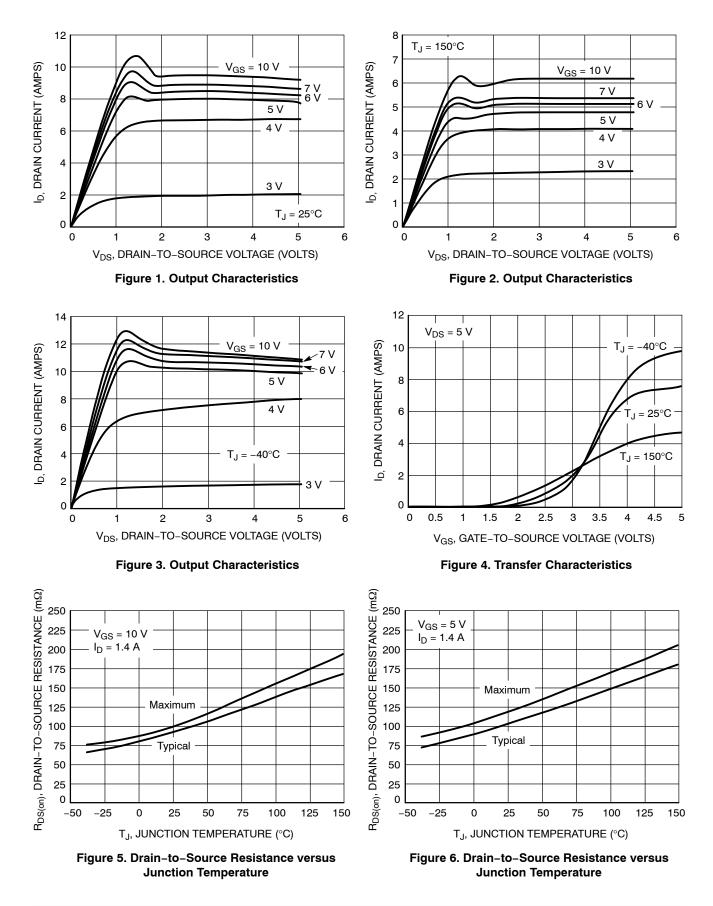



Figure 1. Voltage and Current Convention

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	-		
Drain-to-Source Clamped Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu \text{Adc}$) ($V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu \text{Adc}, T_J = 150^{\circ}\text{C}$) (Note 4)			42 42	46 45	50 50	Vdc
Zero Gate Voltage Drain Current ($V_{DS} = 32$ Vdc, $V_{GS} = 0$ Vdc) ($V_{DS} = 32$ Vdc, $V_{GS} = 0$ Vdc, $T_J = 150^{\circ}$ C) (Note 4)			-	0.5 2.0	2.0 10	μAdc
Gate Input Current (V _{GS} = 5.0 Vdc, V _{DS} = 0 Vdc) (V _{GS} = -5.0 Vdc, V _{DS} = 0 Vdc)			-	50 550	100 1000	μAdc
ON CHARACTERISTICS				•	•	
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 150 \ \mu Adc)$ Threshold Temperature Coefficient (N	egative)	V _{GS(th)}	1.0 -	1.7 4.0	2.0	Vdc mV/°C
Static Drain-to-Source On-Resistance (Note 5) ($V_{GS} = 10 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J @ 25^{\circ}\text{C}$) ($V_{GS} = 10 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J @ 150^{\circ}\text{C}$) (Note 4)		R _{DS(on)}		90 165	100 190	mΩ
Static Drain-to-Source On-Resistance (Note 5) (V _{GS} = 5.0 Vdc, I _D = 1.4 Adc, T _J @ 25°C) (V _{GS} = 5.0 Vdc, I _D = 1.4 Adc, T _J @ 150°C) (Note 4)				105 185	120 210	mΩ
Source–Drain Forward On Voltage $(I_S = 7 \text{ A}, V_{GS} = 0 \text{ V})$		V _{SD}	-	1.05	-	V
SWITCHING CHARACTERISTICS (Note	4)					
Turn-on Delay Time	$\begin{array}{c} 10\% \ V_{in} \ to \ 10\% \ I_D \\ R_L = 4.7 \ \Omega, \ V_{in} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V \end{array}$	t _{d(on)}	-	4.0	8.0	μs
Turn-on Rise Time	$ \begin{array}{c} 10\% \ I_{D} \ to \ 90\% \ I_{D} \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ to \ 10 \ V, \ V_{DD} = 12 \ V \end{array} $	t _{rise}	-	11	20	μs
Turn-off Delay Time	90% V _{in} to 90% I _D R _L = 4.7 Ω, V _{in} = 10 to 0 V, V _{DD} = 12 V		-	32	50	μs
Turn-off Fall Time	n-off Fall Time 90% I_D to 10% I_D $R_L = 4.7 \Omega$, $V_{in} = 10$ to 0 V, $V_{DD} = 12$ V		-	27	50	μs
Slew-Rate On	ew-Rate On $R_{L} = 4.7 \Omega,$ $V_{in} = 0 \text{ to } 10 \text{ V}, V_{DD} = 12 \text{ V}$		_	1.5	2.5	μs
lew-Rate Off $\begin{aligned} R_L &= 4.7 \ \Omega, \\ V_{in} &= 10 \text{ to } 0 \text{ V}, V_{DD} &= 12 \text{ V} \end{aligned}$		dV _{DS} /dt _{off}	_	0.6	1.0	μs
SELF PROTECTION CHARACTERISTIC	CS ($T_J = 25^{\circ}C$ unless otherwise noted)			•	•	
Current Limit			6.0 3.0	9.0 5.0	11 8.0	Adc
Current Limit	$(V_{GS} = 10 \text{ Vdc})$ $(V_{GS} = 10 \text{ Vdc}, \text{ T}_{\text{J}} = 150^{\circ}\text{C})$ (Note 4)	I _{LIM}	7.0 4.0	10.5 7.5	13 10	Adc
Temperature Limit (Turn-off) (Note 4)	V _{GS} = 5.0 Vdc	T _{LIM(off)}	150	175	200	°C
Temperature Hysteresis (Note 4)	sis (Note 4) V _{GS} = 5.0 Vdc		-	15	-	°C
iemperature Limit (Turn-off) (Note 4) V _{GS} = 10 Vdc		T _{LIM(off)}	150	165	185	°C
Temperature Hysteresis (Note 4) V _{GS} = 10 Vdc		$\Delta T_{LIM(on)}$	-	15	-	°C
ESD ELECTRICAL CHARACTERISTICS	$G(T_J = 25^{\circ}C \text{ unless otherwise noted})$			•	•	•
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000	-	-	V
Electro-Static Discharge Capability	Machine Model (MM)	ESD	400	-	_	V
	· ·	1		1	i	<u> </u>

4. Not subject to production testing.
5. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

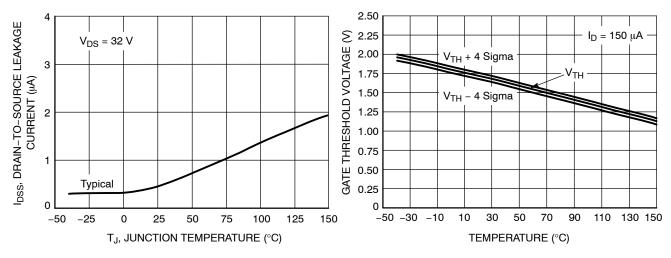


Figure 8. Gate Threshold Voltage versus Temperature

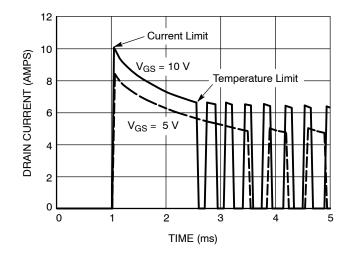
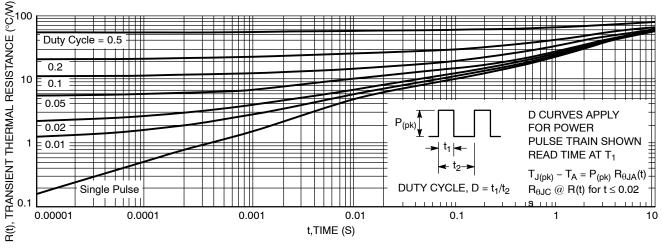
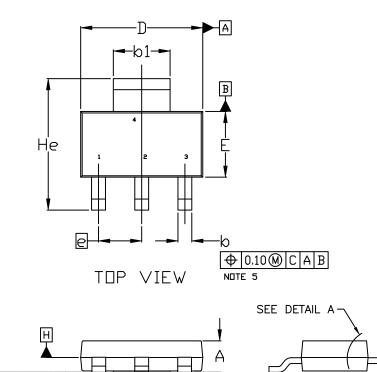



Figure 9. Short-circuit Response

DATE 02 OCT 2018



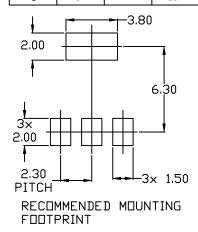
SCALE 1:1

0.10 C

A1

-11

SIDE VIEW


DETAIL A

NDTES:

SOT-223 (TO-261) CASE 318E-04 ISSUE R

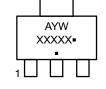
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST PDINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN. NDM. MA		MAX.	
A	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
с	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
e	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0*		10*	

DOCUMENT NUMBER:	98ASB42680B	BBASB42680B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2		
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

FRONT VIEW

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


© Semiconductor Components Industries, LLC, 2018

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	Style 9: Pin 1. Input 2. Ground 3. Logic 4. Ground	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	Style 12: Pin 1. Input 2. Output 3. NC 4. Output	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

- A = Assembly Location
- Y = Year
- W = Work Week
- XXXXX = Specific Device Code
- = Pb-Free Package
- (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DESCRIPTION: SOT-223 (TO-261)			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically	

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative